10.07.2015 Views

Assessing Climate Change Vulnerability of Breeding Birds in Arctic ...

Assessing Climate Change Vulnerability of Breeding Birds in Arctic ...

Assessing Climate Change Vulnerability of Breeding Birds in Arctic ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Assess<strong>in</strong>g</strong> <strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong><strong>of</strong> <strong>Breed<strong>in</strong>g</strong> <strong>Birds</strong> <strong>in</strong> <strong>Arctic</strong> AlaskaA report prepared for the <strong>Arctic</strong> Landscape ConservationCooperativeJoe Liebezeit, Erika Rowland, Molly Cross, Steve Zack


The Wildlife Conservation Society saves wildlife and wild places worldwide. We do so throughscience, global conservation, education and the management <strong>of</strong> the world's largest system <strong>of</strong>urban wildlife parks, led by the flagship Bronx Zoo. Together these activities change attitudestowards nature and help people imag<strong>in</strong>e wildlife and humans liv<strong>in</strong>g <strong>in</strong> harmony. WCS iscommitted to this mission because it is essential to the <strong>in</strong>tegrity <strong>of</strong> life on Earth.AUTHORSJoe LiebezeitErika RowlandMolly CrossSteve Zack© 2012 Wildlife Conservation Society – North America Program, 301 N. Willson AvenueBozeman, MT 59715http://www.wcsnorthamerica.org/Disclaimer: This document represents the work and views <strong>of</strong> the authors and does not necessarilyimply endorsement by the project funders.Suggested citation: Liebezeit, J., E. Rowland, M. Cross, and S. Zack. 2012. <strong>Assess<strong>in</strong>g</strong> <strong>Climate</strong><strong>Change</strong> <strong>Vulnerability</strong> <strong>of</strong> <strong>Breed<strong>in</strong>g</strong> <strong>Birds</strong> <strong>in</strong> <strong>Arctic</strong> Alaska. A report prepared for the <strong>Arctic</strong>Landscape Conservation Cooperative. Wildlife Conservation Society, North America Program,Bozeman, MT., 167pp.1


CONTENTSExecutive Summary............................................................................................................ 1Section 1. Introduction........................................................................................................ 3<strong>Vulnerability</strong> Assessment Basics............................................................................. 7Section 2. Methods.............................................................................................................. 8<strong>Vulnerability</strong> assessments <strong>of</strong> bird life cycle components........................................ 8Regions considered <strong>in</strong> the <strong>Vulnerability</strong> Assessment............................................ 10<strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong> Index Tool ............................................................ 10Geospatial Inputs to the CCVI.............................................................................. 13Sensitivity survey and expert solicitation.............................................................. 16Visualiz<strong>in</strong>g species sensitivity and climate change vulnerability ......................... 16Section 3. Results............................................................................................................. 18<strong>Climate</strong> exposure .................................................................................................. 18Indirect exposure .................................................................................................. 18Species sensitivity.................................................................................................. 19Relative vulnerability to climate change................................................................21Alternate climate scenarios....................................................................................23Sources <strong>of</strong> climate change vulnerability................................................................23Section 4. Discussion........................................................................................................ 25<strong>Climate</strong> change vulnerability <strong>of</strong> <strong>Arctic</strong> Alaska birds............................................ 25Comparisons with other vulnerability assessments .............................................. 26<strong>Climate</strong> change vulnerability <strong>in</strong> context ............................................................... 27Information Gaps.................................................................................................. 27Limitations <strong>of</strong> the CCVI tool................................................................................. 28Other Uncerta<strong>in</strong>ties .............................................................................................. 29Inform<strong>in</strong>g research, conservation and management .............................................29Considerations for focus<strong>in</strong>g future efforts .............................................................29Conservation and management activities ............................................................. 30Conclusion ............................................................................................................ 32References..........................................................................................................................33Acknowledgements........................................................................................................... 37Appendix A: Hamon AET:PET Aridity Index ................................................................. 38Appendix B: Species Accounts......................................................................................... 39Appendix C: Summary <strong>of</strong> the <strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong> Assessments ForW<strong>in</strong>ter Range and Passage Migration............................................................................. 148Appendix D: Sensitivity Survey Experts ........................................................................ 154Appendix E: Workshop................................................................................................... 156Appendix F: Revised Sensitivity Questions ....................................................................159


Executive Summary<strong>Climate</strong> change is occurr<strong>in</strong>g at anaccelerated rate <strong>in</strong> the <strong>Arctic</strong> compared tomost other places on the earth. Temperatureand moisture changes are lead<strong>in</strong>g towarm<strong>in</strong>g permafrost, <strong>in</strong>creased coastalerosion, more frequent fires, and shrub<strong>in</strong>vasion, alter<strong>in</strong>g geomorphology,hydrology, and habitat structure. These rapidchanges <strong>in</strong> habitats, especially thoseassociated with hydrology, are ultimately<strong>in</strong>fluenc<strong>in</strong>g wildlife populations. <strong>Arctic</strong>Alaska harbors some <strong>of</strong> the most importantbreed<strong>in</strong>g and stag<strong>in</strong>g grounds for millions <strong>of</strong>birds represent<strong>in</strong>g over 90 species. Many <strong>of</strong>these species are migratory, w<strong>in</strong>ter<strong>in</strong>g atdisparate sites across the planet, and someare already experienc<strong>in</strong>g population decl<strong>in</strong>esand/or are species <strong>of</strong> conservation concern.As climate change has become a focal issuefor agencies and other <strong>in</strong>stitutions <strong>in</strong> recentyears, one <strong>of</strong> the recognized needs is theapplication <strong>of</strong> science-driven assessments toreconsider landscape management, wildliferesearch, and conservation priorities <strong>in</strong> thiscontext. To help address these emerg<strong>in</strong>gneeds the Wildlife Conservation Societyconducted a climate change vulnerabilityassessment for arctic breed<strong>in</strong>g birds to helpguide climate-<strong>in</strong>formed wildlifemanagement <strong>in</strong> the region. The specificgoals <strong>of</strong> this assessment were to: 1) providea climate change vulnerability rank<strong>in</strong>g for54 <strong>Arctic</strong> Alaskan breed<strong>in</strong>g bird species; 2)evaluate the relative contribution <strong>of</strong> specificsensitivity and exposure factors to <strong>in</strong>dividualspecies rank<strong>in</strong>gs; 3) consider how thisassessment may be <strong>in</strong>tegrated with otherapproaches; and 4) appraise theeffectiveness <strong>of</strong> the NatureServe <strong>Climate</strong><strong>Change</strong> <strong>Vulnerability</strong> Index (CCVI) tool.The CCVI tool was developed byNatureServe specifically to compare theadded vulnerability posed by climate changeto species <strong>in</strong> a region. We assessedvulnerability with reference to changesprojected for 2050 and restricted <strong>in</strong>geographic scope to the Alaska portion <strong>of</strong>the <strong>Arctic</strong> LCC region. The CCVI is aspreadsheet based algorithm that <strong>in</strong>tegrates<strong>in</strong>formation on species sensitivity, directexposure to projected atmospheric changes<strong>in</strong> climate, and <strong>in</strong>direct exposure factors.Direct exposure factors, temperature andmoisture balance change, were <strong>in</strong>corporatedas geospatial <strong>in</strong>puts. We ran the tool withdata from five global circulation models,two emissions scenarios, and at two spatialresolutions. Indirect exposure factors<strong>in</strong>cluded sea-level rise, dispersal relative tobarriers, and human mitigation <strong>in</strong> responseto climate change. Sensitivity factors (lifehistory traits mak<strong>in</strong>g a species more or lessvulnerable) were scored by species expertson survey forms based on publishedliterature and their personal knowledge.The CCVI results ranked two species ashighly vulnerable (Gyrfalcon, CommonEider), seven as moderately vulnerable(Brant, Steller’s Eider, Pomar<strong>in</strong>e Jaeger,Yellow-billed Loon, Buff-breastedSandpiper, Red Phalarope, RuddyTurnstone), and five as likely to <strong>in</strong>crease(Savannah Sparrow, Lapland Longspur,White-crowned Sparrow, American TreeSparrow, Common Redpoll). Theassessment outcome suggests that the mostimportant contributions to the climatechange vulnerability for the 54 bird species<strong>in</strong>clude: 1) be<strong>in</strong>g a specialists <strong>in</strong> at least onelife history trait and/or hav<strong>in</strong>g a strongcoastal orientation; 2) the quality and nature<strong>of</strong> <strong>in</strong>teractions with other species; 3)restrictions associated with physical habitatand diet; 4) dependence on other species tomeet habitat needs; and 5) changes <strong>in</strong>disturbance regimes that would negativelyaffect the speices. Physiologicalhydrological niche (i.e., dependence onwetland habitats <strong>in</strong> the arctic) was thought to1


have the greatest potential to <strong>in</strong>fluencevulnerability; although its effect onoutcomes was dim<strong>in</strong>ished by the way thetool applies exposure weights to sensitivityfactors. Currently available projections for<strong>Arctic</strong> Alaska suggest negligible change <strong>in</strong>moisture balance driven by atmosphericdemand.There was <strong>in</strong>sufficient <strong>in</strong>formation toaddress questions, both for particularsensitivity factors and for certa<strong>in</strong> species ortaxon groups. These and other <strong>in</strong>formationgaps highlight the need for more research orsynthesis <strong>of</strong> exist<strong>in</strong>g data to fill this void.Key needs identified to better understand theclimate change vulnerability <strong>of</strong> birds <strong>in</strong><strong>Arctic</strong> Alaska <strong>in</strong>clude: 1) the effects <strong>of</strong>temperature <strong>in</strong>creases on surface hydrology,wetland availability, and vegetation change;2) <strong>in</strong>formation on nearly all aspects <strong>of</strong>phenology and its relationship with andresponse to chang<strong>in</strong>g environmentalconditions; 3) greater knowledge <strong>of</strong> thegenetic diversity <strong>of</strong> species, its relationshipto climatic gradients, and its role <strong>in</strong> climatechange response.<strong>Climate</strong> change vulnerability <strong>in</strong>dices areone <strong>of</strong> several approaches to understand<strong>in</strong>gthe effects <strong>of</strong> climate change on species,each with its own limitations. While theCCVI tool does not exam<strong>in</strong>e statistical ormechanistic relationships betweensensitivity and exposure factors and does not<strong>in</strong>tegrate climate stressors affect<strong>in</strong>gmigratory birds outside <strong>of</strong> their breed<strong>in</strong>ggrounds, this assessment represents astart<strong>in</strong>g po<strong>in</strong>t to help prioritize management,conservation, and research efforts withrespect to breed<strong>in</strong>g birds <strong>in</strong> the Alaskan<strong>Arctic</strong>.Long-tailed Jaegers on the coastal pla<strong>in</strong> <strong>of</strong> Alaska (Photo: S. Zack @ WCS)2


Section 1. IntroductionOf all places on the earth, climate change isoccurr<strong>in</strong>g most dramatically at the poles(Gillett et al. 2008). In the <strong>Arctic</strong>, airtemperature has <strong>in</strong>creased at almost twicethe global average rate <strong>in</strong> the past 100 years,accompanied by significantly alteredweather patterns, <strong>in</strong>creased glacial and polarpack ice melt, and sea level rise (IPCC2007). More specifically, <strong>in</strong> <strong>Arctic</strong> Alaskamean annual temperature is ris<strong>in</strong>g at a rate<strong>of</strong> 0.45 °C per decade (Data from M.Shulski reported <strong>in</strong> Mart<strong>in</strong> et al. 2009;Figure 1.1). Over the next 60 years, meanannual temperatures are expected to <strong>in</strong>creaseapproximately 5 °C (Figure 1.2) and to 7 °Cby the end <strong>of</strong> the century with most <strong>of</strong> thewarm<strong>in</strong>g occurr<strong>in</strong>g <strong>in</strong> w<strong>in</strong>ter (Mart<strong>in</strong> et al.2009). Annual precipitation is expected to<strong>in</strong>crease 20-40% over the next 60 years(Figure 1.3) although <strong>in</strong>creas<strong>in</strong>gtemperatures may lessen the effects <strong>of</strong><strong>in</strong>creased precipitation by driv<strong>in</strong>g an<strong>in</strong>crease <strong>in</strong> evapotranspiration rates (TWSSNAP http://www.snap.uaf.edu/data.php).While <strong>in</strong> some <strong>Arctic</strong> sites there is evidence<strong>of</strong> tundra dry<strong>in</strong>g, the pattern is spatiallyheterogeneous (e.g., Riordan et al. 2006). Itis uncerta<strong>in</strong> whether the future will br<strong>in</strong>g anet annual dry<strong>in</strong>g or moisten<strong>in</strong>g. Moreover,it is unclear how surface hydrology andgeomorphology changes will eitherexacerbate or compensate for shifts <strong>in</strong>atmospheric moisture (Mart<strong>in</strong> et al. 2009).Regionally, recent temperature and moisturechanges are lead<strong>in</strong>g to warm<strong>in</strong>g permafrost(Romanovsky et al. 2007), <strong>in</strong>creased coastalerosion (Jones et al. 2009), more frequentfires (Rac<strong>in</strong>e and Jandt 2008), and shrub<strong>in</strong>vasion (Tape et al. 2006), likely alter<strong>in</strong>ggeomorphology, hydrology, and habitatstructure (see Mart<strong>in</strong> et al. 2009 for athorough review).Key resources <strong>of</strong> concern <strong>in</strong> the <strong>Arctic</strong>are the vast productive wetlands <strong>in</strong> northernAlaska (particularly <strong>in</strong> the <strong>Arctic</strong> CoastalPla<strong>in</strong>) and the birds that migrate from allover the globe dur<strong>in</strong>g the brief summerseason to breed. Avian research <strong>in</strong> the regionpo<strong>in</strong>ts to the unique importance <strong>of</strong> largeparts <strong>of</strong> <strong>Arctic</strong> Alaska <strong>in</strong> harbor<strong>in</strong>g some <strong>of</strong>the most important avian breed<strong>in</strong>g grounds<strong>in</strong> the entire circumpolar <strong>Arctic</strong> (Andres etFigure 1.1. 50-year trend <strong>in</strong> mean annual temperature at seven sites on the North Slope (Source: M.Shulski <strong>in</strong> Mart<strong>in</strong> et al. 2009).3


al. 2012). Over 90 species <strong>of</strong> birds,represent<strong>in</strong>g millions <strong>of</strong> <strong>in</strong>dividuals thatregularly nest <strong>in</strong> this region (Johnson andHerter 1989), are the most conspicuous anddiverse vertebrates <strong>in</strong> the ecosystem. Inparticular, significant populations <strong>of</strong>shorebirds (Pitelka 1974, Johnson et al.2007, Liebezeit et al. 2011, Andres et al.2012), waterfowl (K<strong>in</strong>g and Hodges 1979),and water birds (Earnst et al. 2005) come to<strong>Arctic</strong> Alaska to nest every year. A number<strong>of</strong> species which rely on Alaskan <strong>Arctic</strong>breed<strong>in</strong>g and stag<strong>in</strong>g grounds haveexperienced population decl<strong>in</strong>es and/or arespecies <strong>of</strong> conservation concern. These<strong>in</strong>clude 10 shorebird species (AlaskaShorebird Group 2008, Morrison et al. 2006,Bart et al. 2007) and others such as theYellow-billed Loon (Gavia adamsii). Twospecies, the Spectacled and Steller’s Eiders(Somateria fischeri, Polysticta stelleri) arelisted as threatened under the U.S.Endangered Species Act (U.S. Department<strong>of</strong> Interior 1993, 1997).Initial explorations <strong>of</strong> climate changeimpacts to breed<strong>in</strong>g birds <strong>in</strong> the region rangefrom potentially negative to positive effectsbut are challenged by a paucity <strong>of</strong> basel<strong>in</strong>e<strong>in</strong>formation (Mart<strong>in</strong> et al. 2009, Zack andLiebezeit 2010). Scientific research,monitor<strong>in</strong>g, and model<strong>in</strong>g studies forunderstand<strong>in</strong>g how these changes areimpact<strong>in</strong>g important biophysical processes,let alone the wildlife and bird populations <strong>in</strong><strong>Arctic</strong> Alaska, are absent or <strong>in</strong> <strong>in</strong>itial stages.The high costs and logistical difficulty <strong>of</strong>conduct<strong>in</strong>g scientific research andmonitor<strong>in</strong>g <strong>in</strong> the remote arctic hashistorically made it challeng<strong>in</strong>g to developlong-term and region-wide field-basedprograms to measure wildlife populations. Itis likely, though, that some <strong>Arctic</strong>-breed<strong>in</strong>gbird species will (and may already) benegatively impacted, while others willbenefit from a warm<strong>in</strong>g climate.Figure 1.2. (Upper panel) Mean annual temperaturefor the <strong>Arctic</strong> LCC region (°C) and (Lower panel)change <strong>in</strong> mean annual temperature (°C) projected for2040-2069. Maps created by WCS us<strong>in</strong>g CRUhistorical climate data and 5-Model Composite– A1Bprojections (SNAP 2011).As climate change cont<strong>in</strong>ues toaccelerate <strong>in</strong> the far north and ultimately<strong>in</strong>fluences wildlife populations <strong>in</strong> the region,<strong>in</strong>clud<strong>in</strong>g the avifauna, land managers willbe more challenged to prepare for, and copewith, impend<strong>in</strong>g impacts. At a global scaleecologists have predicted major changes <strong>in</strong>the viability and distribution <strong>of</strong> wildlifepopulations and the habitats that supportthem. Already range and phenological shiftsfor multiple taxa have been detected(Parmesan and Yohe 2003, Rosenzweig etal. 2008). Although the ability <strong>of</strong> species toadapt to climate changes has been tested for4


Figure 1.3. (Upper Panel) Mean annual precipitationfor the <strong>Arctic</strong> LCC region (mm) and (Lower Panel)change <strong>in</strong> the mean annual precipitation <strong>in</strong> mm (left)and <strong>in</strong> % change (right) projected for 2040-2069.Maps created by WCS us<strong>in</strong>g CRU historical climatedata and 5-Model Composite– A1B projections(SNAP 2011).eons, both at the physiological andbehavioral level (Parmesan 2006), the speedwith which the climate is currently chang<strong>in</strong>gmay preclude adaptation <strong>in</strong> many species(Visser 2008).The comb<strong>in</strong>ation <strong>of</strong> this rapid pace <strong>of</strong>climate change with <strong>in</strong>creas<strong>in</strong>g humanimpacts could lead to accelerated rates <strong>of</strong>ext<strong>in</strong>ction for many species (IPCC 2007).Wildlife managers and conservationists willrequire additional k<strong>in</strong>ds <strong>of</strong> <strong>in</strong>formation tomake decisions about their goals for wildlifepopulations <strong>in</strong> chang<strong>in</strong>g conditions andabout the consistency <strong>of</strong> land uses and otherpolicy choices with these goals. As such,explicitly address<strong>in</strong>g climate changeimpacts, <strong>of</strong>ten called “climate changeadaptation”, is becom<strong>in</strong>g an important newapproach <strong>in</strong> natural resource management(Glick et al. 2011).Federal and state agencies have recentlyestablished programs with a mandate tomanage wildlife with respect to climatechange. The Department <strong>of</strong> Interior-led -Landscape Conservation Cooperatives(LCCs) and U.S. Geological Survey -<strong>Climate</strong> Science Centers (CSCs) are chargedwith <strong>in</strong>tegrat<strong>in</strong>g federal agency and partnerscience and management expertise <strong>in</strong> acoord<strong>in</strong>ated response to climate change andother landscape-scale stressors <strong>in</strong> manyregions. A specific goal <strong>of</strong> the <strong>Arctic</strong> LCCcharter is to develop “effective conservationplann<strong>in</strong>g dependent on knowledge <strong>of</strong> the5


elative vulnerabilities <strong>of</strong> habitats, species,and species assemblages” (<strong>Arctic</strong> LCC2010). In addition, the state <strong>of</strong> AlaskaDepartment <strong>of</strong> Fish and Game State WildlifeAction Plan is due for revision <strong>in</strong> 2015, atwhich time they may be forced to contendwith the new threats emerg<strong>in</strong>g as a result <strong>of</strong>climate change. Agencies, academicians,and non-governmental organizations haverecognized the need to use science-drivenassessments and syntheses to reconsiderwildlife research, management, andconservation priorities with respect toclimate change. As a contribution towardthese emerg<strong>in</strong>g needs, the WildlifeConservation Society (WCS) conducted aclimate change vulnerability assessment tohelp guide climate-<strong>in</strong>formed wildlifemanagement <strong>in</strong> the region.Recognized as one effective method for<strong>in</strong>tegrat<strong>in</strong>g climate change considerations<strong>in</strong>to conservation and other plann<strong>in</strong>g efforts,climate change vulnerability assessmentscan provide key <strong>in</strong>puts to early steps <strong>in</strong> theprocess. <strong>Vulnerability</strong> assessments comb<strong>in</strong>e<strong>in</strong>formation about the characteristics <strong>of</strong> atarget or resource (species, habitat, orprocess) that make it sensitive to climatechange with the magnitude <strong>of</strong> projectedexposure to that change, and its capacity toadapt to the changes (see text box on nextpage). With these components, vulnerabilityassessments can help us identify what islikely to be most affected by projectedclimate changes and why they are likelyvulnerable (Glick et al. 2011). They can<strong>of</strong>fer important contributions to a climatechange adaptation strategy (Figure 1.4) byguid<strong>in</strong>g management and plann<strong>in</strong>g priorities,assist<strong>in</strong>g <strong>in</strong> <strong>in</strong>form<strong>in</strong>g and develop<strong>in</strong>gmanagement strategies, and enabl<strong>in</strong>g a moreefficient allocation <strong>of</strong> resources (Glick et al.2011). Assessment outcomes can alsoprovide <strong>in</strong>formation for scientists to developtestable hypotheses for monitor<strong>in</strong>g andresearch.Figure 1.4. Overarch<strong>in</strong>g framework for develop<strong>in</strong>gclimate change adaptation strategies (Source: Glickand Ste<strong>in</strong> 2011)<strong>Climate</strong> change vulnerability assessmentresults, <strong>in</strong> and <strong>of</strong> themselves, do not dictatean agency’s management, research, orconservation priorities. Land managers anddecision makers must also consider othermanagement priorities, costs, and logisticalissues before tak<strong>in</strong>g action on the basis <strong>of</strong> avulnerability assessment. <strong>Vulnerability</strong>assessments pull together the best available<strong>in</strong>formation about a resource <strong>of</strong> <strong>in</strong>terest,which is <strong>of</strong>ten based on expert op<strong>in</strong>ion andconsidered less rigorous by some (Mart<strong>in</strong> etal. 2011). The f<strong>in</strong>al results should be<strong>in</strong>terpreted with<strong>in</strong> this context, and, <strong>in</strong> manycases, are best viewed as a start<strong>in</strong>g po<strong>in</strong>t orone <strong>of</strong> several complementary sources <strong>of</strong><strong>in</strong>formation <strong>in</strong>tegrated to provide guidanceon address<strong>in</strong>g a management orconservation problem.The specific goals <strong>of</strong> our assessmentwere to:1. Provide a climate changevulnerability rank<strong>in</strong>g for 54 <strong>Arctic</strong>Alaskan breed<strong>in</strong>g bird species, us<strong>in</strong>gthe NatureServe <strong>Climate</strong> <strong>Change</strong><strong>Vulnerability</strong> Index (CCVI) tool(Young et al. 2010). Ranks mayrange from highly vulnerable,presumed stable, to likely benefitfrom climate change.6


For 17 shorebird species providea climate change vulnerabilityrank<strong>in</strong>g for their w<strong>in</strong>ter<strong>in</strong>g andmigration grounds to comb<strong>in</strong>ewith the breed<strong>in</strong>g ground resultfor an overall vulnerabilityrank<strong>in</strong>g spann<strong>in</strong>g their entireannual cycle.2. Evaluate the relative contribution <strong>of</strong>specific sensitivity and exposurefactors to <strong>in</strong>dividual species rank<strong>in</strong>gsto better understand how and whyclimate might be impact<strong>in</strong>g speciesnow and <strong>in</strong>to the future <strong>in</strong> the region.3. Consider how this assessment can be<strong>in</strong>tegrated with other approaches tohelp prioritize management,research, and conservation.4. Comment on the effectiveness <strong>of</strong> theCCVI tool <strong>in</strong> this assessment.In this report we provide the results <strong>of</strong> ourvulnerability assessment <strong>of</strong> <strong>Arctic</strong> breed<strong>in</strong>gbirdspecies to climate change, and somethoughts about the process <strong>of</strong> conduct<strong>in</strong>g theassessment and the application <strong>of</strong> output.<strong>Vulnerability</strong> Assessment BasicsIn the context <strong>of</strong> climate change,vulnerability is def<strong>in</strong>ed as the extent towhich a species, habitat, or ecosystem issusceptible to negative impacts fromclimate change impacts (Schneider et al.2007). A vulnerability assessment is afunction <strong>of</strong> the sensitivity <strong>of</strong> a system orspecies to climate changes, its exposure tothose changes, and its capacity to adapt tothose changes (IPCC 2007, Glick et al.2011; see figure below). Sensitivity refersto <strong>in</strong>tr<strong>in</strong>sic traits <strong>of</strong> a system or species (e.g.physiological tolerances) that make themvulnerable to climate change. In contrast,exposure refers to extr<strong>in</strong>sic factors (e.g.<strong>in</strong>creas<strong>in</strong>g temperatures) that a system orspecies is likely to experience. The adaptivecapacity refers to opportunities availablethat may improve a species’ or system’sability to cope with sensitivity or exposurestressors (e.g. dispersal to differenttemperature gradient). The <strong>in</strong>terplay <strong>of</strong>these three factors def<strong>in</strong>es the relativevulnerability. There are a number <strong>of</strong>different approaches to conduct<strong>in</strong>g avulnerability assessment (Rowland et al.2011) rang<strong>in</strong>g from simple conceptualmodel flowcharts to more advancedpredictive model<strong>in</strong>g. All <strong>of</strong> theseapproaches are based on the corecomponents described above.The relationship <strong>of</strong> the key components <strong>of</strong> avulnerability assessment (Source: Glick et al. 2011).7


Section 2. MethodsThere are numerous approaches toconduct<strong>in</strong>g climate change vulnerabilityassessments for targets rang<strong>in</strong>g fromecosystem processes to <strong>in</strong>dividual species,which are more or less appropriate <strong>in</strong>different situations and <strong>of</strong>ten best applied <strong>in</strong>a step-wise or complementary way (Glick etal. 2009, Rowland et al. 2011). TheNatureServe <strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong>Index tool (CCVI-Version 2.1) is designedto provide a relatively rapid assessment <strong>of</strong>multiple species and is best suited to regions<strong>in</strong> which vulnerability assessments are justgett<strong>in</strong>g underway. It <strong>of</strong>fers a structuredstart<strong>in</strong>g po<strong>in</strong>t for develop<strong>in</strong>g anunderstand<strong>in</strong>g <strong>of</strong> relative vulnerability basedon a consistent set <strong>of</strong> synthesized<strong>in</strong>formation (Young et al. 2010). The tooladdresses factors relevant to vulnerability toclimate change only; thus, results are meantto be considered <strong>in</strong> conjunction with otherconservation status assessments (e.g. IUCNRed List, Audubon Watchlist, EndangeredSpecies Act). We used this tool to <strong>in</strong>itiallyexam<strong>in</strong>e impacts that projected climatechanges for <strong>Arctic</strong> Alaska (<strong>Arctic</strong> LCCregion, Figure 2.1) might have on 54 species<strong>of</strong> birds that breed <strong>in</strong> the region (Table 2.1).<strong>Vulnerability</strong> was assessed with reference tochanges projected for 2050, a timeframechosen to consider the implications <strong>of</strong> neartermchanged to more current managementand conservation adaptation strategies. Thevulnerability assessment exercise <strong>in</strong>cluded:1) a survey <strong>of</strong> <strong>in</strong>dividual species experts to<strong>in</strong>form sensitivity (i.e., life history trait)<strong>in</strong>puts, 2) application <strong>of</strong> the CCVI tool, 3) aworkshop dur<strong>in</strong>g which prelim<strong>in</strong>ary resultsand methods were vetted by participat<strong>in</strong>gexperts, and 4) a revision <strong>in</strong>formed by theworkshop discussions to generate f<strong>in</strong>alresults.<strong>Vulnerability</strong> assessments <strong>of</strong> bird life cyclecomponentsWe considered 54 <strong>of</strong> the approximately 90species <strong>of</strong> birds that regularly use theterrestrial and freshwater habitats <strong>in</strong> <strong>Arctic</strong>Alaska (Table 2.1.) (Johnson and Herter1989). Our assessment <strong>in</strong>cluded 17shorebird, 16 land bird species (passer<strong>in</strong>es,raptors, ptarmigan), 21 waterbird species(loons, ducks, geese, gulls, terns, jaegers).We did not <strong>in</strong>clude all commonly nest<strong>in</strong>gspecies <strong>in</strong> the assessment because <strong>of</strong> fund<strong>in</strong>gand time constra<strong>in</strong>ts; however, we did<strong>in</strong>clude a cross-section <strong>of</strong> bird speciesrepresent<strong>in</strong>g the ma<strong>in</strong> taxonomic groups. Weselected species that were known to haveimportant populations <strong>in</strong> the region, were <strong>of</strong>conservation concern, and/or were believedto be predisposed to climate change impactsbased on exist<strong>in</strong>g <strong>in</strong>formation (e.g. breed<strong>in</strong>grange constra<strong>in</strong>ts).The primary focus <strong>of</strong> this effort was toimprove our understand<strong>in</strong>g <strong>of</strong> the climatechange vulnerability <strong>of</strong> the 54 bird speciesdur<strong>in</strong>g their breed<strong>in</strong>g season <strong>in</strong> <strong>Arctic</strong>Alaska. However, we also recognized thatmost <strong>of</strong> these birds are migratory and onlyspend a small portion <strong>of</strong> their lives <strong>in</strong> the<strong>Arctic</strong>. Many <strong>of</strong> these species mayexperience climate change stressors <strong>in</strong> otherparts <strong>of</strong> their range. For this reason, weconducted separate vulnerabilityassessments for 17 shorebird speciesfocused on their w<strong>in</strong>ter<strong>in</strong>g grounds and keypassage migration areas, respectively. Wechose shorebirds for this pilot effort as theyundertake some <strong>of</strong> the longest migrations <strong>of</strong>birds <strong>in</strong> <strong>Arctic</strong> Alaska, and climate changevulnerability likely varies spatially andtemporally. We <strong>in</strong>tegrated the w<strong>in</strong>ter<strong>in</strong>gground and passage migration area resultswith those <strong>of</strong> the breed<strong>in</strong>g season tocalculate an overall vulnerability score. Theresults <strong>of</strong> the additional assessments areprelim<strong>in</strong>ary s<strong>in</strong>ce <strong>in</strong>formation on shorebird8


Table 2.1. Fifty-four species <strong>in</strong>cluded <strong>in</strong> the vulnerability assessment.9


esults by assum<strong>in</strong>g that each level isequally likely to represent the “true” value.Numerical <strong>in</strong>dices are converted tocategorical outputs based on thresholdsassociated with various comb<strong>in</strong>ations <strong>of</strong>sensitivity and exposure (Table 2.3). Thenumerical <strong>in</strong>dex allows for a rank<strong>in</strong>g <strong>of</strong>relative vulnerability across a group <strong>of</strong>species with<strong>in</strong> a specific assessment area,while categorical outputs facilitate group<strong>in</strong>gby degrees <strong>of</strong> vulnerability. For detailed<strong>in</strong>formation about the tool and underly<strong>in</strong>galgorithm, see Young et al. (<strong>in</strong> press).We report the categorical output (degree<strong>of</strong> vulnerability), the tool-assigned“confidence level” result<strong>in</strong>g from the MonteCarlo simulations, and the numerical <strong>in</strong>dexscore.We also report the range <strong>of</strong> numerical<strong>in</strong>dex scores generated by the Monte Carlosimulations to <strong>of</strong>fer <strong>in</strong>sight <strong>in</strong>to thesensitivity <strong>of</strong> the tool output to uncerta<strong>in</strong>ties<strong>in</strong> both the exposure and sensitivity factor<strong>in</strong>puts (see details on CCVI <strong>in</strong>puts below).While the relative climate changevulnerability <strong>of</strong> a group <strong>of</strong> species is useful,the scores for the sensitivity factors that<strong>in</strong>dicate the underly<strong>in</strong>g sources <strong>of</strong> potentialvulnerability identified through this exerciseare <strong>of</strong> greater relevance to subsequentadaptation plann<strong>in</strong>g efforts (see Dubois et al.2011 example). We provide detailedsummaries with an <strong>in</strong>dividualized factorscor<strong>in</strong>gtable for each assessed species <strong>in</strong>Appendix B.Figure 2.1. <strong>Arctic</strong> LCC (BCR 3) region <strong>of</strong> <strong>Arctic</strong> Alaska. Maps created by WCS us<strong>in</strong>g Alaska300m digital elevation model. USGS EROS, Anchorage, Alaska and other map layers downloaded from theAlaska State Geo-spatial Data Clear<strong>in</strong>ghouse (http://www.asgdc.state.ak.us/). Map projection: AlaskaAlbers Equal Area Conic.11


Table 2.2. Exposure weight<strong>in</strong>gs for sensitivity and <strong>in</strong>direct exposure factors. Weights for temperature and moistureare assigned 1.0, 1.5, 2.0, depend<strong>in</strong>g on the number <strong>of</strong> standard deviations the projected change for the range <strong>of</strong> agiven species is above the average projected change for the entire state <strong>of</strong> Alaska. A weight <strong>of</strong> 0.5 is assigned if the<strong>in</strong>crease is


Table 2.3. Numerical <strong>in</strong>dex score thresholds andcorrespond<strong>in</strong>g vulnerability categories (degree <strong>of</strong>vulnerability) as assigned by the CCVI. <strong>Vulnerability</strong>thresholds are based on hypothetical examples <strong>of</strong>exposure and sensitivity comb<strong>in</strong>ations that might leadto different levels <strong>of</strong> vulnerability (Young et al. <strong>in</strong>press).IndexScore <strong>Vulnerability</strong> Category>10.0 Extremely Vulnerable (EV)7.0-9.9 Highly Vulnerable (HV)4.0-6.9 Moderately Vulnerable (MV)-2-3.99 Presumed Stable (PS)


CCVI Modification #1: Temperature Exposure CategoriesThe CCVI tool uses projected changes <strong>in</strong> the magnitude <strong>of</strong> atmospheric temperature and moisture (HamonAET:PET reflect<strong>in</strong>g the <strong>in</strong>teraction <strong>of</strong> precipitation and temperature as the potential for dry<strong>in</strong>g; see Appendix A fordetail) to assess climate exposure for each species. The magnitude <strong>of</strong> change categories <strong>in</strong> the CCVI are based on +/-standard deviations from the average change <strong>in</strong> temperature/moisture projected for the conterm<strong>in</strong>ous United States(i.e., did not <strong>in</strong>clude Alaska). Due to the high magnitude <strong>of</strong> temperature change projected for Alaska, the exposure<strong>in</strong>puts for all species fell <strong>in</strong> the highest magnitude category. Because the CCVI provides <strong>in</strong>formation about relativevulnerability with<strong>in</strong> a specific assessment area (here the BCR3/<strong>Arctic</strong> LCC region), we re-scaled the temperaturecategories to reflect the standard deviations from the average projected change <strong>in</strong> temperature for the state <strong>of</strong> Alaskato <strong>of</strong>fer the potential for some differentiation between species we reviewed.Table 2.3. Summary <strong>of</strong> the multiple climate projections used <strong>in</strong> different runs <strong>of</strong> the CCVI tool to compare<strong>in</strong>fluence on species’ vulnerability <strong>in</strong> the <strong>Arctic</strong> LCC (CW <strong>in</strong>dicates <strong>Climate</strong> Wizard data).EmissionScenarioModel (GCM)1. A1B Temp: SNAP 5-model composite*/Moisture: CW 5-model average (SNAP models)2. A1B Temp: SNAP CCCMA model/Moisture: CW CCCMA model3. A1B Temp: SNAP ECHAM5 model/Moisture: CW 5-model average (SNAP models)4. A1B Temp: SNAP 5-model composite* /Moisture: TWS/SNAP-PET 5-model average5. A2 Temp: SNAP 5-model composite* /Moisture: CW 5-model average (SNAP models)6. A2 Temp: CW 5-model average (SNAP models) /Moisture: CW 5-model average (SNAP models)*Output <strong>of</strong> 5 climate models downscaled to 2 km by SNAP based on performance assessment for north: ECHAM5, GFDL21,MIROC, HAD, CCCMA<strong>Arctic</strong> coastal pla<strong>in</strong> <strong>of</strong> Alaska (Photo: S. Zack @ WCS)14


Emission Scenarios and <strong>Climate</strong> ProjectionsThe exposure <strong>in</strong>puts for this vulnerability assessment were based on the A1B and A2 emission scenariosas projected by the five climate models that best replicate Alaska’s historical climate (SNAPhttp://www.snap.uaf.edu/).The A1B and A2 emission scenarios are narratives that represent plausibleapproximations <strong>of</strong> future conditions based on assumptions about technological changes, and social,economic and policy developments that <strong>in</strong>corporate feedback mechanisms that lead to the cross<strong>in</strong>g <strong>of</strong>critical thresholds. These two scenarios, quantified as greenhouse gas concentrations, respectivelycharacterize different futures with (1) a moderate <strong>in</strong>crease <strong>in</strong> emissions followed by a decl<strong>in</strong>e, and (2) asteady <strong>in</strong>crease <strong>in</strong> emissions*. The outputs for the ECHAM5 and CCCMA general circulation models(GCMs), developed by the Max Planck Institute <strong>of</strong> Meteorology and Canadian Center for <strong>Climate</strong>Model<strong>in</strong>g and Analysis), roughly bracket the high and low ends <strong>of</strong> the range <strong>of</strong> temperature projectionsfor the <strong>Arctic</strong> LCC region.*Note that recent trends <strong>in</strong> actual emissions have exceeded these scenario-based projections (Raupach et al. 2007).Sea-level rise impacts: We used the sea levelrise <strong>in</strong>undation model and data provided bythe Center for Remote Sens<strong>in</strong>g <strong>of</strong> Ice Sheets(CReSIS) with global coverage(https://www.cresis.ku.edu/data/sea-levelrise-maps)to calculate the percentage <strong>of</strong> thespecies range potentially affected (IndirectExposure B1). In this model, sea level riseor <strong>in</strong>undation zones were calculated fromthe Global Land One-km Base Elevation(GLOBE) digital elevation model, a rasterelevation dataset cover<strong>in</strong>g the entire world.The sea-level rise data was available <strong>in</strong> 1-m<strong>in</strong>crements. We considered several sea levelrise projections and recent observations to<strong>in</strong>form our data selection (Rhamstorf et al.2007, Vemeer and Rhamstorf 2009,Overpeck and Weiss 2009). These rangedfrom 0.75-1.9 m to as much as 4-6 m, l<strong>in</strong>kedto the uncerta<strong>in</strong> dynamics <strong>of</strong> the Antarcticice sheet, by the end <strong>of</strong> the 21 st century. Therate <strong>of</strong> melt<strong>in</strong>g <strong>of</strong> ice masses <strong>in</strong> Antarcticaand Greenland and their contribution to sealevelrise have the potential to trigger an<strong>in</strong>crease <strong>of</strong> several meters but this cont<strong>in</strong>uesto be uncerta<strong>in</strong> (e.g., Areneborg et al. 2012).We exam<strong>in</strong>ed the effects on the sea-levelrise factor scor<strong>in</strong>g us<strong>in</strong>g both the 1-m and 2-m data sets. Us<strong>in</strong>g the 1-m data set impliedthat sea level rise would not contribute to theclimate change vulnerability <strong>of</strong> any <strong>of</strong> thespecies we assessed. While this may be anaccurate reflection <strong>of</strong> the impact <strong>of</strong> sea levelrise on these species for mid-century, theresult was due, <strong>in</strong> part, to the misalignmentbetween species distribution and sea levelrise data layers along the <strong>Arctic</strong> coastl<strong>in</strong>e,result<strong>in</strong>g <strong>in</strong> sea level rise occurr<strong>in</strong>g <strong>of</strong>fshore.15


We chose to use the 2-m overlay <strong>in</strong> thevulnerability assessment as a plausiblefuture to capture the potentially importantimpacts <strong>of</strong> sea level rise for species withcoastally limited distributions. The 2-meterdata shifted the sea-level rise score from“neutral” to “slightly <strong>in</strong>creasedvulnerability” for 7 <strong>of</strong> the 54 species.Sensitivity survey and expert solicitationWe asked <strong>in</strong>dividual species experts to scorethe sensitivity factors <strong>of</strong> the CCVI (13 <strong>of</strong> 23;see Fig 2.2.). Some factors have subcategories,and others require a geospatialoverlay to assess. Most species experts wereagency, academic, non-governmental, orprivate <strong>in</strong>dustry scientists with advanceddegrees that have spent multiple yearsstudy<strong>in</strong>g some aspect <strong>of</strong> their focal speciesand were familiar with the respective body<strong>of</strong> literature. We solicited responses from 83species experts <strong>of</strong> which 51 responded bycomplet<strong>in</strong>g sensitivity surveys and provid<strong>in</strong>g<strong>in</strong>formation on one measure <strong>of</strong> <strong>in</strong>directclimate exposure – “human climatemitigation” (Appendix C). The sensitivitysurveys were based on those used <strong>in</strong> avulnerability assessment conducted <strong>in</strong> theState <strong>of</strong> Florida us<strong>in</strong>g the CCVI (Dubois etal. 2011).Experts were <strong>in</strong>structed to respond toquestions taken verbatim from the CCVIguidance document, provide citations andwritten justifications for their responses, andassign a “confidence level” to their responseus<strong>in</strong>g a 1-5 scale. Sensitivity surveyresponses were entered <strong>in</strong>to the CCVI andrun with the various climate exposure andother geospatial <strong>in</strong>puts to generateprelim<strong>in</strong>ary climate change vulnerabilityresults for the 54 species.We presented prelim<strong>in</strong>ary results (notreported here) dur<strong>in</strong>g a workshop <strong>in</strong>Anchorage, Alaska on December 7-9 th ,2011. The 31 participants represented amajority <strong>of</strong> the species’ experts whoreturned a sensitivity survey. It becameclear; both <strong>in</strong> read<strong>in</strong>g survey responses andthrough discussions at the workshop, that<strong>in</strong>dividual experts <strong>in</strong>terpreted somequestions differently. In addition, expertsexpressed some discomfort <strong>in</strong> answer<strong>in</strong>gsensitivity questions that also required someunderstand<strong>in</strong>g and/or speculation aboutclimate exposure and ecosystem responses.To address these issues, a sub-group <strong>of</strong>six avian experts (Appendix D) and WCSclimate change program staff revised theproblematic sensitivity factor questions afterthe workshop and re-evaluated the orig<strong>in</strong>alresponses <strong>of</strong> the larger expert group <strong>in</strong> light<strong>of</strong> this agreed upon language andstandardized <strong>in</strong>terpretation (Appendix F).The orig<strong>in</strong>al responses and support<strong>in</strong>g<strong>in</strong>formation provided by species expertswere circulated to the sub-group and weasked all six experts to revise the orig<strong>in</strong>alresponses on their own. We then met as agroup to discuss any suggested changes tothe orig<strong>in</strong>al scores and to explore anywith<strong>in</strong>-group differences <strong>in</strong> the revisedresponses. We did not strive to reachconsensus, but sought to ensure that relevantnuances <strong>in</strong> reason<strong>in</strong>g were recorded andquestion <strong>in</strong>terpretation was consistent.Because the CCVI can accommodatemultiple scores for any one factor, all <strong>of</strong> there-evaluated responses were used togenerate the revised vulnerabilityassessment results.Visualiz<strong>in</strong>g species sensitivity and climatechange vulnerabilityWe illustrate similarities and differencesbetween the sensitivities and climate changevulnerabilities <strong>of</strong> the 54 bird species with apr<strong>in</strong>ciple components analysis (PCA) basedon a variance-covariance matrix (because <strong>of</strong>the standard scale <strong>of</strong> the variables) andEuclidean distance measure us<strong>in</strong>g PASTs<strong>of</strong>tware (Hammer et al. 2001). While not anideal multivariate method for categorical16


data, <strong>in</strong>terpretations <strong>of</strong> scatter-plots and axisload<strong>in</strong>gs (i.e., those characteristics that drivescatter-plot patterns) are relativelystraightforward (McCune and Mefford1999). Numerical scores for all <strong>of</strong> the<strong>in</strong>direct exposure and sensitivity factorswere <strong>in</strong>cluded except the genetic andphenology factors. These were omittedbecause they were scored as “<strong>in</strong>sufficientdata” for many species. The result<strong>in</strong>g matrix<strong>in</strong>cluded 14 variables and 54 species. For thepurposes <strong>of</strong> this analysis, we used thenumerical average for any factor withmultiple different scores reflect<strong>in</strong>g theuncerta<strong>in</strong>ty <strong>of</strong> respondents. The PCAscatter-plots were then color-coded to reflectthe categorical vulnerability <strong>in</strong>dex assignedby the CCVI us<strong>in</strong>g the three differentclimate exposure <strong>in</strong>puts <strong>of</strong> the revisedassessment.Caribou pair near a p<strong>in</strong>go on the arctic coastal pla<strong>in</strong><strong>of</strong> Alaska. (Photo: S. Zack @ WCS)CCVI Modification #2: Natural Barriers toDistribution ShiftsThe CCVI guidance suggests that most birds shouldnot experience natural barriers that would limit theirdispersal (by flight) <strong>in</strong> response to climate change.But range shifts for bird species whose distributionsare limited to the coast <strong>of</strong> the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>in</strong>the <strong>Arctic</strong> LCC are assumed to be impaired becausethere is no landmass to the north. Therefore, the<strong>Arctic</strong> Ocean represents a barrier to birds that haverestricted distributions along the northernmostcircumpolar coastl<strong>in</strong>es. While birds may be able toshift distributions longitud<strong>in</strong>ally, we scored thenorthern 1/3 rd <strong>of</strong> the <strong>Arctic</strong> Coastal Pla<strong>in</strong> as “slightly<strong>in</strong>creases” vulnerability, rather than “neutral”(Appendix F).CCVI Modification #3: Predicted Impacts <strong>of</strong> LandUse <strong>Change</strong> Result<strong>in</strong>g from Human Response to<strong>Climate</strong> <strong>Change</strong>Because <strong>of</strong> the limited accessibility <strong>of</strong> the <strong>Arctic</strong>LCC region and the low levels <strong>of</strong> current humanactivity, we considered only ongo<strong>in</strong>g and highlyplausible activities. These <strong>in</strong>cluded shorel<strong>in</strong>e erosionfortification and the conversion <strong>of</strong> ice roads related toresidential and energy development to all-weatherroads. Other climate change related mitigationactivities (e.g., w<strong>in</strong>d farm developments, hydro dams,natural gas <strong>in</strong>frastructure, coal m<strong>in</strong><strong>in</strong>g) were deemedeither unlikely to occur <strong>in</strong> the region or to be onlylocalized <strong>in</strong> scale <strong>in</strong> the next 50 years. We also didnot consider secondary impacts such as <strong>in</strong>creasednest predation or hunt<strong>in</strong>g related to a more extensiveroad system).CCVI Modification #4: Dependence on SpecificDisturbance RegimesThis factor addressed species’ responses todisturbance regimes that are likely to be altered byclimate change. We limited our consideration <strong>of</strong>potential impacts to the follow<strong>in</strong>g list <strong>of</strong> disturbancesfor the <strong>Arctic</strong> LCC region: (1) Increased coastalerosion and overwash l<strong>in</strong>ked to stormfrequency/<strong>in</strong>tensity; (2) Thermokarstprocesses/events-lake dra<strong>in</strong>age, ice wedgedegradation, upland slumps affect<strong>in</strong>g aquaticsystems, (3) Upland tundra fire; (4) Extremera<strong>in</strong>/snow events; (5) Expansion <strong>of</strong> pathogens <strong>in</strong>adjacent regions.17


Section 3. ResultsHere we present a general summary <strong>of</strong> thevulnerability scores for the 54 bird speciesbreed<strong>in</strong>g <strong>in</strong> <strong>Arctic</strong> Alaska, and how thecomponents <strong>of</strong> vulnerability evaluated bythe CCVI (direct climate exposure, <strong>in</strong>directexposure, and sensitivity) contributeddifferentially to the results. For a detailedlook at the factors <strong>in</strong>fluenc<strong>in</strong>g thevulnerability <strong>of</strong> particular species, see the<strong>in</strong>dividual Species’ Accounts <strong>in</strong> AppendixB.<strong>Climate</strong> exposureThe CCVI uses future temperature andmoisture changes generated by GCMs. Themagnitude <strong>of</strong> projected temperature changeis great for many northern latitudes, and theregion <strong>of</strong> the <strong>Arctic</strong> LCC <strong>in</strong> Alaska is noexception. The projected warm<strong>in</strong>g for 2050(2040-2069 average) for all emissionscenarios and models exceeded +3.1 o Cacross the <strong>Arctic</strong> LCC region. For 23 <strong>of</strong> the54 species, temperature exposure for the2050 timeframe was +4.3 o C or greater forthe A1B SRES emissions scenario andcomposite <strong>of</strong> all five SNAP climate models.The ranges <strong>of</strong> these 23 species weregenerally restricted to the north-central andwestern parts <strong>of</strong> Alaska’s <strong>Arctic</strong> LCCregion.Projected changes <strong>in</strong> moisture (asmeasured by the Hamon AET:PET aridity<strong>in</strong>dex) between the historical and future timeperiod were m<strong>in</strong>imal, regardless <strong>of</strong> emissionscenario or GCM model used. Themagnitude <strong>of</strong> moisture changes for allspecies fell <strong>in</strong> the CCVI’s lowest category,hav<strong>in</strong>g little direct negative <strong>in</strong>fluence on thespecies’ vulnerabilities reported below.However, the low magnitude <strong>of</strong> moisturechange does temper the impact <strong>of</strong> the highmagnitude <strong>of</strong> temperature, moderat<strong>in</strong>g its<strong>in</strong>fluence on the eight sensitivity factorsweighted by the comb<strong>in</strong>ed exposure.Indirect exposureIn a region with a relatively light humanfootpr<strong>in</strong>t and few anthropogenic barriers towith<strong>in</strong> range movement or shifts, only 3 <strong>of</strong>the 4 <strong>in</strong>direct exposure factors were relevantto northern Alaska: sea level rise, naturalbarriers to dispersal, and human responses toclimate change. Sea level rise (SLR) andother disturbances l<strong>in</strong>ked to storm<strong>in</strong>essdur<strong>in</strong>g the lengthen<strong>in</strong>g open-water season(e.g., erosion and wash-over) have thepotential to strongly affect species that usecoastal habitats. The CCVI separates itsevaluation <strong>of</strong> these <strong>in</strong>fluences by us<strong>in</strong>g aGIS overlay for SLR, and a qualitativeevaluation <strong>of</strong> species’ sensitivity toassociated disturbances. Only seven <strong>of</strong> thebird species we exam<strong>in</strong>ed (Brant, SnowGoose, Steller’s Eider, Buff-breastedSandpiper, White-rumped Sandpiper,Dunl<strong>in</strong>, and Common Eider) will potentiallylose 10% or more <strong>of</strong> their range <strong>in</strong> theAlaska portion <strong>of</strong> the <strong>Arctic</strong> LCC to<strong>in</strong>undation under a 2-m SLR scenario.We assumed that the <strong>Arctic</strong> Oceanrepresents a barrier to climate changemovements <strong>of</strong> birds that are restricted to thenorthernmost coastl<strong>in</strong>e <strong>of</strong> Alaska. Therefore,11 species with the majority <strong>of</strong> theirbreed<strong>in</strong>g population with<strong>in</strong> the northern1/3 rd <strong>of</strong> the <strong>Arctic</strong> Coastal Pla<strong>in</strong> wereassigned a score <strong>of</strong> “slightly <strong>in</strong>creasedvulnerability” with regard to naturaldistribution barriers (Ruddy Turnstone, StiltSandpiper, Common Eider, SpectacledEider, White-rumped Sandpiper, Pomar<strong>in</strong>eJaeger, Buff-breasted Sandpiper, Steller’sEider, K<strong>in</strong>g Eider, Snow Goose, and Brant).Expert participants noted 30 specieswhose vulnerability might be <strong>in</strong>creasedslightly by human responses to climatechange, us<strong>in</strong>g the list <strong>of</strong> adaptation ormitigation activities considered feasible for<strong>Arctic</strong> Alaska dur<strong>in</strong>g the next 50 years (seeMethods).18


Species sensitivityWe <strong>in</strong>cluded several bird groups <strong>in</strong> ourassessment, rang<strong>in</strong>g from terrestrial t<strong>of</strong>reshwater aquatic and mar<strong>in</strong>e species, and,not surpris<strong>in</strong>gly, the species with<strong>in</strong> thesegroups <strong>of</strong>ten shared similar scores for thesensitivity factors. Many <strong>of</strong> the species haveextensive ranges, whether migratory orresident, and experience vary<strong>in</strong>g climateconditions throughout their annual life cycle.As a result, temperature was <strong>in</strong>dicated as aphysiologically limit<strong>in</strong>g factor for only afew species and, even <strong>in</strong> those cases, onlyslightly <strong>in</strong>creased vulnerability. However,due to dependencies on different types <strong>of</strong>wetland or mar<strong>in</strong>e sett<strong>in</strong>gs, physiologicalhydrological niche was thought to have thegreatest potential <strong>of</strong> all the sensitivity factorsto <strong>in</strong>fluence vulnerability (“Increase” and“Greatly <strong>in</strong>crease”). All but two speciesreceived scores <strong>in</strong>dicat<strong>in</strong>g this sensitivitymight lead to at least a slight <strong>in</strong>crease <strong>in</strong>vulnerability. For roughly half <strong>of</strong> the birds,some type <strong>of</strong> <strong>in</strong>terspecific <strong>in</strong>teraction (e.g.,predator-prey relationships) was identifiedas possibly shap<strong>in</strong>g the species’ response toclimate change.The rema<strong>in</strong><strong>in</strong>g sensitivity factorstypically had either neutral to potentiallypositive or ambiguous <strong>in</strong>fluence on thebreed<strong>in</strong>g birds we assessed. There were fewspecies for which either restrictions tophysical habitat elements or limited dietmight limit their ability to respond tochang<strong>in</strong>g climate. The net effect <strong>of</strong> changesto important disturbance regimes wasuniversally considered difficult to determ<strong>in</strong>es<strong>in</strong>ce different disturbances might shiftpopulation abundance and/or range <strong>in</strong>opposite directions. In addition, mostexperts expressed low confidence <strong>in</strong> theirassessment <strong>of</strong> the effects <strong>of</strong> climate changeon disturbances and the subsequent effectsto species (Figure 3.1). Much <strong>of</strong> the<strong>in</strong>formation needed to score the genetic andphenological response factors was alsounknown. Of the 18 species for which<strong>in</strong>formation about their documented ormodeled response to climate change wasavailable, all but two (Gyrfalcon and K<strong>in</strong>gEider) showed little to no associated shifts <strong>in</strong>distribution or abundance and received“neutral” scores <strong>in</strong> this optional section <strong>of</strong>the CCVI tool.The PCA scatter-plot <strong>in</strong> Figure 3.2illustrates some <strong>of</strong> the similarities anddifferences between the 54 bird species <strong>in</strong>the factors contribut<strong>in</strong>g to their overallclimate change vulnerability. The axisload<strong>in</strong>gs (Figure 3.2.b.) <strong>in</strong>dicate which <strong>of</strong>the sensitivity factors most strongly<strong>in</strong>fluence the species’ patterns. Historicaland physiological hydrological niche, and toa lesser degree sensitivity to SLR, humanresponse to climate change, and dispersalbarriers, separate species along axis 1 (xaxis),with the more sensitive species on thepositive end. <strong>Birds</strong> are grouped along axis 2(y-axis) primarily with regard to physicalhabitat restrictions (e.g., geologicalsubstrates and cliffs). Most <strong>of</strong> the specieswith habitat restrictions are located nearestthe top <strong>of</strong> the plot (e.g., Gyrfalcon, SnowBunt<strong>in</strong>g, Common Eider). Physiologicalhydrological niche also contributes to theaxis 2 patterns. Therefore, all <strong>of</strong> the speciessensitive to either historical or physiologicalhydrological niche are <strong>in</strong> the lower or upperright quadrant <strong>of</strong> the scatter-plot. Notsurpris<strong>in</strong>gly, this <strong>in</strong>cludes many <strong>of</strong> thewaterfowl and shorebirds that are dependenton water to vary<strong>in</strong>g degrees dur<strong>in</strong>g thebreed<strong>in</strong>g season.19


Figure 3.1. Categorical “confidence” assigned to the factor scores by the expert sub-group (6 reviewers and theirresponses for the 54 species) that re-evaluated the sensitivity responses <strong>of</strong> the orig<strong>in</strong>al group <strong>of</strong> <strong>in</strong>dividual species’experts. Bars represent the relative proportions <strong>of</strong> “high”, “medium”, and “low” confidence rat<strong>in</strong>gs for each factor.A male Pectoral Sandpiper. A common breeder <strong>in</strong><strong>Arctic</strong> Alaska. (Photo: S. Zack @ WCS)20


Figure 3.2. (a) The sensitivity “scores” (ord<strong>in</strong>al numerical values) displayed <strong>in</strong> multivariate space (PCA) toillustrate similarities between species <strong>in</strong> the sensitivity component <strong>of</strong> climate change vulnerability. (b) The PCAload<strong>in</strong>gs <strong>of</strong> the sensitivity factors on axis 1 (x-axis) and axis 2 (y-axis). Load<strong>in</strong>g values <strong>in</strong>dicate which factorsexpla<strong>in</strong> the most variability along the two axes.Relative vulnerability to climate changeUs<strong>in</strong>g the climate projections for the A1Bemission scenario from the composite <strong>of</strong> allfive SNAP climate models comb<strong>in</strong>ed withthe sensitivity factor <strong>in</strong>puts, the CCVI toolidentified n<strong>in</strong>e <strong>of</strong> the fifty-four species aseither highly vulnerable (n=2) or moderatelyvulnerable (n=7) to the potential impacts <strong>of</strong>climate change <strong>in</strong> the <strong>Arctic</strong> LCC region <strong>of</strong>Alaska (Figure 3.3). The majority <strong>of</strong> thebird species whether migratory or yearroundresidents, were presumed to be stable.The results suggest that five passer<strong>in</strong>especies (the three sparrows, the LaplandLongspur, and the Common Redpoll) mayeven <strong>in</strong>crease their presence <strong>in</strong> the region.The distribution <strong>of</strong> the Monte Carlosimulation results for each bird species withrespect to the five vulnerability categories isshown <strong>in</strong> Figure 3.4. The tool assigns“confidence” <strong>in</strong> the orig<strong>in</strong>al result based onthe proportions <strong>of</strong> outcomes fall<strong>in</strong>g <strong>in</strong> thedifferent categories. For example,confidence <strong>in</strong> the result <strong>of</strong> “moderately21


vulnerable” for the Yellow-billed Loon isconsidered “low” because the simulationresults are almost evenly distributedbetween the highly vulnerable, moderatelyvulnerable and presumed stable categories.In contrast, the confidence <strong>in</strong> the result forthe Semipalmated Sandpiper is considered“high” because over 80% <strong>of</strong> the simulationoutcomes fell <strong>in</strong> the presumed stablecategory.Figure 3.3. The numerical vulnerability scores and<strong>in</strong>dex categories as assigned by the CCVI tool us<strong>in</strong>gthe <strong>in</strong>itial climate scenario as the exposure <strong>in</strong>puts(Temp: SNAP 5-model composite/Moisture: CW 5-model average (SNAP models).Index Score <strong>Vulnerability</strong> Category>10.0 Extremely vulnerable (red)7.0-9.9 Highly vulnerable (orange)4.0-6.9 Moderately vulnerable (yellow)-2.0-3.99 Presumed stable (blue)


Figure 3.4. The proportion <strong>of</strong> the Monte Carlo simulations <strong>in</strong> different vulnerability categories for each species(colored stacked bars). The colored overlays below the x-axis <strong>in</strong>dicate the vulnerability category assigned to eachspecies by the CCVI tool calculations (as shown <strong>in</strong> Figure 3.3). The proportions are used as a measure <strong>of</strong>“confidence” (Low-Moderate-High-Very High) <strong>in</strong> the numerical score/vulnerability category generated by the toolalgorithm (see species accounts). IL=Increase Likely, PS=Presumed Stable, MV=Moderately Vulnerable,HV=Highly Vulnerable, EV=Extremely Vulnerable.Alternate climate scenariosWe explored the sensitivity <strong>of</strong> the CCVI tooloutputs to different climate exposure <strong>in</strong>puts.A comparison <strong>of</strong> the vulnerability results forthe five different comb<strong>in</strong>ations <strong>of</strong> climateprojections and spatial resolution (seeMethods) shows little variation (Figure 3.5).The vulnerability outcomes were onlyaltered by the projections from the CCCM(Canadian Center for <strong>Climate</strong> Model<strong>in</strong>g andAnalysis) global circulation model, theSNAP model that produces the lowestmagnitude <strong>of</strong> warm<strong>in</strong>g (roughly 1 o C coolerthan the other models). Us<strong>in</strong>g <strong>in</strong>puts fromthat model, Gyrfalcon and Common Eidershifted from highly to moderately vulnerableand Buff-breasted Sandpiper moved frommoderately vulnerable to presumed stable.Only the three alternate climate projectionsrepresent<strong>in</strong>g the greatest differentiation <strong>in</strong><strong>in</strong>puts are shown <strong>in</strong> the tables.Sources <strong>of</strong> climate change vulnerabilityFigure 3.6 <strong>in</strong>dicates the degree to whicheach <strong>of</strong> the sensitivity factors exam<strong>in</strong>ed <strong>in</strong>the assessment are contribut<strong>in</strong>g to theclimate change vulnerability <strong>of</strong> the n<strong>in</strong>especies that fell <strong>in</strong>to the moderately orhighly vulnerable categories. For many <strong>of</strong>these bird species, the quality and nature <strong>of</strong><strong>in</strong>teractions with other species, restrictionsassociated with physical habitat and diet,dependence on other species to meet habitatneeds, and changes <strong>in</strong> disturbance regimesthat affect them, are important forconsider<strong>in</strong>g whether there might beappropriate response options that can beexplicitly identified.23


Figure 3.5. <strong>Change</strong>s <strong>in</strong> the CCVI tool score and vulnerability category output us<strong>in</strong>g <strong>in</strong>put from different globalcirculation models (GCMs) for presumed stable through highly vulnerable bird species. (a) Temperature data: A1BSRES emission scenario, SNAP 5-model composite (ECHAM5, GFDL2.1, MIROC, HAD, CCCMA), 2 kmresolution; (b) Temperature data: A1B SRES emission scenario, SNAP CCCMA GCM output, 2 km resolution; (c)Temperature data: A1B SRES emission scenario, SNAP 5-model composite ECHAM5 GCM, 2 km resolution.While the <strong>in</strong>dex scores vary somewhat across models, only those highlighted <strong>in</strong> blue changed category from the<strong>in</strong>itial run <strong>in</strong> Figure 3.6a. [Note: Moisture projections from all models show little change to <strong>in</strong>creases for theassessment region. Moisture had little <strong>in</strong>fluence over CCVI results <strong>in</strong> this assessment and is not shown here.]24


Figure 3.6. Contribution <strong>of</strong> the different sensitivity and <strong>in</strong>direct exposure factors to climate change vulnerability forthe n<strong>in</strong>e species <strong>in</strong> our <strong>Arctic</strong> breed<strong>in</strong>g bird assessment that ranked moderately or highly vulnerable.Section 4. DiscussionThis report details the first effort tocharacterize the vulnerability <strong>of</strong> <strong>Arctic</strong>Alaska breed<strong>in</strong>g birds to climate change.The primary value <strong>of</strong> this assessment lies <strong>in</strong>the process <strong>of</strong> break<strong>in</strong>g a complexphenomenon <strong>in</strong>to constituent parts so thatwe can beg<strong>in</strong> to identify why species <strong>in</strong> aparticular geography are vulnerable, whetherthere are actions we can take to addressthose vulnerabilities, and what data gapsmay exist.<strong>Climate</strong> change vulnerability <strong>of</strong> <strong>Arctic</strong>Alaska birdsDifferentiat<strong>in</strong>g the sources: The outcomes<strong>of</strong> this vulnerability assessment rest on thecumulative <strong>in</strong>fluences <strong>of</strong> multiple potentialsources <strong>of</strong> vulnerability to climate. In somecases, those sources differed across species.For example, the sensitivities lead<strong>in</strong>g to the“highly vulnerable” rank for Gyrfalcon andCommon Eiders contrast markedly as aresult <strong>of</strong> their differ<strong>in</strong>g hydrologic niches,diets, and other life history traits. Bothspecies were identified as be<strong>in</strong>g sensitive toclimate change effects on relatively rarephysical habitats, although for notablydifferent reasons. Overwash and erosionfrom <strong>in</strong>creas<strong>in</strong>g storm frequency (Jones etal. 2009) may have a devastat<strong>in</strong>g effect onbarrier-island nest sites, on which CommonEiders depend. For the Gyrfalcon, chang<strong>in</strong>gthermal conditions at cliff face nest<strong>in</strong>g sitescould negatively <strong>in</strong>fluence nest<strong>in</strong>g success.There were some identified sources <strong>of</strong>vulnerability that were common to manyspecies. Physiological hydrologic niche wasscored as a key sensitivity factor for overhalf the species <strong>in</strong> the assessment, <strong>in</strong>clud<strong>in</strong>g7 <strong>of</strong> the 9 species ranked as moderatelyvulnerable or higher. This is not surpris<strong>in</strong>gas many <strong>of</strong> the species that breed <strong>in</strong> theregion rely on wetland habitats for bothnest<strong>in</strong>g and forag<strong>in</strong>g (e.g., most shorebirdsand waterfowl). However, hydrologicalsensitivity was not the most significantcontributor to an overall vulnerabilityrank<strong>in</strong>g because annual changes <strong>in</strong> moisture(as measured by the ratio <strong>of</strong> precipitation toPET) <strong>in</strong> the region (one component <strong>of</strong>exposure) is projected to be low. There wereseveral waterfowl and shorebird species that,despite an assignment <strong>of</strong> a “greatly<strong>in</strong>creased vulnerability” score for thissensitivity factor, were not identified asvulnerable by their overall score. This is, <strong>in</strong>25


large part, due to the guidance andstrucuture <strong>of</strong> the CCVI tool. The toolguidance recommends us<strong>in</strong>g annual valuesfor exposure, to capture the cumulativechange and potential impacts, with the result<strong>of</strong> mask<strong>in</strong>g significant changes to differentseasons, which may impact the ecologicalsystem. In addition, hydrological sensitivityis weighted only by the moisture component<strong>of</strong> exposure. In this way, the effects <strong>of</strong> anactual contribution to vulnerability may bedim<strong>in</strong>ished <strong>in</strong> the assessment results.In some cases, vulnerability results weredriven by s<strong>in</strong>gle (or a small number <strong>of</strong>) keyfactors. Specialized species (e.g., those withrestricted diets), as well as those with rangesrestricted to coastal areas, and thereforesome sensitivity to sea-level-rise andchanges to other coastal disturbanceprocesses l<strong>in</strong>ked to loss <strong>of</strong> ice cover, tendedto rank higher with respect to climatechange vulnerability. The most dramaticexample is for Pomar<strong>in</strong>e Jaegers <strong>in</strong> that theyare thought to nest only <strong>in</strong> years when theirkey food source (brown lemm<strong>in</strong>gs) arepresent <strong>in</strong> sufficient numbers. There is someevidence suggest<strong>in</strong>g that changes <strong>in</strong> climateare shift<strong>in</strong>g that predator-prey cycle withlikely negative impacts on jaeger breed<strong>in</strong>gpotential (Ims and Fugli 2005, Post et al.2009).For detailed accounts <strong>of</strong> the sources <strong>of</strong>vulnerability for <strong>in</strong>dividual species, consultAppendix B.Comparisons with other vulnerabilityassessmentsAlthough few peer-reviewed studies <strong>of</strong> thepotential vulnerability <strong>of</strong> birds to climatechange exist, there are three other effortsthat <strong>of</strong>fer <strong>in</strong>sights relevant to the results <strong>of</strong>our Alaska <strong>Arctic</strong> breed<strong>in</strong>g bird assessment:1) the 2010 State <strong>of</strong> the <strong>Birds</strong> report(NABCI 2010) focus<strong>in</strong>g on habitat typesthroughout the U.S.; 2) a climate-changevulnerability assessment for California’s atriskbird species (Gardali et al. 2012); and 3)an <strong>Arctic</strong> LCC taxon-oriented evaluation <strong>of</strong>climate change science needs (<strong>Arctic</strong> LCC2012). Each <strong>of</strong> these assessments exam<strong>in</strong>esbird vulnerabilities at different scales andfrom different perspectives. The 2010 State<strong>of</strong> the <strong>Birds</strong> report conducted an assessment<strong>of</strong> climate change impacts on habitats.Gardali et al. (2012) used a species-basedapproach <strong>in</strong>corporat<strong>in</strong>g many <strong>of</strong> the samefactors as the CCVI tool, while most notablyadd<strong>in</strong>g species distribution-model<strong>in</strong>gcomponent based on projected climatechanges. The effort <strong>of</strong> the <strong>Arctic</strong> LCC <strong>in</strong>Alaska identified ecological processes mostrelevant to predeterm<strong>in</strong>ed taxon groups.The various assessments share someoverlap <strong>in</strong> approach and yield severalf<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> common with our assessment forparticular bird species or groups <strong>of</strong> birds.First, the likely impact <strong>of</strong> temperature<strong>in</strong>creases on surface hydrology, wetlandavailability, and vegetation change waswidely recognized as critically important <strong>in</strong>all <strong>of</strong> the assessments. <strong>Birds</strong> associated withwetlands had the largest representation onthe vulnerable list relative to thoseassociated with other habitats <strong>in</strong> both the<strong>Arctic</strong> Alaska (this report) and Californiabased(Gardali et al. 2012) speciesassessments. Two <strong>of</strong> the three assessmentsnoted the sensitivity to climate-drivenchanges <strong>of</strong> wetland habitats and thegeophysical processes that support them,especially <strong>in</strong> the <strong>Arctic</strong>.Shifts <strong>in</strong> phenology are also consideredcritical <strong>in</strong> a chang<strong>in</strong>g climate by allassessments. However, there appears to berelatively little <strong>in</strong>formation about phenologyfor most species. In some assessments, lifehistory characteristics that predispose aspecies to tim<strong>in</strong>g issues can be used <strong>in</strong> lieu<strong>of</strong> clear documentation. In the State <strong>of</strong> the<strong>Birds</strong> assessment “migration status”captured concerns about phenology byassum<strong>in</strong>g that longer distance migrants26


would be more vulnerable lack<strong>in</strong>g cuesabout breed<strong>in</strong>g ground conditions andsubject to a greater risk <strong>of</strong> a mismatch <strong>in</strong>food availability and tim<strong>in</strong>g <strong>of</strong> arrival. In acomparable way, we <strong>in</strong>cluded migrationdistance as a proxy l<strong>in</strong>ked to phenology <strong>in</strong>our pilot effort exam<strong>in</strong><strong>in</strong>g speciesvulnerability across the full life cycle(breed<strong>in</strong>g, migration, w<strong>in</strong>ter<strong>in</strong>g) forshorebirds (see Appendix C). Early researchf<strong>in</strong>d<strong>in</strong>gs suggest that some shorebirds andpasser<strong>in</strong>es may have the capacity to adjusttheir life history strategies and track somephenological changes. Nest <strong>in</strong>itiation, <strong>in</strong> the<strong>Arctic</strong> and elsewhere, has advanced forsome species alongside changes <strong>in</strong> green-uptim<strong>in</strong>g (D. Ward, J. Liebezeit, unpublisheddata). For the most part, other keyphenology events (e.g., chick hatch and<strong>in</strong>sect emergence) are only beg<strong>in</strong>n<strong>in</strong>g to beexam<strong>in</strong>ed <strong>in</strong> this and other regions.The <strong>Arctic</strong>-specific assessments (thisreport and <strong>Arctic</strong> LCC 2012) complementeach other and provide re<strong>in</strong>forcement formany <strong>of</strong> the same priorities and concerns,blend<strong>in</strong>g a ref<strong>in</strong>ed focus on species-specificvulnerabilities with their connections tochanges <strong>in</strong> biophysical processes. In both,changes <strong>in</strong> extreme weather and other events(e.g., longer open water season) that mayalter coastal habitat conditions were noted asa climate-related source <strong>of</strong> vulnerability.For many coastally-restricted species, directimpacts such as the flood<strong>in</strong>g <strong>of</strong> nests, aswell as the transformation <strong>of</strong> habitatsthrough salt water <strong>in</strong>trusion were consideredparticularly important. Interactions betweenspecies were also considered important,whether viewed as a biophysical process orspecific relationship. In our assessment,experts identified nearly half the birds as atleast slightly vulnerable to some type <strong>of</strong><strong>in</strong>terspecific <strong>in</strong>teraction (most <strong>of</strong> which werepredator-prey relationships).<strong>Climate</strong> change vulnerability <strong>in</strong> contextThe results we present here are not <strong>in</strong>tendedto <strong>of</strong>fer a def<strong>in</strong>itive statement on climatechange vulnerabilities, but rather <strong>of</strong>ferprelim<strong>in</strong>ary assertions about the climatechange vulnerability <strong>of</strong> the species weassessed and suggest numerous hypothesesabout the factors underly<strong>in</strong>g them.Interpretations <strong>of</strong> our results should betempered by uncerta<strong>in</strong>ties and unknownsrelated to all projections <strong>of</strong> climate changeand associated biophysical responses (e.g.,Littell et al. 2011). The use <strong>of</strong> multipleclimate scenarios <strong>in</strong>creases the rigor <strong>of</strong> ourassessment, as does the <strong>in</strong>clusions <strong>of</strong> themultiple sensitivity scores for some species.But there rema<strong>in</strong> several issues that need tobe considered when <strong>in</strong>terpret<strong>in</strong>g the results.Information gapsThere are large knowledge gaps <strong>in</strong>understand<strong>in</strong>g important biophysicalprocesses and <strong>in</strong>dividual species biology.Clearly, wet tundra and aquatic habitats areimportant for many breed<strong>in</strong>g bird species <strong>in</strong><strong>Arctic</strong> Alaska and even slight changes <strong>in</strong>these habitats may be detrimental to manyspecies. Experts based their rank<strong>in</strong>g for thisfactor on the potential for tundra habitats toexperience net dry<strong>in</strong>g <strong>in</strong> the com<strong>in</strong>gdecades, <strong>in</strong> turn alter<strong>in</strong>g habitat structureand availability <strong>of</strong> food resources. While adry<strong>in</strong>g trend appears to be occurr<strong>in</strong>g at somesites <strong>in</strong> the circumpolar arctic (Smith et al.2005, Smol and Douglas 2007), currentlyavailable projections for <strong>Arctic</strong> Alaska(TWS-SNAP 2012) from some climatemodels actually suggest m<strong>in</strong>imal change to aslight annual ga<strong>in</strong> <strong>in</strong> net atmosphericmoisture balance. However, the geomorphicprocesses relevant to ground and surfacehydrology are not considered <strong>in</strong> theseprojections (i.e. estimates <strong>of</strong> the relationshipbetween PET and precipitation changes).Warm<strong>in</strong>g arctic temperatures and the<strong>in</strong>terplay between permafrost melt,27


thermokarst disturbances, dra<strong>in</strong>age patterns,and subsequent habitat changes arecomplicated and understudied (Mart<strong>in</strong> et al.2009). Efforts are now target<strong>in</strong>g researchtowards improv<strong>in</strong>g our understand<strong>in</strong>g <strong>of</strong>climate change effects on some <strong>of</strong> theseaspects <strong>of</strong> surface hydrology.There was also <strong>in</strong>sufficient <strong>in</strong>formationto address questions about genetics andphenology for most species. Species withlow genetic variation are generally thoughtto be more vulnerable to climate change (seeYoung et al. 2010). However, there is awidely acknowledged paucity <strong>of</strong> studiesdocument<strong>in</strong>g genetic variation other than afew targeted efforts (see species accounts forcitations) and some general assessments at abroader taxonomic level (e.g., Baker andStrauch 1988). Long-term data sets and/orregion-wide data sets relevant to phenologydo exist for some waterfowl (e.g. Larned etal. 2012), shorebirds (R. Lanctot,unpublished data; J. Liebezeit, unpublisheddata,), and other bird groups <strong>in</strong> the <strong>Arctic</strong>LCC region. Some <strong>of</strong> these data are be<strong>in</strong>gused to exam<strong>in</strong>e the relationship betweenremotely sensed variables (e.g., NDVI) andbird arrival and nest <strong>in</strong>itiation (D. Ward etal. unpublished). For the majority <strong>of</strong> birds,however, long-term data are non-existent,<strong>in</strong>adequate for phenology assessments, oravailable but not currently applied toassess<strong>in</strong>g such changes.Limitations <strong>of</strong> the CCVI tool<strong>Climate</strong> change vulnerability <strong>in</strong>dices are oneapproach to understand<strong>in</strong>g the effects <strong>of</strong>climate on species (e.g., Rowland et al.2011). As with all approaches, there arelimitations to the NatureServe CCVI tooland how it is applied. Most importantly, theCCVI tool does not exam<strong>in</strong>e statistical ormechanistic relationships between thespecies traits and their exposure to climatechange. Rather, the tool was designed to<strong>of</strong>fer a relatively coarse, quick, andconsistent look at the potential vulnerability<strong>of</strong> multiple species <strong>in</strong> a way that accountsfor numerous factors. It is structured toreadily add new <strong>in</strong>formation and revise theassessments as knowledge <strong>of</strong> the species andsystem <strong>in</strong>creases and may be used toidentify need for more targeted researchefforts.There are also issues related to themanner <strong>in</strong> which we conducted ourassessment. The CCVI tool was developedto consider a wide range <strong>of</strong> both plant andanimals species <strong>in</strong> an area. Our narrow focuson birds tested its ability to parse out morenuanced differences <strong>in</strong> sensitivities andrelative vulnerabilities between closelyrelated species. As illustrated by themodifications suggested by expertparticipants and documented <strong>in</strong> the Methodssection, the generalized language onsensitivity factors from the CCVI guidancewas sometimes challeng<strong>in</strong>g to relate to birds<strong>in</strong> the <strong>Arctic</strong> and, <strong>in</strong> a few cases, irrelevantaltogether. Although participants did notidentify any miss<strong>in</strong>g sensitivity factors priorto its application, many <strong>of</strong> themrecommended that the differential weight<strong>in</strong>g<strong>of</strong> particular sensitivity factors onvulnerability outcomes be allowed. Forexample, some workshop participantsquestioned whether factors such asdisturbance effects and genetic <strong>in</strong>fluence onclimate change response should carry equalweight. Another challenge, regard<strong>in</strong>g theeffects <strong>of</strong> climate-related changes <strong>in</strong>disturbance regimes, is that changes <strong>in</strong> sometypes <strong>of</strong> disturbance might benefit a specieswhile others might be detrimental, mak<strong>in</strong>gthe net effect difficult to determ<strong>in</strong>e andscore.F<strong>in</strong>ally, many species we exam<strong>in</strong>edrange widely across the world and areexposed to different climate stressors at theirw<strong>in</strong>ter<strong>in</strong>g and stag<strong>in</strong>g areas. We exploredclimate change impacts for the shorebirdsubgroup across their flyways (Appendix C),28


ut there are great challenges to conduct<strong>in</strong>ga rigorous vulnerability assessment acrossthe breed<strong>in</strong>g, passage, and w<strong>in</strong>ter<strong>in</strong>g ranges(see Appendix C for further discussion). Atleast one effort is currently attempt<strong>in</strong>g toaddress those challenges (Galbraith et al. InPrep).Pacific Loon (Photo: S. Zack @ WCS)Other uncerta<strong>in</strong>tiesElicit<strong>in</strong>g expert knowledge to <strong>in</strong>formconservation issues is a common endeavor(e.g., Mart<strong>in</strong> et al. 2012). Although there arewell-recognized limitations, expertknowledge may be the best available datasource <strong>in</strong> situations where empirical data islimited or absent. Elicitation can beconstructive, if the effort is designedthoughtfully. While we distributed writtensurveys to species experts based nearlyverbatim on the language <strong>in</strong> the NatureServeCCVI guidance, <strong>in</strong>dividuals sometimes<strong>in</strong>terpreted questions differently. Reasons<strong>in</strong>clude: 1) language ambiguity <strong>in</strong> thesurveys (e.g., it was not clear if a change <strong>in</strong>lemm<strong>in</strong>g population cycles should becaptured under “<strong>in</strong>terspecies <strong>in</strong>teraction” or“disturbance”); 2) questions confound<strong>in</strong>gelements <strong>of</strong> climate exposure withsensitivity (e.g., whether or not a specieswas sensitive to a disturbance comb<strong>in</strong>edwith the likelihood <strong>of</strong> that disturbanceregime be<strong>in</strong>g affected by climate change);and 3) confusion about the scale <strong>of</strong><strong>in</strong>terpretation (e.g., whether experts shouldbe consider<strong>in</strong>g a species’ thermal niche <strong>in</strong>the context <strong>of</strong> the <strong>Arctic</strong> LCC region aloneor across its entire range). In addition, wewere unable to f<strong>in</strong>d more than onerespondent per species for the majority <strong>of</strong>species for the <strong>in</strong>itial survey to <strong>of</strong>fer <strong>in</strong>sighton the potential variance <strong>in</strong> expertperspectives. Workshop discussions,question modifications, and reassessmentwith a smaller work<strong>in</strong>g group provid<strong>in</strong>gresponses for all species (i.e., six responsesper species) allowed us to address the issuesthat, <strong>in</strong> h<strong>in</strong>dsight, would have been betterdealt with at the start <strong>of</strong> the project.Inform<strong>in</strong>g research, conservation andmanagement<strong>Climate</strong> change vulnerability assessmentsare not <strong>in</strong>tended to be end po<strong>in</strong>ts, but ratherthe <strong>in</strong>itial <strong>in</strong>put to further discussions orplann<strong>in</strong>g. This report provides a wealth <strong>of</strong>knowledge gleaned from species experts andshould be exploited <strong>in</strong> ref<strong>in</strong><strong>in</strong>g ourunderstand<strong>in</strong>g <strong>of</strong> vulnerabilities <strong>of</strong> Alaskan<strong>Arctic</strong> breed<strong>in</strong>g birds, guid<strong>in</strong>g research andhelp<strong>in</strong>g to formulate testable hypotheses <strong>in</strong>the context <strong>of</strong> climate change. It can alsoserve as a reference for those start<strong>in</strong>g toconsider changes to management andconservation practices with respect toclimate change.Considerations for focus<strong>in</strong>g future effortsWhile the relative rank<strong>in</strong>g <strong>of</strong>fers <strong>in</strong>sightsabout species vulnerabilities, this<strong>in</strong>formation alone does not pre-determ<strong>in</strong>ewhether to focus on the most or leastvulnerable species, or what actions to take.Species not ranked as vulnerable to climatechange may merit consideration <strong>in</strong>management plann<strong>in</strong>g and decisions forother reasons. For example, an <strong>in</strong>crease <strong>in</strong>the abundance <strong>of</strong> Common Ravens (rankedas “presumed stable”) has potentiallynegative implications for other species <strong>in</strong> the29


egion s<strong>in</strong>ce they sometimes prey on theeggs and young <strong>of</strong> nest<strong>in</strong>g birds.The results also do not speak to theresponse <strong>of</strong> species to climate changeoutside <strong>of</strong> the <strong>Arctic</strong> LCC region <strong>of</strong> Alaska.The 54 species we considered <strong>in</strong> theassessment reflect a representative crosssection<strong>of</strong> species <strong>in</strong> the Alaskan <strong>Arctic</strong>;however, species that currently do not occur(or barely occur) with<strong>in</strong> the assessment areacould move <strong>in</strong>to the region and subsequentlyaffect other species. For example, CommonLoons could expand their range northwardfrom <strong>in</strong>terior Alaska and compete withYellow-billed Loons for resources.Similarly, some dabbl<strong>in</strong>g duck species thatare currently present but are more commonbreeders to the south (e.g. Mallard, NorthernShoveler) may <strong>in</strong>crease and compete withspecies occupy<strong>in</strong>g similar niches to thenorth.It is appropriate to <strong>in</strong>terpret ourassessment and other efforts to understandclimate change vulnerability <strong>in</strong> comb<strong>in</strong>ationwith exist<strong>in</strong>g conservation rank<strong>in</strong>gs (see alsoYoung et al. 2010), as climate change mayexacerbate stressors that are alreadyaffect<strong>in</strong>g many bird species (e.g., Gardali etal. 2012). Three <strong>of</strong> the four species currentlylisted under the US Endangered Species Actor recently considered for such list<strong>in</strong>g <strong>in</strong><strong>Arctic</strong> Alaska were ranked as vulnerable <strong>in</strong>our assessment (e.g., Steller’s Eider, BuffbreastedSandpiper, Yellow-billed Loon;Figure 4.1). Spectacled Eiders, another listedspecies, was near the vulnerability threshold.For these species, our results re<strong>in</strong>forceconsiderations for cont<strong>in</strong>ued protections. Atthe same time, our assessment might raiseconcerns about climate changevulnerabilities for species otherwiseconsidered stable with respect to the effects<strong>of</strong> non-climate stressors (e.g. Gyrfalcon,Common Eider).It may also be prudent to morethoroughly consider the key sources <strong>of</strong>sensitivity identified for species that arepresumed stable but near the moderatelyvulnerable threshold. While from a relativeperspective these species may not be <strong>of</strong>greatest concern, a s<strong>in</strong>gle key climaterelatedsensitivity has the potential to bedetrimental. It may be useful to focusresearch agendas and proactively developresponse strategies and monitor<strong>in</strong>g plansthat can be <strong>in</strong>tegrated <strong>in</strong>to relevantmanagement plans.Conservation and management activitiesIt should be acknowledged that tools forreduc<strong>in</strong>g climate change vulnerabilities maybe somewhat limited <strong>in</strong> <strong>Arctic</strong> Alaska. Theregion’s vast size and remoteness, and thesensitivity <strong>of</strong> its habitats to change, make itdifficult to contemplate actionscommensurate with the potential impacts(Zack and Liebezeit 2012). The results <strong>of</strong>this assessment enhance our understand<strong>in</strong>g<strong>of</strong> the potential responses <strong>of</strong> particularspecies to climate change and maycontribute to th<strong>in</strong>k<strong>in</strong>g about futureconservation actions and land protection <strong>in</strong>the context <strong>of</strong> energy and other developmentissues. Attempt<strong>in</strong>g to identify climaterefugia and enhanc<strong>in</strong>g the protection <strong>of</strong> largeunits <strong>of</strong> land may, at present, be the beststrategy for conserv<strong>in</strong>g species as climatedrives changes <strong>in</strong> the region. Our assessmentsuggests several species for which climate<strong>in</strong>ducedlandscape changes might reduce thequality or availability <strong>of</strong> suitable habitat <strong>in</strong>currently utilized locations.30


Figure 4.1. The vulnerability results <strong>of</strong> the Alaskan <strong>Arctic</strong> breed<strong>in</strong>g bird climate change vulnerability assessmentalongside non-climate vulnerabilities identified through other assessments and <strong>in</strong>dices. Color codes across <strong>in</strong>dicesare roughly comparable. 1 Gotthardt, T.A., K.M. Walton, T.L. Fields. 2012. Sett<strong>in</strong>g priorities for Alaska’s species <strong>of</strong>greatest need: the Alaska Species Rank<strong>in</strong>g System (ASRS). Alaska Natural Heritage Program, Univeristy <strong>of</strong> AlaskaAnchorage, AK. 46 pp. 2 Canada’s endangered wildlife designation.These species may be appropriate focalspecies for identify<strong>in</strong>g <strong>in</strong> situ refugia wherethe degree <strong>of</strong> climate impacts may be mostlimited, as well as ex situ refugia whereconditions may become more favorable <strong>in</strong>the future (e.g., Ashcr<strong>of</strong>t 2010, Keppel et al.2012).Although our assessment was focused onthe breed<strong>in</strong>g grounds <strong>of</strong> the focal birdspecies with the <strong>in</strong>tention <strong>of</strong> <strong>in</strong>form<strong>in</strong>g31


management strategies <strong>in</strong> <strong>Arctic</strong> Alaska,important climate change and other impactsare occurr<strong>in</strong>g outside the breed<strong>in</strong>g season forsome species. A few species withpopulations that are thought to be decl<strong>in</strong><strong>in</strong>g(e.g., American Golden-plover, Dunl<strong>in</strong>)were not ranked as particularly vulnerable toclimate change impacts <strong>in</strong> <strong>Arctic</strong> Alaska.Most <strong>of</strong> these species are thought to bedecl<strong>in</strong><strong>in</strong>g due to habitat loss and alterationon migration stopover sites or w<strong>in</strong>ter<strong>in</strong>ggrounds (Brown et al. 2001). For otherspecies ranked as vulnerable or nearvulnerableto climate change <strong>in</strong> <strong>Arctic</strong>Alaska, specific sites <strong>in</strong> w<strong>in</strong>ter<strong>in</strong>g ranges oralong the routes <strong>of</strong> passage migration may<strong>of</strong>fer the greatest opportunities formanagement actions that mitigate theimpacts <strong>of</strong> chang<strong>in</strong>g climate. This may beespecially important <strong>in</strong> cases wherevulnerabilities on a species’ Alaska breed<strong>in</strong>ggrounds cannot be directly ameliorated.Conversely, we perhaps better understandwhich factors likely do not contributegreatly to vulnerability for the bird speciesconsidered. We also identified importantgaps <strong>in</strong> our knowledge specific to climatechange impacts. The last twoaccomplishments can help <strong>in</strong>formsubsequent research efforts throughprioritization and hypothesis development.While climate change will greatly challengewildlife and habitats <strong>in</strong> <strong>Arctic</strong> Alaska, thiseffort provides one tool useful <strong>in</strong>safeguard<strong>in</strong>g these valuable resources.Common Eider fly<strong>in</strong>g over the Beaufort Sea.(Photo: S. Zack @ WCS)ConclusionDespite obvious challenges, this assessmentrepresents a start<strong>in</strong>g po<strong>in</strong>t to help prioritizemanagement actions and conservationplann<strong>in</strong>g efforts with respect to <strong>Arctic</strong>breed<strong>in</strong>g birds. Through the assessmentprocess we identified particular factors thatare likely the most important contributors to<strong>in</strong>creased vulnerability to climate change.32


ReferencesAlaska Shorebird Group (ASG). 2008. Alaska Shorebird Conservation Plan. Version II. Alaska Shorebird Group,Anchorage, AK.Andres, B.A., J.A. Johnson, S.C. Brown, and R.B. Lanctot. 2012. Shorebirds breed <strong>in</strong> unusually high densities <strong>in</strong> theTeshekpuk Lake Special Area, Alaska. <strong>Arctic</strong>: <strong>in</strong> press<strong>Arctic</strong> LCC. 2010. The <strong>Arctic</strong> Landscape Conservation Cooperative Conservation Goals. Adopted by the <strong>Arctic</strong>LCC Steer<strong>in</strong>g Committee, 24 August 2010. Unpublished document, 8pp.<strong>Arctic</strong> LCC. 2012 L<strong>in</strong>k<strong>in</strong>g climate and habitat change <strong>in</strong> arctic Alaska: recommended monitor<strong>in</strong>g and model<strong>in</strong>gactivities. Report <strong>of</strong> the <strong>Arctic</strong> Landscape Conservation Cooperative Species and Habitat Work<strong>in</strong>g Group. 52 pp.Arneborg, L., A.K. Wahl<strong>in</strong>, G. Bjork, B. Liljebladh, A.H. Orsi.2012. Persistent <strong>in</strong>flow <strong>of</strong> warm water onto thecentral Amundsen shelf. Nature Geoscience 5: 876-880.Ashcr<strong>of</strong>t, M.B. Identify<strong>in</strong>g refugia from climate change. Journal <strong>of</strong> Biogeography 37: 1407-1413.Baker, A.J. and J.G. Strauch. 1988. Genetic variation and differentiation <strong>in</strong> shorebirds. – Acta XX CongressusInternationalis Ornithologicus 2: 1639–1645.Bart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g. 2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>: results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Bart, J., S. Brown, B. Harr<strong>in</strong>gton, and R.I.G. Morrison. 2007. Survey trends <strong>of</strong> North American shorebirds:population decl<strong>in</strong>es or shift<strong>in</strong>g distributions? Journal <strong>of</strong> Avian Biology 38:73-83.Bentzen, R.L. and A.N. Powell. 2012. Population dynamics <strong>of</strong> k<strong>in</strong>g eiders breed<strong>in</strong>g <strong>in</strong> northern Alaska. Journal <strong>of</strong>Wildlife Management 76: 1011 – 1020.Brown, S., C. Hickey, B. Harr<strong>in</strong>gton, and R. Gill, eds. 2001. United States Shorebird Conservation Plan, 2 nd ed.Manomet, Massachusetts: Manomet Center for Conservation Sciences.Dubois, N., A. Caldas, J. Boshoven, and A. Delach. 2011. Integrat<strong>in</strong>g <strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong> Assessments<strong>in</strong>to Adaptation Plann<strong>in</strong>g: A Case Study Us<strong>in</strong>g the NatureServe <strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong> Index to InformConservation Plann<strong>in</strong>g for Species <strong>in</strong> Florida [F<strong>in</strong>al Report]. Defenders <strong>of</strong> Wildlife, Wash<strong>in</strong>gton D.C.Earnst, S.L., R.A. Stehn, R.M. Platte, W.M. Larned, and E.J. Mallek. 2005. Population size and trend <strong>of</strong> YellowbilledLoons <strong>in</strong> northern Alaska. Condor 107: 289-304.ESRI 2009. ArcGIS Desktop: Release 9.3. Redlands, CA: Environmental Systems Research Institute.Galbraith, H., D.W. Desrochers, S. Brown, and J.M. Reed. In prep. Predict<strong>in</strong>g the vulnerabilities <strong>of</strong> North Americanshorebirds to climate change.Gardali, T., N.E. Seavy, R.T. DiGaudio, and L.A. Comrack. 2012. A <strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong> Assessment <strong>of</strong>California’s At-Risk <strong>Birds</strong>. PLoS ONE 7(3): e29507. doi:10.1371/journal.pone.0029507Gillett, N.P., D.A. Stone, P.A. Stott, T. Nozawa, A.Y. Karpechko, G.C. Hegerl, M.F. Wehner, and P.D. Jones. 2008.Attribution <strong>of</strong> polar warm<strong>in</strong>g to human <strong>in</strong>fluence. Nature Geoscience 1: 750-754. doi:10.1038/ngeo338.33


Glick, P., A. Staudt, and B. Ste<strong>in</strong>. 2009. A new era for conservation: Review <strong>of</strong> climate change adaptation literature.National Wildlife Federation, Reston, VA.Glick, P., B.A. Ste<strong>in</strong>, and N.A. Edelson, eds. 2011. Scann<strong>in</strong>g the Conservation Horizon: A Guide to <strong>Climate</strong> <strong>Change</strong><strong>Vulnerability</strong> Assessment. National Wildlife Federation, Wash<strong>in</strong>gton, D.C.Hammer, O., D.A.T. Harper, and P.S. Ryan. 2001. PAST: Palentological statistical s<strong>of</strong>tware package for educationaland data analysis. Palaentologia Electronica 4: 9 pp.Ims, R.A., and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong> tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Intergovernmental Panel on <strong>Climate</strong> <strong>Change</strong> (IPCC). 2007. <strong>Climate</strong> <strong>Change</strong> 2007: Impacts, Adaptation and<strong>Vulnerability</strong>. Contribution <strong>of</strong> Work<strong>in</strong>g Group II to the Fourth Assessment Report <strong>of</strong> the Intergovernmental Panelon <strong>Climate</strong> <strong>Change</strong>, M.L. Parry, O.F. Canziani, J.P. Palutik<strong>of</strong>, P.J. van der L<strong>in</strong>den and C.E. Hanson, eds.,Cambridge University Press, Cambridge, UK, 976pp. Available: http://www.ipcc.ch/ipccreports/ar4-wg2.htm.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C. Brown, S.J. Kendall, and D.C. Payer, D.C. 2007.Distribution <strong>of</strong> breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska. <strong>Arctic</strong> 60: 277-293.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> the Beaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A. Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys. Res. Letters 36, L03503.Keppel, G., K.P. Van Niel, G.W. Wardell-Johnson, C.J. Yates, M. Byrne, L. Muc<strong>in</strong>a, A.G.T. Schut, S.D. Hopper,S.E. Frankl<strong>in</strong>. 2012. Refugia: identify<strong>in</strong>g and understand<strong>in</strong>g safe havens for biodiversity under climate change.Global Ecology and Biogeography 21: 393-404.K<strong>in</strong>g, J.G., and J.I. Hodges. 1979. A prelim<strong>in</strong>ary analysis <strong>of</strong> goose band<strong>in</strong>g on Alaska's <strong>Arctic</strong> slope. Pages 176-188<strong>in</strong> R.L. Jarvis and J.C. Bartonek, editors. Management and Biology <strong>of</strong> Pacific Flyway Geese. Oregon StateUniversity Book Stores, Corvallis, USA.Larned, W.W., R. Stehn, and R. Platte. 2012. Waterfowl breed<strong>in</strong>g population survey, <strong>Arctic</strong> Coastal Pla<strong>in</strong>, Alaska,2011. Unpubl. U.S. Fish and Wildlife Service Report, Migratory Bird Management, Soldotna, AK.Liebezeit, J.R., G.C. White, and S. Zack. 2011. <strong>Breed<strong>in</strong>g</strong> ecology <strong>of</strong> birds at Teshekpuk Lake: a key habitat site onthe <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska. <strong>Arctic</strong> 64: 32-44.Littell, J.S., D. McKenzie, B.K. Kerns, S. Cushman C.G. Shaw C.G. 2011. Manag<strong>in</strong>g uncerta<strong>in</strong>ty <strong>in</strong> climate-drivenecological models to <strong>in</strong>form adaptation to climate change. Ecosphere 2:art102. http://dx.doi.org/10.1890/ES11-00114.1Mart<strong>in</strong>, P.D., J.L. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C. Matz, D.C. Payer, P.E.,Reynolds, A.C. Tidwell, andJ.R. Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong> change: predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska.Report <strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong> (WildREACH): Predict<strong>in</strong>g Future Habitats <strong>of</strong><strong>Arctic</strong> Alaska Workshop, 17-18 November 2008. U.S. Fish and Wildlife Service, Fairbanks, Alaska, USA.Mart<strong>in</strong>, T.G., M.A. Burgman, F. Fidler, P.M. Kuhnert, S. Low-Choy, M. McBride, K. Mengersen. 2011. Elicit<strong>in</strong>gexpert knowledge <strong>in</strong> conservation science. Conservation Biology 26: 29-38.McCune, B. and M.J. Mefford. 1999. PC-ORD. Multivariate Analysis <strong>of</strong> Ecological Data, Version 4. MjM S<strong>of</strong>twareDesign, Gleneden Beach, OR, USA.34


Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen, S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North American shorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.North American Bird Conservation Initiative (NABCI) U.S. Committee. 2010. The State <strong>of</strong> the <strong>Birds</strong> 2010 Reporton <strong>Climate</strong> <strong>Change</strong>, United States <strong>of</strong> America. Wash<strong>in</strong>gton, DC: U.S. Department <strong>of</strong> the Interior.Overpeck, J.T. and J.L. Weiss. 2009. Projections <strong>of</strong> future sea level becom<strong>in</strong>g more dire. Proceed<strong>in</strong>gs <strong>of</strong> theNational Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 106: 21461-21462.Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review <strong>of</strong> Ecology,Evolution, and Systematics 37: 637-669.Parmesan C. and G. Yohe. 2003. A globally coherent f<strong>in</strong>gerpr<strong>in</strong>t <strong>of</strong> climate change impacts across natural systems.Nature 421: 37-42.Pitelka, F.A. 1974. An avifaunal review for the Barrow region and North Slope <strong>of</strong> <strong>Arctic</strong> Alaska. <strong>Arctic</strong> and Alp<strong>in</strong>eResearch 6:161-184.Post, E., M.C. Forchhammer, M.S. Bret-Harte, T.V. Callaghan, T.R. Christensen, B. Elberl<strong>in</strong>g, A.D. Fox, O. Gilg,D.S. Hik, T.T. Høye, R.A. Ims, E. Jeppesen, D.R. Kle<strong>in</strong>, J. Madsen, A.D. McGuire, S. Rysgaard, D.E. Sch<strong>in</strong>dler, I.Stirl<strong>in</strong>g, M.P. Tamstorf, N.J.C. Tyler, R. van der Wal, J. Welker, P.A. Wookey, N.M. Schmidt, and P. Aastrup.2009. Ecological dynamics across the <strong>Arctic</strong> associated with recent climate change. Science 325:1355-1358.Rac<strong>in</strong>e, C. and R. Jandt. 2008. The 2007”Anaktuvuk River” tundra fire on the <strong>Arctic</strong> Slope <strong>of</strong> Alaska: a newphenomenon? In D.L. Kane and K.M. H<strong>in</strong>kel (Eds.), N<strong>in</strong>th International Conference on Permafrost, ExtendedAbstracts (p. 247-248). Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g, University <strong>of</strong> Alaska Fairbanks.Rac<strong>in</strong>e, C., R. Jandt, C. Meyers, and J. Dennis. 2004. Tundra fire and vegetation change along a hillslope on theSeward Pen<strong>in</strong>sula, Alaska, USA. <strong>Arctic</strong>, Antarctic, and Alp<strong>in</strong>e Research 36: 1-10.Rahmstorf, S., A. Cazenave, J.A. Church, J.E. Hansen, R.F. Keel<strong>in</strong>g, D.E. Parker, and R.C.J. Somerville. 2007.Recent climate observations compared to projections. Science: 316-709. doi:10.1126/science.1136843.Raupach, M.R., G. Marland, P. Ciais, C. La Quere, J.G. Canadell, G. Klepper, and C.B. Field. 2007. Global andregional drivers <strong>of</strong> accelerat<strong>in</strong>g CO 2 emissions. PNAS 104: 10288-10293. doi: 10.1073/pnas.0700609104.Ridgely, R.S., T.F. Allnutt, T. Brooks, D.K. McNicol, D.W. Mehlman, B.E.Young, and J. R. Zook. 2007. DigitalDistribution Maps <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> the Western Hemisphere, version 3.0. NatureServe, Arl<strong>in</strong>gton, Virg<strong>in</strong>ia, USA.Riordan, B., D. Verbyla, and A.D. McGuire. 2006. Shr<strong>in</strong>k<strong>in</strong>g ponds <strong>in</strong> subarctic Alaska based on 1950-2002remotely sensed images. Journal <strong>of</strong> Geophysical Research 111, GO4002, 11 pp. doi: 10.1029/2005JG000150.Romanovsky, V.E., S. Gruber. A. Instanes, H. J<strong>in</strong>, S.S. Marchenko, S.L. Smith, D. Trombotto, and K.M. Walter.2007. Frozen Ground. In: Global outlook for ice and snow, Earthpr<strong>in</strong>t, United Nations EnvironmentProgramme/GRID, Arendal, Norway, pp. 181-200.Rosenzweig, C., D. Karoly, M. Vicarelli, P. Ne<strong>of</strong>otis, Q. Wu, G. Casassa, A. Menzel, T.L. Root, N. Estrella, B.Segu<strong>in</strong>, P. Tryjanowski, C. Liu, S. Rawl<strong>in</strong>s, and A. Imeson, 2008: Attribut<strong>in</strong>g physical and biological impacts toanthropogenic climate change. Nature 453: 353-357. doi:10.1038/nature06937.Rowland, E.L., J.E. Davison, and L.J. Graumlich. 2011. Approaches to evaluat<strong>in</strong>g climate change impacts onspecies: A guide to <strong>in</strong>itiat<strong>in</strong>g the adaptation plann<strong>in</strong>g process. Environmental Management 47:322-337.Schneider, S.H., S. Semenov, A. Patwardhan, I. Burton, C.H.D. Magadza, M. Oppenheimer, A.B. Pittock, A.Rahman, J.B. Smith, A. Suarez, and F. Yam<strong>in</strong>. 2007. <strong>Assess<strong>in</strong>g</strong> key vulnerabilities and the risk from climate change.Pages 779-810 <strong>in</strong> <strong>Climate</strong> <strong>Change</strong> 2007: Impacts, Adaptation and <strong>Vulnerability</strong>, edited by M. L. Parry, O. F.35


Canziani, J.P. Palutik<strong>of</strong>, P.J. van der L<strong>in</strong>den, and C.E. Hanson. Contribution <strong>of</strong> Work<strong>in</strong>g Group II to the FourthAssessment Report <strong>of</strong> the Intergovernmental Panel on <strong>Climate</strong> <strong>Change</strong>. Cambridge University Press, Cambridge,UK.Smith, L.C., Y. Sheng, G.M. MacDonald, and L.D. H<strong>in</strong>zman. 2005. Disappear<strong>in</strong>g <strong>Arctic</strong> lakes. Science 308: 1429.Smol, J.P., and M.S.V. Douglas. 2007. Cross<strong>in</strong>g the f<strong>in</strong>al ecological threshold <strong>in</strong> high <strong>Arctic</strong> ponds. Proc. Natl.Acad. Sci. 104: 12395-12397.SNAP. 2011. Scenarios for Alaska Plann<strong>in</strong>g, http://www.snap.uaf.edu/downloads/alaska-climate-datasets, retrieved2011.Tape, K., M. Sturm, C. Rac<strong>in</strong>e. 2006. The evidence for shrub expansion <strong>in</strong> northern Alaska and the pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.The Wilderness Society (TWS) and Scenarios Network for Alaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5 AR4 GCMs that perform best across Alaska and the<strong>Arctic</strong>, utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts. http://www.snap.uaf.edu/data.php.U.S. Department <strong>of</strong> Interior. 1993. Federal Register. F<strong>in</strong>al rule to list the Spectacled Eider as threatened. FederalRegister 58(88):27374-27480.U.S. Department <strong>of</strong> Interior. 1997. Federal Register. Threatened status for the Alaska breed<strong>in</strong>g population <strong>of</strong> theSteller’s Eider. Federal Register 62(112):31748-31757.Vemeer, M. and S. Rhamstorf. 2009. Global sea level l<strong>in</strong>ked to global temperature. PNAS 106(51): 21527–21532.Visser, M.E. 2008. Keep<strong>in</strong>g up with a warm<strong>in</strong>g world; assess<strong>in</strong>g the rate <strong>of</strong> adaptation to climate change. Proc. R.Soc. B. 22 March 2008: 275: 1635 649-659. doi: 10.1098/rspb.2007.0997.Young, B.E., K.R. Hall, E. Byers, K. Gravuer, G. Hammerson, A. Redder, and K. Szabo. (2012, <strong>in</strong> press). Rapidassessment <strong>of</strong> plant and animal vulnerability to climate change. In: Conserv<strong>in</strong>g Wildlife Populations <strong>in</strong> a Chang<strong>in</strong>g<strong>Climate</strong> (ed. Brodie, J., Post, E. & Doak, D.). University <strong>of</strong> Chicago Press, Chicago.Young, B., E. Byers, K. Gravuer, G. Hammerson, and A. Redder. 2010. Guidel<strong>in</strong>es for Us<strong>in</strong>g the NatureServe<strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong> Index. NatureServe, Arl<strong>in</strong>gton, VA.Warnock, N. 2010. Stopp<strong>in</strong>g vs. stag<strong>in</strong>g: the difference between a hop and a jump. Journal <strong>of</strong> Avian Biology 41:621–626.Zack, S. and J. Liebezeit. 2012. <strong>Arctic</strong> Alaska: Wildlife Conservation Amid <strong>Climate</strong>-mediated Transformation. In:<strong>Climate</strong> and Conservation: Landscape and Seascape, plann<strong>in</strong>g, and action. Editors: Charles Chester, Jodi Hilty,and Molly Cross. Island Press.Zack, S. and J. Liebezeit. 2010. New conservation priorities <strong>in</strong> a chang<strong>in</strong>g <strong>Arctic</strong> Alaska – Workshop Summary.Wildlife Conservation Society report. 26 pp.36


AcknowledgmentsWe thank the <strong>Arctic</strong> Landscape Conservation Cooperative (LCC), the Kresge Foundation, andthe Liz Claiborne/Art Ortenberg Foundation for provid<strong>in</strong>g f<strong>in</strong>ancial support. We thank the U.S.Geological Survey, <strong>in</strong> particular, David Ward, for logistical support and provid<strong>in</strong>g free use <strong>of</strong>their conference room for the workshop. We graciously thank all <strong>of</strong> the species sensitivityexperts for their time complet<strong>in</strong>g the surveys. We were impressed by the detail and volume <strong>of</strong><strong>in</strong>formation <strong>in</strong>cluded <strong>in</strong> many <strong>of</strong> the surveys. We thank the workshop attendees for their timeprovid<strong>in</strong>g important feedback to help strengthen the f<strong>in</strong>al results. We appreciate the time by fourexternal reviewers (Jerry Hupp, David Ward, Philip Mart<strong>in</strong>, and Greg Balogh) for theircomments help<strong>in</strong>g to improve the report. F<strong>in</strong>ally, we thank Heidi Clark and Kelsey Wohlfrom <strong>in</strong>the WCS Bozeman <strong>of</strong>fice for their work formatt<strong>in</strong>g and pro<strong>of</strong><strong>in</strong>g the report.37


Appendix AHamon AET:PET Aridity IndexTemperature and precipitation are two fundamental climate outputs from the GCM projections, fromwhich many other bioclimatic variables are derived, as well as be<strong>in</strong>g the key <strong>in</strong>puts to many biophysicalresponse and impact models. Organisms and biophysical processes may respond directly to changes <strong>in</strong>temperature, but <strong>of</strong>ten responses to changes <strong>in</strong> precipitation (e.g., ra<strong>in</strong>, snow) are <strong>in</strong>fluenced bytemperature. Through processes such as evaporation and transpiration, temperature mediates theavailability <strong>of</strong> moisture <strong>in</strong> a system (e.g., soil moisture availability).The vulnerability <strong>of</strong> system components may not be adequately captured with respect to precipitationwithout consider<strong>in</strong>g the effects <strong>of</strong> changes <strong>in</strong> temperature on net moisture availability. In places such as<strong>Arctic</strong> Alaska, where projected changes <strong>in</strong> the magnitude <strong>of</strong> warm<strong>in</strong>g are high, there is an <strong>in</strong>creasedpotential for dry<strong>in</strong>g (i.e., moisture demand). Correspond<strong>in</strong>g <strong>in</strong>creases <strong>in</strong> precipitation (moisture supply)may be able to <strong>of</strong>fset the dry<strong>in</strong>g to some degree, if precipitation is also projected to <strong>in</strong>crease. For thesereasons, the CCVI tool uses a moisture (availability) metric, rather than gross precipitation as an exposurefactor (Young et al. 2010).Potential evapotranspiration (PET) is, simply stated, the atmospheric demand for moisture, driven bytemperature and other variables (e.g., w<strong>in</strong>d speed, relative humidity). There are different ways tocharacterize the relationship between moisture supply and demand, such as P-PET (whereP=precipitation) or the ratio between P and PET. The latter may be expressed as AET:PET, whereAET=actual evapotranspiration and is <strong>of</strong>ten equated with precipitation and may be capped at PET(Girvetz and Zganjar <strong>in</strong> review). These formulae <strong>in</strong>tegrat<strong>in</strong>g the effects <strong>of</strong> temperature and precipitationon moisture availability are called aridity <strong>in</strong>dices.There are several methods for estimat<strong>in</strong>g the potential evapotranspiration component <strong>of</strong> these aridity<strong>in</strong>dices (e.g., Lu et al. 2005). The Hamon method widely is used, <strong>in</strong>clud<strong>in</strong>g applications <strong>in</strong> the <strong>Arctic</strong>(e.g., Hay and McCabe 2010). The Hamon method derives PET based on average temperature andlatitude (as a proxy for day length) and is highly correlated with temperature. The key assumptionunderly<strong>in</strong>g this method us<strong>in</strong>g future projections is that no changes <strong>in</strong> cloud cover or relative humidity willaccompany future changes <strong>in</strong> climate (McAfee et al. <strong>in</strong> review).Girvetz, E., C. Zganjar, <strong>in</strong> review at Climatic <strong>Change</strong>. Improv<strong>in</strong>g the Aridity Index for assess<strong>in</strong>g global climate change.Hay, L.E. and J. McCabe. 2010. Hydrologic effects <strong>of</strong> climatic change <strong>in</strong> the Yukon River Bas<strong>in</strong>. Climatic <strong>Change</strong> 100: 509-523.DOI 10.1007/s10584-010-9805-x.Lu, J., G. Sun, S.G. McNulty, and D.M. Amatya. 2005. Comparison <strong>of</strong> six evapotranspiration methods for regional use <strong>in</strong> thesoutheastern United States. Journal <strong>of</strong> the American Water Resources Association 41:621-633.McAfee, S.A., A.L. Spr<strong>in</strong>gsteen, B. O’Brien, W.M. Loya, and T.S. Rupp, <strong>in</strong> review at Journal <strong>of</strong> Applied Meterology andClimatologty. High-Resolution Potential Evapotranspiration (PET) Datasets for Alaska.38


Appendix BSpecies AccountsPhotos: S. Zack @ WCS39


AdTundra Swan (Cygnus columbianus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Tundra Swan is the more widespread and northerly rang<strong>in</strong>g <strong>of</strong> the two native swan species<strong>in</strong> North America. In <strong>Arctic</strong> Alaska, they nest <strong>in</strong> wet to dry tundra habitat types preferr<strong>in</strong>g islands<strong>in</strong> lakes or ponds, or naturally occurr<strong>in</strong>g frost heaves at the <strong>in</strong>tersection <strong>of</strong> polygon pond rims.Nest<strong>in</strong>g territories almost always <strong>in</strong>clude a large lake that the family will use as a safe havenfrom terrestrial predators (Limpert and Earnst 1994). Dur<strong>in</strong>g the breed<strong>in</strong>g season, their diet isprimarily vegetarian, eat<strong>in</strong>g emergent and submerged vegetation <strong>in</strong> lakes and ponds. They alsograze on terrestrial vegetation near the water (Limpert and Earnst 1994). Most North Slopebreeders w<strong>in</strong>ter on the east coast Mid-Atlantic States (Limpert and Earnst 1994). The current<strong>Arctic</strong> Coastal Pla<strong>in</strong> population is estimated at approximately 10,000 (Larned et al. 2012).E. WeiserRange: We used the extant NatureServe rangemap for the assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America and other rangedescriptions (Johnson and Herter 1989, Bart etal. 2012).Human Response to CC: Human activities <strong>in</strong>response to climate change, <strong>in</strong> particular,shorel<strong>in</strong>e fortification aga<strong>in</strong>st erosion couldimpact Tundra Swans as they sometimes usenear coastal areas for rest<strong>in</strong>g and forag<strong>in</strong>g dur<strong>in</strong>gmigratory stag<strong>in</strong>g (Limpert and Earnst 1994).However, such activity will likely be localized<strong>in</strong> the near future so it was considered to slightly<strong>in</strong>crease vulnerability, if at all.Physiological Hydro Niche: Tundra Swans wereranked as particularly vulnerable to changes <strong>in</strong>hydrologic niche because <strong>of</strong> their dependence onlakes for breed<strong>in</strong>g and molt<strong>in</strong>g (to avoidpredation) and aquatic vegetation (for forag<strong>in</strong>g).Non-breed<strong>in</strong>g flocks also rely heavily on lakes.If substantial dry<strong>in</strong>g occurs, this species couldexperience a considerable negative impact.Current projections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP), and atmospheric moisture, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.However, its <strong>in</strong>teraction with hydrologicprocesses is very poorly understood (Mart<strong>in</strong> etal. 2009).Disturbance Regime: <strong>Climate</strong>-mediateddisturbance events, namely thermokarst, couldboth create and destroy good forag<strong>in</strong>g andnest<strong>in</strong>g habitats through both ice wedgedegradation and dra<strong>in</strong><strong>in</strong>g <strong>of</strong> thaw lakes (Mart<strong>in</strong>et al. 2009). Likewise, predicted <strong>in</strong>creased stormfrequency (Jones et al. 2009) could reduceavailability <strong>of</strong> their primary forage(submerged/emergent vegetation) as waterturbulence <strong>in</strong> bays and rivers could <strong>in</strong>crease (S.Earnst, pers. comm.).Biotic Habitat Dependence: Tundra Swansdepend on Arctophila grass for brood-rear<strong>in</strong>gcover thus the “biotic habitat dependencecategory” was considered a source <strong>of</strong>vulnerability. The broad range <strong>of</strong> responses <strong>in</strong>this category (from “neutral” to “greatly<strong>in</strong>creased” vulnerability) reflects the uncerta<strong>in</strong>ty40


Tundra Swan (Cygnus columbianus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.<strong>in</strong> how climate-change would affect thisrelationship.Phenological Response: A long-term data set(1987-1990) <strong>in</strong>dicates Tundra Swan breed<strong>in</strong>gwas associated with the tim<strong>in</strong>g <strong>of</strong> river break-up,and <strong>in</strong>cubation and brood-rear<strong>in</strong>g success werehigher <strong>in</strong> earlier years (S. Earnst, unpublisheddata). However this f<strong>in</strong>d<strong>in</strong>g was prelim<strong>in</strong>ary,and, <strong>in</strong> general, the relationship betweenseasonal temperature / precipitation andphenology for this species <strong>in</strong> the Alaska portion<strong>of</strong> the <strong>Arctic</strong> LCC has not been studiedcomprehensively.In summary, despite some vulnerability,current <strong>in</strong>formation suggests Tundra Swans willrema<strong>in</strong> “stable” and be able to adjust to climatemediatedchanges <strong>in</strong> their breed<strong>in</strong>g range with<strong>in</strong>the time frame <strong>of</strong> this assessment.Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Larned, W., R. Stehn, and R. Platte. 2012. Waterfowlbreed<strong>in</strong>g population survey, <strong>Arctic</strong> Coastal Pla<strong>in</strong>, Alaska,2011. Unpublished Report, U.S. Fish and Wildlife Service,Anchorage, AK. 51pp.Limpert, R.J. and S.L. Earnst. 1994. Tundra Swan (Cygnuscolumbianus). In: The <strong>Birds</strong> <strong>of</strong> North America No. 89 (A.Poole and F. Gill, Eds.). Philadelphia: Academy <strong>of</strong> NaturalSciences; Wash<strong>in</strong>gton, D.C.: The American Ornithologists’Union.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.41


Greater White-fronted Goose (Anser albifrons)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Greater White-fronted Goose, with a nearly circumpolar distribution, has the most expansiverange <strong>of</strong> any species <strong>in</strong> its genus. In Alaska, this species breeds <strong>in</strong> large numbers <strong>in</strong> both theYukon-Kuskokwim Delta and also on the <strong>Arctic</strong> Coastal Pla<strong>in</strong>, but they will also nest <strong>in</strong> the<strong>in</strong>terior. On the coastal pla<strong>in</strong> breed<strong>in</strong>g habitat ranges from lowland wet to upland dry tundra<strong>of</strong>ten near ponds or lakes (Ely and Dzub<strong>in</strong> 1994). The Greater White-fronted Goose diet isdom<strong>in</strong>ated by vegetative matter, primarily grass and sedge rhizomes, tubers, and berries (Ely andDzub<strong>in</strong> 1994). <strong>Arctic</strong> Alaskan populations w<strong>in</strong>ter on the Gulf Coastal pla<strong>in</strong> <strong>in</strong> Louisiana andTexas as well as northern Mexico (Ely and Dzub<strong>in</strong> 1994). The Alaskan <strong>Arctic</strong> Coastal Pla<strong>in</strong>population is estimated at 200,000 and population growth has been rapid <strong>in</strong> the past decade buthas recently leveled <strong>of</strong>f (Larned et al. 2012).J. Liebezeit @ WCSRange: We used the extant NatureServe map forthe assessment as it matched other range mapsources and descriptions (Johnson and Herter1989, Ely and Dzub<strong>in</strong>1994).Physiological Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), GreaterWhite-fronted Goose ranked neutral <strong>in</strong> mostcategories with the exception <strong>of</strong> physiologicalhydrologic niche for which they were evaluatedto have a “slightly to greatly <strong>in</strong>creased”vulnerability. This response was drivenprimarily by this species reliance on waterbodies for breed<strong>in</strong>g and forag<strong>in</strong>g. A dry<strong>in</strong>g trendcould have negative impacts by reduc<strong>in</strong>gavailability <strong>of</strong> suitable habitats. Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus atmospheric moisture, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.Human Response to CC: All-weather roads(necessitated by a warm<strong>in</strong>g climate andshortened ice road season) associated withenergy extraction activities could impact GreaterWhite-fronted Geese, particularly nearTeshekpuk Lake, however other sources <strong>of</strong>human activity related to climate changemitigation will be much less pervasive <strong>in</strong> thenear future so would likely only slightly <strong>in</strong>creasevulnerability.Disturbance Regime: <strong>Climate</strong>-mediateddisturbance processes, namely thermokarst,could both create and destroy forag<strong>in</strong>g andnest<strong>in</strong>g habitats through both ice wedgedegradation and dra<strong>in</strong><strong>in</strong>g <strong>of</strong> thaw lakes (Mart<strong>in</strong>et al. 2009). Likewise, predicted <strong>in</strong>creasedcoastal erosion and result<strong>in</strong>g sal<strong>in</strong>ization (Joneset al. 2009) could both negatively and positivelyaffect post-breed<strong>in</strong>g aggregations <strong>of</strong> stag<strong>in</strong>gbirds by destroy<strong>in</strong>g and creat<strong>in</strong>g forag<strong>in</strong>g /molt<strong>in</strong>g habitat.42


Greater White-fronted Goose (Anser albifrons)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Interactions with Other Species: In terms <strong>of</strong>“<strong>in</strong>teractions with other species”, it is possiblethat red fox nest predation could <strong>in</strong>crease if theybecome more numerous (Pamper<strong>in</strong> et al. 2006)and geese would not be able to defend nests assuccessfully as aga<strong>in</strong>st the smaller arctic foxes.Physiological Thermo Niche: Because thisspecies experiences much warmer conditions at<strong>in</strong>terior Alaska breed<strong>in</strong>g sites, they should beable to adapt physiologically to a warmer <strong>Arctic</strong>environment.Phenological Response: Tim<strong>in</strong>g <strong>of</strong> nest<strong>in</strong>g hasadvanced about 10 days s<strong>in</strong>ce the 1970s likely <strong>in</strong>response to <strong>in</strong>creas<strong>in</strong>g spr<strong>in</strong>g and summertemperatures (D. Ward, pers. comm.) however itis unknown if they can synchronize tim<strong>in</strong>g tochang<strong>in</strong>g schedules <strong>of</strong> other species andprocesses they depend on (e.g. spr<strong>in</strong>g green uptim<strong>in</strong>g).In summary, this assessment suggests thatGreater White-fronted Geese will likely beadaptable enough to cope with climate changespredicted to occur <strong>in</strong> <strong>Arctic</strong> Alaska, at leastdur<strong>in</strong>g the 50 year timel<strong>in</strong>e <strong>of</strong> this assessment.Literature CitedEly, C.R. and A.X. Dzub<strong>in</strong>.1994. Greater White-frontedGoose (Anser albifrons). In: The <strong>Birds</strong> <strong>of</strong> North AmericaNo. 131 (Poole, A. and Gill, F. eds.). The <strong>Birds</strong> <strong>of</strong> NorthAmerica, Inc. Philadelphia, PA.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska.Geophysical Research Letters 36, L03503.Larned, W. W., R. Stehn, and R. Platte. 2012. Waterfowlbreed<strong>in</strong>g population survey, <strong>Arctic</strong> Coastal Pla<strong>in</strong>, Alaska,2011. Unpubl. U.S. Fish and Wildlife Service Report,Migratory Bird Management, Soldotna, AK.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Pamer<strong>in</strong>, N.J., E.H. Follmann, and B. Petersen. 2006.Interspecific kill<strong>in</strong>g <strong>of</strong> an arctic fox by a red fox at PrudhoeBay, Alaska. <strong>Arctic</strong> 59: 361-364.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.43


Snow Goose (Chen Caerulescens)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Snow Goose is a common breeder <strong>in</strong> <strong>Arctic</strong> Alaska, typically nest<strong>in</strong>g <strong>in</strong> small, densecolonies scattered near the coast. This species nests on flat tundra, near ponds, shallow lakes,streams, and islands <strong>in</strong> river deltas (Mowbray et al. 2000). Dur<strong>in</strong>g the breed<strong>in</strong>g season, their dietis primarily vegetarian, eat<strong>in</strong>g both aquatic and drier tundra vegetation (Mowbray et al. 2000).For brood rear<strong>in</strong>g, one <strong>of</strong> the more important habitats is salt affected tundra on islands <strong>in</strong> riverdeltas (J. Shook, pers. comm.). Most North Slope breeders w<strong>in</strong>ter <strong>in</strong> western North Americafrom British Columbia <strong>in</strong>to California (Mowbray et al. 2000). Current <strong>Arctic</strong> Coastal Pla<strong>in</strong>population is estimated at approximately 9,000 with an <strong>in</strong>creas<strong>in</strong>g trend (Larned et al. 2012).J. Liebezeit @ WCSRange: We used the extant NatureServe rangemap for the assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America and other rangedescriptions (Bart et al. 2012, Johnson andHerter 1989).Sea Level Rise & Natural Barriers: Because <strong>of</strong>this its restricted range along coastal areas <strong>in</strong><strong>Arctic</strong> Alaska, this species was consideredslightly vulnerable to both sea-level rise and tolimitations <strong>in</strong> expansion <strong>of</strong> their range northward(“natural barriers” factor).Physiological Hydro Niche: Snow Geese werescored as particularly vulnerable to changes <strong>in</strong>hydrologic niche because <strong>of</strong> their significantassociation with coastal habitats (<strong>in</strong> particularsalt marsh), ponds, and wet tundra habitats fornest<strong>in</strong>g, forag<strong>in</strong>g, brood-rear<strong>in</strong>g, molt<strong>in</strong>g, andavoid<strong>in</strong>g predation. If substantial tundra dry<strong>in</strong>goccurs, this species could experience aconsiderable negative impact. Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus atmospheric moisture, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.Disturbance Regime: <strong>Climate</strong>-mediateddisturbances, most importantly <strong>in</strong>creas<strong>in</strong>g storms(Jones et al. 2009) on the coastal pla<strong>in</strong>(<strong>in</strong>clud<strong>in</strong>g high w<strong>in</strong>ds) can back up water andcause the flood<strong>in</strong>g <strong>of</strong> river deltas. This maydestroy nests that are <strong>of</strong>ten less than a meterabove sea level. <strong>Breed<strong>in</strong>g</strong> densities could decl<strong>in</strong>enearest the coast, but they may be able tosuccessfully nest <strong>in</strong>land or redistribute to othercolony areas on the coastal pla<strong>in</strong> (J. Shook, pers.comm.).Interactions with Other Species: In terms <strong>of</strong><strong>in</strong>teractions with other species, it is possible thatred fox nest predation could <strong>in</strong>crease as thispredator’s range expands northward from borealregions (Pamper<strong>in</strong> et al. 2006). Geese wouldunlikely be able to defend nests as successfullyas aga<strong>in</strong>st the smaller arctic foxes. Also, climatechanges may disrupt the regularity <strong>of</strong> the44


Snow Goose (Chen Caerulescens)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.lemm<strong>in</strong>g cycles (Post et al. 2009), thus expos<strong>in</strong>gthis species to greater nest predation pressure iflemm<strong>in</strong>gs become a less common food sourcefor predators.Phenological Response: Although long-termdata sets for this species exist (e.g. Larned et al.2012), the relationship between seasonaltemperature / precipitation andphenological patterns <strong>in</strong> the Alaska portion <strong>of</strong>the <strong>Arctic</strong> LCC has not been exam<strong>in</strong>ed.In summary, while Snow Geese will likelyexperience some negative impacts from climatechange this species appears, overall, to haveenough versatility <strong>in</strong> life history traits andbehaviors to rema<strong>in</strong> “stable” at least dur<strong>in</strong>g thetimeframe <strong>of</strong> this assessment (to 2050).Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Larned, W., R. Stehn, and R. Platte. 2012. Waterfowlbreed<strong>in</strong>g population survey, <strong>Arctic</strong> Coastal Pla<strong>in</strong>, Alaska,2011. Unpublished Report, U.S. Fish and Wildlife Service,Anchorage, AK. 51pp.Mowbray, T.B., F. Cooke, and B. Ganter. 2000. SnowGoose (Chen caerulescens). In: The <strong>Birds</strong> <strong>of</strong> NorthAmerica, No. 514 (A. Poole and F. Gill, Eds.).Philadelphia: Academy <strong>of</strong> Natural Sciences; Wash<strong>in</strong>gton,D.C.: The American Ornithologists’ Union.Pamer<strong>in</strong>, N.J., E.H. Follmann, and B. Petersen. 2006.Interspecific kill<strong>in</strong>g <strong>of</strong> an arctic fox by a red fox at PrudhoeBay, Alaska. <strong>Arctic</strong> 59: 361-364.Post, E., M.C. Forchhammer, M.S. Bret-Harte, T.V.Callaghan, T.R. Christensen, B. Elberl<strong>in</strong>g, A.D. Fox, O.Gilg, D.S. Hik, T.T. Høye, R.A. Ims, E. Jeppesen, D.R.Kle<strong>in</strong>, J. Madsen, A.D. McGuire, S. Rysgaard, D.E.Sch<strong>in</strong>dler, I. Stirl<strong>in</strong>g, M.P. Tamstorf, N.J.C. Tyler, R. vander Wal, J. Welker, P.A. Wookey, N.M. Schmidt, and P.Aastrup P (2009) Ecological dynamics across the <strong>Arctic</strong>associated with recent climate change. Science 325:1355-1358.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php45


Brant (Branta bernicla)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: ModerateThe Brant is a small goose well known <strong>in</strong> Alaska for the tens <strong>of</strong> thousands <strong>of</strong> <strong>in</strong>dividuals thatmolt <strong>in</strong> the Teshekpuk Lake area <strong>of</strong> the coastal pla<strong>in</strong> dur<strong>in</strong>g the late summer. In <strong>Arctic</strong>Alaska, this species typically nests with<strong>in</strong> 8 km <strong>of</strong> the coast although <strong>in</strong> the NationalPetroleum Reserve – Alaska (NPR-A) can nest up to 30 km <strong>in</strong>land (Reed et al. 1998, D.Ward, pers. comm.). Brant <strong>of</strong>ten nest <strong>in</strong> colonies near the upper edge <strong>of</strong> salt marshes alongslop<strong>in</strong>g seacoasts or on estuar<strong>in</strong>e deltas, although <strong>in</strong> areas where salt marshes are lesscommon, they will be more dispersed, nest<strong>in</strong>g near small ponds and freshwater marshes (Reedet al. 1998). Brant subsist on a vegetarian diet and dur<strong>in</strong>g breed<strong>in</strong>g primarily focus on just afew species <strong>of</strong> sedges and grasses (Reed et al. 1998). Alaskan breeders spend their w<strong>in</strong>tersalong the Pacific Coast <strong>of</strong> North America as far down as Baja California (Reed et al 1998).Current Pacific Brant population (which <strong>in</strong>cludes the sizeable Y-K delta breeders) isestimated at approximately 125,000 (<strong>Arctic</strong> Goose Jo<strong>in</strong>t Venture 2008).climate change mitigation (e.g. w<strong>in</strong>d farms) willbe much less pervasive <strong>in</strong> the near future sowould likely only slightly <strong>in</strong>crease vulnerability.S. Zack @ WCSRange: For this assessment, we adjusted theNatureServe Map to more closely reflect therange map depicted <strong>in</strong> the <strong>Birds</strong> <strong>of</strong> NorthAmerica account as the latter more accuratelyrepresented this species’ range based on multipleaccounts and expert op<strong>in</strong>ion (Johnson and Herter1989, Reed et al. 1998, D. Ward, pers. comm.).Sea Level Rise: Because Brant rely on coastalareas for breed<strong>in</strong>g, forag<strong>in</strong>g, and especiallymolt<strong>in</strong>g/stag<strong>in</strong>g <strong>in</strong> the <strong>Arctic</strong> LCC area, theywould most likely be negatively impacted bypredicted sea level rise and a disturbance regime<strong>of</strong> <strong>in</strong>creased storm surge frequency and saltwater <strong>in</strong>trusion (IPCC 2007, Jones et al. 2009).Their ability to shift to nest<strong>in</strong>g habitats that areless susceptible to such phenomena is possibleas they are known to nest further <strong>in</strong>land <strong>in</strong> someplaces, albeit <strong>in</strong> lower numbers than near thecoast (Reed et al. 1998).Human Response to CC: All-weather roads(necessitated by a warm<strong>in</strong>g climate andshortened ice road season) associated withenergy extraction activities could impact Brant,particularly near Teshekpuk Lake, howeverother sources <strong>of</strong> human activity related toPhysiological Hydro Niche: Brant response tochang<strong>in</strong>g hydrological conditions could rangefrom slight to greatly <strong>in</strong>creased vulnerability(see table below) as they are reliant on coastalwetlands that are periodically <strong>in</strong>undated by saltwater and nest<strong>in</strong>g areas could be negativelyimpacted directly through potential tundradry<strong>in</strong>g and <strong>in</strong>directly as some nest predators maybe able to more readily access nest<strong>in</strong>g sitespreviously surrounded by water. Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus atmospheric moisture, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.46


Brant (Branta bernicla)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Dietary Versatility: Brant rely on just a fewwetland plant species for forage (Carexsubspatheca and Pucc<strong>in</strong>ellia phryganodes).Although they do eat other plants, it is possiblethat a significant reduction <strong>in</strong> availability <strong>of</strong>these species (via tundra dry<strong>in</strong>g or other events)could negatively impact Brant populations.Interactions with Other Species: Brant areknown to sometimes nest <strong>in</strong> the territory <strong>of</strong>predatory birds for protection, particularlyRussian populations (Summers et al. 1987).However; it is unknown how a chang<strong>in</strong>g climatewould alter this behavior and if it would confer apositive or negative outcome toward nest<strong>in</strong>gsuccess.Phenological Response: There are long-termdata sets on Brant <strong>in</strong> northern Alaska and theydo <strong>in</strong>dicate that tim<strong>in</strong>g <strong>of</strong> nest<strong>in</strong>g has advancedabout 10 days s<strong>in</strong>ce the 1970s (D. Ward, pers.comm.). Although this provides some evidencethat Brant can keep pace with climate changes, itis unknown how they can adjust to the chang<strong>in</strong>gphenology <strong>of</strong> the plant species they depend onfor forage.In summary, the accumulation <strong>of</strong> potentialsources <strong>of</strong> vulnerability, particularly with regardto this species’ heavy reliance on coastal andwetland habitats for breed<strong>in</strong>g, forag<strong>in</strong>g, andmolt<strong>in</strong>g, resulted <strong>in</strong> this species rank<strong>in</strong>g asmoderately vulnerable <strong>in</strong> all three climatechange projections we considered.Literature Cited<strong>Arctic</strong> Goose Jo<strong>in</strong>t Venture. 2008.http://www.agjv.ca/<strong>in</strong>dex.php?option=com_content&task=view&id=15&Itemid=55IPCC. 2007. <strong>Climate</strong> <strong>Change</strong> 2007: Synthesis Report.Contribution <strong>of</strong> Work<strong>in</strong>g Groups I, II, and III to the 4 thAssessment Report <strong>of</strong> the Intergovernmental Panel on<strong>Climate</strong> <strong>Change</strong>. Geneva, Switzerland: IPCC. 104p.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Reed, A. D.H. Ward, D.V. Derksen, and J.S. Sed<strong>in</strong>ger.1998. Brant (Branta bernicla). In: The <strong>Birds</strong> <strong>of</strong> NorthAmerica No. 337 (Poole, A. and Gill, F. eds.), Philadelphia,and American Ornithologists' Union, Wash<strong>in</strong>gton D.C.:Academy <strong>of</strong> Natural Sciences.Summers, R.W., L.G. Underhill, E.E. Syroechkovski, Jr.,H.G. Lappo, R.P. Prys-Jones, and V. Karpov. The breed<strong>in</strong>gbiology <strong>of</strong> dark-bellied Brent Geese and K<strong>in</strong>g Eiders on thenortheastern Taimyr Pen<strong>in</strong>sula, especially <strong>in</strong> relation toSnowy Owl nests. Wildfowl 45: 110-118.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.47


Cackl<strong>in</strong>g/Canada Goose (Branta hutch<strong>in</strong>sii / canadensis)<strong>Vulnerability</strong>: Presumed StableConfidence: HighCackl<strong>in</strong>g and Canada Geese were recently split <strong>in</strong>to two species. The Cackl<strong>in</strong>g Goose tavernerisubspecies is thought to be the dom<strong>in</strong>ant breeder on Alaska’s <strong>Arctic</strong> Coastal Pla<strong>in</strong> although someevidence suggests they may <strong>in</strong>terbreed with Canada Goose parvipes subspecies (Mowbray et al.2002). Coastal pla<strong>in</strong> Cackl<strong>in</strong>g/Canada geese nest <strong>in</strong> moist sedge shrub tundra with brood rear<strong>in</strong>g<strong>in</strong> wet sedge meadows, <strong>of</strong>ten near the coast (Mowbray et al. 2002). On the coastal pla<strong>in</strong> their dietis dom<strong>in</strong>ated by Carex spp. (J. Hupp, pers. comm.). <strong>Arctic</strong> Alaskan populations w<strong>in</strong>ter primarily<strong>in</strong> w. Wash<strong>in</strong>gton and Oregon as well as n. California (Mowbray et al. 2002). The Alaskan<strong>Arctic</strong> Coastal Pla<strong>in</strong> population is estimated at ~8,000 with a stable population (Larned et al.2012).S. Zack @ WCSRange: We used the extant NatureServe map forthe assessment as it matched the <strong>Birds</strong> <strong>of</strong> NorthAmerica range description (Mowbray et al.2002). It should be noted that most birds occurnear Teshekpuk Lake (J. Hupp, pers. comm.).Physiological Hydro Niche: Reliance onparticular hydrologic conditions was ranked asthe greatest potential source <strong>of</strong> vulnerability forthe Cackl<strong>in</strong>g/Canada geese. This response wasdriven primarily by this species close associationwith moist/wet sedge communities and largelakes for both nest<strong>in</strong>g and forag<strong>in</strong>g. A dry<strong>in</strong>gtrend could have negative impacts by reduc<strong>in</strong>gavailability <strong>of</strong> suitable habitats. Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus atmospheric moisture, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.Human Response to CC: All-weather roads(necessitated by a warm<strong>in</strong>g climate andshortened ice road season) associated withenergy extraction activities could impactbreed<strong>in</strong>g and molt<strong>in</strong>g habitats, particularly nearTeshekpuk Lake. However, comb<strong>in</strong>ed sources <strong>of</strong>human activity related to climate changemitigation will likely be m<strong>in</strong>imal and localized<strong>in</strong> the near future.Physiological Thermal Niche: Because thisspecies is distributed across a broad thermalrange <strong>in</strong> North America they are likely notimpacted or could benefit from warm<strong>in</strong>gtemperatures, reduc<strong>in</strong>g stress related to earlyseason cold temperatures.Disturbance Regime: <strong>Climate</strong>-mediateddisturbance processes, namely thermokarst,could both create and destroy forag<strong>in</strong>g andnest<strong>in</strong>g habitats through both ice wedgedegradation and dra<strong>in</strong><strong>in</strong>g <strong>of</strong> thaw lakes (Mart<strong>in</strong>et al. 2009). Likewise, predicted <strong>in</strong>creasedcoastal erosion and result<strong>in</strong>g sal<strong>in</strong>ization (Joneset al. 2009) could both negatively and positivelyaffect nest<strong>in</strong>g and stag<strong>in</strong>g birds by destroy<strong>in</strong>gand creat<strong>in</strong>g nest<strong>in</strong>g, forag<strong>in</strong>g, and molt<strong>in</strong>ghabitats.Dietary Versatility: Because this speciescomplex relies so heavily on Carex spp. as a dietsource, any reduction <strong>in</strong> this food source relatedto climate could have negative consequences.Genetic Variation: Current mitochondrial DNAevidence suggests Cackl<strong>in</strong>g/Canada geese have48


Cackl<strong>in</strong>g/Canada Goose (Branta hutch<strong>in</strong>sii / canadensis)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.high genetic diversity (Scribner et al. 2003) andso would likely cope well with climate-mediatedimpacts that exert <strong>in</strong>fluence across their range.Interactions with Other Species: In terms <strong>of</strong>“<strong>in</strong>teractions with other species”, it is possiblethat nest predation by red fox could <strong>in</strong>crease asthis species’ range may expand northwardmov<strong>in</strong>g <strong>in</strong> from boreal regions (Pamper<strong>in</strong> et al.2006) and geese would not be able to defendnests as successfully as aga<strong>in</strong>st the smaller arcticfoxes. Also, climate changes may makelemm<strong>in</strong>g cycles less regular (Ims and Fuglei2005) and thus could expose this species togreater nest predation pressure if lemm<strong>in</strong>gs nolonger become periodically superabundant.Phenological Repsonse: Arrival data collectedon the Colville River Delta (J. Helmericks,unpub. data) are currently be<strong>in</strong>g analyzed. Evenif their arrival dates have advanced (like otherNorth Slope geese; D. Ward, pers. comm.) it isunknown if they can synchronize tim<strong>in</strong>g tochang<strong>in</strong>g schedules <strong>of</strong> other phenomena (e.g.spr<strong>in</strong>g green up tim<strong>in</strong>g).In summary, this assessment suggests thatCackl<strong>in</strong>g/Canada Geese will likely be able toadapt to climate changes projected to occur <strong>in</strong><strong>Arctic</strong> Alaska <strong>in</strong> the next 50 years.Literature CitedIms, R.A., and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles<strong>in</strong> tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska.Geophysical Research Letters 36, L03503.Larned, W. W., R. Stehn, and R. Platte. 2012. Waterfowlbreed<strong>in</strong>g population survey, <strong>Arctic</strong> Coastal Pla<strong>in</strong>, Alaska,2011. Unpubl. U.S. Fish and Wildlife Service Report,Migratory Bird Management, Soldotna, AK.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Mowbray, T.B., C.R. Ely, J.S. Sed<strong>in</strong>ger and R.E. Trost.2002. Canada Goose (Branta canadensis), The <strong>Birds</strong> <strong>of</strong>North America Onl<strong>in</strong>e (A. Poole, Ed.). Ithaca: Cornell Lab<strong>of</strong> Ornithology; Retrieved from the <strong>Birds</strong> <strong>of</strong> North AmericaOnl<strong>in</strong>e: http://bna.birds.cornell.edu/bna/species/682doi:10.2173/bna.682Pamer<strong>in</strong>, N.J., E.H. Follmann, and B. Petersen. 2006.Interspecific kill<strong>in</strong>g <strong>of</strong> an arctic fox by a red fox at PrudhoeBay, Alaska. <strong>Arctic</strong> 59: 361-364.Scribner, K.T . S.L. Talbot, J.M. Pearce, B.J. Pierson, K.S.Boll<strong>in</strong>ger, and D.V. Derksen. 2003. Phylogeography <strong>of</strong>Canada geese (Branta canadensis) <strong>in</strong> western NorthAmerica. Auk. 120: 889-907.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.49


Northern P<strong>in</strong>tail (Anas acuta)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Northern P<strong>in</strong>tail is the most common breed<strong>in</strong>g dabbl<strong>in</strong>g duck <strong>in</strong> <strong>Arctic</strong> Alaska, with its corebreed<strong>in</strong>g area centered on the coastal pla<strong>in</strong>. In Alaska this species nests on wet sedge (Carex) orgrass meadows, sloughs, river banks, pond shores and <strong>in</strong> tidal habitats (Aust<strong>in</strong> and Miller 1995).Dur<strong>in</strong>g the breed<strong>in</strong>g season p<strong>in</strong>tails consume mostly animal foods (aquatic <strong>in</strong>vertebrates)although they switch to a largely vegetarian diet later <strong>in</strong> summer and fall (Aust<strong>in</strong> and Miller1995). Northern P<strong>in</strong>tails spend their w<strong>in</strong>ters primarily <strong>in</strong> the southern US and Mexico (Aust<strong>in</strong>and Miller 1995). The North American p<strong>in</strong>tail population is down from 6 million <strong>in</strong> the early1970s to 2.6 million <strong>in</strong> 2005 (http://ak.audubon.org/species/norp<strong>in</strong>). However, aerial surveyssuggest the p<strong>in</strong>tail population on the Alaskan <strong>Arctic</strong> Coastal Pla<strong>in</strong> has not shown a significantchange s<strong>in</strong>ce 1992, although there is substantial annual variation (J. Hupp, pers. comm.).H. Esk<strong>in</strong>assessment. This uncerta<strong>in</strong>ty is reflected <strong>in</strong> therange <strong>of</strong> vulnerability scores <strong>in</strong> the table below.Physical Habitat Restrictions: P<strong>in</strong>tailsexpansive breed<strong>in</strong>g range and ability to utilizedifferent wetland habitat types make them lesssensitive to constra<strong>in</strong>ts posed bydispersal/movement barriers when respond<strong>in</strong>g topotential shifts <strong>in</strong> habitat availability.Range: We used the extant NatureServe map forthe assessment as it matched other range mapsources and descriptions (Johnson and Herter1989, Aust<strong>in</strong> and Miller 1995, Bart et al. 2012).However, it should be noted that this species lesscommonly nests <strong>in</strong> the Brooks Range andfoothills (J. Hupp, pers. comm.).Physiological Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), NorthernP<strong>in</strong>tails ranked neutral <strong>in</strong> most categories withthe exception <strong>of</strong> physiological hydrologic nichefor which they were evaluated to have a“slightly to greatly <strong>in</strong>creased” vulnerability.This response was driven primarily by thisspecies close association with shallow wetlandhabitats on the coastal pla<strong>in</strong>. Effects <strong>of</strong> climatechange (and projected dry<strong>in</strong>g trends) on wetlandavailability <strong>in</strong> northern Alaska are very poorlyunderstood and current projections <strong>of</strong> annualpotential evapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP).Thus atmosphericmoisture, as an exposure factor (most <strong>in</strong>fluentialon the “hydrological niche” sensitivitycategory), was not heavily weighted <strong>in</strong> thePhysiological Thermo Niche: Because thisspecies breed<strong>in</strong>g range also occurs much furthersouth (e.g. prairie pothole region) they wouldlikely be able to adapt physiologically to awarmer <strong>Arctic</strong> environment and perhaps couldeven benefit from it.Disturbance Regime: Disturbance (e.g. largescalethermokarst, disease outbreaks) and humanmitigation or adaptation activities related toclimate could impact this species. But thesetypes <strong>of</strong> factors will likely be localized <strong>in</strong> impactor, <strong>in</strong> the case <strong>of</strong> thermokarst, could actually50


Northern P<strong>in</strong>tail (Anas acuta)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.<strong>in</strong>crease viable habitat (Mart<strong>in</strong> et al. 2009).Dietary Versatility: Because <strong>of</strong> the highflexibility <strong>in</strong> p<strong>in</strong>tail diet they would likely beable to cope with climate-mediated changes <strong>in</strong>prey base and could benefit from <strong>in</strong>creasedavailability <strong>of</strong> aquatic <strong>in</strong>vertebrates result<strong>in</strong>gfrom <strong>in</strong>creased productivity <strong>of</strong> warm<strong>in</strong>gwetlands.Genetic Variation: Northern P<strong>in</strong>tails have highgenetic variation (Fl<strong>in</strong>t et al. 2009) and there isno evidence <strong>of</strong> recent genetic bottlenecks <strong>in</strong> theAlaska population so they would be likely towithstand any climate-mediated impacts (e.g.disease outbreaks) that would wipe out a lessgenetically diverse population.Phenological Response: There is at least onelong-term data set on arrival dates <strong>of</strong> NorthernP<strong>in</strong>tails <strong>in</strong> <strong>Arctic</strong> Alaska that could shed somelight on how this species phenology may bechang<strong>in</strong>g with climate (J. Hupp, pers. comm.),however, that data set has currently not beenanalyzed so it is unknown how this species willrespond to chang<strong>in</strong>g biotic schedules.In summary, this assessment suggests thatNorthern P<strong>in</strong>tails will likely be able to cope withclimate and perhaps even benefit fromassociated habitat changes that may occur <strong>in</strong><strong>Arctic</strong> Alaska dur<strong>in</strong>g the 50 year timel<strong>in</strong>e <strong>of</strong> thisassessment.Literature CitedAust<strong>in</strong>, J.E. and M.R. Miller. 1995. Northern P<strong>in</strong>tail (Anasacuta). In: The <strong>Birds</strong> <strong>of</strong> North America No. 163 (Poole, A.and Gill, F. eds.). The <strong>Birds</strong> <strong>of</strong> North America, Inc.Philadelphia, PA.Bart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Fl<strong>in</strong>t, P. L., K. Ozaki, J. M. Pearce, B. Guzzetti, H.Higuchi, J. P. Fleskes, T. Shimada, and D. V. Derksen.2009. <strong>Breed<strong>in</strong>g</strong> season sympatry facilitates geneticexchange among allopatric w<strong>in</strong>ter<strong>in</strong>g populations <strong>of</strong>northern p<strong>in</strong>tails <strong>in</strong> Japan and California. Condor 111: 591-598.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.51


Greater Scaup (Aythya marila)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Greater Scaup is the only div<strong>in</strong>g duck <strong>in</strong> the genus Aythya that has a circumpolardistribution. In Alaska this species has its highest nest<strong>in</strong>g densities <strong>in</strong> the Yukon-KuskokwimDelta but they also breed <strong>in</strong> <strong>Arctic</strong> Alaska throughout the Brooks Range, foothills and <strong>Arctic</strong>Coastal Pla<strong>in</strong>. Its breed<strong>in</strong>g habitat is typically characterized by relatively shallow (1–2 m) lakesand large ponds with low surround<strong>in</strong>g vegetation <strong>in</strong> extensive, largely treeless, wetlands (Kesselet al. 2002). Greater Scaup have an omnivorous diet but tend to focus on more prote<strong>in</strong>-richanimal foods (mostly aquatic <strong>in</strong>vertebrates) dur<strong>in</strong>g the summer. This species w<strong>in</strong>ters primarily <strong>in</strong>mar<strong>in</strong>e waters <strong>of</strong> both the Atlantic and Pacific coasts (Kessel et al. 2002). <strong>Breed<strong>in</strong>g</strong> groundpopulation estimates for this species from 1978-2011 range from 434,000 – 642,000 and there issome evidence <strong>of</strong> regional decl<strong>in</strong>es (Kessel et al. 2002).dry<strong>in</strong>g trend could limit wetland availability <strong>in</strong>northern Alaska. Current projections <strong>of</strong> annualpotential evapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP), and its <strong>in</strong>teraction withhydrologic processes is very poorly understood(Mart<strong>in</strong> et al. 2009). This uncerta<strong>in</strong>ty is reflected<strong>in</strong> the range <strong>of</strong> vulnerability severity scores <strong>in</strong>this category (see table below).C. RuttRange: We used the extant NatureServe map forthis assessment as it closely matched other rangemap sources and descriptions (Johnson andHerter 1989, Kessel et al. 2002). However, itshould be noted that this species doesoccasionally breed sporadically closer to the<strong>Arctic</strong> Ocean coastl<strong>in</strong>e and along the DaltonHighway (Kessel et al. 2002).Physiological Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), GreaterScaup ranked neutral <strong>in</strong> most categoriesalthough they were ranked with a greater than“slight <strong>in</strong>crease” <strong>in</strong> vulnerability for“physiological hydrologic niche” and“<strong>in</strong>teractions with other species”. For the firstcategory this response was driven by the scaup’srequirement for wetlands and ponds rich <strong>in</strong>aquatic <strong>in</strong>vertebrates for feed<strong>in</strong>g dur<strong>in</strong>gmigration, nest<strong>in</strong>g, and brood rear<strong>in</strong>g. They needsmaller wetlands, likely with abundant emergentvegetation for cover and feed<strong>in</strong>g, particularly forbrood rear<strong>in</strong>g (Kessel et al. 2002). A tundraInteractions with Other Species: In terms <strong>of</strong>“<strong>in</strong>teractions with other species”, it is possiblethat red fox nest predation could <strong>in</strong>crease as thisspecies may become more numerous mov<strong>in</strong>g <strong>in</strong>from boreal regions (Pamper<strong>in</strong> et al. 2006) andscaup would not be able to defend nests assuccessfully as aga<strong>in</strong>st the smaller arctic foxes.However this does not seem to be a problem forthem <strong>in</strong> the southern portion <strong>of</strong> their range.Disturbance Regime: Disturbances (e.g. largescalethermokarst, disease outbreaks) and human52


Greater Scaup (Aythya marila)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.mitigation activities related to climate couldimpact this species, but experts felt this to beunlikely as these types factors will likely belocalized or, <strong>in</strong> the case <strong>of</strong> thermokarst, couldpotentially create habitat (Mart<strong>in</strong> et al. 2009).Physical Habitat Restrictions: The GreaterScaup’s expansive breed<strong>in</strong>g range <strong>in</strong>to southernAlaska makes them less susceptible toconstra<strong>in</strong>ts posed by natural barriers related todispersal/movement issues. Because this speciesexperiences much warmer conditions at <strong>in</strong>teriorAlaska breed<strong>in</strong>g sites, they would likely have noproblem adapt<strong>in</strong>g physiologically to a warmer<strong>Arctic</strong> environment and perhaps could expandtheir nest<strong>in</strong>g presence <strong>in</strong> far northern Alaska.Phenological Response: There are no long-termdata sets on nest<strong>in</strong>g or migration chronology forGreater Scaup for the North Slope (D. Saf<strong>in</strong>e,pers. comm.) and so it is currently unknown howthey would respond to phenology changes.In summary, this assessment suggests thatGreater Scaup will likely be adaptable enough tocope with climate change and perhaps evenbenefit from associated habitat changes that mayoccur <strong>in</strong> <strong>Arctic</strong> Alaska, at least dur<strong>in</strong>g the 50year timel<strong>in</strong>e <strong>of</strong> this assessment.Literature CitedJohnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Kessel, B., D.A. Rocque, and J.S. Barclay. 2002. GreaterScaup (Aythya marila). In: The <strong>Birds</strong> <strong>of</strong> North America No.163 (Poole, A. and Gill, F. eds.). The <strong>Birds</strong> <strong>of</strong> NorthAmerica, Inc. Philadelphia, PA.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Pamer<strong>in</strong>, N.J., E.H. Follmann, and B. Petersen. 2006.Interspecific kill<strong>in</strong>g <strong>of</strong> an arctic fox by a red fox at PrudhoeBay, Alaska. <strong>Arctic</strong> 59: 361-364.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.53


Steller’s Eider (Polysticta stelleri)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: ModerateThe Steller’s Eider, is the smallest <strong>of</strong> the four eiders and <strong>in</strong> many ways resembles dabbl<strong>in</strong>g ducksmore than sea ducks. This species was listed as “threatened” <strong>in</strong> 1997 under the EndangeredSpecies Act as it has virtually disappeared from historic breed<strong>in</strong>g areas <strong>in</strong> the Yukon-Kuskokwim Delta, once the most populated breed<strong>in</strong>g ground <strong>in</strong> Alaska. In <strong>Arctic</strong> Alaska,Steller’s Eiders nest <strong>in</strong> polygonal tundra near the coast or up to 30km <strong>in</strong>land on sites with acomplex <strong>of</strong> <strong>in</strong>terconnected ponds (Fredrickson 2001). Dur<strong>in</strong>g the breed<strong>in</strong>g season, their dietconsists primarily <strong>of</strong> aquatic <strong>in</strong>sects <strong>in</strong>clud<strong>in</strong>g chironomid and tipulid larvae (Fredrickson 2001).Alaskan breeders spend their w<strong>in</strong>ters along the Alaskan panhandle and the eastern AleutianIslands (Fredrickson 2001). Current <strong>Arctic</strong> Coastal Pla<strong>in</strong> population is estimated at


Steller’s Eider (Polysticta stelleri)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.sal<strong>in</strong>ization (Jones et al. 2009) could bothnegatively and positively affect post-breed<strong>in</strong>gaggregations <strong>of</strong> stag<strong>in</strong>g birds by destroy<strong>in</strong>g andcreat<strong>in</strong>g forag<strong>in</strong>g habitat.Interactions with Other Species: Steller’s eiderbreed<strong>in</strong>g success is strongly <strong>in</strong>fluenced by nestpredation, and average nest success is higherwhen there is abundant lemm<strong>in</strong>g prey. Lemm<strong>in</strong>gcycles may become less regular (Post et al.2009), potentially expos<strong>in</strong>g eiders to greater nestpredation.Phenological Response: As <strong>of</strong> yet, therelationship between seasonal temperature /precipitation and phenology for this species <strong>in</strong>the <strong>Arctic</strong> LCC has not been studied.In summary, the sources <strong>of</strong> potentialvulnerability identified by this assessment,particularly with regard to this species heavyreliance on coastal and wetland habitats forbreed<strong>in</strong>g, forag<strong>in</strong>g, and post-breed<strong>in</strong>g activityand their small range <strong>in</strong> <strong>Arctic</strong> Alaska, yielded amoderately vulnerable result <strong>in</strong> all three climatechange projections we considered.Literature CitedFredrickson, L.H. 2001. Steller’s Eider (Polysticta stelleri).In: The <strong>Birds</strong> <strong>of</strong> North America No. 571 (Poole, A. andGill, F. eds.), Philadelphia, and American Ornithologists'Union, Wash<strong>in</strong>gton D.C.: Academy <strong>of</strong> Natural Sciences.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Larned, W., R. Stehn, and R. Platte. 2012. Waterfowlbreed<strong>in</strong>g population survey, <strong>Arctic</strong> Coastal Pla<strong>in</strong>, Alaska,2011. Unpublished Report, U.S. Fish and Wildlife Service,Anchorage, AK. 51pp.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Post, E., M.C. Forchhammer, M.S. Bret-Harte, T.V.Callaghan, T.R. Christensen, B. Elberl<strong>in</strong>g, A.D. Fox, O.Gilg, D.S. Hik, T.T. Høye, R.A. Ims, E. Jeppesen, D.R.Kle<strong>in</strong>, J. Madsen, A.D. McGuire, S. Rysgaard, D.E.Sch<strong>in</strong>dler, I. Stirl<strong>in</strong>g, M.P. Tamstorf, N.J.C. Tyler, R. vander Wal, J. Welker, P.A. Wookey, N.M. Schmidt, and P.Aastrup P (2009) Ecological dynamics across the <strong>Arctic</strong>associated with recent climate change. Science 325:1355-1358.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.55


Spectacled Eider (Somateria fischeri)<strong>Vulnerability</strong>: Presumed StableConfidence: LowThe Spectacled Eider is a medium-sized sea duck with males easily recognized by their strik<strong>in</strong>g“clown-like” head plumage. This species was listed as threatened <strong>in</strong> 1993 under the EndangeredSpecies Act as it has suffered severe population decl<strong>in</strong>es <strong>in</strong> western Alaska. The <strong>Arctic</strong> CoastalPla<strong>in</strong> population may also be decl<strong>in</strong><strong>in</strong>g. In <strong>Arctic</strong> Alaska, breed<strong>in</strong>g Spectacled Eiders use riverdeltas and wet tundra habitats, <strong>in</strong>clud<strong>in</strong>g dra<strong>in</strong>ed-lake bas<strong>in</strong>s, flooded wetlands, and islets with<strong>in</strong>a matrix <strong>of</strong> thaw lakes for both nest<strong>in</strong>g and forag<strong>in</strong>g (Petersen et al. 2000). Dur<strong>in</strong>g the breed<strong>in</strong>gseason, their diet consists primarily <strong>of</strong> both adult and larval aquatic <strong>in</strong>sects (Petersen et al. 2000).Alaskan breeders spend their w<strong>in</strong>ters <strong>of</strong>fshore <strong>in</strong> the Ber<strong>in</strong>g Sea, <strong>of</strong>ten amassed <strong>in</strong> smallopen<strong>in</strong>gs <strong>in</strong> the pack ice (Petersen et al. 2000). Current <strong>Arctic</strong> Coastal Pla<strong>in</strong> population isestimated at 6-8,000 (http://seaduckjv.org/<strong>in</strong>foseries/spei_sppfactsheet.pdf).S. Zack @ WCSRange: We adjusted the NatureServe Map tomore closely reflect recent satellite telemetrystudies <strong>in</strong>dicat<strong>in</strong>g that most Spectacled Eiders <strong>in</strong><strong>Arctic</strong> Alaska nest with<strong>in</strong> 20 km <strong>of</strong> the coast (M.Sexson, pers. comm.). Because <strong>of</strong> their relianceon nest<strong>in</strong>g habitats near the coast, their ability toshift to new habitats is restricted.Human Response to CC: All-weather roads(necessitated by a warm<strong>in</strong>g climate andshortened ice road season) associated withenergy extraction activities could impact thisspecies. At the same time, impounded watercreated by a road network could provideadditional forag<strong>in</strong>g habitat (J. Liebezeit, pers.obs.). Overall, human activity <strong>in</strong> response toclimate change will likely be localized <strong>in</strong> thenear future so would only slightly <strong>in</strong>creasevulnerability.Physiological Hydro Niche: The greatestpotential source <strong>of</strong> vulnerability for SpectacledEiders was with respect to “physiologicalhydrologic niche” category, <strong>in</strong> which scoresranged from “neutral” to “greatly <strong>in</strong>creased”vulnerability. This range reflects uncerta<strong>in</strong>tyboth <strong>in</strong> the direction and <strong>in</strong>tensity <strong>of</strong> change <strong>in</strong><strong>Arctic</strong> hydrology, as well as <strong>in</strong> the effect thiswill have on the eider (less or greatervulnerability). If substantial tundra dry<strong>in</strong>goccurs, this species could experience aconsiderable negative impact as they are highlydependent on wet tundra habitats for nest<strong>in</strong>g andforag<strong>in</strong>g (Petersen et al. 2000). Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus atmospheric moisture, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.Disturbance Regime: In terms <strong>of</strong> disturbance,projected <strong>in</strong>creases <strong>in</strong> w<strong>in</strong>ter precipitation andsurface temperatures (ACIA 2005) will likelyalter the amount, extent, and duration <strong>of</strong>flood<strong>in</strong>g, potentially limit<strong>in</strong>g nest<strong>in</strong>g habitat. Atthe same time thermokarst could create newnest<strong>in</strong>g and forag<strong>in</strong>g habitats (Mart<strong>in</strong> et al.2009).Interactions with Other Species: Spectacledeiders are known to sometimes nest <strong>in</strong> gull56


Spectacled Eider (Somateria fischeri)<strong>Vulnerability</strong>: Presumed StableConfidence: LowD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.territories supposedly to ga<strong>in</strong> protection(Petersen et al. 2000). How a chang<strong>in</strong>g climatemight alter this relationship is not known. It ispossible that nest predation by red fox could<strong>in</strong>crease as their population may be expand<strong>in</strong>g <strong>in</strong>the arctic (Pamper<strong>in</strong> et al. 2006). Eiders may notbe able to defend nests as successfully as aga<strong>in</strong>stthe smaller arctic foxes.Genetic Variation: Spectacled Eiders aregenetically homogenous across their range as aresult <strong>of</strong> male dispersal (Scribner et al. 2001)and thus could be vulnerable to certa<strong>in</strong> climatemediatedevents <strong>in</strong> the near future (e.g. diseaseoutbreaks).Phenological Response: The relationshipbetween seasonal temperature / precipitation andphenology for this species <strong>in</strong> the <strong>Arctic</strong> LCC hasnot yet been exam<strong>in</strong>ed.In summary, this assessment suggests theSpectacled Eider will rema<strong>in</strong> stable <strong>in</strong> the face<strong>of</strong> a chang<strong>in</strong>g climate. However, it was rankedclose to the cut-<strong>of</strong>f for “moderately vulnerable”(see assessment results section) and worthcont<strong>in</strong>ued attention as <strong>Arctic</strong> Alaska climaticconditions cont<strong>in</strong>ue to change.Literature CitedACIA. 2005. <strong>Arctic</strong> <strong>Climate</strong> Impact Assessment.Cambridge University Press, 1042p.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Pamer<strong>in</strong>, N.J., E.H. Follmann, and B. Petersen. 2006.Interspecific kill<strong>in</strong>g <strong>of</strong> an arctic fox by a red fox at PrudhoeBay, Alaska. <strong>Arctic</strong> 59: 361-364.Petersen, M.R., J.B. Grand, and C.P. Dau. 2000. SpectacledEider (Somateria fischeri). In: The <strong>Birds</strong> <strong>of</strong> North AmericaNo. 547 (Poole, A. and Gill, F. eds.), Philadelphia, andAmerican Ornithologists' Union, Wash<strong>in</strong>gton D.C.:Academy <strong>of</strong> Natural Sciences.Scribner, K.T., M.R. Petersen, R.L. Fields, S.L. Talbot,J.M. Pearce, R.K. Chesser. 2001. Sex-biased gene flow <strong>in</strong>Spectacled Eiders (Anatidae): <strong>in</strong>ferences from molecularmarkers with contrast<strong>in</strong>g modes <strong>of</strong> <strong>in</strong>heritance. Evolution55:2105-2115.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.57


K<strong>in</strong>g Eider (Somateria spectabilis)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe K<strong>in</strong>g Eider, conspicuous for the male’s elegant plumage, is a common nester on the <strong>Arctic</strong>Coastal Pla<strong>in</strong> <strong>of</strong> Alaska. K<strong>in</strong>g Eiders typically nest <strong>in</strong> wet lowland tundra with many small pondsand pools, islands, and wet marshes. Dry tundra is also used when small lakes and ponds areavailable nearby as forag<strong>in</strong>g areas (Powell and Suydam 2012). Unlike other eiders, this species isnot as closely tied to coastal breed<strong>in</strong>g habitats. Dur<strong>in</strong>g the breed<strong>in</strong>g season, their diet is primarilyomnivorous (Powell and Suydam 2012). Alaskan breeders spend their w<strong>in</strong>ters <strong>in</strong> mar<strong>in</strong>eenvironments mostly <strong>in</strong> the Ber<strong>in</strong>g Sea and along the Aleutians (Powell and Suydam 2012).Eider populations have decl<strong>in</strong>ed s<strong>in</strong>ce the 1970s (Powell and Suydam 2012). Current <strong>Arctic</strong>Coastal Pla<strong>in</strong> population is estimated at approximately 15,000 (Larned et al. 2005).S. Zack @ WCSRange: We used the extant NatureServe rangemap for this assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America and other rangedescriptions. Because <strong>of</strong> their reliance onhabitats relatively near the coast their ability toshift to new habitats is restricted.Human Response to CC: All-weather roads(necessitated by a warm<strong>in</strong>g climate andshortened ice road season) associated withenergy extraction activities could impact thisspecies. At the same time, impounded watercreated by a road network could provideadditional forag<strong>in</strong>g habitat (J. Liebezeit, pers.obs.). Overall, human activity related to climatechange mitigation will likely be localized <strong>in</strong> thenear future so would only slightly <strong>in</strong>creasevulnerability.Physiological Hydro Niche: K<strong>in</strong>g Eidersshowed the strongest “<strong>in</strong>creased vulnerability”response <strong>in</strong> the “physiological hydrologic niche”category, rang<strong>in</strong>g from “slightly” to “greatly<strong>in</strong>creased” vulnerability. This range representsuncerta<strong>in</strong>ty both <strong>in</strong> the direction and <strong>in</strong>tensity <strong>of</strong>change <strong>in</strong> <strong>Arctic</strong> hydrology, as well as <strong>in</strong> theeffect this will have on the eider. If substantialtundra dry<strong>in</strong>g occurs, this species couldexperience a negative impact as they are highlydependent on wet tundra habitats for nest<strong>in</strong>g andforag<strong>in</strong>g (Powell and Suydam 2000). Currentprojections <strong>of</strong> annual potentialevapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Thus atmosphericmoisture, as an exposure factor, was not heavilyweighted <strong>in</strong> the assessment. Also, <strong>in</strong>teractionwith hydrologic processes is very poorlyunderstood (Mart<strong>in</strong> et al. 2009).Disturbance Regime: <strong>Climate</strong>-mediateddisturbance, namely thermokarst, could bothcreate and destroy good forag<strong>in</strong>g and nest<strong>in</strong>ghabitats through both ice wedge degradation anddra<strong>in</strong><strong>in</strong>g <strong>of</strong> thaw lakes (Mart<strong>in</strong> et al. 2009).Likewise, <strong>in</strong>creased coastal erosion and result<strong>in</strong>gsal<strong>in</strong>ization (Jones et al. 2009) could bothnegatively and positively affect post-breed<strong>in</strong>gaggregations <strong>of</strong> stag<strong>in</strong>g birds by destroy<strong>in</strong>g andcreat<strong>in</strong>g forag<strong>in</strong>g/molt<strong>in</strong>g habitat.Interactions with Other Species: K<strong>in</strong>g Eidersare known to benefit from nest<strong>in</strong>g <strong>in</strong> the vic<strong>in</strong>ity<strong>of</strong> aggressive species, (e.g. Glaucous Gulls) butthese <strong>in</strong>teractions are not required for58


K<strong>in</strong>g Eider (Somateria spectabilis)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.persistence (Bentzen et al. 2009. It is possiblethat red fox nest predation could <strong>in</strong>crease as thisspecies may become more numerous <strong>in</strong> thearctic (Pamper<strong>in</strong> et al. 2006) and eiders wouldnot be able to defend nests as successfully asaga<strong>in</strong>st the smaller arctic foxes.Genetic Variation: K<strong>in</strong>g Eiders have relativelyhigh genetic variation (Pearce et al. 2004) and sowould potentially be able to cope well withclimate driven changes.Phenological Response: The relationshipbetween seasonal temperature/precipitation andphenology for this species <strong>in</strong> the <strong>Arctic</strong> LCC hasnot yet been studied, so it is at best speculativeto assert how K<strong>in</strong>g Eiders would respond tochang<strong>in</strong>g habitat phenology.Related Distribution Response: Decl<strong>in</strong>e <strong>of</strong> birdsfrom 1970s to 1990s is potentially expla<strong>in</strong>ed byreduced carry<strong>in</strong>g capacity <strong>of</strong> w<strong>in</strong>ter<strong>in</strong>g habitats<strong>in</strong> the Ber<strong>in</strong>g Sea due to a regime shift towardswarmer waters support<strong>in</strong>g a different and lessenergetically pr<strong>of</strong>itable benthic <strong>in</strong>vertebratecommunity (Suydam et al. 2000).In summary, despite some sources <strong>of</strong>vulnerability, K<strong>in</strong>g Eiders will likely rema<strong>in</strong>“stable” and adjust to climate-mediated changes<strong>in</strong> their breed<strong>in</strong>g range for the next 50 years.Literature CitedBentzen, R. L., Powell, A. N. and Suydam, R. S. 2009.Strategies for nest-site selection by K<strong>in</strong>g Eiders. – Journal<strong>of</strong> Wildlife Management 73: 932-938.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Larned, W., R. Stehn, and R. Platte. 2005. Eider breed<strong>in</strong>gpopulation survey, <strong>Arctic</strong> Coastal Pla<strong>in</strong>, Alaska, 2005.Unpublished Report, U.S. Fish and Wildlife Service,Anchorage, AK. 51pp.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Pamer<strong>in</strong>, N.J., E.H. Follmann, and B. Petersen. 2006.Interspecific kill<strong>in</strong>g <strong>of</strong> an arctic fox by a red fox at PrudhoeBay, Alaska. <strong>Arctic</strong> 59: 361-364.Pearce, J.L., S.L.Talbot, B.J. Pierson, M.R. Petersen, K.T.Scribner, D.L. Dickson, and A. Mosbech. 2004. Lack <strong>of</strong>spatial genetic structure among nest<strong>in</strong>g and w<strong>in</strong>ter<strong>in</strong>g K<strong>in</strong>gEiders. – Condor 106: 229-240.Powell, Abby N. and Robert S. Suydam. 2012. K<strong>in</strong>g Eider(Somateria spectabilis), The <strong>Birds</strong> <strong>of</strong> North AmericaOnl<strong>in</strong>e (A. Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology;Retrieved from the <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/491doi:10.2173/bna.491Suydam, R.S., D.L. Dickson, J.B. Fadely, and L.T.Quakenbush. 2000. Population decl<strong>in</strong>es <strong>of</strong> K<strong>in</strong>g andCommon Eiders <strong>of</strong> the Beaufort Sea. Condor 102: 219-222.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.59


Common Eider (Somateria mollissima)<strong>Vulnerability</strong>: Highly VulnerableConfidence: LowThe Common Eider, a large sea duck, is more closely tied to mar<strong>in</strong>e environments than are manyother sea ducks. On the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska this species nests primarily on barrierislands and pen<strong>in</strong>sulas <strong>of</strong> the <strong>Arctic</strong> Coastal Pla<strong>in</strong> (a small proportion <strong>of</strong> the total area) while <strong>in</strong>other parts <strong>of</strong> its range they select quite varied nest<strong>in</strong>g sites (Goudie et al. 2000). Common eidersdepend on a mar<strong>in</strong>e prey base, eat<strong>in</strong>g <strong>in</strong>vertebrates (primarily mollusks and crustaceans) bydiv<strong>in</strong>g to the sea floor. Alaskan breeders spend their w<strong>in</strong>ters nearby <strong>in</strong> the Ber<strong>in</strong>g Sea, Gulf <strong>of</strong>Alaska, and <strong>of</strong>f Russia’s Chukotka Pen<strong>in</strong>sula (SDJV 2004). Current <strong>Arctic</strong> Coastal Pla<strong>in</strong>population is estimated at approximately 2,000 (Dau and Boll<strong>in</strong>ger 2009).and survival. <strong>Climate</strong> change will likely affectice conditions, sea levels, stability <strong>of</strong> fresh-waterhabitats, and other factors which would alter thesal<strong>in</strong>ity <strong>of</strong> essential aquatic habitats (Nystrom etal. 1988, C. Dau pers. comm.). These could havenegative consequences.S. Zack @ WCSRange: We adjusted the NatureServe Map tomore closely reflect the range map depicted <strong>in</strong>the <strong>Birds</strong> <strong>of</strong> North America account for thisassessment as the latter more accuratelyrepresented this species’ range based on multipleaccounts and expert op<strong>in</strong>ion (Johnson and Herter1989, Goudie et al. 2000, C. Dau pers. comm.).Sea Level Rise: Because <strong>of</strong> the Common Eiders’reliance on barrier islands and other coastalareas for nest<strong>in</strong>g they would most likely benegatively impacted by predicted sea level riseand a disturbance regime <strong>of</strong> <strong>in</strong>creased stormsurge frequency (IPCC 2007, Jones et al. 2009).Their ability to shift to nest<strong>in</strong>g habitats that areless susceptible to such phenomena is m<strong>in</strong>imalas they rely on coastal habitats for breed<strong>in</strong>gthroughout their range (Goudie et al. 2000).Human Response to CC: Harden<strong>in</strong>g <strong>of</strong> thew<strong>in</strong>dward side <strong>of</strong> barrier islands (to preventerosion on development platforms as <strong>of</strong>f-shoreactivity <strong>in</strong>creases) could benefit species byprotect<strong>in</strong>g islands from erosion, although<strong>in</strong>creased human activity could also <strong>in</strong>creasestress to <strong>in</strong>cubat<strong>in</strong>g birds and young (C. Dau,pers. comm.).Physiological Hydro Niche: The sal<strong>in</strong>ity regimeencountered by Common Eiders affects breed<strong>in</strong>gPhysical Habitat Restrictions: At other places(outside the <strong>Arctic</strong> LCC) throughout theirbreed<strong>in</strong>g range Common Eiders utilize a variety<strong>of</strong> nest<strong>in</strong>g habitat from tundra heath to borealforest (Goudie et al. 2000). It is unknown if the<strong>Arctic</strong> Alaska populations, which seem to relyalmost exclusively on barrier islands, have thecapacity and adaptability to utilize differenttypes <strong>of</strong> nest<strong>in</strong>g habitat. In this assessment it wasassumed they do not but this could be an area <strong>of</strong>future <strong>in</strong>vestigation.60


Common Eider (Somateria mollissima)<strong>Vulnerability</strong>: Highly VulnerableConfidence: LowD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Interactions with Other Species: CommonEiders are known to sometimes nest <strong>in</strong> theterritory <strong>of</strong> predatory birds to ga<strong>in</strong>protection which can sometimes <strong>in</strong>crease nestsuccess (Goudie et al. 2000). However; it isunknown how a chang<strong>in</strong>g climate would alterthis behavior and if it would confer a positive ornegative outcome.Pheonological Response: Despite the existence<strong>of</strong> long-term data sets on Common Eiders <strong>in</strong>northern Alaska (Dau and Boll<strong>in</strong>ger 2009) anassessment <strong>of</strong> phenology-related variables hasnot been a part <strong>of</strong> that effort so it is, at best,speculative to assert how this species willrespond to chang<strong>in</strong>g biotic schedules.In summary, the accumulation <strong>of</strong> potentialsources <strong>of</strong> vulnerability, particularly with regardto barrier island nest<strong>in</strong>g, resulted <strong>in</strong> a rank<strong>in</strong>g <strong>of</strong>highly vulnerable for this species <strong>in</strong> two <strong>of</strong> thethree climate change projections we considered.Literature CitedDau, C. P., and K. S. Boll<strong>in</strong>ger. 2009. Aerial populationsurvey <strong>of</strong> common eiders and other waterbirds <strong>in</strong> nearshore waters and along barrier islands <strong>of</strong> the <strong>Arctic</strong> CoastalPla<strong>in</strong> <strong>of</strong> Alaska, 1-5 July 2009. Unpublished report. U.S.Fish and Wildlife Service, Anchorage, Alaska. 20 pp.Goudie, I., G.J. Robertson, and A. Reed. 2000. CommonEider (Somateria mollissima). In: The <strong>Birds</strong> <strong>of</strong> NorthAmerica No. 546 (Poole, A. and Gill, F. eds.), Philadelphia,and American Ornithologists' Union, Wash<strong>in</strong>gton D.C.:Academy <strong>of</strong> Natural Sciences.IPCC. 2007. <strong>Climate</strong> <strong>Change</strong> 2007: Synthesis Report.Contribution <strong>of</strong> Work<strong>in</strong>g Groups I, II, and III to the 4 thAssessment Report <strong>of</strong> the Intergovernmental Panel on<strong>Climate</strong> <strong>Change</strong>. Geneva, Switzerland: IPCC. 104p.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Nystrom, K.G.K. and O. Pehrsson. 1988. Sal<strong>in</strong>ity as aconstra<strong>in</strong>t affect<strong>in</strong>g food and habitat choice <strong>of</strong> musselfeed<strong>in</strong>gdiv<strong>in</strong>g ducks. Ibis 130: 94-110.SDJV (Sea Duck Jo<strong>in</strong>t Venture). 2004. Common Eider factsheet. http://seaduckjv.org/<strong>in</strong>foseries/coei_sppfactsheet.pdf61


Long-tailed Duck (Clangula hyemalis)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Long-tailed Duck is one <strong>of</strong> the most common sea ducks <strong>in</strong> <strong>Arctic</strong> Alaska, and has acircumpolar distribution. They are known for their ability to dive to impressive depths (> 60 m)<strong>in</strong> search <strong>of</strong> food (Robertson and Savard 2002). In <strong>Arctic</strong> Alaska, this species typically nests <strong>in</strong>wet tundra near shallow Carex or Arctophila-dom<strong>in</strong>ated ponds, and braided streams (Robertsonand Savard 2002). Dur<strong>in</strong>g the breed<strong>in</strong>g season, their diet consists primarily <strong>of</strong> aquatic<strong>in</strong>vertebrates although they will also take vegetative matter (Robertson and Savard 2002). Dur<strong>in</strong>gpost-breed<strong>in</strong>g molt, this species uses coastal lagoons and deep, open lakes (Robertson andSavard 2002). Long-tailed Ducks w<strong>in</strong>ter on both coasts <strong>of</strong> North America and on the Great Lakes(Robertson and Savard 2002). Current <strong>Arctic</strong> Coastal Pla<strong>in</strong> population is estimated atapproximately 44,000 with a stable trend across recent years (Larned et al. 2012).S. Zack @ WCSRange: We modified the NatureServe rangemap for this assessment to more accuratelyreflect this species more coastally-orientedbreed<strong>in</strong>g range based on the <strong>Birds</strong> <strong>of</strong> NorthAmerica (Robertson and Savard 2002) and otherrange descriptions (Bart et al. 2012, Johnson andHerter 1989).Physiological Hydro Niche: Long-tailed Duckswere ranked as particularly vulnerable tochanges <strong>in</strong> hydrologic niche because <strong>of</strong> theirsignificant association with wet tundra andshallow pond habitats for nest<strong>in</strong>g and forag<strong>in</strong>g.If substantial tundra dry<strong>in</strong>g occurs, this speciescould experience a negative impact. Currentprojections <strong>of</strong> annual potentialevapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP), and its <strong>in</strong>teraction withhydrologic processes is very poorly understood(Mart<strong>in</strong> et al. 2009). Thus atmospheric moisture,as an exposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.Physical Habitat Restrictions: Harden<strong>in</strong>g <strong>of</strong> thew<strong>in</strong>dward side <strong>of</strong> barrier islands (to preventerosion on development platforms as <strong>of</strong>f-shoreactivity <strong>in</strong>creases) could impact this species,although molt<strong>in</strong>g Long-tailed Ducks thatcurrently use hardened sites around exist<strong>in</strong>goilfields (e.g. West Dock) show little sign <strong>of</strong>impact (J. Reed, pers. comm.).Disturbance Regimes: <strong>Climate</strong>-mediateddisturbance processes, most importantly<strong>in</strong>creas<strong>in</strong>g storms and associated coastal erosion(Jones et al. 2009) could affect barrier island /lagoon systems, thus affect<strong>in</strong>g the availability <strong>of</strong>molt<strong>in</strong>g sites for Long-tailed Ducks. These types<strong>of</strong> habitat features are relatively uncommon <strong>in</strong>the <strong>Arctic</strong> LCC and are particularly susceptibleto such disturbances.Interactions with Other Species: In terms <strong>of</strong><strong>in</strong>teractions with other species, it is possibleclimate changes may disrupt lemm<strong>in</strong>g cycles(Post et al. 2009) and thus could expose thisspecies to greater nest predation pressure iflemm<strong>in</strong>gs are no longer a periodicallysuperabundant food source for predators.62


Long-tailed Duck (Clangula hyemalis)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response: Although long-termdata sets exist for this species (e.g. Larned et al.2012), the relationship between seasonaltemperature / precipitation and phenology forthis species <strong>in</strong> the <strong>Arctic</strong> LCC has not beenexam<strong>in</strong>ed, so it is at best speculative on howthey would respond to chang<strong>in</strong>g bioticschedules.In summary, Long-tailed Ducks will likelyexperience some negative impacts from climatechange. In particular, they may be mostsusceptible to coastal impacts dur<strong>in</strong>g the molt<strong>in</strong>gperiod. Overall, though, this species appears tohave enough versatility <strong>in</strong> life history traits andbehaviors to rema<strong>in</strong> “stable” with regard toclimate change at least dur<strong>in</strong>g the timeframe <strong>of</strong>this assessment (to 2050).Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Larned, W., R. Stehn, and R. Platte. 2012. Waterfowlbreed<strong>in</strong>g population survey, <strong>Arctic</strong> Coastal Pla<strong>in</strong>, Alaska,2011. Unpublished Report, U.S. Fish and Wildlife Service,Anchorage, AK. 51pp.Post E, M.C. Forchhammer, M.S. Bret-Harte, T.V.Callaghan, T.R. Christensen, B. Elberl<strong>in</strong>g, A.D. Fox, O.Gilg, D.S. Hik, T.T. Høye, R.A. Ims, E. Jeppesen, D.R.Kle<strong>in</strong>, J. Madsen, A.D. McGuire, S. Rysgaard, D.E.Sch<strong>in</strong>dler, I. Stirl<strong>in</strong>g, M.P. Tamstorf, N.J.C. Tyler, R. vander Wal, J. Welker, P.A. Wookey, N.M. Schmidt, and P.Aastrup. 2009. Ecological dynamics across the <strong>Arctic</strong>associated with recent climate change. Science 325:1355-1358.Robertson, G.J. and J.-P.L. Savard. 2002. Long-tailed Duck(Clangula hyemalis). In: The <strong>Birds</strong> <strong>of</strong> North America, No.651 (A. Poole and F. Gill, Eds.). The <strong>Birds</strong> <strong>of</strong> NorthAmerica, Inc., Phildelphia, PA.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.63


Willow Ptarmigan (Lagopus lagopus)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Willow Ptarmigan is an abundant and conspicuous breed<strong>in</strong>g bird <strong>in</strong> <strong>Arctic</strong> Alaska and is one<strong>of</strong> the few birds that rema<strong>in</strong> <strong>in</strong> the <strong>Arctic</strong> year-round. Dur<strong>in</strong>g the breed<strong>in</strong>g season this speciesnests <strong>in</strong> tall shrub habitats as well as <strong>in</strong> well-dra<strong>in</strong>ed tundra sites (Hannon et al. 1998). In earlyspr<strong>in</strong>g Willow Ptarmigan are willow bud specialists (constitut<strong>in</strong>g up to 80% <strong>of</strong> their diet); <strong>in</strong>summer the dietary breadth widens substantially to <strong>in</strong>clude <strong>in</strong>sects, berries, equisetum, andleaves (Hannon et al. 1998). In Alaska, female Willow Ptarmigan may move as far south as thesouthern side <strong>of</strong> the Brooks Range <strong>in</strong> w<strong>in</strong>ter while males stay closer to the tundra breed<strong>in</strong>ggrounds (Irv<strong>in</strong>g et al. 1966). Global population estimate is 40 million (Rich et al. 2004).K. Pietrzakalaxensis), for food and cover. Any changes <strong>in</strong>the distribution <strong>of</strong> this one plant species couldhave a significant impact on this species. Withshrub expansion tak<strong>in</strong>g place on the North Slope(Tape et al. 2006), it could provide expandedbreed<strong>in</strong>g habitat opportunities. However, <strong>in</strong> thelong-term, as spruce and deciduous forestexpand <strong>in</strong>to shrub-dom<strong>in</strong>ated areas, WillowPtarmigan habitat will likely be reduced.Range: We used the extant NatureServe rangemap for the assessment as it matched the <strong>Birds</strong><strong>of</strong> North America (Hannon et al. 1998) and otherrange descriptions (Johnson and Herter 1989).Physiological Thermal Niche: For most <strong>of</strong> the<strong>in</strong>direct exposure and sensitivity categories <strong>in</strong>this assessment, Willow Ptarmigan were scoredwith a neutral response (see table on next page).This species is associated with dense shrubpatches, primarily <strong>in</strong> valley bottoms that arewarmer on average than surround<strong>in</strong>g uplandhabitats suggest<strong>in</strong>g this species may be sensitiveto changes <strong>in</strong> localized thermal conditions.Physiological Hydro Niche: Willow Ptarmiganare sensitive to changes <strong>in</strong> snow depth <strong>in</strong> thew<strong>in</strong>ter months due to their dependence on shrubsfor cover from predators and for food.Furthermore, Willow Ptarmigan delay egglay<strong>in</strong>g<strong>in</strong> years with late spr<strong>in</strong>g snow melt andthis may result <strong>in</strong> lower breed<strong>in</strong>g success(Mart<strong>in</strong> and Weibe 2004). Current precipitationmodels do predict <strong>in</strong>creased snowfall <strong>in</strong> w<strong>in</strong>ter<strong>in</strong> <strong>Arctic</strong> Alaska (http://www.snap.uaf.edu/).Biotic Habitat Dependence: In the w<strong>in</strong>ter andspr<strong>in</strong>g when snow cover is extensive, WillowPtarmigan on the North Slope <strong>of</strong> Alaska dependprimarily on one willow species, (SalixDisturbance Regime: Disturbance events suchas periodic flood<strong>in</strong>g <strong>of</strong> riparian areas anddeposition <strong>of</strong> sediment may benefit ptarmiganby enhanc<strong>in</strong>g habitat suitability for earlysuccessionalwillows such as S. alaxensis.However, <strong>in</strong> the longer-term, the expected<strong>in</strong>vasion <strong>of</strong> trees such as poplar (Populusbalsamifera) <strong>in</strong> riparian floodpla<strong>in</strong>s would bedetrimental to ptarmigan (Mann et al. 2010).64


Willow Ptarmigan (Lagopus lagopus)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response: Willow Ptarmiganappear to adjust their lay dates accord<strong>in</strong>g tosnow cover, which varies annually (Mart<strong>in</strong> andWeibe 2004). No studies explicitly exam<strong>in</strong><strong>in</strong>glong-term climate change and ptarmiganphenology have been conducted (K. Christie,pers. comm.).Genetic Variation: There is little <strong>in</strong>formation <strong>in</strong>the literature regard<strong>in</strong>g degree <strong>of</strong> geneticvariation or recent evolutionary bottlenecks forthis species.In summary, this assessment suggests thatWillow Ptarmigan have enough flexibility <strong>in</strong> lifehistory and <strong>in</strong> response to expected changes <strong>in</strong>environmental conditions to allow them torema<strong>in</strong> stable with regard to climate change, atleast with<strong>in</strong> the next 50 years.Literature CitedHannon, S.J., P.K. Eason, and K. Mart<strong>in</strong>. WillowPtarmigan (Lagopus lagopus). In The <strong>Birds</strong> <strong>of</strong> NorthAmerica, No. 369 (A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong>North America, Inc. Philadelphia, PA.Irv<strong>in</strong>g, L, G.C. West, L.J. Peyton, and S. Paneak. 1966.Migration <strong>of</strong> Willow Ptarmigan <strong>in</strong> <strong>Arctic</strong> Alaska. <strong>Arctic</strong>20: 77-85.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mann, D.H., P. Groves, R.A. Reanier, and M.L. Kunz.2010. Floodpla<strong>in</strong>s, permafrost, cottonwood trees, and peat:What happened the last time climate warmed suddenly <strong>in</strong>arctic Alaska? Quaternary Science Reviews 29: 3812-3830.Mart<strong>in</strong>, K., and K. L. Wiebe. 2004. Cop<strong>in</strong>g mechanisms <strong>of</strong>alp<strong>in</strong>e and arctic breed<strong>in</strong>g birds: extreme weather andlimitations to reproductive resilience. Integr. Comp. Biol.44: 177-185.Rich, T.D., C.J. Beardmore, H. Berlanga, P.J. Blancher, M.S.W. Bradstreet, G.S. Butcher, D.W. Demarest, E.H. Dunn,W.C. Hunter, E.E. Iñigo-Elias, J.A. Kennedy, A.M.Martell, A.O. Panjabi, D.N. Pashley, K.V. Rosenberg,C.M. Rustay, J.S. Wendt, and T.C. Will. 2004. Partners <strong>in</strong>Flight North American Landbird Conservation Plan.Cornell Lab <strong>of</strong> Ornithology. Ithaca, New York.http://www.partners<strong>in</strong>flight.org/cont_plan/default.htmTape, K., Sturm, M., and C. Rac<strong>in</strong>e. 2006. The evidence forshrub expansion <strong>in</strong> Northern Alaska and the Pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.65


Rock Ptarmigan (Lagopus mutus)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Rock Ptarmigan is a common breed<strong>in</strong>g bird <strong>in</strong> <strong>Arctic</strong> Alaska and, like the WillowPtarmigan, is one <strong>of</strong> the few birds that rema<strong>in</strong> <strong>in</strong> the <strong>Arctic</strong> year-round. This species typicallybreeds <strong>in</strong> habitats that <strong>in</strong>clude a mix <strong>of</strong> rocky outcrops, gram<strong>in</strong>oid meadows, and small patches<strong>of</strong> Salix or Betula less than 1 m <strong>in</strong> height (Montgomerie and Holder 2008). Unlike the WillowPtarmigan, this species is less dependent on shrubs associated with riparian areas. In summer,Rock Ptarmigan consume a variety <strong>of</strong> foods <strong>in</strong>clud<strong>in</strong>g Dryas, Oxytropis, and Salix leaves,<strong>in</strong>sects, Betula and Salix catk<strong>in</strong>s, and berries (Montgomerie and Holder 2008). This speciesw<strong>in</strong>ters ma<strong>in</strong>ly with<strong>in</strong> the breed<strong>in</strong>g range but withdraws from the northernmost regions(Montgomerie and Holder 2008). Global population estimate is >8 million (Rich et al. 2004).S. Zack @ WCSRange: We used the extant Nature Serve rangemap for the assessment as it matched the <strong>Birds</strong><strong>of</strong> North America (Montgomerie and Holder2008) and other range descriptions (Johnson andHerter 1989).Physiological Thermal Niche: For most <strong>of</strong> the<strong>in</strong>direct exposure and sensitivity categories <strong>in</strong>the assessment, Rock Ptarmigan were rankedwith a neutral response (see table on next page).This species breeds <strong>in</strong> alp<strong>in</strong>e and arctic tundraregions, and is associated with cooler, higherelevation thermal environments with<strong>in</strong> the arcticLCC. The availability <strong>of</strong> these environmentsmay decl<strong>in</strong>e as temperatures <strong>in</strong>crease and shrubsand trees encroach on tundra habitats (Tape et al.2006, Danby et al. 2007).Physiological Hydro Niche: If w<strong>in</strong>terprecipitation were to <strong>in</strong>crease as some modelspredict (http://www.snap.uaf. edu/), access toshrubs, and thus food and protection frompredators would be reduced. It is important tonote that <strong>in</strong> general, Rock Ptarmigan are lessdependent on water driven environments(compared to Willow Ptarmigan).Disturbance Regime: In general climatemediateddisturbance events are unlikely to havea significant impact on Rock Ptarmigan,although <strong>in</strong>creased freez<strong>in</strong>g ra<strong>in</strong> events early andlate <strong>in</strong> w<strong>in</strong>ter could lead to greater mortality (K.Christie, pers. comm.).Biotic Habitat Dependence: In the w<strong>in</strong>ter andspr<strong>in</strong>g, Rock Ptarmigan occur <strong>in</strong> tall shrubpatches associated with river and lake edges. Atthis time, dwarf birch (Betula nana) and willow(Salix spp.) are important for both food andcover. Conversely, Willow Ptarmigan exhibit astronger dependence on just one plant species(i.e. Salix alaxensis).Physical Habitat Restrictions: Unlike WillowPtarmigan, Rock Ptarmigan tend to prefer moreopen tundra areas with short or sparse shrubcover for breed<strong>in</strong>g (Montgomerie and Holder2008), so they will likely not benefit as muchfrom shrub expansion. Over the long-term, astree-l<strong>in</strong>e advances, suitable habitat for thisspecies will likely be reduced, caus<strong>in</strong>g rangecontraction to higher elevations and latitudes(Lloyd et al. 2002).66


Rock Ptarmigan (Lagopus mutus)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Genetic Variation: Significant genetic variationexists <strong>in</strong> North American populations <strong>of</strong> RockPtarmigan (Holder et al. 1999) and so they maybe resilient respond<strong>in</strong>g to climate-mediatedimpacts at the population level.Phenological Response: Tim<strong>in</strong>g <strong>of</strong> snow meltcan <strong>in</strong>fluence breed<strong>in</strong>g phenology andreproductive output for this species, whichexperiences decreased clutch size <strong>in</strong> years withlate snow melt (Wilson and Mart<strong>in</strong> 2010).In summary, the flexibility <strong>in</strong> behavior andlife history exhibited by the Rock Ptarmigan, <strong>in</strong>comb<strong>in</strong>ation with a widespread distribution <strong>in</strong>the <strong>Arctic</strong> LCC, suggests they will likely rema<strong>in</strong>stable under the current predictions <strong>of</strong> climatechange with<strong>in</strong> the 50 year timeframe <strong>of</strong> thisassessment.Literature CitedDanby, R.K. and D.S. Hik. 2007. Variability, cont<strong>in</strong>gencyand rapid change <strong>in</strong> recent subarctic alp<strong>in</strong>e treel<strong>in</strong>edynamics. J. <strong>of</strong> Ecology 95:352-363.Holder, K., R. Montgomerie, and V. L. Friesen. 1999. Atest <strong>of</strong> the glacial refugium hypothesis us<strong>in</strong>g patterns <strong>of</strong>mitochondrial and nuclear DNA sequence variation <strong>in</strong> rockptarmigan (Lagopus mutus). Evolution 53:1936-1950.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Lloyd, A.H., T.S. Rupp, C.L. Fastie, and A.M. Starfield.2002. ‘Patterns and dynamics <strong>of</strong> treel<strong>in</strong>e advance on theSeward Pen<strong>in</strong>sula, Alaska’, J. Geophys. Res 107,8161,doi:10.1029/2001JD000852.Montgomerie, R. and K. Holder. 2008. Rock Ptarmigan(Lagopus mutus), The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A.Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology; Retrievedfrom the <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/051doi:10.2173/bna.51Rich, T.D., C.J. Beardmore, H. Berlanga, P.J. Blancher, M.S.W. Bradstreet, G S. Butcher, D.W. Demarest, E.H. Dunn,W.C. Hunter, E.E. Iñigo-Elias, J.A. Kennedy, A.M.Martell, A.O. Panjabi, D.N. Pashley, K.V. Rosenberg, C.M. Rustay, J.S. Wendt, and T.C. Will. 2004. Partners <strong>in</strong>Flight North American Landbird Conservation Plan.Cornell Lab <strong>of</strong> Ornithology. Ithaca, New http://wwwYork..partners<strong>in</strong>flight.org/cont_plan/default.htmTape, K., M. Sturm, and C. Rac<strong>in</strong>e. 2006. The evidence forshrub expansion <strong>in</strong> Northern Alaska and the Pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.Wilson S. and K. Mart<strong>in</strong>. 2010. Variable reproductiveeffort for two sympatric ptarmigan <strong>in</strong> response to spr<strong>in</strong>gweather conditions <strong>in</strong> a northern alp<strong>in</strong>e ecosystem. Journal<strong>of</strong> Avian Biology 41:319-326.67


Red-throated Loon (Gavia stellata)<strong>Vulnerability</strong>: Presumed StableConfidence: Very HighThe Red-throated Loon is the smallest <strong>of</strong> the world’s five loon species. This species typicallybreeds <strong>in</strong> low wetlands <strong>in</strong> both tundra and forested terra<strong>in</strong> (Barr et al. 2000). They nest on pondedges, sometimes along very small ponds (


Red-throated Loon (Gavia stellata)<strong>Vulnerability</strong>: Presumed StableConfidence: Very HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response: With regard to nest<strong>in</strong>gphenology, no time-series data exist for the<strong>Arctic</strong> LCC, but Red-throated Loons nest<strong>in</strong>g onthe Yukon-Kuskokwim Delta <strong>in</strong> Alaska haveshown a trend <strong>of</strong> earlier average hatch date overthe past 27 years (Fischer et al. 2009). Even ifthe North Slope population is able to adjustnest<strong>in</strong>g to earlier spr<strong>in</strong>g phenology, it isunknown if they can adjust tim<strong>in</strong>g to thechang<strong>in</strong>g schedules <strong>of</strong> the other organisms onwhich they depend.In summary, the results <strong>of</strong> this assessmentsuggest Red-throated Loons will likely be ableto cope with climate and associated habitatchanges predicted to occur <strong>in</strong> <strong>Arctic</strong> Alaska, atleast dur<strong>in</strong>g the next 50 years.Literature CitedAndes, B.A. 1993. Forag<strong>in</strong>g flights <strong>of</strong> Pacific, Gaviapacifica, and Red-throated, Gavia Stellata, loons onAlaska’s Coastal Pla<strong>in</strong>. Canadian Field-Naturalist 107(2):238-240.Arp, C.D., B.M. Jones, F.E. Urban, and G. Grosse. 2011.Hydrogeomorphic processes <strong>of</strong> thermokarst lakes withgrounded-ice and float<strong>in</strong>g-ice regimes <strong>in</strong> the <strong>Arctic</strong> coastalpla<strong>in</strong>. Hydrological Processes 25: 2422-2438.Barr, J.F, C. Eberl, and J.W. McIntyre. 2000. Red-throatedLoon (Gavia stellata). In The <strong>Birds</strong> <strong>of</strong> North America, No.513 (A. Poole. and F. Gill, Eds.). Philadelphia: TheAcademy <strong>of</strong> Natural Sciences; Wash<strong>in</strong>gton, DC: TheAmerican Ornithologists’ Union.Bergman, R.D. and D.V. Derksen. 1977. Observations on<strong>Arctic</strong> and Red-throated loons at Storkersen Po<strong>in</strong>t, Alaska.<strong>Arctic</strong> 30: 41-51.Fischer, J.B., R.A. Stehn, and G. Walters. 2009. Nestpopulation and potential production <strong>of</strong> geese andSpectacled Eiders on the Yukon-Kuskokwim Delta, Alaska,2009. US Fish and Wildlife, Migratory Bird Management,Waterfowl Management Branch, 1011 E. Tudor Rd.,Anchorage, AK, 99503.Groves, D.J., B. Conant, R.J. K<strong>in</strong>g, J.I. Hodges, and J.G.K<strong>in</strong>g. 1996. Status and trends <strong>of</strong> loon populationssummer<strong>in</strong>g <strong>in</strong> Alaska, 1971-1993. Condor 98: 1889-195.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Larned, W., R. Stehn, and R. Platte. 2012. Waterfowlbreed<strong>in</strong>g population survey, <strong>Arctic</strong> Coastal Pla<strong>in</strong>, Alaska,2011. Unpublished Report, U.S. Fish and Wildlife Service,Anchorage, AK. 51pp.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.69


Pacific Loon (Gavia pacifica)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Pacific Loon is the most common breed<strong>in</strong>g loon <strong>in</strong> <strong>Arctic</strong> Alaska, nest<strong>in</strong>g throughout much<strong>of</strong> the state (Russell 2002). This species typically breeds on lakes that are ≥1 ha <strong>in</strong> size <strong>in</strong> bothboreal and tundra habitats. They are primarily piscivorous although they are known to commonlyfeed chicks <strong>in</strong>vertebrates (D. Rizzolo and J. Schmutz, unpublished data). Many Pacific Loonsspend their w<strong>in</strong>ters <strong>in</strong> <strong>of</strong>fshore waters <strong>of</strong> the west coast <strong>of</strong> Canada and the U.S. (Russell 2002).The most recent Alaska population estimate is 100-125,000 <strong>in</strong>dividuals (Ruggles and Tankersley1992) with ~ 69,500 on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> specifically (Groves et al. 1996).S. Zack @ WCSencroachment (Tape et al. 2006) <strong>in</strong>to tundrahabitats.Although small fish make up a significantpart <strong>of</strong> the Pacific Loon diet, they also eat many<strong>in</strong>vertebrates (e.g., caddis fly larvae, nostracods)and so, unlike some other loon species, exhibitenough flexibility <strong>in</strong> their diet that they wouldlikely be able to adjust to climate-mediatedchanges <strong>in</strong> prey base.Range: We used the extant NatureServe map forthe assessment as it matched other range mapsources and descriptions (Johnson and Herter1989, Russell 2002).Physiological Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), PacificLoons ranked neutral <strong>in</strong> most categories with theexception <strong>of</strong> physiological hydrologic niche forwhich they were evaluated to have a “slightly togreatly <strong>in</strong>creased” vulnerability. This responsewas driven primarily by this species reliance onsmall water bodies (typically


Pacific Loon (Gavia pacifica)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response: Despite the existence<strong>of</strong> long-term data sets for loons <strong>in</strong> northernAlaska (Mallek et al. 2005) there is currently noassessment <strong>of</strong> phenology-related variables and,thus, it is not known how this species mightrespond to chang<strong>in</strong>g biotic schedules. However,Pacific Loon populations <strong>in</strong> Alaska have beenrelatively stable over the history <strong>of</strong> aerialabundance surveys (> 35 years; Groves et al.1996).In summary, the Pacific Loon will likely beable to adjust to climate and associated habitatchanges predicted to occur <strong>in</strong> <strong>Arctic</strong> Alaska, atleast dur<strong>in</strong>g the 50 year timel<strong>in</strong>e <strong>of</strong> thisassessment.Literature CitedGroves, D.J., B. Conant, R.J. K<strong>in</strong>g, J.I. Hodges, and J.G.K<strong>in</strong>g. 1996. Status and trends <strong>of</strong> loon populationssummer<strong>in</strong>g <strong>in</strong> Alaska, 1971-1993. Condor 98: 1889-195.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mallek, E.J., R. Platte, and R. Stehn. 2005. Western AlaskaYellow-billed Loon Survey-2005. Natural ResourcesReport NPS/AKRARCN/NRTR-2006/04Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Ruggles, A.K. and N. Tankersley. 1992. Summer andw<strong>in</strong>ter distribution and population estimates for loons(Gaviidae) <strong>in</strong> Alaska, 1992. Unpublished report cited <strong>in</strong>Groves et al. 1996.Russell, R.W. 2002 Pacific Loon (Gavia pacifica) and<strong>Arctic</strong> Loon (Gavia arctica). In: The <strong>Birds</strong> <strong>of</strong> NorthAmerica No. 657 (Poole, A. and Gill, F. eds.), The <strong>Birds</strong> <strong>of</strong>North America, Inc. Philadelphia, PA.Tape, K, M. Sturm, C. Rac<strong>in</strong>e. 2006. The evidence forshrub expansion <strong>in</strong> northern Alaska and the pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.71


Yellow-billed Loon (Gavia adamsii)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: LowVulnerableThe Yellow-billed loon, the largest <strong>of</strong> the world’s five loon species, and also the rarest, has one<strong>of</strong> the highest nest<strong>in</strong>g densities <strong>in</strong> the world on the central <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska (Earnstet al. 2005). In Alaska, this species typically breeds on the edges <strong>of</strong> relatively deep (>2 m), large(usu. >12 ha) fish-bear<strong>in</strong>g lakes (http://alaska.fws.gov/). Little is known about their diet <strong>in</strong>Alaska, but they are believed to depend on several fish species, with cisco (Coregonus spp.)be<strong>in</strong>g the most important (J. Schmutz, pers. comm.). Although previously thought to w<strong>in</strong>ter <strong>of</strong>fthe coast <strong>of</strong> the Pacific Northwest, new evidence suggests the North American breed<strong>in</strong>gpopulation w<strong>in</strong>ters <strong>in</strong> East Asia from the western Kuril Islands to the Yellow Sea (J. Schmutz etal., unpublished data). Earnst et al. (2005) estimates that


Yellow-billed Loon (Gavia adamsii)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: LowVulnerableD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.wider latitud<strong>in</strong>al gradient. It is possible thatfeather density is higher on Yellow-billedLoons, to deal with the colder watertemperatures, which might cause heat stress iflake temperatures were substantially higher, butthis is speculative.Interactions with Other Species: Competitionwith Common Loons, more than habitatlimitation, might be the more important climatethreat for Yellow-billed Loons, if CommonLoons expand northward (J. Schmutz, pers.comm.).Dietary Versatility: Because Yellow-billed Loondiet may depend heavily on ciscos dur<strong>in</strong>g thebreed<strong>in</strong>g season, they may have less flexibility<strong>in</strong> their diet compared to some other loonspecies. However, details <strong>of</strong> their diet are notwell known.Genetic Variation: This species is believed tohave low genetic variability (A. McMillan,unpublished data) and so would be susceptible toclimate-mediated impacts that stress them at thepopulation level (e.g. disease outbreaks).Phenological Response: Despite the existence<strong>of</strong> long-term data sets for loons <strong>in</strong> northernAlaska (Mallek et al. 2005), an assessment <strong>of</strong>phenology-related variables has not been a part<strong>of</strong> that effort, nor has not been exam<strong>in</strong>ed, so it iscurrently unknown how this species will respondto chang<strong>in</strong>g biotic schedules.In summary, the accumulation <strong>of</strong> potentialsources <strong>of</strong> vulnerability, particularly with regardto this species dependence <strong>of</strong> fish-bear<strong>in</strong>g lakesand their limited core range, yielded a result <strong>of</strong>“moderately vulnerable” for all three climatechange projections we considered.Literature CitedEarnst, S.L., R.A. Stehn, R.M. Platte, W.M. Larned, andE.J. Mallek. 2005. Population size and trend <strong>of</strong> YellowbilledLoons <strong>in</strong> northern Alaska. Condor 107: 289-304.Grosse, G. and B. Jones. 2012. Thermokarst Lake Dra<strong>in</strong>age- <strong>Vulnerability</strong> to <strong>Climate</strong> <strong>Change</strong> and Prediction <strong>of</strong> FutureLake Habitat Distribution on the North Slope. Projectsummary prepared for the <strong>Arctic</strong> Landscape ConservationCooperative, Fairbanks, Alaska. 3p.Mallek, E.J., R. Platte, and R. Stehn. 2005. Western AlaskaYellow-billed Loon Survey-2005. Natural ResourcesReport NPS/AKRARCN/NRTR-2006/04.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.North, M.R. 1994. Yellow-billed Loon (Gavia adamsii). InThe <strong>Birds</strong> <strong>of</strong> North America, No. 121 (A. Poole. and F.Gill, Eds.). Philadelphia: The Academy <strong>of</strong> NaturalSciences; Wash<strong>in</strong>gton, DC: The American Ornithologists’Union.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.73


Rough-legged Hawk (Buteo lagopus)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Rough-legged Hawk is truly a hawk <strong>of</strong> the far north, with its breed<strong>in</strong>g range largelyrestricted to arctic tundra and taiga habitats. In open tundra, this species typically places nests onsteep outcropp<strong>in</strong>gs and cliff faces. Rough-legged Hawks rely on a diet <strong>of</strong> small mammals(mostly lemm<strong>in</strong>gs, voles) although a variety <strong>of</strong> birds are also eaten (Bechard and Swem 2002).On the coastal pla<strong>in</strong> <strong>of</strong> Alaska they typically forage <strong>in</strong> open tundra and low-brush habitats (e.g.river floodpla<strong>in</strong>s) (Bechard and Swem 2002). Rough-legged Hawks spend their w<strong>in</strong>ters <strong>in</strong>southern Canada and throughout the lower 48 (Bechard and Swem 2002). The current globalpopulation is estimated at > 4 million (Rich et al. 2004).S. Zack @ WCSwould negatively impact reproductive success orpreclude nest<strong>in</strong>g.Disturbance Regimes: In terms <strong>of</strong> disturbanceregimes mediated by climate, <strong>in</strong>creased fire(Rac<strong>in</strong>e et al. 2004) could change (improve)some forag<strong>in</strong>g habitats, <strong>in</strong>creas<strong>in</strong>g accessibilityto some taller brush or tussock tundra habitats, ifforag<strong>in</strong>g prey (microt<strong>in</strong>e numbers) <strong>in</strong>crease (B.Ritchie, pers. comm.).Range: We modified the NatureServe rangemap for the assessment to <strong>in</strong>clude the entire<strong>Arctic</strong> LCC as suggested by the <strong>Birds</strong> <strong>of</strong> NorthAmerica and other range descriptions (Bechardand Swem 2002, Johnson and Herter 1989).Physical Habitat Restrictions: Among the<strong>in</strong>direct exposure and sensitivity factors <strong>in</strong> theCCVI (see table on next page), Rough-leggedHawks ranked neutral <strong>in</strong> most categories withthe exception <strong>of</strong> “physical habitat restrictions”where they ranked “neutral” to “<strong>in</strong>creased”vulnerability as this species is dependent ontopographic relief (soil and rock bluffs, rockoutcrops) for nest sites. However, they dooccasionally nest on the ground or on human<strong>in</strong>frastructure (R. Ritchie, pers. comm.) show<strong>in</strong>gsome flexibility <strong>in</strong> nest site selection.Physiological Thermal Niche: There is someanecdotal evidence that this species may prefermore southerly aspects <strong>in</strong> the <strong>Arctic</strong> LCC,particularly s<strong>in</strong>ce they are free <strong>of</strong> snow soonerthan north-fac<strong>in</strong>g bluffs/nest<strong>in</strong>g areas (B.Ritchie, pers. comm.). However, it is unknownwhat temperature extremes (<strong>in</strong> either direction)Interactions with Other Species: Because they<strong>of</strong>ten rely on lemm<strong>in</strong>gs and voles as a foodsource, they may be affected by lemm<strong>in</strong>gpopulation cycles. <strong>Climate</strong> change could<strong>in</strong>crease the length <strong>of</strong> lemm<strong>in</strong>g populationcycles and decrease maximum populationdensities (Ims and Fuglei 2005, Gilg et al. 2009).Currently there is no evidence to suggest thatsuch climate-mediated changes <strong>in</strong> lemm<strong>in</strong>gabundance would negatively <strong>in</strong>fluence RoughleggedHawk nest survivorship, distribution,and/or abundance. This species’ more varied diet(compared to species that are much more closely74


Rough-legged Hawk (Buteo lagopus)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.tied to lemm<strong>in</strong>gs like Snowy Owl) suggest theywould, <strong>in</strong> most cases, be able to compensate forsuch changes with little negative impact.Phenological Response: There currently existslittle or no <strong>in</strong>formation regard<strong>in</strong>g thephenological constra<strong>in</strong>ts that would make thisspecies more or less vulnerable to a warm<strong>in</strong>gclimate.In summary, the results <strong>of</strong> this assessmentsuggest Rough-legged Hawks will likely be ableto adjust to climate and associated habitatchanges predicted to occur <strong>in</strong> <strong>Arctic</strong> Alaska, atleast dur<strong>in</strong>g the next 50 years.Literature CitedBechard, M.J. and T.R. Swem. 2002. Rough-legged Hawk(Buteo lagopus). In The <strong>Birds</strong> <strong>of</strong> North America, No. 641(A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> North America,Inc., Philadelphia, PA.Gilg, O., B. Sittler, I. Hanski. 2009. <strong>Climate</strong> change andcyclic predator–prey population dynamics <strong>in</strong> the high<strong>Arctic</strong>. Global <strong>Change</strong> Biology 15: 2634-2652.Ims, R.A., and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles<strong>in</strong> tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Rac<strong>in</strong>e, C., R. Jandt, C. Meyers, and J. Dennis. 2004.Tundra fire and vegetation change along a hillslope on theSeward Pen<strong>in</strong>sula, Alaska, USA. <strong>Arctic</strong>, Antarctic, andAlp<strong>in</strong>e Research 36: 1-10.Rich, T.D., C.J. Beardmore, H. Berlanga, P.J. Blancher, M.S.W. Bradstreet, G.S. Butcher, D.W. Demarest, E.H. Dunn,W.C. Hunter, E.E. Iñigo-Elias, J.A. Kennedy, A.M.Martell, A.O. Panjabi, D.N. Pashley, K.V. Rosenberg,C.M. Rustay, J.S. Wendt, and T.C. Will. 2004. Partners <strong>in</strong>Flight North American Landbird Conservation Plan.Cornell Lab <strong>of</strong> Ornithology. Ithaca, New York.http://www.partners<strong>in</strong>flight.org/cont_plan/default.htm.75


Gyrfalcon (Falco rusticolus)<strong>Vulnerability</strong>: Highly VulnerableConfidence: LowThe Gyrfalcon, the largest falcon, is an iconic bird <strong>of</strong> the circumpolar arctic and subarctic. Thisspecies nests primarily on precipitous cliff faces and typically utilizes nests built by other species(particularly Common Raven, Golden Eagle, and Rough-legged Hawk) (Booms et al. 2008).Gyrfalcon ma<strong>in</strong> prey <strong>in</strong>cludes bird species rang<strong>in</strong>g <strong>in</strong> size from passer<strong>in</strong>es to geese whileptarmigan are the preferred prey. Although not well documented, <strong>in</strong> w<strong>in</strong>ter this species movessouth throughout Canada and sometimes <strong>in</strong>to the northern lower 48. Current population on theNorth Slope (tundrius subspecies) is estimated at 250 breed<strong>in</strong>g pairs (USFWS 2000).evidenced by the fact that they do not breedbelow 55 degrees latitude. It is possible thatwarmer temperatures (particularly at nest siteson south-fac<strong>in</strong>g slopes) could <strong>in</strong>fluence nest<strong>in</strong>gsite preference.S. Zack @ WCSRange: We used the extant NatureServe rangemap for the assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America (Booms et al.2008) and other sources (Johnson and Herter1989).The results <strong>of</strong> this assessment suggest thatGyrfalcon may be quite vulnerable to climatechange due to factors mostly related to theirnarrow ecological niche that <strong>in</strong>cludes aspecialized diet and nest<strong>in</strong>g requirements (seetable on next page).Biotic Habitat Dependence: In late w<strong>in</strong>ter andearly spr<strong>in</strong>g when females are produc<strong>in</strong>g eggs,the species is completely dependent on onespecies <strong>of</strong> ptarmigan (either Willow or RockPtarmigan depend<strong>in</strong>g on the region). Someptarmigan populations, <strong>in</strong> turn, exhibit cyclicalchanges <strong>in</strong> numbers (Mossop and Hayes 1994)which could be altered due to climate change.Physical Habitat Restrictions: Gyrfalcons selectcliff wall nest sites which, for the most part, arerare microsites <strong>in</strong> the <strong>Arctic</strong> LCC. The rareness<strong>of</strong> these sites is further exacerbated by the factthat this species regularly uses stick nests madeby other bird species; as such sites may providehigher nest success or other advantages (T.Booms, pers. comm.). Gyrfalcons also have atleast some sensitivity to thermal conditions,Disturbance Regime: In terms <strong>of</strong> climatemediateddisturbances, Gyrfalcons require dry or“normal” spr<strong>in</strong>g conditions to successfully hatchyoung. An <strong>in</strong>crease <strong>in</strong> spr<strong>in</strong>g storms wouldlikely reduce nest success. In addition, thisspecies is known to be highly susceptible to awide variety <strong>of</strong> pathogens. The <strong>in</strong>troduction <strong>of</strong> anew pathogen to the current regime could havedrastic effects on survival (T. Booms, pers.comm.). Spread <strong>of</strong> shrub habitats northward(Tape et al. 2006) will likely reduce availableupland tundra and open land forag<strong>in</strong>g habitats.Phenological Response: Gyrfalcons haverelatively low genetic variation (Johnson et al.2009) mak<strong>in</strong>g them susceptible to climatemediatedimpacts that stress them at thepopulation level (e.g. disease outbreaks).A 30 year dataset from the Yukon shows76


Gyrfalcon (Falco rusticolus)<strong>Vulnerability</strong>: Highly VulnerableConfidence: LowD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.that Gyrfalcons are nest<strong>in</strong>g 20 days later andhave decl<strong>in</strong>ed by 40% <strong>in</strong> occupancy. Ptarmiganhave apparently stopped cycl<strong>in</strong>g <strong>in</strong> this studyarea, possibly caused by climate change. This islikely creat<strong>in</strong>g a phenological mismatch l<strong>in</strong>kedto the later nest<strong>in</strong>g (D. Mossop, unpublisheddata). A recent model<strong>in</strong>g effort <strong>in</strong>dicates that thefuture Gyrfalcon range <strong>in</strong> Alaska could decreasesubstantially (Booms et al. 2011).In summary, the accumulation <strong>of</strong> sources <strong>of</strong>potential vulnerability, particularly with regardto specialization <strong>in</strong> diet, nest<strong>in</strong>g patterns andnew model<strong>in</strong>g studies suggest this species ishighly vulnerable to climate changes <strong>in</strong> the<strong>Arctic</strong> LCC.Literature CitedBooms, T. L., T.J. Cade and N.J. Clum. 2008. Gyrfalcon(Falco rusticolus), The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A.Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology; Retrievedfrom the <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/114doi:10.2173/bna.114Booms, T., M. L<strong>in</strong>dgren, and F. Huettmann. 2011. L<strong>in</strong>k<strong>in</strong>gAlaska’s Predicted climate, Gyrfalcon, and ptarmigandistributions <strong>in</strong> space and time: A unique 200-yearperspective. In R.T. Watson, T.J. Cade, M. Fuller, G. Hunt,and E. Potapov (Eds.). Gyrfalcons and Ptarmigan <strong>in</strong> achang<strong>in</strong>g world. The Peregr<strong>in</strong>e Fund, Boise, Idaho, USA.http://dx.doi.org/10.4080/gpcw. 2011.0116Johnson J.A., K.K. Burnham, W.A. Burnham, and D.P.M<strong>in</strong>dell. 2007. Genetic structure among cont<strong>in</strong>ental andisland populations <strong>of</strong> gyrfalcons. Molecular Ecology 16:3145–3160.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Mossop, D. H. and R. Hayes. 1994. Long term trends <strong>in</strong> thebreed<strong>in</strong>g density and productivity <strong>of</strong> Gyrfalcon Falcorusticolus <strong>in</strong> the Yukon Territory, Canada. IV World Conf.on <strong>Birds</strong> <strong>of</strong> Prey.Tape, K., M. Sturm, and C. Rac<strong>in</strong>e. 2006. The evidence forshrub expansion <strong>in</strong> northern Alaska and the pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.U.S. Fish and Wildlife Service. 2000. Management plan forAlaskan Raptors. U.S. Fish and Wildlife Service. MigratoryBird Management, Juneau, AK., 88 pp.77


Peregr<strong>in</strong>e Falcon (Falco peregr<strong>in</strong>us)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Peregr<strong>in</strong>e Falcon is one <strong>of</strong> the most ubiquitous bird species with a breed<strong>in</strong>g distributionrang<strong>in</strong>g from tundra to the tropics. In <strong>Arctic</strong> Alaska this bird’s breed<strong>in</strong>g stronghold is found <strong>in</strong>major river systems where cliff ledges abound and serve as preferred nest<strong>in</strong>g sites. Peregr<strong>in</strong>eFalcons prey on a wide variety <strong>of</strong> bird species rang<strong>in</strong>g from small passer<strong>in</strong>es to medium-sizedducks and will also take small mammals (White et al. 2002). This species travels widely and<strong>Arctic</strong>-breed<strong>in</strong>g Peregr<strong>in</strong>e Falcons make some <strong>of</strong> the longest migrations <strong>of</strong> any bird species. TheNorth American subspecies (tundrius) w<strong>in</strong>ters <strong>in</strong> Central and South America (White et al. 2002).The global population is estimated at ~1.2 million <strong>in</strong>dividuals (BirdLife International 2012).S. Zack @ WCSRange: We used the extant NatureServe rangemap for the assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America (White et al.2002) and other sources (Johnson and Herter1989). It is important to note that breed<strong>in</strong>g ismost dense along rivers, especially through theBrooks Range foothills (B. Ritchie, Pers.comm.).Human Response to CC: Power l<strong>in</strong>es associatedwith more all-weather roads (necessitated by awarm<strong>in</strong>g climate and shortened ice road season)for energy extraction activities could result <strong>in</strong>more collision fatalities; although their hunt<strong>in</strong>gstyles and flight behaviors should reduce thepotential for this (B. Ritchie, pers. comm.).Physiological Thermal Niche: Because thisspecies has a widely distributed breed<strong>in</strong>g rangeacross a broad thermal gradient <strong>in</strong> NorthAmerica and elsewhere, negative effects <strong>of</strong>warm<strong>in</strong>g are unlikely. This species couldactually benefit from warm<strong>in</strong>g temperatures,reduc<strong>in</strong>g stress related to early season coldtemperatures.Physiological Hydro Niche: Peregr<strong>in</strong>e Falconsuse a range <strong>of</strong> wet to dry habitats as forag<strong>in</strong>ggrounds. Wetter habitats can be particularlyimportant dur<strong>in</strong>g key times <strong>of</strong> the breed<strong>in</strong>gseason and dur<strong>in</strong>g post-breed<strong>in</strong>g. A tundradry<strong>in</strong>g trend could have some negative effects,but this species would likely be able toeffectively utilize drier habitats. Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP), and its <strong>in</strong>teraction with hydrologicprocesses is very poorly understood (Mart<strong>in</strong> etal. 2009). Thus atmospheric moisture, as anexposure factor, was not heavily weighted <strong>in</strong> theassessment.Disturbance Regime: In terms <strong>of</strong> climatemediateddisturbance, <strong>in</strong>creased fire frequency(Rac<strong>in</strong>e and Jandt 2008) may both create anddestroy favorable hunt<strong>in</strong>g habitat. Similarly,thermokarst, through both ice wedgedegradation and dra<strong>in</strong><strong>in</strong>g <strong>of</strong> thaw lakes (Mart<strong>in</strong>et al. 2009) could both create and reduce nest<strong>in</strong>gsites on deep lakes and wetland forag<strong>in</strong>g sites.Physical Habitat Restrictions: AlthoughPeregr<strong>in</strong>e Falcons primarily rely on relativelylimited nest<strong>in</strong>g sites <strong>in</strong> the <strong>Arctic</strong> LCC (e.g. cliffledges, riparian cliffs, nests built by otherspecies), they also exhibit flexibility us<strong>in</strong>g dirtbluffs, erod<strong>in</strong>g banks, and recently, oil field and78


Peregr<strong>in</strong>e Falcon (Falco peregr<strong>in</strong>us)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.other human <strong>in</strong>frastructure for nest substrates (B.Ritchie, pers. comm.).Genetic Variation: Peregr<strong>in</strong>e Falcons haveaverage genetic variation (White and Boyce1988), reduc<strong>in</strong>g susceptibility to climatemediatedimpacts that stress them at thepopulation level (e.g. disease outbreaks)compared to species with lower geneticvariation.Phenological Response: Although there hasbeen some long-term monitor<strong>in</strong>g <strong>of</strong> nest<strong>in</strong>gPeregr<strong>in</strong>e Falcons <strong>in</strong> <strong>Arctic</strong> Alaska (Swem andMatz 2011), effects on phenological factors <strong>in</strong>response to chang<strong>in</strong>g climate have not beenexam<strong>in</strong>ed.In summary, despite some identifiedvulnerabilities this assessment suggests thatPeregr<strong>in</strong>e Falcons will likely be able to adjust tothe climate changes predicted to occur <strong>in</strong> <strong>Arctic</strong>Alaska <strong>in</strong> the next 50 years.Literature CitedBirdLife International 2012. Falco peregr<strong>in</strong>us. In: IUCN2012. IUCN Red List <strong>of</strong> Threatened Species. Version2012.1. .Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Rac<strong>in</strong>e, C. and R. Jandt. 2008. The 2007”AnaktuvukRiver” tundra fire on the <strong>Arctic</strong> Slope <strong>of</strong> Alaska: a newphenomenon? In D.L. Kane and K.M. H<strong>in</strong>kel (Eds.), N<strong>in</strong>thInternational Conference on Permafrost, ExtendedAbstracts (p. 247-248). Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g,University <strong>of</strong> Alaska Fairbanks.Swem, T. and A. Matz. 2011. Observations <strong>of</strong> Gyrfalconsalong the Colville River, Alaska, 1981–2005. Pages 229–236 <strong>in</strong> R. T. Watson, T. J. Cade, M. Fuller, G. Hunt, and E.Potapov (Eds.). Gyrfalcons and Ptarmigan <strong>in</strong> a Chang<strong>in</strong>gWorld, Volume I. The Peregr<strong>in</strong>e Fund, Boise, Idaho, USA.http://dx.doi.org/ 10.4080/gpcw.2011.0120White, C.M., N.J. Clum, T.J. Cade and W.G. Hunt. 2002.Peregr<strong>in</strong>e Falcon (Falco peregr<strong>in</strong>us), The <strong>Birds</strong> <strong>of</strong> NorthAmerica Onl<strong>in</strong>e (A. Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong>Ornithology; Retrieved from the <strong>Birds</strong> <strong>of</strong> North AmericaOnl<strong>in</strong>e: http://bna.birds.cornell.edu/bna/species/660doi:10.2173/bna.660.White, C.M., and D.A. Boyce. 1988. An overview <strong>of</strong>Peregr<strong>in</strong>e Falcon subspecies. In: T. Cade, J. Enderson, C.Thelander, and C. White (eds). Peregr<strong>in</strong>e FalconPopulations: their management and recovery. ThePeregr<strong>in</strong>e Fund. Boise, ID.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.79


Black-bellied Plover (Pluvialis squatarola)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Black-bellied Plover breeds regularly <strong>in</strong> <strong>Arctic</strong> Alaska with the highest numbersconcentrated <strong>in</strong> the central portion <strong>of</strong> the <strong>Arctic</strong> Coastal Pla<strong>in</strong> (Johnson et al. 2007). Ingeneral, this species tends to choose dry habitats for nest<strong>in</strong>g such as dry heath tundra, exposedridges, and river banks. They will occasionally nest <strong>in</strong> wetter tundra habitats but tend to selectdrier microsites (Paulson 1995). Black-bellied Plovers search for <strong>in</strong>vertebrate prey visually onopen tundra dur<strong>in</strong>g the breed<strong>in</strong>g season. This species w<strong>in</strong>ters along the coastl<strong>in</strong>es <strong>of</strong> NorthAmerica from southern Canada to Middle America (Paulson 1995). Current Alaskapopulation estimate (P. s. squatarola) is 50,000 with a decl<strong>in</strong><strong>in</strong>g population trend (Morrisonet al. 2006).S. Zack @ WCSRange: We modified the NatureServe rangemap by expand<strong>in</strong>g the breed<strong>in</strong>g range slightly tothe west <strong>in</strong> the <strong>Arctic</strong> Coastal Pla<strong>in</strong> based onrecent f<strong>in</strong>d<strong>in</strong>gs (Bart et al. 2012).Physiological Hydro Niche: Among the factors(see table on next page), Black-bellied Ploverranked “neutral” <strong>in</strong> many categories. Scores forphysical hydrological niche ranged from“decreased to <strong>in</strong>creased vulnerability.” Thisrange represents uncerta<strong>in</strong>ty both <strong>in</strong> the directionand <strong>in</strong>tensity <strong>of</strong> change <strong>in</strong> arctic hydrology, aswell as <strong>in</strong> the effect this will have on the plover(less or greater vulnerability). If significanttundra dry<strong>in</strong>g occurs, this species couldexperience loss <strong>of</strong> preferred wet forag<strong>in</strong>g habitat(Bart et al. 2012), although they commonlyutilize drier forag<strong>in</strong>g habitats (Paulson 1995).Because they <strong>of</strong>ten nest <strong>in</strong> drier tundra, they mayactually benefit from large-scale tundra dry<strong>in</strong>g.Current projections <strong>of</strong> annual potentialevapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Thus atmosphericmoisture, as an exposure factor (most <strong>in</strong>fluentialon the “hydrological niche” sensitivitycategory), was not heavily weighted <strong>in</strong> theassessment. Complex hydrological processescould ameliorate or exacerbate a dry<strong>in</strong>g trend(Mart<strong>in</strong> et al. 2009).Historical Hydro Niche: Conversion <strong>of</strong> iceroads to all-weather roads, could impacthydrology at local and regional scales(Jorgensen et al. 2010). These changes tohydrology can affect the shallow tundrawetlands <strong>in</strong> which Black-bellied Plovers forage,reduc<strong>in</strong>g water levels, soil moisture and<strong>in</strong>vertebrate abundance.Disturbance Regime: <strong>Climate</strong>-mediatedthermokarst, could both create and destroynest<strong>in</strong>g and forag<strong>in</strong>g habitats (Mart<strong>in</strong> et al.2009).Interactions with Other Species: <strong>Climate</strong>change may reduce the amplitude <strong>of</strong> lemm<strong>in</strong>gcycles (Post et al. 2009) and thus could exposethis species to greater nest predation pressure iflemm<strong>in</strong>gs become less available as alternativeprey.Dietary Versatility: Plovers have a flexible dietand current evidence suggests they takeadvantage <strong>of</strong> a wide variety <strong>of</strong> prey (Paulson1995) so they would likely not face any negativeimpacts from a chang<strong>in</strong>g prey base.80


Black-bellied Plover (Pluvialis squatarola)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response: The tim<strong>in</strong>g <strong>of</strong> breed<strong>in</strong>g<strong>in</strong> this species is closely tied to snow melt atsome sites (Smith et al. 2010) and so they mayor may not be vulnerable to climate changes thatalter snow melt patterns.In summary, Black-bellied Plovers haveenough versatility <strong>in</strong> their life history traits andbehaviors on the breed<strong>in</strong>g grounds that willlikely enable them to cope and their populationsto rema<strong>in</strong> “stable” with regard to climate changeat least dur<strong>in</strong>g the timeframe <strong>of</strong> this assessment(to 2050).Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Jorgensen, J.C., J.M. VerHoef, and M.T. Jorgensen. 2010.Long-term recovery patterns <strong>of</strong> arctic tundra after w<strong>in</strong>terseismic exploration. Ecological Applications 20:205-221.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Morrison, R.I.G., McCaffery, B.J., Gill, R.E., Skagen, S.K.,Jones, S.L., Page, G.W., Gratto-Trevor, C.L., and Andres,B.A. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Paulson, D.R. 1995. Black-bellied Plover (Pluvialissquatarola). In The <strong>Birds</strong> <strong>of</strong> North America, No. 186 (A.Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> North America, Inc.Philadelphia, PA.Post E, M.C. Forchhammer, M.S. Bret-Harte, T.V.Callaghan, T.R. Christensen, B. Elberl<strong>in</strong>g, A.D. Fox, O.Gilg, D.S. Hik, T.T. Høye, R.A. Ims, E. Jeppesen, D.R.Kle<strong>in</strong>, J. Madsen, A.D. McGuire, S. Rysgaard, D.E.Sch<strong>in</strong>dler, I. Stirl<strong>in</strong>g, M.P. Tamstorf, N.J.C. Tyler, R. vander Wal, J. Welker, P.A. Wookey, N.M. Schmidt, and P.Aastrup. 2009. Ecological dynamics across the <strong>Arctic</strong>associated with recent climate change. Science 325:1355-1358.Smith, P.A., H.G. Gilchrist, M.R. Forbes, J.-L. Mart<strong>in</strong>, andK. Allard. 2010. Inter-annual variation <strong>in</strong> the breed<strong>in</strong>gchronology <strong>of</strong> <strong>Arctic</strong> shorebirds: effects <strong>of</strong> weather, snowmelt and predators. Journal <strong>of</strong> Avian Biology 41:292-304.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.81


American Golden-plover (Pluvialis dom<strong>in</strong>ica)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe American Golden-plover is a conspicuous breed<strong>in</strong>g bird <strong>in</strong> <strong>Arctic</strong> Alaska with slightlyhigher density <strong>in</strong> the Brooks Range foothills compared to the coastal pla<strong>in</strong> (Johnson et al. 2007).In general, this species tends to nest <strong>in</strong> upland dry habitats, quite <strong>of</strong>ten near wetland areas(Johnson and Connors 1996). Like other plovers, American Golden-plovers search for<strong>in</strong>vertebrate prey visually and forage <strong>in</strong> a mix <strong>of</strong> wet to dry tundra dur<strong>in</strong>g the breed<strong>in</strong>g season.This species w<strong>in</strong>ters primarily <strong>in</strong> the southern portion <strong>of</strong> South America (Johnson and Connors1996). Current North American population estimate is 200,000 with a decl<strong>in</strong><strong>in</strong>g trend (Morrisonet al. 2006).Disturbance Regime: Disturbance processes,such as climate-mediated thermokarst could bothcreate and destroy nest<strong>in</strong>g and forag<strong>in</strong>g habitats.Fire frequency <strong>in</strong> the foothills is likely to<strong>in</strong>crease (Rac<strong>in</strong>e and Jandt 2008), reduc<strong>in</strong>g soilmoisture and potentially dim<strong>in</strong>ish<strong>in</strong>g availability<strong>of</strong> <strong>in</strong>vertebrate prey. Fires could also reducenest<strong>in</strong>g site availability (Mart<strong>in</strong> et al. 2009). Inthe foreseeable future, fire will likely only affecta small portion <strong>of</strong> the landscape and thus notS. Zack @ WCSsignificantly impact plover habitat.Range: We used the extant NatureServe rangemap for the assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America (Johnson andConnors 1996) and other range descriptions(Johnson and Herter 1989, Johnson et al. 2007).Physiological Thermal Niche: Among the<strong>in</strong>direct exposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), AmericanGolden-plover ranked “neutral”, <strong>in</strong> manycategories. In the physiological hydrologic nichecategory there was broad range <strong>of</strong> scores fromneutral to <strong>in</strong>creased vulnerability. This rangerepresents uncerta<strong>in</strong>ty both <strong>in</strong> the direction and<strong>in</strong>tensity <strong>of</strong> change <strong>in</strong> <strong>Arctic</strong> hydrology, as wellas <strong>in</strong> the effect this will have on the plover. Ifsignificant tundra dry<strong>in</strong>g occurs, this speciescould experience loss <strong>of</strong> wet forag<strong>in</strong>g habitat,although they commonly utilize a mix <strong>of</strong> bothdry and wet forag<strong>in</strong>g habitats (Johnson andConnors 1996). Because they typically nest <strong>in</strong>drier tundra, they may actually benefit fromlarge-scale tundra dry<strong>in</strong>g. Current projections <strong>of</strong>annual potential evavapotranspiration suggestnegligible atmospheric-driven dry<strong>in</strong>g for theforeseeable future (TWS and SNAP). Thusatmospheric moisture, as an exposure factor wasnot heavily weighted <strong>in</strong> the assessment.Interactions with Other Species: <strong>Climate</strong>changes may reduce the amplitude <strong>of</strong> lemm<strong>in</strong>gcycles mak<strong>in</strong>g them less available as alternativeprey (Ims and Fuglei 2005) and thus couldexpose this species to greater nest predation.Dietary versatility: Plovers have a flexible dietand current evidence suggests they takeadvantage <strong>of</strong> a wide variety <strong>of</strong> prey (Johnsonand Connors 1996) so they would likely not faceany negative impacts from a chang<strong>in</strong>g prey base.Phenological Response: Although notdemonstrated <strong>in</strong> American Golden-plovers, thereis evidence suggest<strong>in</strong>g shorebirds are able to82


American Golden-plover (Pluvialis dom<strong>in</strong>ica)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.shift their nest <strong>in</strong>itiation dates <strong>in</strong> response toclimate warm<strong>in</strong>g (J. Liebezeit and S. Zack,unpublished comm.). However, it is unknown ifthey can synchronize tim<strong>in</strong>g to match potentiallychang<strong>in</strong>g schedules <strong>of</strong> <strong>in</strong>vertebrate prey.Genetic Variation: Shorebird species arebelieved to have low genetic variation (Bakerand Stauch 1988) and thus potentially would bemore vulnerable to certa<strong>in</strong> climate-mediatedevents <strong>in</strong> the near future (e.g. disease outbreaks).In summary, American Golden-plovers haveenough versatility <strong>in</strong> their life history traits andbehaviors on the breed<strong>in</strong>g grounds that willlikely enable them to cope and rema<strong>in</strong> “stable”with regard to climate change at least dur<strong>in</strong>g thetimeframe <strong>of</strong> this assessment (to 2050).Literature CitedBaker, A.J. and Strauch, J.G. 1988. Genetic variation anddifferentiation <strong>in</strong> shorebirds. – Acta XX CongressusInternationalis Ornithologicus 2: 1639–1645.Ims, R.A., and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles<strong>in</strong> tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, O.W and P.G. Connors. 1996. American Goldenplover(Pluvialis dom<strong>in</strong>ica). In The <strong>Birds</strong> <strong>of</strong> NorthAmerica, No. 201 (A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong>North America, Inc. Philadelphia, PA.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Rac<strong>in</strong>e, C. and R. Jandt. 2008. The 2007”AnaktuvukRiver” tundra fire on the <strong>Arctic</strong> Slope <strong>of</strong> Alaska: a newphenomenon? In D.L. Kane and K.M. H<strong>in</strong>kel (Eds.), N<strong>in</strong>thInternational Conference on Permafrost, ExtendedAbstracts (p. 247-248). Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g,University <strong>of</strong> Alaska Fairbanks.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.83


Whimbrel (Numenius phaeopus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Whimbrel is one <strong>of</strong> the larger breed<strong>in</strong>g shorebirds <strong>in</strong> <strong>Arctic</strong> Alaska, occurr<strong>in</strong>g <strong>in</strong> both taigaand tundra habitats. In <strong>Arctic</strong> Alaska, this species nests <strong>in</strong> a variety <strong>of</strong> tundra habitats rang<strong>in</strong>gfrom lowland wet polygonal to well-dra<strong>in</strong>ed moist upland tundra, sometimes with significantshrub cover (Skeel and Mallory 1996). Dur<strong>in</strong>g the breed<strong>in</strong>g season, Whimbrel will visuallysearch for prey <strong>in</strong> wet to dry tundra habitats. This species w<strong>in</strong>ters along North Americancoastl<strong>in</strong>es, ma<strong>in</strong>ly from the southern U.S. to South America (Skeel and Mallory 1996). CurrentNorth American population estimate is 66,000 (Morrison et al. 2006).Biotic Habitat Dependence: The uncerta<strong>in</strong>tyalso reflects this species’ relatively flexiblenest<strong>in</strong>g and forag<strong>in</strong>g behavior. Although theytend to occupy more well-dra<strong>in</strong>ed sites <strong>in</strong>general, they do commonly utilize a mix <strong>of</strong> bothdry and wet forag<strong>in</strong>g habitats and will nest <strong>in</strong>wet tundra as well (although tend to select driermicrosites; Skeel and Mallory 1996).S. Zack @ WCSRange: We used the extant NatureServe rangemap for this assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America (Skeel andMallory 1996). However, it should be notedrecent studies from Alaskan <strong>Arctic</strong> have<strong>in</strong>dicated Whimbrel distribution is centered <strong>in</strong>the Brooks Range foothills and that they arelargely absent <strong>in</strong> wet sedge dom<strong>in</strong>ated habitatcloser to the <strong>Arctic</strong> Ocean coastl<strong>in</strong>e (Johnson etal. 2007, Bart et al. 2012).Physiological Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), Whimbrelscored “neutral” <strong>in</strong> many categories. In thephysiological hydrologic niche category therewas broad range <strong>of</strong> scores from slightlydecreased to <strong>in</strong>creased vulnerability. This rangerepresents uncerta<strong>in</strong>ty both <strong>in</strong> the direction and<strong>in</strong>tensity <strong>of</strong> change <strong>in</strong> <strong>Arctic</strong> hydrology, as wellas <strong>in</strong> the effect this will have on the Whimbrel(less or greater vulnerability). Currentprojections <strong>of</strong> annual potentialevapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Thus atmosphericmoisture, as an exposure factor (most <strong>in</strong>fluentialon the “hydrological niche” sensitivitycategory), was not heavily weighted <strong>in</strong> theassessment. Also, complex hydrologicalprocesses could ameliorate or exacerbate thedry<strong>in</strong>g trend (Mart<strong>in</strong> et al. 2009).Disturbance Regime: <strong>Climate</strong>-mediateddisturbance processes, such as thermokarst,could both create and destroy nest<strong>in</strong>g andforag<strong>in</strong>g habitats. Fire frequency is likely to<strong>in</strong>crease (Rac<strong>in</strong>e et al. 2004), potentiallydim<strong>in</strong>ish<strong>in</strong>g availability <strong>of</strong> <strong>in</strong>vertebrate prey.Fires could also reduce nest site availability. Inthe foreseeable future, fire will likely only affecta small portion <strong>of</strong> the landscape and thus notsignificantly impact Whimbrel habitat.Interactions with Other Species:<strong>Climate</strong> changes may reduce the amplitude <strong>of</strong>lemm<strong>in</strong>g cycles mak<strong>in</strong>g them less available asalternative prey (Ims and Fuglei 2005) and thuscould expose this species to greater nestpredation.Dietary Versatility: This species has a flexiblediet and current evidence suggests they takeadvantage <strong>of</strong> a wide variety <strong>of</strong> prey (Skeel and84


Whimbrel (Numenius phaeopus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Mallory 1996) so they would likely not face anynegative impacts from a chang<strong>in</strong>g prey base.Phenological Response: Although notdemonstrated <strong>in</strong> Whimbrel, there is evidencesuggest<strong>in</strong>g some shorebirds are able to trackphenological changes associated with a warm<strong>in</strong>gclimate at least <strong>in</strong> terms <strong>of</strong> nest <strong>in</strong>itiation (J.Liebezeit and S. Zack unpublished data; D.Ward, pers. comm.). However, it is unknown ifthey can synchronize tim<strong>in</strong>g to other organismschang<strong>in</strong>g schedules that they depend on (e.g.<strong>in</strong>vertebrate prey).In summary, Whimbrel appear to haveenough versatility <strong>in</strong> their life history traits andbehaviors on the breed<strong>in</strong>g grounds that willlikely enable them to cope and rema<strong>in</strong> “stable”with regard to climate change at least dur<strong>in</strong>g thetimeframe <strong>of</strong> this assessment (to 2050).Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A., and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles<strong>in</strong> tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Skeel, M.A. and E.P. Mallory. 1996. Whimbrel (Numeniusphaeopus), The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A. Poole,Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology; Retrieved fromthe <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/219doi:10.2173/bna.219.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Rac<strong>in</strong>e, C., R. Jandt, C. Meyers, and J. Dennis. 2004.Tundra fire and vegetation change along a hillslope on theSeward Pen<strong>in</strong>sula, Alaska, USA. <strong>Arctic</strong>, Antarctic, andAlp<strong>in</strong>e Research 36: 1-10.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.85


Bar-tailed Godwit (Limosa lapponica)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Bar-tailed Godwit completes one <strong>of</strong> the most <strong>in</strong>credible journeys <strong>of</strong> any bird species,travel<strong>in</strong>g non-stop across the Pacific Ocean from Alaska to Australia and New Zealand dur<strong>in</strong>g itsfall migration. In <strong>Arctic</strong> Alaska, this species is found most commonly west <strong>of</strong> the Colville Riverand is particularly frequent <strong>in</strong> the Brooks Range foothills (Johnson et al. 2007). On the NorthSlope, Bar-tailed Godwits nest <strong>in</strong> moist tussock tundra near wetlands to wet sedge meadows(McCaffery and Gill 2001). They typically forage <strong>in</strong> shallow, flooded areas on <strong>in</strong>sects but willeat berries upon arrival to breed<strong>in</strong>g grounds (McCaffery and Gill 2001). Current populationestimate for North American breeders (baueri subspecies) is 90,000 with a decl<strong>in</strong><strong>in</strong>g trend(Morrison et al. 2006).C. RuttRange: We used the extant NatureServe rangemap for the assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America (McCafferyand Gill 2001) and other sources (Bart et al.2012, Johnson et al. 2007).Physiological Hydrologic Niche: Conversion <strong>of</strong>ice roads to all-weather roads, a possibleconsequence <strong>of</strong> reduced suitability <strong>of</strong> w<strong>in</strong>tersnow and ice conditions, could impacthydrology at local and regional scales. Shallowtundra wetlands can be adversely affected byroad construction and potentially impactavailability <strong>of</strong> <strong>in</strong>vertebrate prey. The extent <strong>of</strong>such activities will likely be localized.Physiological Thermal Niche: Compared toother arctic shorebirds, Bar-tailed Godwits breedover a relatively wide latitud<strong>in</strong>al gradient bothnear and far from mar<strong>in</strong>e shorel<strong>in</strong>es, thus there isno evidence to suggest that they have anythermal sensitivity dur<strong>in</strong>g nest<strong>in</strong>g. They couldactually benefit from warmer temperatures at thenorthern term<strong>in</strong>us <strong>of</strong> their breed<strong>in</strong>g range viareduction <strong>in</strong> cold stress.Physical Habitat Restrictions: Although BartailedGodwits do exploit a range <strong>of</strong> upland towet tundra habitats for nest<strong>in</strong>g, they depend onwater-dom<strong>in</strong>ated habitats for forag<strong>in</strong>g dur<strong>in</strong>gboth breed<strong>in</strong>g and post-breed<strong>in</strong>g and so may benegatively impacted by a net dry<strong>in</strong>g trend.Because <strong>of</strong> their flexible habitat use they may beable to better adjust to utiliz<strong>in</strong>g drier habitatscompared to other shorebird species. Currentprojections <strong>of</strong> annual potentialevapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Thus atmosphericmoisture, as an exposure factor was not heavilyweighted <strong>in</strong> the assessment.Disturbance Regime: Disturbance processes,specifically thermokarst-mediated changes onthe landscape, could both destroy and create newnest<strong>in</strong>g and forag<strong>in</strong>g habitat (Mart<strong>in</strong> et al. 2009).More frequent tundra fires (Rac<strong>in</strong>e and Jandt2008) could reduce nest<strong>in</strong>g and forag<strong>in</strong>g habitatalthough tundra fires will likely be a localizedphenomena <strong>in</strong> the near future.Interactions with Other Species:<strong>Climate</strong> change may reduce the amplitude <strong>of</strong>lemm<strong>in</strong>g cycles (Ims and Fuglei 2005) and thuscould expose this species to greater nestpredation pressure if lemm<strong>in</strong>gs become lessavailable as alternative prey.86


Bar-tailed Godwit (Limosa lapponica)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response: There is evidencesuggest<strong>in</strong>g some shorebirds are able to trackphenological changes associated with a warm<strong>in</strong>gclimate at least <strong>in</strong> terms <strong>of</strong> nest <strong>in</strong>itiation (J.Liebezeit and S. Zack, unpublished data; D.Ward, pers. comm.). However, currently there isno exam<strong>in</strong>ation <strong>of</strong> this with Bar-tailed Godwits.In summary, Bar-tailed Godwits appear tohave enough versatility <strong>in</strong> their life historyattributes to enable them to compensate forchanges and rema<strong>in</strong> “stable” with regard toclimate change at least dur<strong>in</strong>g the timeframe <strong>of</strong>this assessment (next 50 years).Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A., and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles<strong>in</strong> tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.McCaffery, B. and R. Gill. 2001. Bar-tailed Godwit(Limosa lapponica). In The <strong>Birds</strong> <strong>of</strong> North America, No.581 (A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> NorthAmerica, Inc. Philadelphia, PA.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Rac<strong>in</strong>e, C. and R. Jandt. 2008. The 2007”AnaktuvukRiver” tundra fire on the <strong>Arctic</strong> Slope <strong>of</strong> Alaska: a newphenomenon? In D.L. Kane and K.M. H<strong>in</strong>kel (Eds.), N<strong>in</strong>thInternational Conference on Permafrost, ExtendedAbstracts (p. 247-248). Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g,University <strong>of</strong> Alaska Fairbanks.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.87


Ruddy Turnstone (Arenaria <strong>in</strong>terpres)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: LowThe Ruddy Turnstone, named after its habit <strong>of</strong> turn<strong>in</strong>g over stones and other objects <strong>in</strong> search <strong>of</strong>prey, occurs throughout the circumpolar arctic. In Alaska, this species typically nests <strong>in</strong> barrenhalophytic, sparsely vegetated sites (Bart et al. 2012, Nettleship 2000), usually near the coast oralong rivers, and rarely <strong>in</strong>land (Johnson et al. 2007). Dur<strong>in</strong>g the breed<strong>in</strong>g season, RuddyTurnstones feed primarily on dipteran <strong>in</strong>sects obta<strong>in</strong>ed <strong>in</strong> dry to wet habitats near ponds andstreams and <strong>of</strong>ten along pond marg<strong>in</strong>s (Nettleship 2000). This species w<strong>in</strong>ters along both coasts<strong>of</strong> North America <strong>in</strong> the west from northern California down <strong>in</strong>to South America (Nettleship2000). Current population estimate for Alaska is 20,000 (Morrison et al. 2006) and for the NorthSlope is likely


Ruddy Turnstone (Arenaria <strong>in</strong>terpres)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: LowD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.particularly susceptible to flood<strong>in</strong>g events whichwill likely <strong>in</strong>crease as storm frequency andseverity <strong>in</strong> the arctic <strong>in</strong>creases (Jones et al.2009). Other climate-mediated disturbanceprocesses, such as thermokarst, could bothcreate and destroy nest<strong>in</strong>g and forag<strong>in</strong>g habitats.Interactions with Other Species: <strong>Climate</strong>change may reduce the amplitude <strong>of</strong> lemm<strong>in</strong>gcycles (Ims and Fuglei 2005) and thus couldexpose this species to greater nest predationpressure if lemm<strong>in</strong>gs become less available asalternative prey.Phenological Response: Although notdemonstrated <strong>in</strong> turnstones, there is evidencesuggest<strong>in</strong>g some shorebirds are able to trackphenological changes associated with a warm<strong>in</strong>gclimate at least <strong>in</strong> terms <strong>of</strong> nest <strong>in</strong>itiation (J.Liebezeit and S. Zack, unpublished data; D.Ward, pers. comm.). However, it is unknown ifthey can adjust tim<strong>in</strong>g to the chang<strong>in</strong>g schedules<strong>of</strong> the other organisms on which they depend(e.g. <strong>in</strong>vertebrate prey).In summary, this species’ dependence oncoastal and river<strong>in</strong>e habitats comb<strong>in</strong>ed withother sources <strong>of</strong> vulnerability yielded a rank<strong>in</strong>g<strong>of</strong> “moderately vulnerable” <strong>in</strong> this assessment.Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska.Geophysical Research Letters 36, L03503.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Nettleship, D.N. 2000. Ruddy Turnstone (Arenaria<strong>in</strong>terpres). In The <strong>Birds</strong> <strong>of</strong> North America, No. 537 (A.Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> North America, Inc.Philadelphia, PA.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.89


Red Knot (Calidris canutus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Red Knot, roselaari subspecies, is a relatively uncommon breed<strong>in</strong>g shorebird <strong>in</strong> <strong>Arctic</strong>Alaska. They typically nest <strong>in</strong> coastal alp<strong>in</strong>e habitats, preferr<strong>in</strong>g sparsely vegetated and broadalp<strong>in</strong>e ridgel<strong>in</strong>es and dome tops (Harr<strong>in</strong>gton 2001, J. Johnson, pers. comm.). There is little<strong>in</strong>formation on breed<strong>in</strong>g season diet <strong>in</strong> this species however; field observations suggest a varieddiet from <strong>in</strong>sects to plant materials (e.g., lichens, leaves, berries) (Harr<strong>in</strong>gton 2001). Dur<strong>in</strong>g May,knots occur <strong>in</strong> coastal lagoons adjacent to suitable nest<strong>in</strong>g habitats. These lagoons apparentlyserve as forag<strong>in</strong>g and rest<strong>in</strong>g sites preced<strong>in</strong>g dispersal to nest<strong>in</strong>g areas (J. Johnson, pers. comm.).This subspecies w<strong>in</strong>ters at sites along the Pacific Coast from California down <strong>in</strong>to CentralAmerica. Current population estimate for roselaari is 20,000 (Morrison et al. 2006) althoughnewer estimates place it at approximately 17,000 (J. Lyons, unpublished data).N. HadjdukovichRange: We modified the NatureServe breed<strong>in</strong>grange map based on new evidence and expertop<strong>in</strong>ion (J. Johnson, unpublished data). Weremoved the Barrow breed<strong>in</strong>g area as there is norecent evidence <strong>of</strong> breed<strong>in</strong>g there. Weconstra<strong>in</strong>ed the western portion <strong>of</strong> their breed<strong>in</strong>grange to with<strong>in</strong> 50km <strong>of</strong> the coast based on theirassociation with coastal alp<strong>in</strong>e habitats andrecent surveys (J. Johnson, unpublished data).F<strong>in</strong>ally, we <strong>in</strong>cluded breed<strong>in</strong>g range <strong>in</strong> thenortheastern Brooks Range with<strong>in</strong> the <strong>Arctic</strong>Refuge as there is strong suspicion <strong>of</strong> nest<strong>in</strong>gthere (J. Johnson, pers. comm.).Physiologic Thermo Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), Red Knotsranked neutral <strong>in</strong> most categories. This species isassociated with cold-adapted alp<strong>in</strong>e habitats andso it may be sensitive to changes <strong>in</strong> thermalconditions (i.e. warm<strong>in</strong>g) that are likely to occur<strong>in</strong> this region (http://www.snap.uaf.edu/).Physical Habitat Restrictions: Although RedKnots nest <strong>in</strong> relatively arid habitats some<strong>in</strong>dividuals (>50%) that nest near the coastforage <strong>in</strong> coastal habitats throughout thebreed<strong>in</strong>g season. Also, just prior to breed<strong>in</strong>gthey depend on coastal lagoons for forag<strong>in</strong>g andrest<strong>in</strong>g which may provide a temporal buffer forknots that arrive when <strong>in</strong>land sites are stillcovered by snow (J. Johnson, pers. comm.). Likeother shorebirds, Red Knots utilize coastalhabitats post-breed<strong>in</strong>g as well (J. Johnson,unpublished data, Taylor et al. 2010). Loss oralteration <strong>of</strong> coastal lagoons as a result <strong>of</strong>climate-mediated erosion and overwash from<strong>in</strong>creased storm frequency (Jones et al. 2009)would likely have an adverse effect on knots.Dietary Versatility: Red Knots have anomnivorous diet and current evidence suggeststhey can take advantage <strong>of</strong> a wide variety <strong>of</strong>prey and so would likely not be impacted bychanges <strong>in</strong> prey base associated with climatechange.90


Red Knot (Calidris canutus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Interactions with Other Species: <strong>Climate</strong>change may reduce the amplitude <strong>of</strong> lemm<strong>in</strong>gcycles (Ims and Fuglei 2005) and thus couldexpose this species to greater nest predationpressure if lemm<strong>in</strong>gs become less available asalternative prey. In addition, this species willcommunally feed and flock with othershorebirds dur<strong>in</strong>g breed<strong>in</strong>g and migration andwill jo<strong>in</strong> other shorebird species <strong>in</strong> mobb<strong>in</strong>gpotential predators dur<strong>in</strong>g the nest<strong>in</strong>g season(Harr<strong>in</strong>gton 2001) but it is unknown if thesebehaviors <strong>in</strong>crease species persistence.Phenological Response: Although notdemonstrated <strong>in</strong> Red Knots, there is evidencesuggest<strong>in</strong>g shorebirds are able to trackphenological changes associated with a warm<strong>in</strong>gclimate at least <strong>in</strong> terms <strong>of</strong> nest <strong>in</strong>itiation (J.Liebezeit and S. Zack, unpublished data; D.Ward, pers. comm.). However, it is unknown ifthey can synchronize tim<strong>in</strong>g to other organismschang<strong>in</strong>g schedules that they depend on (e.g.<strong>in</strong>vertebrate prey).In summary, Red Knots will likelyexperience some negative impacts from climatechange however these will be slight and, overall,they have enough versatility <strong>in</strong> their life historytraits and behaviors and rema<strong>in</strong> “stable” withregard to climate change at least dur<strong>in</strong>g thetimeframe <strong>of</strong> this assessment (to 2050).Literature CitedHarr<strong>in</strong>gton, Brian A. 2001. Red Knot (Calidris canutus),The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A. Poole, Ed.). Ithaca:Cornell Lab <strong>of</strong> Ornithology; Retrieved from the <strong>Birds</strong> <strong>of</strong>North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/563.doi:10.2173/bna.563Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska.Geophysical Research Letters 36, L03503.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Taylor, A.R., R.B. Lanctot, A.N. Powell, F. Huettmann, D.Nigro and S.J. Kendall. 2010. Distribution and CommunityCharacteristics <strong>of</strong> Stag<strong>in</strong>g Shorebirds on the NorthernCoast <strong>of</strong> Alaska. <strong>Arctic</strong> 63(4): 451-467.91


Semipalmated Sandpiper (Calidris pusilla)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Semipalmated Sandpiper is likely the most abundant breed<strong>in</strong>g shorebird on the <strong>Arctic</strong>Coastal Pla<strong>in</strong> <strong>of</strong> Alaska, with the highest densities occurr<strong>in</strong>g <strong>in</strong> the western portion <strong>of</strong> the coastalpla<strong>in</strong> (Johnson et al. 2007). In <strong>Arctic</strong> Alaska, this species nests <strong>in</strong> a range <strong>of</strong> upland dry to moistand wet tundra habitats near water and typically focus their forag<strong>in</strong>g along marsh and pond edges(Gratto-Trevor 1992). The current North American population estimate is 2 million (Morrison etal. 2006). While the Alaska breed<strong>in</strong>g population appears to be stable, there is evidence thateastern Semipalmated Sandpiper populations are decl<strong>in</strong><strong>in</strong>g (Andres et al. 2012).S. Zack @ WCSRange: We used the extant NatureServe rangemap for the assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America (Gratto-Trevor 1992) and other sources (Johnson et al.2007, Bart et al. 2012).Physical Habitat Restrictions: Among the<strong>in</strong>direct exposure and sensitivity factors (seetable on next page), Semipalmated Sandpipersscored “neutral”, <strong>in</strong> many categories. Althoughthis species breeds primarily on the coastal pla<strong>in</strong><strong>in</strong> the <strong>Arctic</strong> LCC assessment area, they dooccur well <strong>in</strong>land and so sea level rise impactswill likely be m<strong>in</strong>imal and their ability to shiftrange (e.g. <strong>in</strong> response to habitat changes) willnot be significantly compromised.Physiological Hydro Niche: Although thisspecies relies on water-dom<strong>in</strong>ated habitats forforag<strong>in</strong>g, they <strong>of</strong>ten utilize moist to dry tundrafor nest<strong>in</strong>g. For this reason, the physiologicalhydrologic niche category was scored only as“slightly <strong>in</strong>creased” vulnerability. Significanttundra dry<strong>in</strong>g could certa<strong>in</strong>ly have an impact ontheir forag<strong>in</strong>g habitats. However, currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus atmospheric moisture, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.Disturbance Regime: <strong>Climate</strong>-mediateddisturbance processes, namely thermokarst,could both create and destroy good forag<strong>in</strong>g andnest<strong>in</strong>g habitats through both ice wedgedegradation and dra<strong>in</strong><strong>in</strong>g <strong>of</strong> thaw lakes.Likewise, <strong>in</strong>creased coastal erosion and result<strong>in</strong>gsal<strong>in</strong>ization (Jones et al. 2009) could bothnegatively and positively affect post-breed<strong>in</strong>gstag<strong>in</strong>g birds by destroy<strong>in</strong>g and creat<strong>in</strong>gforag<strong>in</strong>g habitat.Dietary Versatility: Semipalmated Sandpipershave a flexible diet and evidence suggests theytake advantage <strong>of</strong> a wide variety <strong>of</strong> <strong>in</strong>vertebrateprey (Gratto-Trevor 1992) so they would likelynot face negative impacts from a chang<strong>in</strong>g preybase.Interactions with Other Species: In terms <strong>of</strong>dependence on <strong>in</strong>terspecific <strong>in</strong>teractions, thisspecies will communally feed and flock withother shorebirds dur<strong>in</strong>g post- breed<strong>in</strong>g stag<strong>in</strong>g(Taylor et al. 2010), but it is unknown if thesebehaviors <strong>in</strong>crease species persistence.<strong>Climate</strong> change may reduce the amplitude <strong>of</strong>lemm<strong>in</strong>g cycles (Ims and Fuglei 2005) and thuscould expose this species to greater nestpredation pressure if lemm<strong>in</strong>gs become lessavailable as alternative prey.92


Semipalmated Sandpiper (Calidris pusilla)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Genetic Variation: Little is known aboutSemipalmated Sandpiper genetics although, <strong>in</strong>general, many shorebird species are believed tohave low genetic variation (Baker and Stauch1988) and thus potentially would be morevulnerable to certa<strong>in</strong> climate-mediated events <strong>in</strong>the near future (e.g. disease outbreaks).However, at this time, there is no support forlow genetic variation for this species.Phenological Response: There is evidencesuggest<strong>in</strong>g that this species is able to trackphenological changes associated with a warm<strong>in</strong>gclimate at least with respect to nest <strong>in</strong>itiation (J.Liebezeit and S. Zack unpublished data, D.Ward, pers. comm.). However, it is unknown ifthey can synchronize tim<strong>in</strong>g with otherorganisms they depend on (e.g. <strong>in</strong>vertebrateprey).In summary, despite some potential sources<strong>of</strong> vulnerability, Semipalmated Sandpipers willlikely be able to compensate for most andrema<strong>in</strong> “stable” with regard to climate change atleast dur<strong>in</strong>g the timeframe considered by thisassessment.Literature CitedAndres, B.A., C. Gratto-Trevor, P. Hickl<strong>in</strong>, D. Mizrahi,R.I.G. Morrison, and P.A. Smith. 2012. Status <strong>of</strong> theSemipalmated Sandpiper. Waterbirds 35: 146-148.Baker, A.J. and J.G.Strauch. 1988. Genetic variation anddifferentiation <strong>in</strong> shorebirds. – Acta XX CongressusInternationalis Ornithologicus 2: 1639–1645.Bart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska.Geophysical Research Letters 36, L03503.Gratto-Trevor, C.L. 1992. Semipalmated Sandpiper(Calidris pusilla). In The <strong>Birds</strong> <strong>of</strong> North America, No. 6(A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> North America,Inc. Philadelphia, PA.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Taylor, A.R., R.B. Lanctot, A.N. Powell, F. Huettmann, D.Nigro and S.J. Kendall. 2010. Distribution and CommunityCharacteristics <strong>of</strong> Stag<strong>in</strong>g Shorebirds on the NorthernCoast <strong>of</strong> Alaska. <strong>Arctic</strong> 63(4): 451-467.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.93


Western Sandpiper (Calidris mauri)<strong>Vulnerability</strong>: Presumed StableConfidence: LowThe Western Sandpiper is one <strong>of</strong> the most abundant sandpipers <strong>in</strong> the western hemisphere. InAlaska, the core <strong>of</strong> its breed<strong>in</strong>g population is <strong>in</strong> the Yukon-Kuskokwim River Delta. It alsobreeds less commonly <strong>in</strong> the western portion <strong>of</strong> the North Slope (Johnson et al. 2007). Thisspecies nests <strong>in</strong> well-dra<strong>in</strong>ed moist to upland tundra habitats dom<strong>in</strong>ated by dwarf shrubs andtussock grasses (Wilson 1994). Dur<strong>in</strong>g the breed<strong>in</strong>g season Western Sandpipers typically forageon aquatic <strong>in</strong>sects <strong>in</strong> wet tundra habitats and along pond edges near nest<strong>in</strong>g areas, butoccasionally forage on terrestrial arthropods as well (Wilson 1994). This species w<strong>in</strong>ters alongthe west coast <strong>of</strong> North America from California to Peru (Wilson 1994). Current populationestimate for North America is 3.5 million with a decl<strong>in</strong><strong>in</strong>g trend (Morrison et al. 2006).S. MaslowskiRange: We modified the NatureServe range mapto more closely match the <strong>Birds</strong> <strong>of</strong> NorthAmerica map and evidence from recent studiesthat suggest greater usage <strong>of</strong> <strong>in</strong>land sites <strong>in</strong> thewestern portion <strong>of</strong> the coastal pla<strong>in</strong> (Bart et al.2012, Johnson et al. 2007).Physiological Hydro Niche: Because WesternSandpipers use wet tundra habitats to somedegree, primarily for forag<strong>in</strong>g dur<strong>in</strong>g both thebreed<strong>in</strong>g season and dur<strong>in</strong>g post-breed<strong>in</strong>gstag<strong>in</strong>g they were scored as “neutral-to<strong>in</strong>creased”vulnerability <strong>in</strong> the “physiologicalhydrologic niche” category (see table). Dry<strong>in</strong>g<strong>of</strong> wet tundra habitats could reduce <strong>in</strong>vertebrateavailability. Current projections <strong>of</strong> annualpotential evapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Thus atmosphericmoisture, as an exposure factor (most <strong>in</strong>fluentialfor “hydrological niche” sensitivity category),was not heavily weighted <strong>in</strong> the assessment.Human Response to CC: Shorel<strong>in</strong>e armor<strong>in</strong>grelated to climate change mitigation couldreduce the availability <strong>of</strong> stag<strong>in</strong>g habitats thisspecies uses prior to fall migration. However,shorel<strong>in</strong>e armor<strong>in</strong>g would be limited to exist<strong>in</strong>gcommunities or <strong>in</strong>frastructure, which is limited<strong>in</strong> extent at present and thus impacts would beslight.Physiological Thermal Niche: The heart <strong>of</strong> theWestern Sandpiper breed<strong>in</strong>g range is <strong>in</strong> the subarcticand so presumably, as arctic temperaturesrise, themal conditions could become moreamenable for expansion <strong>of</strong> their breed<strong>in</strong>g range<strong>in</strong>to more <strong>of</strong> the coastal pla<strong>in</strong> potentially<strong>in</strong>creas<strong>in</strong>g competition with the closely relatedSemipalmated Sandpipers.Disturbance Regime: <strong>Climate</strong>-mediateddisturbance processes, namely thermokarst,could both create and destroy lake habitatsthrough both ice wedge degradation anddra<strong>in</strong><strong>in</strong>g <strong>of</strong> thaw lakes (Mart<strong>in</strong> et al. 2009).Increased fire frequency (Rac<strong>in</strong>e and Jandt2008) could reduce habitat suitability requiredby the species for nest<strong>in</strong>g, although for thetimel<strong>in</strong>e <strong>of</strong> this assessment fires will likely belocalized phenomenon. Increased coastal erosionand result<strong>in</strong>g sal<strong>in</strong>ization (Jones et al. 2009)could impacts post-breed<strong>in</strong>g stag<strong>in</strong>g birds.Interactions with Other Species: In terms <strong>of</strong><strong>in</strong>terspecies <strong>in</strong>teractions, this species willcommunally feed and flock with othershorebirds dur<strong>in</strong>g post-breed<strong>in</strong>g stag<strong>in</strong>g (Tayloret al. 2010), but it is unknown if these behaviors<strong>in</strong>crease species persistence. <strong>Climate</strong> change94


Western Sandpiper (Calidris mauri)<strong>Vulnerability</strong>: Presumed StableConfidence: LowD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.may reduce the amplitude <strong>of</strong> lemm<strong>in</strong>g cycles(Ims and Fuglei 2005) and thus could exposethis species to greater nest predation pressure iflemm<strong>in</strong>gs become less available as alternativeprey.Phenological Response: There is evidencesuggest<strong>in</strong>g some shorebirds are able to trackphenological changes associated with a warm<strong>in</strong>gclimate at least <strong>in</strong> terms <strong>of</strong> nest <strong>in</strong>itiation (J.Liebezeit and S. Zack unpublished data; D.Ward, pers. comm.). However, it is unknown ifthey can synchronize tim<strong>in</strong>g to other organismschang<strong>in</strong>g schedules that they depend on (e.g.<strong>in</strong>vert. prey).In summary, while a few potential sources<strong>of</strong> climate-related vulnerability were identifiedfor this species, the assessment presumes thatWestern Sandpiper will be stable <strong>in</strong> this regionat least for the next few decades.Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska.Geophysical Research Letters 36, L03503Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Rac<strong>in</strong>e, C. and R. Jandt. 2008. The 2007”AnaktuvukRiver” tundra fire on the <strong>Arctic</strong> Slope <strong>of</strong> Alaska: a newphenomenon? In D.L. Kane and K.M. H<strong>in</strong>kel (Eds.), N<strong>in</strong>thInternational Conference on Permafrost, ExtendedAbstracts (p. 247-248). Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g,University <strong>of</strong> Alaska Fairbanks.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.Wilson, W.H. 1994. Western Sandpiper (Calidris mauri),The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A. Poole, Ed.). Ithaca:Cornell Lab <strong>of</strong> Ornithology; Retrieved from the <strong>Birds</strong> <strong>of</strong>North America Onl<strong>in</strong>e: http://bna.birds.cornell.edu/bna/species/090. doi:10.2173/bna.9095


White-rumped Sandpiper (Calidris fuscicollis)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe White-rumped Sandpiper is a small shorebird that is a relatively rare breeder <strong>in</strong> <strong>Arctic</strong>Alaska. They nest <strong>in</strong> coastal wetlands between Barrow and Cape Halkett on the <strong>Arctic</strong> CoastalPla<strong>in</strong> <strong>of</strong> Alaska (Bart et al. 2012). In eastern Canada this species is similarly associated withcoastal wetlands (Smith et al. 2007), but may also use moist tundra or even dwarf shrub tundrafor nest<strong>in</strong>g (Parmelee 1992). White-rumped Sandpipers have one <strong>of</strong> the longest migrations <strong>of</strong>any bird species and w<strong>in</strong>ter primarily <strong>in</strong> southern South America east <strong>of</strong> the Andes (Parmelee1992). Current estimate <strong>of</strong> the North American population is 1.12 million with a decl<strong>in</strong><strong>in</strong>g trend(Morrison et al. 2006).Arthur Morris/BIRDS AS ARTRange: We modified the NatureServe range mapfor this assessment, restrict<strong>in</strong>g this speciesbreed<strong>in</strong>g range to the region around Barrow. Webased this adjustment on recent studies thatsuggest the <strong>Birds</strong> <strong>of</strong> North America range is nolonger accurate (Johnson et al. 2007, Bart et al.2012).Sea Level Rise & Natural Barriers: Because <strong>of</strong>this species’ restricted range along low ly<strong>in</strong>gcoastal areas on the coastal pla<strong>in</strong> they wereranked as be<strong>in</strong>g “slightly vulnerable” to bothsea-level rise and to limitations <strong>in</strong> expansion <strong>of</strong>their range northward (“natural barriers” factor).Human Response to CC: Conversion <strong>of</strong> iceroads to all-weather roads, a possibleconsequence <strong>of</strong> reduced suitability <strong>of</strong> w<strong>in</strong>tersnow and ice conditions, could impacthydrology at local and regional scales. Shallowtundra wetlands can be adversely affected byroad construction and potentially impactavailability <strong>of</strong> <strong>in</strong>vertebrate prey. The extent <strong>of</strong>such activities will likely be localized.Physiological Thermal Niche: White-rumpedSandpipers select concealed nest sites, shelteredfrom the w<strong>in</strong>d (Smith et al. 2007) <strong>in</strong>dicat<strong>in</strong>g theymay have some sensitivity to chang<strong>in</strong>g thermalconditions.Physiological Hydro Niche: Because thisspecies depends heavily on coastal tundrahabitats, hydrological niche was their greatestpotential source <strong>of</strong> vulnerability. The range <strong>of</strong>scores represents uncerta<strong>in</strong>ty both <strong>in</strong> thedirection and <strong>in</strong>tensity <strong>of</strong> change <strong>in</strong> <strong>Arctic</strong>hydrology, as well as <strong>in</strong> the effect this will haveon the sandpiper. Slight changes <strong>in</strong> moistureregime or active layer depth can have substantialimpacts on tundra wetlands, because they aregenerally shallow. Current projections <strong>of</strong> annualpotential evapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Thus atmosphericmoisture, as an exposure factor (most <strong>in</strong>fluentialon the “hydrological niche” sensitivitycategory), was not heavily weighted <strong>in</strong> theassessment.Disturbance Regime: Disturbances, specificallycoastal erosion and <strong>in</strong>creased coastal flood<strong>in</strong>gfrom <strong>in</strong>creased storms (Jones et al. 2009) maynegatively impact both breed<strong>in</strong>g and postbreed<strong>in</strong>gWhite-rumped Sandpipers. However,such coastal disturbance events, as well asthermokarst-mediated changes on the landscape,could create new nest<strong>in</strong>g and forag<strong>in</strong>g habitat.96


White-rumped Sandpiper (Calidris fuscicollis)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Interactions with Other Species: In terms <strong>of</strong>dependence on <strong>in</strong>terspecific <strong>in</strong>teractions, thisspecies will communally feed and flock withother shorebirds dur<strong>in</strong>g post-breed<strong>in</strong>g stag<strong>in</strong>g(Taylor et al. 2010) but it is unknown if thesebehaviors <strong>in</strong>crease species persistence.<strong>Climate</strong> change may reduce the amplitude <strong>of</strong>lemm<strong>in</strong>g cycles (Post et al. 2009) and thus couldexpose this species to greater nest predationpressure if lemm<strong>in</strong>gs become less available asalternative prey.In summary, White-rumped Sandpipers willlikely experience some negative impacts fromclimate change, however they appear to haveenough versatility <strong>in</strong> their life history traits andbehaviors to rema<strong>in</strong> “stable” with regard toclimate change at least dur<strong>in</strong>g the timeframe <strong>of</strong>this assessment (to 2050).Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska.Geophysical Research Letters 36, L03503.Parmelee, David F. 1992. White-rumped Sandpiper(Calidris fuscicollis), The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e(A. Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology;Retrieved from the <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/029doi:10.2173/bna.29Post, E., M.C. Forchhammer, M.S. Bret-Harte, T.V.Callaghan, T.R. Christensen, B. Elberl<strong>in</strong>g, A.D. Fox, O.Gilg, D.S. Hik, T.T. Høye, R.A. Ims, E. Jeppesen, D.R.Kle<strong>in</strong>, J. Madsen, A.D. McGuire, S. Rysgaard, D.E.Sch<strong>in</strong>dler, I. Stirl<strong>in</strong>g, M.P. Tamstorf, N.J.C. Tyler, R. vander Wal, J. Welker, P.A. Wookey, N.M. Schmidt, and P.Aastrup. 2009. Ecological dynamics across the <strong>Arctic</strong>associated with recent climate change. Science 325:1355-1358.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Smith, P.A., H.G. Gilchrist, and J.N.M. Smith. 2007.Effects <strong>of</strong> nest habitat, food, and parental behaviour onshorebird nest success. Condor 109: 15-31.Taylor, A.R., R.B. Lanctot, A.N. Powell, F. Huettmann, D.Nigro and S.J. Kendall. 2010. Distribution and CommunityCharacteristics <strong>of</strong> Stag<strong>in</strong>g Shorebirds on the NorthernCoast <strong>of</strong> Alaska. <strong>Arctic</strong> 63(4): 451-467.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.97


Baird’s Sandpiper (Calidris bairdii)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Baird’s Sandpiper is an uncommon breed<strong>in</strong>g bird <strong>in</strong> <strong>Arctic</strong> Alaska us<strong>in</strong>g both coastal andmontane regions. This species typically nests <strong>in</strong> upland, well-dra<strong>in</strong>ed, exposed tundra, generallyavoid<strong>in</strong>g wet tundra although will sometimes nest <strong>in</strong> wet prairie meadows near lakes (Marconi &Salvadori 2008). Like other sandpipers, Baird’s Sandpipers feed almost entirely on <strong>in</strong>sects dur<strong>in</strong>gthe breed<strong>in</strong>g season adjust<strong>in</strong>g to seasonal shifts <strong>in</strong> primary prey items (Mosk<strong>of</strong>f andMontgomerie 2002). This species is a long-distance migrant and w<strong>in</strong>ters throughout the southerncone <strong>of</strong> South America. Current population estimate is 300,000 (Morrison et al. 2006).S. Zack @ WCSRange: We used the extant NatureServe rangemap for the assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America (Mosk<strong>of</strong>f andMontgomerie 2002) and other sources (Johnsonand Herter 1989). However, it should be notedthat the breed<strong>in</strong>g range may be more restrictedthan previously thought because <strong>of</strong> theirpreference for well-dra<strong>in</strong>ed stony ridges andriparian nest<strong>in</strong>g habitat (Johnson et al. 2007).Physiological Thermal Niche: Among the<strong>in</strong>direct exposure and sensitivity factors <strong>in</strong> thisassessment (see table on next page), Baird’sSandpiper ranked “neutral”, <strong>in</strong> many categories.For three categories they ranked as “neutral toslightly <strong>in</strong>creased” vulnerability. This species,particularly <strong>in</strong> <strong>Arctic</strong> Canada, nests <strong>in</strong> relativelyhigher latitude sites therefore it is possible thatthey are associated with a colder thermalenvironment; however this pattern is lessdiscernable <strong>in</strong> Alaska.Physiological Hydro Niche: At a site <strong>in</strong> Canada,Marconi and Salvadori (2008) suggest thatBaird’s may nest preferentially <strong>in</strong> wet prairiemeadow, however previous observations at thesame site suggested that Baird’s generally nest<strong>in</strong> drier shrubby areas (Lepage et al. 1998) asgenerally appears to be the case <strong>in</strong> Alaska. Thissuggests that a tundra dry<strong>in</strong>g trend could havesome negative impact on this species but theywill most likely be able to adjust to drier nest<strong>in</strong>gsites. They do depend on water-dom<strong>in</strong>atedhabitats for forag<strong>in</strong>g dur<strong>in</strong>g both breed<strong>in</strong>g andpost-breed<strong>in</strong>g so this may be more important <strong>in</strong>terms <strong>of</strong> a tundra dry<strong>in</strong>g impacts. Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus atmospheric moisture, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.Interactions with other Species: <strong>Change</strong>s <strong>in</strong>lemm<strong>in</strong>g cycl<strong>in</strong>g could negatively impact thisspecies <strong>in</strong>directly through <strong>in</strong>creased nestpredation if lemm<strong>in</strong>g population booms becomerarer (Ims and Fuglei 2005). However, there iscurrently no evidence that Baird’s are affectedby lemm<strong>in</strong>g cycles.Phenological Response: Baird’s were rankedfrom “slightly decreased” to “<strong>in</strong>creased”98


Baird’s Sandpiper (Calidris bairdii)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.vulnerability to phenology changes. At present,it is unknown how this species will respond. Amismatch <strong>in</strong> tim<strong>in</strong>g would likely be negative fornest<strong>in</strong>g (Schekkeman and Tulp 2008) or theymay be able to track changes and take advantage<strong>of</strong> the positive benefits <strong>of</strong> earlier nest<strong>in</strong>g.Disturbance Regime: Disturbance processes,specifically thermokarst-mediated changes onthe landscape could both destroy and create newnest<strong>in</strong>g and forag<strong>in</strong>g habitat. More tundra firescould theoretically <strong>in</strong>crease nest<strong>in</strong>g habitat byspeed<strong>in</strong>g up shrub <strong>in</strong>vasion.In summary, Baird’s Sandpipers appear tohave enough versatility <strong>in</strong> their life historyattributes to enable them to compensate forchanges and rema<strong>in</strong> “stable” with regard toclimate change at least dur<strong>in</strong>g the timeframe <strong>of</strong>this assessment (next 50 years).Literature CitedIms, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Lepage, D., D.N. Nettleship, and A. Reed. 1998. <strong>Birds</strong> <strong>of</strong>Bylot Island and adjacent Baff<strong>in</strong> Island, NorthwestTerritories, Canada, 1979 to 1997. <strong>Arctic</strong> 51: 125-141.Marconi, L. and O. Salvadori. 2008. Utilisation de l’habitatchez deux espèces de limicoles, le bécasseau de Baird(Calidris bairdii) et le bécasseau à croupion blanc (Calidrisfuscicolis), nichant à l’île Bylot, Nunavut, Canada.Universite du Quebec, Rimouski.Mosk<strong>of</strong>f, W. and R. Montgomerie. 2002. Baird's Sandpiper(Calidris bairdii). In The <strong>Birds</strong> <strong>of</strong> North America, No. 661(A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> North America,Inc. Philadelphia, PA.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.Tulp, I. and H. Schekkerman. 2008. Has prey availabilityfor arctic birds advanced with climate change? H<strong>in</strong>dcast<strong>in</strong>gthe abundance <strong>of</strong> tundra arthropods us<strong>in</strong>g weatherand seasonal variation. <strong>Arctic</strong> 61: 48-60.99


Pectoral Sandpiper (Calidris melanotos)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Pectoral Sandpiper is one <strong>of</strong> the most abundant breed<strong>in</strong>g birds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong>Alaska. They typically have low nest site fidelity which is likely related to their promiscuousmat<strong>in</strong>g strategy, thus nest densities are highly variable from year to year at a given site (Holmesand Pitelka 1998). In <strong>Arctic</strong> Alaska, primary breed<strong>in</strong>g habitat <strong>in</strong>cludes low-ly<strong>in</strong>g ponds <strong>in</strong> a mix<strong>of</strong> marshy to hummocky tundra and nests are typically placed <strong>in</strong> slightly raised or better dra<strong>in</strong>edsites (Holmes and Pitelka 1998). Pectoral Sandpipers spend their w<strong>in</strong>ters primarily <strong>in</strong> southernSouth America (Holmes and Pitelka 1998). The current North American population estimate is500,000 and they are believed to be decl<strong>in</strong><strong>in</strong>g (Morrison et al. 2006).M. MudgeRange: We used the extant NatureServe rangemap for the assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America (Holmes andPitelka 1998). It should be noted that <strong>in</strong> Alaskathe highest densities occur <strong>in</strong> the western portion<strong>of</strong> the coastal pla<strong>in</strong> (Johnson et al. 2007).Physiologic Hydro Niche: Net loss <strong>of</strong> nest<strong>in</strong>gand forag<strong>in</strong>g habitat related to dry<strong>in</strong>g tundra islikely to be the most important source <strong>of</strong>vulnerability for this species (see table on nextpage). Wet / moist coastal tundra habitats <strong>in</strong> the<strong>Arctic</strong> LCC may decrease <strong>in</strong> extent if changes <strong>in</strong>summer temperature and soil active layer depthcreate a generally drier summer environment <strong>in</strong>the <strong>Arctic</strong>. Current projections <strong>of</strong> annualpotential evapo-transpiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Thus atmosphericmoisture, as an exposure factor (most <strong>in</strong>fluentialon the “hydrological niche” sensitivitycategory), was not heavily weighted <strong>in</strong> theassessment. Increas<strong>in</strong>g shrubs and paludificationmay also decrease sedge/wet meadow tundraextent (Mart<strong>in</strong> et al. 2009).Physical Habitat Restrictions: Shorel<strong>in</strong>earmor<strong>in</strong>g related to climate change mitigationcould reduce the availability <strong>of</strong> brackish waterstag<strong>in</strong>g habitats that this species sometimes usesprior to fall migration. However, shorel<strong>in</strong>earmor<strong>in</strong>g would be focused on exist<strong>in</strong>gcommunities or <strong>in</strong>frastructure, which is limited<strong>in</strong> extent at present. Overall, pectoral sandpiperstend to stopover/stage <strong>in</strong>frequently at coastalareas (most birds tend to feed <strong>in</strong> tundrahabitats prior to fall migration), so this limitstheir exposure to coastal land use changes aswell (A. Taylor, pers. comm.).Disturbance Regime: <strong>Climate</strong>-mediateddisturbance, namely thermokarst, could bothcreate and destroy forag<strong>in</strong>g and nest<strong>in</strong>g habitatsthrough both ice wedge degradation anddra<strong>in</strong><strong>in</strong>g <strong>of</strong> thaw lakes. Likewise, <strong>in</strong>creasedcoastal erosion and result<strong>in</strong>g sal<strong>in</strong>ization (Joneset al. 2009) could both negatively and positivelyaffect post-breed<strong>in</strong>g aggregations <strong>of</strong> stag<strong>in</strong>gbirds by destroy<strong>in</strong>g and creat<strong>in</strong>g forag<strong>in</strong>ghabitat.Interactions with Other Species: In terms <strong>of</strong>dependence on <strong>in</strong>terspecific <strong>in</strong>teractions, thisspecies will communally feed and flock withother shorebirds dur<strong>in</strong>g post- breed<strong>in</strong>g stag<strong>in</strong>g(Taylor et al. 2010) but it is unknown if thesebehaviors <strong>in</strong>crease species persistence. Pectoralsandpiper nest survivorship is <strong>of</strong>ten higher <strong>in</strong>100


Pectoral Sandpiper (Calidris melanotos)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.boom lemm<strong>in</strong>g years (J. Liebezeit, unpublisheddata). Lemm<strong>in</strong>g cycles are predicted to becomerarer (Ims and Fuglei 2005) and couldpotentially expose this species to greater nestpredation pressure.Phenological Response: There is evidencesuggest<strong>in</strong>g that this species is able to trackphenological changes associated with a warm<strong>in</strong>gclimate at least <strong>in</strong> terms <strong>of</strong> nest <strong>in</strong>itiation (J.Liebezeit and S. Zack unpublished data; D.Ward, pers. comm.). However, it is unknown ifthey can synchronize tim<strong>in</strong>g to changes <strong>in</strong> theschedules <strong>of</strong> other organisms that they dependon (e.g. <strong>in</strong>vertebrate prey).In summary, despite the potential negativeeffects <strong>of</strong> tundra dry<strong>in</strong>g, Pectoral Sandpiperswill likely be able to compensate for suchchanges and rema<strong>in</strong> “stable” with regard toclimate change at least dur<strong>in</strong>g the timeframe <strong>of</strong>this assessment.Literature CitedIms, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322Holmes, R.T. and F.A. Pitelka. 1998. Pectoral Sandpiper(Calidris melanotos). In The <strong>Birds</strong> <strong>of</strong> North America, No.348. (A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> NorthAmerica, Inc. Philadelphia, PA.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska.Geophysical Research Letters 36, L03503.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Taylor, A.R., R.B. Lanctot, A.N. Powell, F. Huettmann, D.Nigro and S.J. Kendall. 2010. Distribution and CommunityCharacteristics <strong>of</strong> Stag<strong>in</strong>g Shorebirds on the NorthernCoast <strong>of</strong> Alaska. <strong>Arctic</strong> 63(4): 451-467.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.101


Dunl<strong>in</strong> (Calidris alp<strong>in</strong>a)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Dunl<strong>in</strong> (arcticola subspecies) is a common breed<strong>in</strong>g bird <strong>in</strong> <strong>Arctic</strong> Alaska from the areasurround<strong>in</strong>g Barrow to the east. The pacifica subspecies also occurs with<strong>in</strong> the <strong>Arctic</strong> LCCassessment area <strong>in</strong> the region around Cape Lisburne and Cape Krusenstern. Dunl<strong>in</strong> use a widevariety <strong>of</strong> breed<strong>in</strong>g habitats found <strong>in</strong> the northern sub-arctic and arctic. On the <strong>Arctic</strong> CoastalPla<strong>in</strong> <strong>of</strong> Alaska, C. a. arcticola breed <strong>in</strong> moist-wet tundra, <strong>of</strong>ten <strong>in</strong> areas with ponds, polygons,and strangmoor landforms (Warnock and Gill 1996). The arcticola subspecies w<strong>in</strong>ters <strong>in</strong> Asiawhile pacifica w<strong>in</strong>ters along the west coast <strong>of</strong> North America. Current population estimate is 1.3million (arcticola: 750,000, pacifica: 500,000; Morrison et al. 2006) with a decl<strong>in</strong><strong>in</strong>g trend.Dunl<strong>in</strong> do commonly nest and forage <strong>in</strong> moisttundra (rather than wet tundra) dur<strong>in</strong>g thebreed<strong>in</strong>g season so it is possible theycould adjust to drier habitats. The geospatialcomponent <strong>of</strong> the assessment picked up Dunl<strong>in</strong>as be<strong>in</strong>g slightly vulnerable to sea-level rise.Dietary Versatility: Dunl<strong>in</strong> have a flexible dietand current evidence suggests they takeadvantage <strong>of</strong> a wide variety <strong>of</strong> prey (Warnockand Gill 1996) so they would likely not face anynegative impacts from a chang<strong>in</strong>g prey base.S. Zack @ WCSRange: We used the extant Nature Serve rangemap for the assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America (Warnockand Gill 1996) and other sources (Johnson andHerter 1989, Johnson et al. 2007, Bart et al.2012).Physiological Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), Dunl<strong>in</strong>ranked “neutral”, <strong>in</strong> many categories. Only <strong>in</strong>the physiological hydrologic niche category wasthere a clear scor<strong>in</strong>g <strong>of</strong> <strong>in</strong>creased vulnerability.The range from “slightly <strong>in</strong>creased” to “greatly<strong>in</strong>creased” vulnerability represents uncerta<strong>in</strong>ty<strong>in</strong> the severity <strong>of</strong> such an impact. If significanttundra dry<strong>in</strong>g occurs this species couldexperience a considerable negative impact asthey <strong>of</strong>ten utilize wet tundra habitats for nest<strong>in</strong>gand forag<strong>in</strong>g (particularly the arcticolasubspecies; Warnock and Gill 1996). Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus atmospheric moisture, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.Interactions with Other Species: In terms <strong>of</strong>dependence on <strong>in</strong>terspecific <strong>in</strong>teractions, thisspecies will communally feed and flock withother shorebirds dur<strong>in</strong>g post-breed<strong>in</strong>g stag<strong>in</strong>g(Taylor et al. 2010) but it is unknown if thesebehaviors <strong>in</strong>crease species persistence. Also,climate change may reduce the amplitude <strong>of</strong>lemm<strong>in</strong>g cycles (Ims and Fuglei 2005) and thuscould expose this species to greater nestpredation pressure if lemm<strong>in</strong>gs become lessavailable as alternative prey.Genetic Variation: Little is known about Dunl<strong>in</strong>genetics although, <strong>in</strong> general, many shorebirdspecies are believed to have low geneticvariation (Baker and Stauch 1988) and thus102


Dunl<strong>in</strong> (Calidris alp<strong>in</strong>a)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.potentially more vulnerability to certa<strong>in</strong> climatemediatedevents (e.g. disease outbreaks).However, at this time, there is little evidence tosupport such occurrences <strong>in</strong> the near future.Phenological Response: Although there isevidence suggest<strong>in</strong>g that some shorebird speciesare able to track phenological changesassociated with a warm<strong>in</strong>g climate at least <strong>in</strong>terms <strong>of</strong> nest <strong>in</strong>itiation (J. Liebezeit and S. Zackunpublished data; D. Ward, pers. comm.) thereis no such evidence for Dunl<strong>in</strong> specifically atthis time.In summary, despite potential negativeresponse to changes <strong>in</strong> tundra conditions, ,Dunl<strong>in</strong> will likely be able to rema<strong>in</strong> “stable”with regard to climate change, at least dur<strong>in</strong>g thetimeframe <strong>of</strong> this assessment (next 50 years).Literature CitedBaker, A.J. and J.G. Strauch. 1988. Genetic variationand differentiation <strong>in</strong> shorebirds. – Acta XX CongressusInternationalis Ornithologicus 2: 1639–1645.Bart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Taylor, A.R., Lanctot, R.B., A.N. Powell, F. Huettmann, D.Nigro and S.J. Kendall. 2010. Distribution and CommunityCharacteristics <strong>of</strong> Stag<strong>in</strong>g Shorebirds on the NorthernCoast <strong>of</strong> Alaska. <strong>Arctic</strong> 63(4): 451-467.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.Warnock, Nils D. and Robert E. Gill. 1996. Dunl<strong>in</strong>(Calidris alp<strong>in</strong>a), The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A.Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology; Retrievedfrom the <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/203doi:10.2173/bna.203103


Stilt Sandpiper (Calidris himantopus)<strong>Vulnerability</strong>: Presumed StableConfidence: LowThe Stilt Sandpiper is an uncommon to common breed<strong>in</strong>g shorebird on the <strong>Arctic</strong> Coastal Pla<strong>in</strong><strong>of</strong> Alaska that typically nests near the coast from the Canadian border to the Barrow area(Johnson et al. 2007, Klima and Jehl 2012). Highest known breed<strong>in</strong>g densities occur <strong>in</strong> <strong>Arctic</strong>Canada where they <strong>of</strong>ten nest <strong>in</strong> taiga and boreal habitats. In Alaska, they prefer nest<strong>in</strong>g <strong>in</strong> wet,poorly dra<strong>in</strong>ed tundra and forage ma<strong>in</strong>ly <strong>in</strong> marshes, pools, damp pond marg<strong>in</strong>s, and onshorel<strong>in</strong>es <strong>of</strong> dry<strong>in</strong>g ponds dur<strong>in</strong>g the breed<strong>in</strong>g season (Klima and Jehl 2012). Stilt Sandpipersprimarily migrate through the central North American Flyway toward core w<strong>in</strong>ter<strong>in</strong>g areasthroughout South America. Current population estimate is 820,000 and stable (Morrison et al.2006).proclivities for nest<strong>in</strong>g near the coast leavesthem little option for shift<strong>in</strong>g their rangenorthward. Aga<strong>in</strong> their flexibility <strong>in</strong> nest<strong>in</strong>ghabitat as demonstrated by Canadian populationsmay signal flexibility <strong>in</strong> nest<strong>in</strong>g habitat use.J. Liebezeit @ WCSRange: We modified the NatureServe mapbased on recent studies (Johnson et al. 2007,Bart et al. 2012) and the <strong>Birds</strong> <strong>of</strong> North Americaaccount descriptions (Klima and Jehl (2012).Physiological Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), StiltSandpipers scored neutral <strong>in</strong> most categorieswith the exception <strong>of</strong> “physiological hydrologicniche”, for which they were deemed to bepotentially sensitive to a tundra dry<strong>in</strong>g impact.While <strong>in</strong> Alaska this species is known toprimarily nest <strong>in</strong> wetter tundra habitats (e.g.strangmoor), <strong>in</strong> Canada it <strong>of</strong>ten nests <strong>in</strong> driertundra and taiga habitats (Klima and Jehl 2012),<strong>in</strong>dicat<strong>in</strong>g that the species may be able to adaptto dry<strong>in</strong>g conditions. Current projections <strong>of</strong>annual potential evapotranspiration suggestnegligible atmospheric-driven dry<strong>in</strong>g for theforeseeable future (TWS and SNAP). Thusatmospheric moisture, as an exposure factor(most <strong>in</strong>fluential on the “hydrological niche”sensitivity category), was not heavily weighted<strong>in</strong> the assessment.Natural Barriers: Natural barriers are likely notan issue for this species although theirDisturbance Regime: In terms <strong>of</strong> disturbanceregimes, this species could be impacted byhabitat degradation along the coast (from moresevere storms and subsequent overwash anderosion; Jones et al. 2009), which they utilizepost-breed<strong>in</strong>g for fuel<strong>in</strong>g up before migration(although their use <strong>of</strong> coastal habitats dur<strong>in</strong>gpost-breed<strong>in</strong>g is m<strong>in</strong>imal compared to othershorebird species, Taylor et al. 2010). Moretundra fires (Rac<strong>in</strong>e et al. 2004) couldtheoretically reduce nest<strong>in</strong>g and forag<strong>in</strong>g habitat,but such fires are relegated to <strong>in</strong>land areas sothey would likely not be impact<strong>in</strong>g current Stilthabitats <strong>in</strong> Alaska <strong>in</strong> the foreseeable future.Interactions with Other Species: <strong>Climate</strong>change may reduce the amplitude <strong>of</strong> lemm<strong>in</strong>gcycles (Ims and Fuglei 2005) and thus couldexpose this species to greater nest predationpressure if lemm<strong>in</strong>gs become less available asalternative prey.104


Stilt Sandpiper (Calidris himantopus)<strong>Vulnerability</strong>: Presumed StableConfidence: LowD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Also, this species will communally feed andflock with other shorebirds dur<strong>in</strong>g breed<strong>in</strong>g andmigration and will jo<strong>in</strong> other shorebird species<strong>in</strong> mobb<strong>in</strong>g potential predators dur<strong>in</strong>g thenest<strong>in</strong>g season (particularly just after hatch;Kilma and Jehl 2012), but it unknown if thesebehaviors <strong>in</strong>crease species persistence.In summary, Stilt Sandpipers have enoughversatility <strong>in</strong> their life history traits andbehaviors on the breed<strong>in</strong>g grounds to likelyallow them to adjust to chang<strong>in</strong>g climateconditions and rema<strong>in</strong> “stable” at least dur<strong>in</strong>gthe timeframe <strong>of</strong> this assessment (to 2050).Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Klima, J. and J.R. Jehl, Jr. 2012. Stilt Sandpiper (Calidrishimantopus), The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A.Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology; Retrievedfrom the <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/341doi:10.2173/bna.341Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Rac<strong>in</strong>e, C., R. Jandt, C. Meyers, and J. Dennis. 2004.Tundra fire and vegetation change along a hillslope on theSeward Pen<strong>in</strong>sula, Alaska, USA. <strong>Arctic</strong>, Antarctic, andAlp<strong>in</strong>e Research 36: 1-10.Taylor, A.R., R.B. Lanctot, A.N. Powell, F. Huettmann, D.Nigro and S.J. Kendall. 2010. Distribution and CommunityCharacteristics <strong>of</strong> Stag<strong>in</strong>g Shorebirds on the NorthernCoast <strong>of</strong> Alaska. <strong>Arctic</strong> 63(4): 451-467.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.105


Buff-breasted Sandpiper (Tryngites subruficollis)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: ModerateThe Buff-breasted Sandpiper is known for its dramatic lekk<strong>in</strong>g displays and breeds near arcticcoastl<strong>in</strong>es from central Alaska <strong>in</strong>to Canada (Lanctot and Laredo 1994). This species nests <strong>in</strong> avariety <strong>of</strong> habitats rang<strong>in</strong>g from dry sedge tussock tundra to wet sedge-gram<strong>in</strong>oid meadows andstrangmoor (Lanctot and Laredo 1994). Buff-breasted Sandpipers typically forage <strong>in</strong> areas <strong>of</strong>dry, elevated tundra with sparse vegetation primarily consum<strong>in</strong>g terrestrial arthropods (Lanctotand Laredo 1994). This species is one <strong>of</strong> the few shorebirds that do not show a seasonal shifttoward lowland, wet sites dur<strong>in</strong>g brood-rear<strong>in</strong>g (Jones 1980, R. Lanctot, unpublished data). BuffbreastedSandpipers spend w<strong>in</strong>ters on the pampas <strong>of</strong> South America. Current population estimate<strong>in</strong> North America is 30-56,000 with a decl<strong>in</strong><strong>in</strong>g trend (Lanctot et al. 2010, Morrison et al. 2006).historically experienced low variation <strong>in</strong> averageprecipitation across their relatively small Alaskabreed<strong>in</strong>g range, suggest<strong>in</strong>g sensitivity to<strong>in</strong>creased variation.S. Zack @ WCSRange: We modified the NatureServe rangemap to more closely match the more restrictedand coastally oriented breed<strong>in</strong>g range depicted<strong>in</strong> the <strong>Birds</strong> <strong>of</strong> North America account (Lanctotand Laredo 1994) and as described <strong>in</strong> morerecent assessments (Johnson et al. 2007; Bart etal. 2012). With<strong>in</strong> its range, this species issparsely distributed (R. Lanctot, pers. comm.).Sea Level Rise: Because this species’ range isrestricted to coastal areas <strong>in</strong> <strong>Arctic</strong> Alaska, theywere ranked as be<strong>in</strong>g slightly vulnerable to bothsea-level rise and to limitations <strong>in</strong> expansion <strong>of</strong>their range northward.Physiological Hydro Niche: Because BuffbreastedSandpipers use wet tundra habitats tosome degree for nest<strong>in</strong>g, forag<strong>in</strong>g, and broodrear<strong>in</strong>g(though less than many other shorebirds)they were ranked as “neutral-to-<strong>in</strong>creased”vulnerability <strong>in</strong> the “physiological hydrologicniche” category (see table). Current annualmoisture balance predictions suggest negligible<strong>in</strong>creases <strong>in</strong> dry<strong>in</strong>g for the foreseeable future(TWS and SNAP). Thus moisture balance, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.However, historical hydrological niche wasranked as “greatly <strong>in</strong>creased” as they haveDisturbance Regime: <strong>Climate</strong>-mediateddisturbances, namely thermokarst, could bothcreate and destroy lake habitats through both icewedge degradation and dra<strong>in</strong><strong>in</strong>g <strong>of</strong> thaw lakes(Mart<strong>in</strong> et al. 2009). Increased fire frequencycould reduce habitat suitability required by thespecies for nest<strong>in</strong>g, although for the purpose <strong>of</strong>this assessment fires were considered to haveonly localized effects.Interactions with Other Species: <strong>Climate</strong>change may reduce the amplitude <strong>of</strong> lemm<strong>in</strong>gcycles (Ims and Fuglei 2005) and thus couldexpose this species to greater nest predationpressure if lemm<strong>in</strong>gs become less available asalternative prey.Genetic Variation: Shorebird species arebelieved to have low genetic variation (Bakerand Stauch 1988) mak<strong>in</strong>g them potentially morevulnerable to certa<strong>in</strong> climate-mediated events <strong>in</strong>the near future (e.g. disease outbreaks).106


Buff-breasted Sandpiper (Tryngites subruficollis)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability,GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response: There is evidencesuggest<strong>in</strong>g some shorebirds are able to trackchanges associated with a warm<strong>in</strong>g climate atleast <strong>in</strong> terms <strong>of</strong> nest <strong>in</strong>itiation (J. Liebezeit andS. Zack, unpublished data; D. Ward, pers.comm.). However, it is unknown if they cansynchronize tim<strong>in</strong>g to shift<strong>in</strong>g schedules <strong>of</strong>organisms they rely on (e.g. <strong>in</strong>vertebrate prey).In summary, this species’ comb<strong>in</strong>ation <strong>of</strong>potential sources <strong>of</strong> vulnerability provided arank<strong>in</strong>g <strong>of</strong> “moderately vulnerable”.Literature CitedBaker, A.J. and J.G. Strauch. 1988. Genetic variation anddifferentiation <strong>in</strong> shorebirds. – Acta XX CongressusInternationalis Ornithologicus 2: 1639–1645.Bart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Jones, S.G. 1980. Abundance and habitat selection <strong>of</strong>shorebirds at Prudhoe Bay, Alaska. Masters thesis,Brigham Young University, Salt Lake City, UT.Lanctot, R.B., J. Aldabe, J.B. Almeida, D. Blanco, J.P.Isacch, J. Jorgensen, S. Norland, P. Rocca, and K.M.Strum. 2010. Conservation Plan for the Buff–breastedSandpiper (Tryngites subruficollis). Version 1. 1. U.S. Fishand Wildlife Service, Anchorage, Alaska, and ManometCenter for Conservation Sciences, Manomet, MA, USA.Lanctot, R.B. and C.D. Laredo. 1994. Buff-breastedSandpiper (Tryngites subruficollis). In The <strong>Birds</strong> <strong>of</strong> NorthAmerica, No. 91 (A. Poole and F. Gill, eds.). Philadelphia:The Academy <strong>of</strong> Natural Sciences; Wash<strong>in</strong>gton D.C.: TheAmerican Ornithologists’ Union.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.107


Long-billed Dowitcher (Limnodromus scolopaceus)<strong>Vulnerability</strong>: Presumed StableConfidence: LowThe Long-billed Dowitcher is a medium-sized shorebird that commonly breeds on the <strong>Arctic</strong>Coastal Pla<strong>in</strong> <strong>of</strong> Alaska. This species nests <strong>in</strong> higher densities <strong>in</strong> the western portion <strong>of</strong> thecoastal pla<strong>in</strong> compared to the east (Johnson et al. 2007). They prefer wet grassy meadows fornest<strong>in</strong>g <strong>of</strong>ten show<strong>in</strong>g an aff<strong>in</strong>ity for sedge-willow, wet meadow or sedge marsh along dra<strong>in</strong>agesor near ponds (Takekawa and Warnock 2000). Long-billed Dowitchers generally migrate west <strong>of</strong>the Mississippi River and w<strong>in</strong>ter primarily along the Pacific and Gulf Coasts <strong>of</strong> North America<strong>in</strong>to Mexico (Takekawa and Warnock 2000). Current population estimate <strong>of</strong> the North Americanpopulation is 400,000 (Morrison et al. 2006).evapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Thus atmosphericmoisture, as an exposure factor (most <strong>in</strong>fluentialon the “hydrological niche” sensitivitycategory), was not heavily weighted <strong>in</strong> theassessment.C. RuttRange: We used the extant NatureServe rangemap for the assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America as well asother range descriptions (Johnson et al. 2007,Bart et al. 2012).Physiological Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), Long-billedDowitchers ranked “neutral”, <strong>in</strong> manycategories. In the physiological hydrologic nichecategory, the rank<strong>in</strong>g ranged from neutral togreatly <strong>in</strong>creased vulnerability. This rangerepresents uncerta<strong>in</strong>ty both <strong>in</strong> the direction and<strong>in</strong>tensity <strong>of</strong> change <strong>in</strong> <strong>Arctic</strong> hydrology, as wellas <strong>in</strong> the effect this will have on dowitchers.Significant tundra dry<strong>in</strong>g could have aconsiderable negative effect, given that thisspecies primarily depends on wet tundra habitatsfor nest<strong>in</strong>g and forag<strong>in</strong>g <strong>in</strong> Alaska, as well as <strong>in</strong>other parts <strong>of</strong> their range (Takekawa andWarnock 2000). Current models for the Alaskan<strong>Arctic</strong> generally project a greater potentialdry<strong>in</strong>g <strong>in</strong> the western coastal pla<strong>in</strong>(http://www.snap.uaf.edu/), which is also whereLong-billed Dowitchers’ have highest nestdensities (Johnson et al. 2007). Currentprojections <strong>of</strong> annual potentialDisturbance Regime: Disturbance regimes,specifically coastal erosion and <strong>in</strong>creased coastalflood<strong>in</strong>g (Jones et al. 2009) have the possibility<strong>of</strong> negatively impact<strong>in</strong>g both breed<strong>in</strong>g and postbreed<strong>in</strong>gdowitchers. However, such coastaldisturbance, as well as thermokarst-mediatedchanges on the landscape, could create newnest<strong>in</strong>g and forag<strong>in</strong>g habitat. As a case <strong>in</strong> po<strong>in</strong>t,along the coast, dowitchers are <strong>of</strong>ten associatedwith salt ponds (Taylor et al. 2010) and thuscould benefit from salt water <strong>in</strong>trusion fromstorm events. More tundra fires (Rac<strong>in</strong>e et al.2004) could theoretically reduce nest<strong>in</strong>g andforag<strong>in</strong>g habitat but tundra fires are relegated to<strong>in</strong>land areas at this po<strong>in</strong>t so they would likelynot significantly impact dowitcher habitats <strong>in</strong>Alaska soon.Dietary Versatility: This species has anomnivorous diet and current evidence suggeststhey take advantage <strong>of</strong> a wide variety <strong>of</strong> prey108


Long-billed Dowitcher (Limnodromus scolopaceus)<strong>Vulnerability</strong>: Presumed StableConfidence: LowD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.(Takekawa and Warnock 2000) so they wouldlikely not face any negative impacts from achang<strong>in</strong>g prey base.Interactions with Other Species: <strong>Climate</strong>change may reduce the amplitude <strong>of</strong> lemm<strong>in</strong>gcycles (Ims and Fuglei 2005) and thus couldexpose this species to greater nest predationpressure if lemm<strong>in</strong>gs become less available asalternative prey. Also, this species willcommunally feed and flock with othershorebirds dur<strong>in</strong>g breed<strong>in</strong>g and migration, aswell as jo<strong>in</strong> other shorebird species <strong>in</strong> mobb<strong>in</strong>gpotential predators dur<strong>in</strong>g the nest<strong>in</strong>g season(Takekawa and Warnock 2000). It is unknown ifthese behaviors <strong>in</strong>crease species persistence.In summary, despite some vulnerability,overall, Long-billed Dowitchers will likely beable to compensate for climate-changes andrema<strong>in</strong> “stable” at least dur<strong>in</strong>g the timeframe <strong>of</strong>this assessment (next 50 years).Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles<strong>in</strong> tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska.Geophysical Research Letters 36, L03503.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Rac<strong>in</strong>e, C., R. Jandt, C. Meyers, and J. Dennis. 2004.Tundra fire and vegetation change along a hillslope on theSeward Pen<strong>in</strong>sula, Alaska, USA. <strong>Arctic</strong>, Antarctic, andAlp<strong>in</strong>e Research 36: 1-10.Takekawa, J.T. and N. Warnock. 2000. Long-billedDowitcher (Limnodromus scolopaceus). In The <strong>Birds</strong> <strong>of</strong>North America, No. 493 (A. Poole and F. Gill, eds.). The<strong>Birds</strong> <strong>of</strong> North America, Inc. Philadelphia, PA.Taylor, A.R., R.B. Lanctot, A.N. Powell, F. Huettmann, D.Nigro and S.J. Kendall. 2010. Distribution and CommunityCharacteristics <strong>of</strong> Stag<strong>in</strong>g Shorebirds on the NorthernCoast <strong>of</strong> Alaska. <strong>Arctic</strong> 63(4): 451-467.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.109


Red-necked Phalarope (Phalaropus lobatus)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Red-necked Phalarope commonly breeds <strong>in</strong> both the Brooks Range foothills and <strong>Arctic</strong>Coastal Pla<strong>in</strong> <strong>of</strong> Alaska. In Alaska, this species typically nests <strong>in</strong> wet tundra near water’s edge.It differs from the Red Phalarope <strong>in</strong> that it breeds further <strong>in</strong>land and at higher elevations (Rubegaet al. 2000). Like other phalaropes, this species depends on aquatic food sources for much <strong>of</strong> itsdiet (Rubega et al. 2000). Red-necked Phalaropes spend w<strong>in</strong>ter at sea <strong>in</strong> tropical waters <strong>in</strong> largenumbers <strong>of</strong>f the west coast <strong>of</strong> South America (Rubega et al. 2000). Current North Americanpopulation estimate is 2.5 million with a decl<strong>in</strong><strong>in</strong>g trend (Morrison et al. 2006).S. Zack @ WCSRange: We modified the NatureServe range mapfor the assessment to more closely match that <strong>of</strong>the <strong>Birds</strong> <strong>of</strong> North America (Rubega et al. 2000)and other habitat descriptions (Bart et al. 2012).It should be noted that this species occurs moreabundantly at <strong>in</strong>land wet tundra sites more thanalong the immediate coast (Johnson et al. 2007).Physiologic Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), the greatestpotential source <strong>of</strong> vulnerability for Red-neckedPhalaropes was <strong>in</strong> the “physiological hydrologicniche” category. Scores for physicalhydrological niche ranged from “slightly” to“greatly <strong>in</strong>creased “vulnerability. This rangerepresents uncerta<strong>in</strong>ty both <strong>in</strong> the direction and<strong>in</strong>tensity <strong>of</strong> change <strong>in</strong> <strong>Arctic</strong> hydrology, as wellas <strong>in</strong> the effect this will have on the phalarope. Ifsubstantial tundra dry<strong>in</strong>g occurs this speciescould experience a considerable negative impactas they primarily depend on wet tundra habitatsfor nest<strong>in</strong>g and forag<strong>in</strong>g <strong>in</strong> Alaska (Rubega et al.2000). Currently it is unknown how adaptablethis species would be <strong>in</strong> utiliz<strong>in</strong>g drier habitatsfor nest<strong>in</strong>g. Current projections <strong>of</strong> annualpotential evapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP), and its <strong>in</strong>teraction withhydrologic processes is very poorly understood(Mart<strong>in</strong> et al. 2009). Thus atmospheric moisture,as an exposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.Human Response to CC: Shorel<strong>in</strong>e armor<strong>in</strong>g byhumans <strong>in</strong> response to climate change couldreduce the availability <strong>of</strong> stopover or stag<strong>in</strong>ghabitats this species uses prior to fall migration.However, shorel<strong>in</strong>e armor<strong>in</strong>g would be limitedto exist<strong>in</strong>g communities or <strong>in</strong>frastructure, whichis limited <strong>in</strong> extent at present.Physical Habitat Restrictions: Dur<strong>in</strong>g postbreed<strong>in</strong>g,Red Phalaropes will <strong>of</strong>ten use theleeward side <strong>of</strong> barrier islands for forag<strong>in</strong>g(Taylor et al. 2010). These types <strong>of</strong> habitatfeatures are relatively uncommon and arevulnerable to disturbance. Coastal erosion andoverwash, <strong>in</strong> particular, have the potential tonegatively impact post-breed<strong>in</strong>g phalaropes.Other disturbances, such as thermokarstmediatedchanges on the landscape, could bothcreate and destroy nest<strong>in</strong>g and forag<strong>in</strong>g habitats.More tundra fires could theoretically reducenest<strong>in</strong>g and forag<strong>in</strong>g habitat but tundra fires arerelegated to <strong>in</strong>land areas and are presently highlylocalized so they would likely not significantly110


Red-necked Phalarope (Phalaropus lobatus)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.impact current phalarope habitats <strong>in</strong> Alaska <strong>in</strong>the near future.Interactions with Other Species:<strong>Climate</strong> change may reduce the amplitude <strong>of</strong>lemm<strong>in</strong>g cycles (Ims and Fuglei 2005) and thuscould expose this species to greater nestpredation pressure if lemm<strong>in</strong>gs become lessavailable as alternative prey.Genetic Variation: Little is known about RedneckedPhalarope genetics although, <strong>in</strong> general,many shorebird species are believed to have lowgenetic variation (Baker and Stauch 1988).Phenological Response: Although notdemonstrated <strong>in</strong> phalaropes, there is evidencesuggest<strong>in</strong>g shorebirds are able to trackphenological changes associated with a warm<strong>in</strong>gclimate at least <strong>in</strong> terms <strong>of</strong> nest <strong>in</strong>itiation (J.Liebezeit and S. Zack, unpublished data; D.Ward, pers. comm.). However, it is unknown ifthey can synchronize tim<strong>in</strong>g to other organismschang<strong>in</strong>g schedules that they depend on (e.g.<strong>in</strong>vertebrate prey).In summary, although ranked as “stable” <strong>in</strong>this assessment, this species’ high dependenceon wet habitats for nest<strong>in</strong>g, forag<strong>in</strong>g, and postbreed<strong>in</strong>gactivities, comb<strong>in</strong>ed with othervulnerabilities may make it vulnerable ifgeomophological changes l<strong>in</strong>ked to permafrostultimately lead to drier conditions.Literature CitedBaker, A.J. and Strauch, J.G. 1988. Genetic variationand differentiation <strong>in</strong> shorebirds. – Acta XX CongressusInternationalis Ornithologicus 2: 1639–1645.Bart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Taylor, A.R., R.B. Lanctot, A.N. Powell, F. Huettmann, D.Nigro and S.J. Kendall. 2010. Distribution and CommunityCharacteristics <strong>of</strong> Stag<strong>in</strong>g Shorebirds on the NorthernCoast <strong>of</strong> Alaska. <strong>Arctic</strong> 63(4): 451-467.Tracy, D.M., D. Schamel, and J. Dale. 2002. Red Phalarope(Phalaropus fulicarius). In The <strong>Birds</strong> <strong>of</strong> North America,No. 698 (A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> NorthAmerica, Inc. Philadelphia, PA.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.111


Red Phalarope (Phalaropus fulicarius)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: LowThe Red Phalarope commonly breeds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska, but is moreabundant west <strong>of</strong> the Colville River primarily near the coast (Johnson et al. 2007). In Alaska, thisspecies almost exclusively nests <strong>in</strong> wet/moist polygonal or marshy tundra and are dependent onaquatic food sources for much <strong>of</strong> their diet (Tracy et al. 2002). Red Phalaropes are the mostpelagic <strong>of</strong> the three phalarope species and spend most <strong>of</strong> their w<strong>in</strong>ters <strong>in</strong> subtropical and tropicalseas near areas <strong>of</strong> nutrient upwell<strong>in</strong>g (Tracy et al. 2002). Current population estimate <strong>of</strong> theNorth American population is 1.25 million with a suspected decl<strong>in</strong><strong>in</strong>g trend (Morrison et al.2006).S. Zack @ WCSRange: We used the extant Nature Serve rangemap for the assessment as it closely matchedthat <strong>of</strong> the <strong>Birds</strong> <strong>of</strong> North America (Tracy et al.2002) as well other range descriptions (Johnsonet al. 2007, Bart et al. 2012).Physiological Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), the greatestpotential source <strong>of</strong> vulnerability for RedPhalaropes was <strong>in</strong> the “physiological hydrologicniche” category. Scores for physicalhydrological niche ranged from “slightly” to“greatly <strong>in</strong>creased “vulnerability. This rangerepresents uncerta<strong>in</strong>ty both <strong>in</strong> the direction and<strong>in</strong>tensity <strong>of</strong> change <strong>in</strong> <strong>Arctic</strong> hydrology, as wellas <strong>in</strong> the effect this will have on the phalarope. Ifsubstantial tundra dry<strong>in</strong>g occurs this speciescould experience a considerable negative impactas they primarily depend on wet tundra habitatsfor nest<strong>in</strong>g and forag<strong>in</strong>g <strong>in</strong> Alaska as well as <strong>in</strong>other parts <strong>of</strong> their range (Tracy et al. 2002). It isunknown how adaptable this species would be <strong>in</strong>utiliz<strong>in</strong>g drier habitats for nest<strong>in</strong>g. Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP), and its <strong>in</strong>teraction with hydrologicprocesses is very poorly understood (Mart<strong>in</strong> et112al. 2009). Thus atmospheric moisture, as anexposure factor, was not heavily weighted <strong>in</strong> theassessment.Physiological Thermal Niche: Red Phalaropewere also scored as hav<strong>in</strong>g a “slight <strong>in</strong>crease” <strong>in</strong>vulnerability with respect to physiologicalthermal niche because they tend to breed closerto the coast which is cooler than <strong>in</strong>terior habitatswhere the same breed<strong>in</strong>g and forag<strong>in</strong>g habitattypes are available. It is possible, phalaropes arerespond<strong>in</strong>g to some other factor, rather thanthermal conditions, <strong>in</strong> their coastal restriction.Disturbance Regime: Dur<strong>in</strong>g post-breed<strong>in</strong>g,Red Phalaropes will <strong>of</strong>ten use the leeward side<strong>of</strong> barrier islands for forag<strong>in</strong>g (Taylor et al.2010). These types <strong>of</strong> habitat features arerelatively uncommon and are vulnerable todisturbances. In particular, coastal erosion andoverwash (Jones et al. 2009) related to morefrequent and severe storms may negativelyimpact post-breed<strong>in</strong>g phalaropes. Otherdisturbance processes, such as thermokarstmediatedchanges on the landscape, could bothcreate and destroy nest<strong>in</strong>g and forag<strong>in</strong>g habitats.Interactions with Other Species: <strong>Climate</strong>change may reduce the amplitude <strong>of</strong> lemm<strong>in</strong>gcycles (Ims and Fuglei 2005) and thus could


Red Phalarope (Phalaropus fulicarius)<strong>Vulnerability</strong>: Moderately VulnerableConfidence: LowD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.expose this species to greater nest predationpressure if lemm<strong>in</strong>gs become less available asalternative prey. In addition, this species willcommunally feed and flock with othershorebirds dur<strong>in</strong>g post- breed<strong>in</strong>g stag<strong>in</strong>g (Tayloret al. 2010) but it is unknown if these behaviors<strong>in</strong>crease species persistence.Phenological Response: There is evidencesuggest<strong>in</strong>g some shorebirds are able to trackphenological changes associated with a warm<strong>in</strong>gclimate at least <strong>in</strong> terms <strong>of</strong> nest <strong>in</strong>itiation (J.Liebezeit and S. Zack, unpublished data; D.Ward, pers. comm.). However, it is unknown ifthey can synchronize tim<strong>in</strong>g to other organismschang<strong>in</strong>g schedules that they depend on (e.g.<strong>in</strong>vertebrate prey).In summary, as a result <strong>of</strong> the comb<strong>in</strong>edpotential sources <strong>of</strong> vulnerability, Red Pharalopewas considered “moderately vulnerable” toclimate change <strong>in</strong> this assessment.Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, J.A., R.B. Lanctot, B.A. Andres, J.R. Bart, S.C.Brown, S.J. Kendall, and D.C. Payer. 2007. Distribution <strong>of</strong>breed<strong>in</strong>g shorebirds on the <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska.<strong>Arctic</strong> 60(3): 277-293.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.Morrison, R.I.G., B.J. McCaffery, R.E. Gill, S.K. Skagen,S.L. Jones, G.W. Page, C.L. Gratto-Trevor, and B.A.Andres. 2006. Population estimates <strong>of</strong> North Americanshorebirds, 2006. Wader Study Group Bullet<strong>in</strong> 111:67-85.Taylor, A.R., R.B. Lanctot, A.N. Powell, F. Huettmann, D.Nigro and S.J. Kendall. 2010. Distribution and CommunityCharacteristics <strong>of</strong> Stag<strong>in</strong>g Shorebirds on the NorthernCoast <strong>of</strong> Alaska. <strong>Arctic</strong> 63(4): 451-467.Tracy, D.M., D. Schamel, and J. Dale. 2002. Red Phalarope(Phalaropus fulicarius). In The <strong>Birds</strong> <strong>of</strong> North America,No. 698 (A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> NorthAmerica, Inc. Philadelphia, PA.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.113


Glaucous Gull (Larus hyperboreus)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Glaucous Gull is a large gull with a circumpolar distribution. In Alaska, it is the mostcommon gull along <strong>Arctic</strong> Ocean coastal areas. Like other gulls, this generalist species hasbenefited from the presence <strong>of</strong> humans <strong>in</strong> the arctic and readily utilizes human-subsidized foodresources (e.g. edible garbage, roadkills; Day 1998). Glaucous Gulls take advantage <strong>of</strong> a widevariety <strong>of</strong> natural prey as well and are a noted nest predator. Alaskan populations <strong>of</strong> this speciesw<strong>in</strong>ter <strong>in</strong> the Pribil<strong>of</strong> and Aleutian islands <strong>of</strong> Alaska and <strong>in</strong> decreas<strong>in</strong>g numbers down to coastalOregon and California (Denl<strong>in</strong>ger 2006). The global population is estimated at 340,000-2,400,000 (Wetlands International 2006).S. Zack @ WCSRange: We used the extant NatureServe rangemap for this assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America (Gilchrist 2001) andother range descriptions (Johnson and Herter1989).Physical Habitat Restrictions: Among the<strong>in</strong>direct exposure and sensitivity factors (seetable on next page), Glaucous Gull rankedneutral <strong>in</strong> most categories with the exception <strong>of</strong>physiological hydrologic niche for which theywere evaluated to have a “neutral to greatly<strong>in</strong>creased” vulnerability. This response wasdriven primarily by their common use <strong>of</strong> smallislands <strong>in</strong> shallow ponds and lakes for nest<strong>in</strong>g toescape fox and bear predation (Gilchrist 2001).If tundra lakes dra<strong>in</strong> due to permafrost melt<strong>in</strong>gand/or if less surface water is available,Glaucous Gulls could become limited by nest<strong>in</strong>ghabitat or at least experience years <strong>of</strong> lownest<strong>in</strong>g success more frequently as predationrates could <strong>in</strong>crease.Physiological Hydro Niche: The wide range <strong>in</strong>responses <strong>in</strong> this category captures thesignificant uncerta<strong>in</strong>ty both <strong>in</strong> the direction and<strong>in</strong>tensity <strong>of</strong> change <strong>in</strong> <strong>Arctic</strong> hydrology, as wellas <strong>in</strong> the effect this will have on gulls. Currentprojections <strong>of</strong> annual potentialevapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Thus atmosphericmoisture, as an exposure factor (most <strong>in</strong>fluentialon the “hydrological niche” sensitivitycategory), was not heavily weighted <strong>in</strong> theassessment.Human Response to CC: Increased humanactivity and <strong>in</strong>frastructure associated withclimate change mitigation could benefitGlaucous Gulls as witnessed by the <strong>in</strong>fluence <strong>of</strong>current human developments <strong>in</strong> the region (Day1998). Glaucous Gull reproductive success is<strong>of</strong>ten higher <strong>in</strong> human developed areas <strong>in</strong> the<strong>Arctic</strong> (Weiser and Powell 2010). Melt<strong>in</strong>g seaice will likely allow for additional <strong>of</strong>fshoredrill<strong>in</strong>g and new shipp<strong>in</strong>g routes – both <strong>of</strong> whichhave the potential to benefit Glaucous Gulls ifthey provide a new at-sea source <strong>of</strong> food(garbage). This could improve subadult /nonbreed<strong>in</strong>g survival rates and result <strong>in</strong> an<strong>in</strong>creased population <strong>in</strong> <strong>Arctic</strong> Alaska.Physiological Thermal Niche: Glaucous Gullsare coastally oriented (the coast be<strong>in</strong>g coolerthan <strong>in</strong>land areas). The lakes/ponds on whichthey nest are also quite cold with water114


Glaucous Gull (Larus hyperboreus)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.temperatures barely above 0° C for most <strong>of</strong> thesummer. Glaucous Gulls are thermoneutral to 2°C (Gabrielsen and Mehlum 1989) so it is notsurpris<strong>in</strong>g that these cold-adapted birds wouldbe uncomfortable <strong>in</strong> warm weather. This couldpotentially change their distribution if localtemperatures <strong>in</strong>crease although it is unlikely thatsummer coastal temperatures would change somuch as to elim<strong>in</strong>ate them from arctic Alaska.Phenological Response: Currently, there are nolong-term data sets to provide sufficient<strong>in</strong>formation on Glaucous Gull phenologicalresponse to climate change <strong>in</strong> the arctic and so itis unknown how they will respond to chang<strong>in</strong>gphenologies.In summary, this vulnerability assessmentsuggests that Glaucous Gulls will rema<strong>in</strong> stable<strong>in</strong> the region with regard to climate changeimpacts and potentially even benefit from awarm<strong>in</strong>g climate.Literature CitedDay, R.H. 1998. Predator populations and predation<strong>in</strong>tensity on tundra-nest<strong>in</strong>g birds <strong>in</strong> relation to humandevelopment. Fairbanks: Unpublished report by ABR, Inc.for U.S. Fish and Wildlife Service.Gabrielsen, G.W., and F. Mehlum. 1989. Thermoregulationand energetics <strong>of</strong> arctic seabirds. Pp. 137-145 <strong>in</strong> C. Bech,and R.E. Re<strong>in</strong>ertsen, editors. Physiology <strong>of</strong> cold adaptation<strong>in</strong> birds. Plenum Press, NY.Gilchrist, H.G. 2001. Glaucous Gull (Larus hyperboreus).In: The <strong>Birds</strong> <strong>of</strong> North America No. 573 (Poole, A. andGill, F. eds.), Philadelphia, and American Ornithologists'Union, Wash<strong>in</strong>gton D.C.: Academy <strong>of</strong> Natural Sciences.Denl<strong>in</strong>ger, L.M. 2006. Alaska Seabird Information Series.Unpubl. Rept., U.S. Fish and Wildl. Serv., Migr. BirdManage., Nongame Program, Anchorage, AK.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Weiser, E., and A.N. Powell. 2010. Does garbage <strong>in</strong> thediet improve reproductive output <strong>of</strong> Glaucous Gulls?Condor 112:530-538.Wetlands International. 2006. Waterbird populationestimates (Eds. S. Delany and D.A. Scott), fourth edition.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.115


Sab<strong>in</strong>e’s Gull (Xema sab<strong>in</strong>i)<strong>Vulnerability</strong>: Presumed StableConfidence: Very HighA gull <strong>of</strong> the Subarctic and <strong>Arctic</strong>, the Sab<strong>in</strong>e’s Gull, with its dist<strong>in</strong>ctive plumage, commonlynests <strong>in</strong> the Alaskan <strong>Arctic</strong>, <strong>of</strong>ten <strong>in</strong> association with <strong>Arctic</strong> Terns (Sterna paradisaea). Thisspecies typically nests near fresh water <strong>in</strong> swampy low-ly<strong>in</strong>g tundra, <strong>in</strong> tidal marshes, and onsmall coastal islands (Day et al. 2001). Dur<strong>in</strong>g the breed<strong>in</strong>g season, aquatic <strong>in</strong>sects and other<strong>in</strong>vertebrates are their most important food items (Day et al. 2001). Sab<strong>in</strong>e’s Gulls spend theirw<strong>in</strong>ters <strong>of</strong>fshore primarily <strong>in</strong> subtropical and tropical coastal upwell<strong>in</strong>g zones (Day et al. 2001).The northern Alaska population estimate is rarely surveyed extensively. Two surveys <strong>in</strong> 1996<strong>in</strong>dicate a population somewhere between 6,000 and 10,000 (Day et al. 2001).S. Zack @ WCSpotential dry<strong>in</strong>g trend could also be <strong>of</strong>fset bychanges <strong>in</strong> surface hydrology that create morenest<strong>in</strong>g and forag<strong>in</strong>g habitat (Mart<strong>in</strong> et al. 2009).Physical Habitat Restrictions: Sab<strong>in</strong>e’s Gullsare not associated with any uncommongeological features.Dietary Versatility: They have relatively highdietary versatility, allow<strong>in</strong>g flexibility <strong>in</strong>response to any climate-mediated changes thatwould affect these aspects <strong>of</strong> this species lifehistory.Range: For the CCVI, we adjusted theNatureServe Map to reflect the range mapdepicted <strong>in</strong> the <strong>Birds</strong> <strong>of</strong> North America accountas the latter more accurately represented thisspecies’ range based on multiple accounts andexpert op<strong>in</strong>ion (Johnson and Herter 1989, Day etal. 2001, Bart et al. 2012, I. Stenhouse, pers.comm.).Physiological Hydro Niche: Among the <strong>in</strong>directexposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), Sab<strong>in</strong>e’sGull ranked neutral <strong>in</strong> most categories with theexception <strong>of</strong> physiological hydrologic niche, forwhich they were evaluated to have a “slightly togreatly <strong>in</strong>creased” vulnerability. This responsewas driven primarily by this species reliance onsmall water bodies for forag<strong>in</strong>g and for select<strong>in</strong>gnest sites (Stenhouse et al. 2005). Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus atmospheric moisture, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment. AnyInteractions with Other Species: Sab<strong>in</strong>e’s Gullsare described as nest<strong>in</strong>g only <strong>in</strong> association with<strong>Arctic</strong> Terns <strong>in</strong> some places (i.e. Greenland). Inother areas, however, such as eastern Canadian<strong>Arctic</strong> and <strong>in</strong> <strong>Arctic</strong> Alaska, the association with<strong>Arctic</strong> Terns is less strict. The <strong>in</strong>teractionbetween these species may be related tocomb<strong>in</strong>ed nest defense however it is unknown ifsuch an association would be impacted byclimate change or result <strong>in</strong> any net benefit orimpact (I. Stenhouse, pers. comm.).116


Sab<strong>in</strong>e’s Gull (Xema sab<strong>in</strong>i)<strong>Vulnerability</strong>: Presumed StableConfidence: Very HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response: Little is known aboutSab<strong>in</strong>e’s Gull genetics and there are currently nolong-term data sets for this species that <strong>in</strong>dicatea change <strong>in</strong> phenology.In summary, the results suggests Sab<strong>in</strong>e’sGull will likely be able to adjust to climate andassociated habitat changes predicted to occur <strong>in</strong><strong>Arctic</strong> Alaska, at least dur<strong>in</strong>g the 50 yeartimel<strong>in</strong>e <strong>of</strong> this assessment.Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Day, R.H., I.J. Stenhouse, and H.G. Gilchrist. 2001Sab<strong>in</strong>e’s Gull (Xema sab<strong>in</strong>i). In: The <strong>Birds</strong> <strong>of</strong> NorthAmerica No. 593 (Poole, A. and Gill, F. eds.), The <strong>Birds</strong> <strong>of</strong>North America, Inc. Philadelphia, PA.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Stenhouse, I.J., H.G. Gilchrist, and W.A. Montevecchi.2005. Factors affect<strong>in</strong>g nest-site selection <strong>of</strong> Sab<strong>in</strong>e’s Gulls<strong>in</strong> the eastern Canadian <strong>Arctic</strong>. Canadian Journal <strong>of</strong>Zoology 83: 1240-1245.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.117


<strong>Arctic</strong> Tern (Sterna paradisaea)<strong>Vulnerability</strong>: Presumed StableStable Confidence: ModerateThe <strong>Arctic</strong> Tern completes annual epic migrations from pole to pole cover<strong>in</strong>g at least 40,000 kmon their round-trip journeys. They breed throughout <strong>Arctic</strong> Alaska from boreal to tundra habitatsand have their highest nest<strong>in</strong>g densities <strong>in</strong>land (Lens<strong>in</strong>k 1984). <strong>Arctic</strong> Terns typically choose nestsites on open ground near water and <strong>of</strong>ten on small islands <strong>in</strong> ponds and lakes (Hatch 2002).<strong>Arctic</strong> terns consume a wide variety <strong>of</strong> fish and <strong>in</strong>vertebrate prey, fish are particularly importantdur<strong>in</strong>g the breed<strong>in</strong>g season for feed<strong>in</strong>g young (Hatch 2002). This species spends their w<strong>in</strong>ters(austral summers) <strong>in</strong> <strong>of</strong>fshore waters near Antarctica (Hatch 2002). Alaskan <strong>Arctic</strong> Coastal Pla<strong>in</strong>population estimates from 2011 range from 7-12,000 (Larned et al. 2012).<strong>in</strong>clud<strong>in</strong>g warmer boreal environs so there is noplausible reason to th<strong>in</strong>k they could not adaptphysiologically to a warmer <strong>Arctic</strong> environment<strong>in</strong> the foreseeable future.Dietary Versatility: Although small fish makeup a significant part <strong>of</strong> the <strong>Arctic</strong> Tern, they alsoeat many <strong>in</strong>vertebrates and so exhibit enoughflexibility <strong>in</strong> their diet that they would likely beable to cope with climate-mediated changes <strong>in</strong>prey base.K. PietrzakRange: We used the extant Nature Serve mapfor the assessment as it matched other range mapsources and descriptions (Johnson and Herter1989, Hatch 2002).Physiological Hydrologic Niche: Among the<strong>in</strong>direct exposure and sensitivity factors <strong>in</strong> theassessment (see table on next page), <strong>Arctic</strong>Terns ranked neutral <strong>in</strong> most categories with theexception <strong>of</strong> physiological hydrologic niche forwhich they were evaluated to have a “slightly togreatly <strong>in</strong>creased” vulnerability. This responsewas driven primarily by this species reliance onwetland and shallow water bodies for breed<strong>in</strong>gand forag<strong>in</strong>g. An arctic dry<strong>in</strong>g trend could result<strong>in</strong> loss <strong>of</strong> small water bodies. However, thisdry<strong>in</strong>g trend could be <strong>of</strong>fset by changes <strong>in</strong>surface hydrology that create more nest<strong>in</strong>g andforag<strong>in</strong>g habitat (Mart<strong>in</strong> et al. 2009). Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus atmospheric moisture, as anexposure factor was not heavily weighted <strong>in</strong> theassessment.Physiological Thermal Niche: <strong>Arctic</strong> Ternsoccur throughout Alaska <strong>in</strong> a variety <strong>of</strong> habitatsDisturbance Regime: <strong>Climate</strong>-mediateddisturbance processes, namely thermokarst,could both create and destroy lake habitatsthrough both ice wedge degradation anddra<strong>in</strong><strong>in</strong>g <strong>of</strong> thaw lakes (Mart<strong>in</strong> et al. 2009). Loss<strong>of</strong> both coastal and <strong>in</strong>land nest<strong>in</strong>g and forag<strong>in</strong>ghabitats by coastal erosion, and an <strong>in</strong>crease <strong>in</strong>sea and river<strong>in</strong>e levels could have negativeimpacts although <strong>in</strong> the foreseeable future theseimpacts will likely be localized.Phenological Response: Despite the existence<strong>of</strong> long-term data sets for <strong>Arctic</strong> Terns <strong>in</strong>118


<strong>Arctic</strong> Tern (Sterna paradisaea)<strong>Vulnerability</strong>: Presumed StableStable Confidence: ModerateD=Decreasevulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.northern Alaska (Larned et al. 2012) anassessment <strong>of</strong> phenology-related variables hasnot been a part <strong>of</strong> that effort or has not beenexam<strong>in</strong>ed so it is currently unknown how thisspecies will respond to chang<strong>in</strong>g bioticschedules.Interactions with Other Species: Fox nestpredation could <strong>in</strong>crease as the availability <strong>of</strong>“island” nest<strong>in</strong>g sites could be more limited ifshallower ponds dry out from a region-widetundra dry<strong>in</strong>g trend.In summary, the results <strong>of</strong> this vulnerabilityassessment <strong>in</strong>dicate that the <strong>Arctic</strong> Tern willlikely be adaptable enough to cope with climatechange and associated habitat changes predictedto occur <strong>in</strong> <strong>Arctic</strong> Alaska, at least dur<strong>in</strong>g the 50year timel<strong>in</strong>e <strong>of</strong> this assessment.Literature CitedHatch, J.J. 2002. <strong>Arctic</strong> Tern (Sterna paradisaea), The<strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A. Poole, Ed.). Ithaca:Cornell Lab <strong>of</strong> Ornithology; Retrieved from the <strong>Birds</strong> <strong>of</strong>North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/707doi:10.2173/bna.707Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Larned, W., R. Stehn, and R. Platte. 2012. Waterfowlbreed<strong>in</strong>g population survey, <strong>Arctic</strong> Coastal Pla<strong>in</strong>, Alaska,2011. Unpublished Report, U.S. Fish and Wildlife Service,Anchorage, AK. 51pp.Lens<strong>in</strong>k, C.J. 1984. The status and conservation <strong>of</strong> seabirds<strong>in</strong> Alaska. Pp. 13-27 <strong>in</strong> Status and conservation <strong>of</strong> theworld’s seabirds. (J.P. Croxall, P.G.H. Evans, and R.W.Schreiber, eds.) International Council <strong>of</strong> Bird Preservation,Cambridge, UK.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.119


Pomar<strong>in</strong>e Jaeger (Stercorarius pomar<strong>in</strong>us)<strong>Vulnerability</strong>: Moderately vulnerableConfidence: LowThe Pomar<strong>in</strong>e Jaeger, the largest <strong>of</strong> the three jaegers, prowls the arctic tundra subsist<strong>in</strong>g on a dietcomposed almost entirely <strong>of</strong> brown lemm<strong>in</strong>gs (Lemmus trimucronatus). This species presumablynests only <strong>in</strong> years when lemm<strong>in</strong>gs are abundant (Wiley and Lee 2000). Their breed<strong>in</strong>g range <strong>in</strong>Alaska is relatively close to the coast, typically nest<strong>in</strong>g <strong>in</strong> wet tundra habitats, the same habitatsas those utilized by their favorite prey. Pomar<strong>in</strong>e Jaegers may forgo breed<strong>in</strong>g <strong>in</strong> low lemm<strong>in</strong>gyears and prematurely return to their tropical and sub-tropical pelagic w<strong>in</strong>ter<strong>in</strong>g grounds (Wileyand Lee 2000). Current global population estimate is 250,000 – 3 million <strong>in</strong>dividuals (BirdLifeInternational 2012).S. Zack @ WCSRange: For the assessment, we used a rangemap modified from the NatureServe map thatmore closely approximated the range depicted <strong>in</strong>the <strong>Birds</strong> <strong>of</strong> North America species account(Wiley and Lee 2000). We also <strong>in</strong>cluded an<strong>in</strong>land breed<strong>in</strong>g range extension <strong>in</strong> theTeshekpuk Lake region (J. Liebezeit,unpublished data).Interactions with Other Species: In theassessment, Pomar<strong>in</strong>e Jaegers were ranked asparticularly vulnerable (“<strong>in</strong>creased” or “greatly<strong>in</strong>creased”) to climate change impacts for threecategories which are tied to their dependence ontheir ma<strong>in</strong> source <strong>of</strong> food - brown lemm<strong>in</strong>gs (seetable below). They have low dietary versatilityand their “<strong>in</strong>teraction” with brown lemm<strong>in</strong>gs <strong>in</strong>terms <strong>of</strong> be<strong>in</strong>g dependent on their cyclicalpopulation booms could potentially make themvulnerable to climate change. In fact, there issome concern that climate change could disruptlemm<strong>in</strong>g cycles (Ims and Fuglei 2005). Theresult<strong>in</strong>g repercussion on Pomar<strong>in</strong>e Jaegers isunknown but could be detrimental.Physiologic Hydro Niche: Because Pomar<strong>in</strong>ejaegers nest <strong>in</strong> wet habitats the physiologicalhydrologic niche category also scored highlybecause <strong>of</strong> the potential for a dry<strong>in</strong>g trend <strong>in</strong> thearctic which could result <strong>in</strong> a net loss <strong>of</strong> wettundra habitats. Current projections <strong>of</strong> annualpotential evapo-transpiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP), and its <strong>in</strong>teraction withhydrologic processes is very poorly understood(Mart<strong>in</strong> et al. 2009). Thus atmospheric moisture,as an exposure factor, was not heavily weighted<strong>in</strong> the assessment. This species’ “preference” forwet habitats may be more related to be<strong>in</strong>g closeto their prey base rather than to a physiologicalneed. Unfortunately, little is known about theirnest<strong>in</strong>g habitat requirements or their flexibility<strong>in</strong> nest site selection (Wiley and Lee 2000).120


Pomar<strong>in</strong>e Jaeger (Stercorarius pomar<strong>in</strong>us)<strong>Vulnerability</strong>: Moderately vulnerableConfidence: LowD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Physical Habitat Restrictions: Because thisspecies <strong>of</strong>ten breeds relatively close to the coastthey could be constra<strong>in</strong>ed <strong>in</strong> nest<strong>in</strong>g habitat bythe natural barrier <strong>of</strong> the <strong>Arctic</strong> Ocean if climatechange results <strong>in</strong> a net loss <strong>of</strong> wet tundra habitats(and the associated lemm<strong>in</strong>gs) on the coastalpla<strong>in</strong>.Phenological Response: Currently there is<strong>in</strong>sufficient <strong>in</strong>formation on how or if specificclimate-mediated disturbance regimes willimpact this species. Certa<strong>in</strong>ly, disturbances thatwould impact lemm<strong>in</strong>g populations (e.g.<strong>in</strong>creas<strong>in</strong>g snow depth) would, <strong>in</strong> turn, likelyimpact Pomar<strong>in</strong>e Jaegers.In summary, the comb<strong>in</strong>ed dependence <strong>of</strong>Pomar<strong>in</strong>e Jaegers on one primary food source,brown lemm<strong>in</strong>gs (which themselves, could bevulnerable to a warm<strong>in</strong>g climate), use <strong>of</strong> coastalareas, reliance on wet habitats, and other factors,resulted <strong>in</strong> a “moderately vulnerable” rank<strong>in</strong>gfor this species <strong>in</strong> this assessment.Literature CitedBirdLife International 2012. Stercorarius longicaudus. In:IUCN 2012. IUCN Red List <strong>of</strong> Threatened Species.Version 2012.1. .Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.Wiley, R.H., and D.S. Lee. 2000. Pomar<strong>in</strong>e Jaeger(Stercorarius pomar<strong>in</strong>us). In The <strong>Birds</strong> <strong>of</strong> North America,No. 483. (A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> NorthAmerica, Inc., Philadelphia, PA.121


Parasitic Jaeger (Stercorarius parasiticus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Parasitic Jaeger, unlike the two other jaegers (the Long-tailed and Pomar<strong>in</strong>e Jaegers), has avaried diet and is not closely tied to lemm<strong>in</strong>gs as a food source (Wiley and Lee 1999). Thisspecies utilizes both low-ly<strong>in</strong>g marshy tundra and drier tussock-heath tundra for nest<strong>in</strong>g sites(Wiley and Lee 1999). Parastic Jaegers <strong>of</strong>ten hunt for fledgl<strong>in</strong>g and adult birds and are believedto be an important nest predator (Wiley and Lee 1999). Like the other jaeger species, ParasiticJaegers w<strong>in</strong>ter <strong>in</strong> <strong>of</strong>fshore tropical and sub-tropical oceans. The current global populationestimate is 500,000 - 10,000,000 (BirdLife International 2012). There is no Alaska populationestimate available.W. GoldenbergRange: We used the extant NatureServe rangemap for the assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America and other rangedescriptions (Johnson and Herter 1989, Bart etal. 2012).Physiological Hydro Niche: For most <strong>of</strong> the<strong>in</strong>direct exposure and sensitivity categories <strong>in</strong>the assessment, Parasitic Jaegers were rankedwith a neutral response (see table on next page).Only <strong>in</strong> one category (Physiological hydroniche), was this species ranked with the potentialfor <strong>in</strong>creased vulnerability as a dry<strong>in</strong>g trend <strong>in</strong>the arctic could negatively impact this species.Parasitic Jaegers breed and hunt <strong>in</strong> tundrahabitats rang<strong>in</strong>g the full spectrum from wet todry. So, while they may be impacted <strong>in</strong> thewetter habitats by a dry<strong>in</strong>g trend, it is uncerta<strong>in</strong>whether that would have an overall negativeeffect on the species. Current projections <strong>of</strong>annual potential evapo-transpiration suggestnegligible atmospheric-driven dry<strong>in</strong>g for theforeseeable future (TWS and SNAP), and its<strong>in</strong>teraction with hydrologic processes is verypoorly understood (Mart<strong>in</strong> et al. 2009). Thusatmospheric moisture, as an exposure factor(most <strong>in</strong>fluential on the “hydrological niche”sensitivity category), was not heavily weighted<strong>in</strong> the assessment.Disturbance Regimes: <strong>Climate</strong>-related shifts <strong>in</strong>disturbance regimes (e.g. greater storm severity[Jones et al. 2009], disease outbreaks) andclimate change mitigation and adaptationactivities <strong>in</strong> the region will likely not occur at alarge enough scale to impact Parasitic Jaegerpopulations <strong>in</strong> Alaska.Dietary Versatility: Unlike the other jaegerspecies, the varied and flexible diet <strong>of</strong> ParasiticJaegers may enable it to cope with any climatemediatedchanges <strong>in</strong> prey base (Ims and Fuglei2005).Phenological Response & Genetic variation:There currently exists little or no <strong>in</strong>formationregard<strong>in</strong>g the genetic or phenological traits that122


Parasitic Jaeger (Stercorarius parasiticus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.would make Parasitic Jaegers more or lessvulnerable to a warm<strong>in</strong>g climate.In summary, this assessment suggests thatParasitic Jaegers may be the most resilient <strong>of</strong>jaeger species <strong>in</strong> cop<strong>in</strong>g with potential impactsassociated with climate change and with<strong>in</strong> thiscontext will likely rema<strong>in</strong> stable, at least dur<strong>in</strong>gthe time frame <strong>of</strong> this assessment.Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.BirdLife International 2012. Stercorarius longicaudus. In:IUCN 2012. IUCN Red List <strong>of</strong> Threatened Species.Version 2012.1. .Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Jones, B.M., C.D. Arp, M.T. Jorgenson, K.M. H<strong>in</strong>kel, J.A.Schmutz, and P.L. Fl<strong>in</strong>t. 2009. Increase <strong>in</strong> the rate anduniformity <strong>of</strong> coastl<strong>in</strong>e erosion <strong>in</strong> <strong>Arctic</strong> Alaska. Geophys.Res. Letters 36, L03503.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.Wiley, R.H., and D.S. Lee. 1999. Parasitic Jaeger(Stercorarius parasiticus). In The <strong>Birds</strong> <strong>of</strong> North America,No. 445. (A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> NorthAmerica, Inc., Philadelphia, PA.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.123


Long-tailed Jaeger (Stercorarius longicaudus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Long-tailed Jaeger, the most sleek and graceful <strong>of</strong> the three jaegers, is a common bird <strong>in</strong><strong>Arctic</strong> Alaska. Similar to the larger Pomar<strong>in</strong>e Jaeger, this species diet consists primarily <strong>of</strong>lemm<strong>in</strong>gs and voles, however, unlike the Pomar<strong>in</strong>e Jaeger, Long-tailed Jaegers can withstandcyclical rodent crashes as they can readily switch to other food sources (Wiley and Lee 1998).The Long-tailed Jaegers breed<strong>in</strong>g range <strong>in</strong> Alaska extends more deeply <strong>in</strong>to the <strong>in</strong>terior thaneither the Pomar<strong>in</strong>e or Parasitic Jaeger and typically nests <strong>in</strong> drier upland tundra (Wiley and Lee1998). The current global population estimate is >150,000 – 5,000,000 (BirdLife International2012). There is no Alaska population estimate available.S. Zack @ WCSRange: We used the extant NatureServe rangemap for the assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America (Wiley and Lee 1998)and other range descriptions (Johnson andHerter 1989, Bart et al. 2012).For most <strong>of</strong> the <strong>in</strong>direct exposure andsensitivity categories <strong>in</strong> the assessment, LongtailedJaegers were ranked with a neutralresponse (see table on next page). Only <strong>in</strong> onecategory (Physiological hydro niche), was thisspecies ranked with the potential for significantvulnerability to climate change as wetter tundrahabitats may be impacted by a dry<strong>in</strong>g trend.Physiological Hydro Niche: Long-tailed Jaegersuse wet tundra habitats for forag<strong>in</strong>g, particularlynon-breed<strong>in</strong>g <strong>in</strong>dividuals that congregate aroundedges <strong>of</strong> ponds or swamps where arthropods arenumerous (Wiley and Lee 1998). Alsosometimes they will nest near water bodies.However, <strong>in</strong> general, they tend to nest and huntmore <strong>of</strong>ten <strong>in</strong> drier tundra. Therefore, any tundradry<strong>in</strong>g will likely have a m<strong>in</strong>imal impact.Current projections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP), and its <strong>in</strong>teraction with hydrologicprocesses is very poorly understood (Mart<strong>in</strong> etal. 2009). Thus atmospheric moisture, as anexposure factor was not heavily weighted <strong>in</strong> theassessment.Human Response to CC: Long-tailed Jaegers(mostly non-breeders) do utilize coastal habitatsdur<strong>in</strong>g the breed<strong>in</strong>g season to some extent.Human response to climate change related to theextension <strong>of</strong> levees and coastl<strong>in</strong>e harden<strong>in</strong>g mayoccur but the extent <strong>of</strong> these activities will belocalized and thus unlikely to significantlyimpact Long-tailed Jaeger populations.Disturbance Regime: In terms <strong>of</strong> disturbanceregime, the expected <strong>in</strong>crease <strong>in</strong> storm <strong>in</strong>tensitycould result <strong>in</strong> deeper snow cover (Mart<strong>in</strong> et al.2009). Early arriv<strong>in</strong>g jaegers could havedifficulty forag<strong>in</strong>g for their key lemm<strong>in</strong>g andvole prey. However, because <strong>of</strong> their ability toswitch to other prey, this will likely not be asignificant problem for them. Unlike, Pomar<strong>in</strong>eJaeger’s dependency on lemm<strong>in</strong>gs the LongtailedJaeger will likely be able to cope withclimate-mediated changes <strong>in</strong> lemm<strong>in</strong>gabundance and cycl<strong>in</strong>g (Ims and Fuglei 2005).124


Long-tailed Jaeger (Stercorarius longicaudus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Physiological Thermal Niche: Long-tailedJaegers breed<strong>in</strong>g range extends farther <strong>in</strong>to the<strong>in</strong>terior than the other Jaegers, suggest<strong>in</strong>g theycan withstand higher temperatures and thuspossess greater thermal tolerance.Phenological Response: There currently existslittle or no <strong>in</strong>formation regard<strong>in</strong>g the genetic orphenological traits that would make Long-tailedJaegers more or less vulnerable to chang<strong>in</strong>gclimate conditions.In summary, although Long-tailed Jaegersmay experience some negative impacts fromclimate change, overall their use <strong>of</strong> variednest<strong>in</strong>g and forag<strong>in</strong>g habitats, their dietaryversatility, and large geographic range willlikely enable this species to rema<strong>in</strong> stable for thenear future.Literature CitedBart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.BirdLife International 2012. Stercorarius longicaudus. In:IUCN 2012. IUCN Red List <strong>of</strong> Threatened Species.Version 2012.1. .Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.Wiley, R.H., and D.S. Lee. 1998. Long-tailed Jaeger(Stercorarius longicaudus). In The <strong>Birds</strong> <strong>of</strong> North America,No. 483. (A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> NorthAmerica, Inc., Philadelphia, PA.125


Snowy Owl (Bubo scandiacus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Snowy Owl, a conspicuous and majestic bird <strong>of</strong> the circumpolar arctic, is an efficient hunter<strong>of</strong> small mammals <strong>in</strong> tundra environs. In years <strong>of</strong> high lemm<strong>in</strong>g numbers they will focus on thisabundant food source but will readily switch to a wide variety <strong>of</strong> other prey when lemm<strong>in</strong>gs arescarce (Parmelee 1992). Their breed<strong>in</strong>g range <strong>in</strong> Alaska is generally restricted to the <strong>Arctic</strong>Coastal Pla<strong>in</strong>, typically nest<strong>in</strong>g <strong>in</strong> more upland tundra habitats, although they <strong>of</strong>ten, though notexclusively, forage <strong>in</strong> wetter tundra (Parmelee 1992). Snowy Owls are unpredictable migrantsand will sometimes “<strong>in</strong>vade” portions <strong>of</strong> southern Canada and the northern contiguous US, <strong>in</strong>w<strong>in</strong>ters when lemm<strong>in</strong>gs are scarce <strong>in</strong> the <strong>Arctic</strong>. The current global population is estimated at300,000 (Rich et al. 2004).drier upland tundra. Because <strong>of</strong> this, they areunlikely to be significantly affected by a tundradry<strong>in</strong>g trend <strong>in</strong> the arctic which could result <strong>in</strong> anet loss <strong>of</strong> wet tundra habitats. Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Thus moisture balance, as anexposure factor (most <strong>in</strong>fluential on the“hydrological niche” sensitivity category), wasnot heavily weighted <strong>in</strong> the assessment.C. RuttRange: We used the extant Nature Serve rangemap for the assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America (Parmelee 1992) andother range descriptions (Johnson and Herter1989).Interactions with Other Species: Snowy owlnest<strong>in</strong>g seems to be tied to some degree tolemm<strong>in</strong>g population booms, so reductions <strong>in</strong>brown lemm<strong>in</strong>gs or less frequent populationbooms (through habitat change and/or <strong>in</strong>creasedic<strong>in</strong>g events; see Ims and Fuglei 2005) couldimpact nest survivorship <strong>of</strong> snowy owls,distribution, and abundance. Thus, <strong>in</strong> thisassessment, related categories (“dietaryversatility”, “species <strong>in</strong>teraction”) were rankedas “slightly <strong>in</strong>creased” vulnerability. However,Snowy Owl’s ability to switch to a variety <strong>of</strong>other prey sources suggest that it may be able tocompensate for such changes with little negativeeffect.Physiological Hydro Niche: Similarly, althoughSnowy Owls do utilize wet tundra habitats forforag<strong>in</strong>g, sometimes extensively, they exploitdrier tundra habitats as well, typically nest<strong>in</strong>g <strong>in</strong>Disturbance Regime: In terms <strong>of</strong> climatemediateddisturbances, deeper snow andsubsequent flood<strong>in</strong>g <strong>in</strong> early spr<strong>in</strong>g could reducehunt<strong>in</strong>g success. Additionally, <strong>in</strong>creased fires(Rac<strong>in</strong>e et al. 2004) could reduce availablehunt<strong>in</strong>g and nest<strong>in</strong>g areas but it is likely thiswould not result <strong>in</strong> significant impacts as theeffects <strong>of</strong> these disturbances would be localized.However, over time (probably >50 years to besignificant) <strong>in</strong>creased fires could accelerateshrubification (Tape et al. 2006) reduc<strong>in</strong>g habitatquality.126


Snowy Owl (Bubo scandiacus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Physiological Thermal Niche: While habitatand prey are available further south, Snowy owlbreed<strong>in</strong>g range <strong>in</strong> the <strong>Arctic</strong> LCC is restrictedalong a 50-100km band along the Alaskancoastl<strong>in</strong>e, where temperatures are coolercompared to <strong>in</strong>land <strong>in</strong> the summer, suggest<strong>in</strong>g apotential thermal sensitivity.Phenological Response: There is at least onelong-term data set <strong>in</strong> <strong>Arctic</strong> Alaska that couldshed some light on how this species phenologymay be chang<strong>in</strong>g with climate (D. Holt, pers.comm.). To date, though, it has not beenanalyzed so it is unknown how this species is orwill respond to chang<strong>in</strong>g biotic schedules.In summary, Snowy Owls certa<strong>in</strong>ly havesome life history traits that potential make themvulnerable to climate change. However, with<strong>in</strong>the time frame <strong>of</strong> this assessment this specieswill likely be able to cope with impactsassociated with a chang<strong>in</strong>g climate and rema<strong>in</strong>stable.Literature CitedIms, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Parmelee, David F. 1992. Snowy Owl (Bubo scandiacus),The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A. Poole, Ed.). Ithaca:Cornell Lab <strong>of</strong> Ornithology; Retrieved from the <strong>Birds</strong> <strong>of</strong>North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/010doi:10.2173/bna.10Rac<strong>in</strong>e, C., R. Jandt, C. Meyers, and J. Dennis. 2004.Tundra fire and vegetation change along a hillslope on theSeward Pen<strong>in</strong>sula, Alaska, USA. <strong>Arctic</strong>, Antarctic, andAlp<strong>in</strong>e Research 36: 1-10.Rich, T.D., C.J. Beardmore, H. Berlanga, P.J. Blancher, M.S.W. Bradstreet, G.S. Butcher, D.W. Demarest, E.H. Dunn,W.C. Hunter, E.E. Iñigo-Elias, J.A. Kennedy, A.M.Martell, A.O. Panjabi, D.N. Pashley, K.V. Rosenberg,C.M. Rustay, J.S. Wendt, and T.C. Will. 2004. Partners <strong>in</strong>Flight North American Landbird Conservation Plan.Cornell Lab <strong>of</strong> Ornithology. Ithaca, New York.http://www.partners<strong>in</strong>flight.org/cont_plan/default.htm.Tape, K, M. Sturm, C. Rac<strong>in</strong>e. 2006. The evidence forshrub expansion <strong>in</strong> northern Alaska and the pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.127


Short-eared Owl (Asio flammeus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Short-eared Owl occurs widely throughout North America. An owl <strong>of</strong> open country, theynest on the ground <strong>in</strong>habit<strong>in</strong>g marshes, grasslands, and tundra throughout their range. LikeSnowy Owls, Short-eared owl population dynamics are l<strong>in</strong>ked to cycles <strong>in</strong> their primary prey -small mammals (Holt and Leasure 1993). In the Alaskan <strong>Arctic</strong>, they typically nest on driertundra sites, usually with enough vegetation to conceal <strong>in</strong>cubat<strong>in</strong>g females. They <strong>of</strong>ten forage <strong>in</strong>wet tundra habitats, though not exclusively (Holt and Leasure 1993). Short-eared Owls migrateto w<strong>in</strong>ter<strong>in</strong>g grounds <strong>in</strong> the lower 48 and northern Mexico (Holt and Leasure 1993). The currentglobal population is estimated at 2 million (Rich et al. 2004).atmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP).M. MudgeRange: We used the extant NatureServe rangemap for the assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America and other rangedescriptions (Johnson and Herter 1989, Holt andLeasure 1993).Interactions with Other Species: Like theSnowy owl, Short-eared Owl successfulreproduction seems to be tied to some degree tolemm<strong>in</strong>g population cycles (Holt and Leasure1993). <strong>Climate</strong> change has <strong>in</strong>creased the length<strong>of</strong> lemm<strong>in</strong>g population cycles and decreasesmaximum population densities (Ims and Fuglei2005, Gilg et al. 2009) which could negatively<strong>in</strong>fluence Short-eared Owl nest survivorship,distribution, and abundance. However, theirability to switch to a variety <strong>of</strong> other preysources suggest they would, <strong>in</strong> most cases, beable to compensate for such changes with littlenegative impact.Physiological Hydro Niche: Although ShortearedOwls do utilize wet tundra habitats forforag<strong>in</strong>g, sometimes extensively, they exploitdrier tundra habitats as well and they typicallynest <strong>in</strong> drier upland tundra. Because <strong>of</strong> this, theyare unlikely to be significantly affected bytundra dry<strong>in</strong>g events <strong>in</strong> the arctic, which couldresult <strong>in</strong> a net loss <strong>of</strong> wet tundra habitats.However, current projections <strong>of</strong> annual potentialevapotranspiration suggest negligibleDisturbance Regimes: Deeper snow andsubsequent flood<strong>in</strong>g <strong>in</strong> early spr<strong>in</strong>g could reducehunt<strong>in</strong>g success. Fires and result<strong>in</strong>gshrubification (Tape et al. 2006) may reduceavailable hunt<strong>in</strong>g and nest<strong>in</strong>g areas, but it isunlikely this would result <strong>in</strong> significant impacts,as the percentage <strong>of</strong> ground affected would bem<strong>in</strong>imal. Thermokarst will likely change uplandtundra habitats to new vegetation communities(Mart<strong>in</strong> et al. 2009) but it is unknown how thesenew communities may or may not be suitable forShort-eared Owls.Interspecies Interactions: Increasedfreeze/thaw and ic<strong>in</strong>g events could elim<strong>in</strong>aterodent cycles and keep their populationsrelatively low (Gilg et al. 2009).Human Response to CC: Increas<strong>in</strong>g power l<strong>in</strong>esassociated with a wider-rang<strong>in</strong>g road network orother human activities <strong>in</strong> response to climatechange could cause direct mortality, but theextent <strong>of</strong> such <strong>in</strong>frastructure will likely bem<strong>in</strong>imal <strong>in</strong> the near future.128


Short-eared Owl (Asio flammeus)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Physiological Thermal Niche: Because ShortearedOwls breed over a wide latitud<strong>in</strong>algradient, there is no evidence to suggest thatthey have any thermal sensitivity dur<strong>in</strong>g nest<strong>in</strong>g.They could actually benefit from warmertemperatures at the northern term<strong>in</strong>us <strong>of</strong> theirbreed<strong>in</strong>g range via reduction <strong>in</strong> cold stress.Phenological Response &Genetic Variation:There currently exists little or no <strong>in</strong>formationregard<strong>in</strong>g the genetic or phenological traits thatwould make this species more or less vulnerableto a warm<strong>in</strong>g climate.In summary, while Short-eared Owls havesome life history traits that potentially makethem vulnerable to climate change, with<strong>in</strong> thetime frame <strong>of</strong> this assessment this species willlikely be able to cope with impacts associatedwith a chang<strong>in</strong>g climate and rema<strong>in</strong> stable.Literature CitedGilg, O., B. Sittler, I. Hanski. 2009. <strong>Climate</strong> change andcyclic predator–prey population dynamics <strong>in</strong> the high<strong>Arctic</strong>. Global <strong>Change</strong> Biology 15: 2634-2652.Holt, D.W. and S.M. Leasure. 1993. Short-eared Owl (Asi<strong>of</strong>lammeus). In The <strong>Birds</strong> <strong>of</strong> North America, No. 62. (A.Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong> North America, Inc.,Philadelphia, PA.Ims, R.A. and E. Fuglei. 2005. Trophic <strong>in</strong>teraction cycles <strong>in</strong>tundra ecosystems and the impact <strong>of</strong> climate change.BioScience 55: 311-322.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Rich, T.D., C.J. Beardmore, H. Berlanga, P.J. Blancher, M.S.W. Bradstreet, G.S. Butcher, D.W. Demarest, E.H. Dunn,W.C. Hunter, E.E. Iñigo-Elias, J.A. Kennedy, A.M.Martell, A.O. Panjabi, D.N. Pashley, K.V. Rosenberg, C.M. Rustay, J.S. Wendt, and T.C. Will. 2004. Partners <strong>in</strong>Flight North American Landbird Conservation Plan.Cornell Lab <strong>of</strong> Ornithology. Ithaca, New York.http://www.partners<strong>in</strong>flight.org/cont_plan/default.htm.Tape, K, M. Sturm, C. Rac<strong>in</strong>e. 2006. The evidence forshrub expansion <strong>in</strong> northern Alaska and the pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.129


Common Raven (Corvus corax)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateConThe Common Raven is wide-rang<strong>in</strong>g throughout much <strong>of</strong> North America utiliz<strong>in</strong>g a variety <strong>of</strong>habitats from deserts <strong>in</strong> the southwestern U.S. to tundra habitats <strong>in</strong> <strong>Arctic</strong> Alaska (Boarman andHe<strong>in</strong>rich 2000). Historically, this species did not nest <strong>in</strong> the northern portion <strong>of</strong> the <strong>Arctic</strong>Coastal Pla<strong>in</strong> <strong>of</strong> Alaska but with the grow<strong>in</strong>g human presence <strong>in</strong> the region, particularly from oildevelopment activities, they have been able to utilize human structures for nest<strong>in</strong>g (Johnson andHerter 1989, Day 1998). Ravens are a generalist species and take advantage <strong>of</strong> a wide variety <strong>of</strong>prey and are a noted nest predator. Although some <strong>in</strong>dividuals may move south <strong>in</strong> the w<strong>in</strong>ter,many rema<strong>in</strong> on the coastal pla<strong>in</strong> (Johnson and Herter 1989). The global population is estimatedat 16 million (Rich et al. 2004).J. Liebezeit @ WCSRange: We adjusted the NatureServe map tomatch the <strong>Birds</strong> <strong>of</strong> North America range map forthis assessment as it more accurately representedthis species’ range based on other accounts andpersonal observations (Johnson and Herter 1989,S. Backensto, J. Liebezeit, pers. obs.) TheNature Serve map did not <strong>in</strong>clude the ravenrange extend<strong>in</strong>g to the <strong>Arctic</strong> Ocean coastl<strong>in</strong>e.Based on the assessment ravens are likely tobe slightly less vulnerable <strong>in</strong> five categories andslightly more vulnerable <strong>in</strong> two, but overallclimate change impacts will have little impact(“neutral”) on this species (see table on nextpage).Human Response to CC: Increased humanactivity and <strong>in</strong>frastructure associated withclimate change mitigation could benefit ravensas witnessed by the <strong>in</strong>fluence <strong>of</strong> current humandevelopments <strong>in</strong> the region on ravenpopulations. However, <strong>in</strong> the next 50 years,there likely will be no significant development<strong>of</strong> this type <strong>in</strong> <strong>Arctic</strong> Alaska so it would onlyhave nom<strong>in</strong>al <strong>in</strong>fluence on ravens.Physiological Thermal Niche: Ravens usewarm thermal environments created by oilprocess<strong>in</strong>g facilities to roost and some breed<strong>in</strong>gpairs <strong>in</strong> the oil fields place their nests on heatedstructures. On the Colville river, nests orientedto southerly aspects are common (S. Backensto,pers. comm.). No studies have <strong>in</strong>dicated if thesebehaviors actually benefit ravens (e.g. <strong>in</strong>creasenest survivorship). Despite this, these behaviorssuggest they may benefit from a warm<strong>in</strong>gclimate by reduc<strong>in</strong>g the physiological stress <strong>of</strong>cold temperatures dur<strong>in</strong>g key parts <strong>of</strong> theirlifecycle.Physiological Hydro Niche: Ravens canwithstand dramatic extremes <strong>in</strong> moisture regimetolerances as is exhibited by the fact that theyare equally at home <strong>in</strong> the Mojave Desert as theyare <strong>in</strong> the wet Pacific Northwest. Therefore, adrier or wetter arctic will unlikely have anegative impact on this species.Dietary Versatility: The ravens’ varied diet andability to exploit human food subsidies could130


Common Raven (Corvus corax)<strong>Vulnerability</strong>: Presumed StableConConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.benefit this species as the climate warms, humanactivity <strong>in</strong> the region <strong>in</strong>creases, and the foodbase changes.Physical Habitat Restrictions: Despite ravenuse <strong>of</strong> human structures for nest<strong>in</strong>g on thecoastal pla<strong>in</strong>, overall, nest<strong>in</strong>g sites are still quitelimited s<strong>in</strong>ce they depend on relativelyuncommon geologic features (e.g. cliffs, riverbanks). This paucity <strong>of</strong> adequate breed<strong>in</strong>g siteswill still be a key limit<strong>in</strong>g factor for this species.Genetic Variation: Although genetic studies onAlaskan raven populations have not beencompleted, they do tend to have high geneticvariation (Webb et al. 2011) and thus would beless susceptible to disease and other disturbanceevents.Phenological Response: Currently, there are nolong term data sets to provide sufficient<strong>in</strong>formation on raven phenological response toclimate change <strong>in</strong> the <strong>Arctic</strong> and so it isunknown how they will respond to chang<strong>in</strong>gbiotic schedules.In summary, the generalist nature <strong>of</strong> thisspecies, comb<strong>in</strong>ed with their high adaptabilityand expansive range suggests ravens will rema<strong>in</strong>stable <strong>in</strong> the region with regard to climatechange impacts dur<strong>in</strong>g the 50 year timel<strong>in</strong>e <strong>of</strong>this assessment.Literature CitedBoarman, W.I. and He<strong>in</strong>rich, B. 1999. Common raven(Corvus corax). In: The <strong>Birds</strong> <strong>of</strong> North America No. 476(Poole, A. and Gill, F. eds.), Philadelphia, and AmericanOrnithologists' Union, Wash<strong>in</strong>gton D.C.: Academy <strong>of</strong>Natural Sciences.Day, R.H. 1998. Predator populations and predation<strong>in</strong>tensity on tundra-nest<strong>in</strong>g birds <strong>in</strong> relation to humandevelopment. Fairbanks: Unpublished report by ABR, Inc.for U.S. Fish and Wildlife Service.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Rich, T.D., C.J. Beardmore, H. Berlanga, P.J. Blancher, M.S.W. Bradstreet, G. S. Butcher, D.W. Demarest, E.H.Dunn, W.C. Hunter, E.E. Iñigo-Elias, J.A. Kennedy, A.M.Martell, A.O. Panjabi, D.N. Pashley, K.V. Rosenberg, C.M. Rustay, J.S. Wendt, and T.C. Will. 2004. Partners <strong>in</strong>Flight North American Landbird Conservation Plan.Cornell Lab <strong>of</strong> Ornithology. Ithaca, New York.http://www.partners<strong>in</strong>flight.org/cont_plan/default.htmWebb, W., J.M. Marzluff, and K.E. Omland. 2011.Random <strong>in</strong>terbreed<strong>in</strong>g between cryptic l<strong>in</strong>eages <strong>of</strong> theCommon Raven: evidence for speciation <strong>in</strong> reverse.Molecular Ecology (1-13). DOI: 10.1111/j.1365-294X.2011.05095.x131


American Tree Sparrow (Spizella arborea)<strong>Vulnerability</strong>: Increase LikelyConfidence: ModerateThe American Tree Sparrow is a common breed<strong>in</strong>g bird <strong>of</strong> boreal and tundra dom<strong>in</strong>ated habitats<strong>in</strong> northern Canada and Alaska. This species breeds <strong>in</strong> open scrubby areas; willow, birch, andalder thickets, stunted spruce, open tundra with scattered shrubs, <strong>of</strong>ten near lakes or bogs(Naugler 1993). In summer American Tree Sparrows consume a wide variety <strong>of</strong> animal prey(primarily both larval and adult <strong>in</strong>sects). Alaskan birds are short-distance migrants and w<strong>in</strong>ter <strong>in</strong>temperate North America (Naugler 1993). This species’ population is very large (>10 million)although the overall population has undergone a small (statistically <strong>in</strong>significant) decrease overthe last 40 years <strong>in</strong> North America (Butcher and Niven 2007).S. Zack @ WCSPhysiological Thermal Niche: Because thisspecies tolerates warm temperatures at breed<strong>in</strong>gsites <strong>in</strong> the Alaskan <strong>in</strong>terior and further south, itis unlikely that a warm<strong>in</strong>g climate willcompromise this species’ physiological ability toadapt thermally. Warm<strong>in</strong>g could actuallyfacilitate northern expansion <strong>of</strong> their range.Range: We used the extant NatureServe rangemap for the assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America (Naugler 1993) andother range descriptions (Johnson and Herter1989).For most <strong>of</strong> the sensitivity categories <strong>in</strong> theassessment, American Tree Sparrows wereranked with a neutral response (see table on nextpage) and for five categories, they ranked aspotentially hav<strong>in</strong>g decreased vulnerability. Asshrubby and boreal habitats <strong>in</strong>crease on theNorth Slope (Tape et al. 2006), American TreeSparrows will be able to exploit new areas andpotentially expand their breed<strong>in</strong>g range furthernorthward.Human Response to <strong>Climate</strong> <strong>Change</strong>: In theirlower 48 w<strong>in</strong>ter<strong>in</strong>g range, this species is knownto adapt well to human-dom<strong>in</strong>ated environmentsand are a frequent bird <strong>in</strong> suburban sett<strong>in</strong>gs(Naugler 1993). Because <strong>of</strong> this, any <strong>in</strong>crease <strong>in</strong>human presence (e.g. activities associated withclimate change mitigation) will likely have nonegatively impact on this species.Physiological Hydrologic Niche: AmericanTree Sparrow breed<strong>in</strong>g territories are generallyfound near water, such as bogs, lakes or riparianareas, and so it is possible that an arctic dry<strong>in</strong>gtrend could negatively impact this species.However, a dry<strong>in</strong>g trend is more likely to affectshallow ponds and emergent tundra which areless likely to be utilized by this riparian-orientedspecies. Current projections <strong>of</strong> annual potentialevavapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP) and so wet habitatsmay only be m<strong>in</strong>imally impacted.132


American Tree Sparrow (Spizella arborea)<strong>Vulnerability</strong>: Increase LikelyConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response: One common breed<strong>in</strong>gpasser<strong>in</strong>e, the Lapland Longspur, appears tohave adjusted nest <strong>in</strong>itiation <strong>in</strong> response toclimate warm<strong>in</strong>g over the last 10 years (J.Liebezeit and S. Zack, unpublished data), but itis unknown whether this result can begeneralized. Dur<strong>in</strong>g a 20-year period (1992-2011) American Tree Sparrows have shown nosignificant shift <strong>in</strong> earlier or later departure datesfrom the Alaska Bird Observatory’s band<strong>in</strong>gstation <strong>in</strong> Fairbanks, Alaska (S. Guers,unpublished data). However, there areapparently no other long-term datasets for thisspecies’ breed<strong>in</strong>g or migration activities and solittle else is known regard<strong>in</strong>g phenology <strong>in</strong> thisspecies (S. Guers, pers. comm.).In general, this vulnerability assessmentsuggests that American Tree Sparrows willlikely <strong>in</strong>crease, potentially expand<strong>in</strong>g theirbreed<strong>in</strong>g range <strong>in</strong> <strong>Arctic</strong> Alaska under thecurrent predictions <strong>of</strong> climate change.Literature CitedButcher, G.S. and D.K. Niven. 2007. Common <strong>Birds</strong> <strong>in</strong>Decl<strong>in</strong>e. Audubon magaz<strong>in</strong>ehttp://birds.audubon.org/common-birds-decl<strong>in</strong>e.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Naugler, C.T. 1993. American Tree Sparrow (Spizellaarborea), No. 37, The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A.Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology; Retrievedfrom the <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/037doi:10.2173/bna.37Tape, K, M. Sturm, C. Rac<strong>in</strong>e. 2006. The evidence forshrub expansion <strong>in</strong> northern Alaska and the pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.133


Savannah Sparrow (Passerculus sandwichensis)<strong>Vulnerability</strong>: Increase LikelyConfidence: Very HighThe Savannah Sparrow has a widespread breed<strong>in</strong>g range across North America from thesouthern U.S. to <strong>Arctic</strong> Alaska. This species will breed <strong>in</strong> open habitats rang<strong>in</strong>g from meadows,cultivated fields, grazed pastures, roadsides, coastal grasslands and tundra (Wheelwright andRis<strong>in</strong>g 2008). On the coastal pla<strong>in</strong> <strong>of</strong> <strong>Arctic</strong> Alaska, tundra nest<strong>in</strong>g habitat is <strong>of</strong>ten associatedwith stream/river dra<strong>in</strong>ages, nest<strong>in</strong>g on the ground <strong>of</strong>ten hidden under low shrubs (Wheelwrightand Ris<strong>in</strong>g 2008). Dur<strong>in</strong>g the breed<strong>in</strong>g season they forage <strong>in</strong> a wide range <strong>of</strong> habitats on a variety<strong>of</strong> <strong>in</strong>sect prey although seeds and other vegetative matter are also consumed (Wheelwright andRis<strong>in</strong>g 2008). Savannah Sparrows are short-distance migrants and w<strong>in</strong>ter <strong>in</strong> the southern U.S.and Mexico (Wheelwright and Ris<strong>in</strong>g 2008). The North American population trend is currentlystable (Wheelwright and Ris<strong>in</strong>g 2008).C. RuttRange: We used the extant NatureServe rangemap for the assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America and other rangedescriptions (Johnson and Herter 1989,Wheelwright and Ris<strong>in</strong>g 2008).For most <strong>of</strong> the <strong>in</strong>direct exposure andsensitivity categories <strong>in</strong> the assessment,Savannah Sparrows were scored with a neutralresponse (see table on next page). For fivecategories their traits were considered todecrease vulnerability.Human Responses to CC: Across their rangeSavannah Sparrows have generally benefitedfrom human activity, and their densities over thepast century are probably greater than at anytime <strong>in</strong> the past because <strong>of</strong> this species’dependence on human-modified open habitats(e.g. fields, hay fields, cropland) (Wheelwrightand Ris<strong>in</strong>g 2008). Based on this pattern, humanresponses to climate change <strong>in</strong> the <strong>Arctic</strong> LCCwill likely either have no impact or potentiallybenefit this species.Physiological Thermal Niche: As they are at thenorthern extreme <strong>of</strong> their breed<strong>in</strong>g range <strong>in</strong><strong>Arctic</strong> Alaska, Savannah Sparrows may actuallybenefit from a warmer climate, particularlydur<strong>in</strong>g the nestl<strong>in</strong>g stage when theirthermoregulatory capacity is compromised andcold snaps can be frequent and potentially lethal(Barry 1962) early <strong>in</strong> the breed<strong>in</strong>g season. Atsome po<strong>in</strong>t, ambient temperatures may exceed acritical po<strong>in</strong>t <strong>in</strong> their ability to adjustphysiologically, however the magnitude <strong>of</strong>climate warm<strong>in</strong>g estimated for the next 50 yearsis likely not great enough for this to be an issue(Mart<strong>in</strong> et al. 2009).Physiological Hydro Niche: Savannah Sparrowsare not known to be closely associated withaquatic/wetland habitats or moisture regimesalthough they do <strong>of</strong>ten use habitats alongriparian stretches on the coastal pla<strong>in</strong> (J.Liebezeit, unpublished data.). Reduction <strong>in</strong><strong>in</strong>vertebrate communities from net dry<strong>in</strong>g affectcould negatively affect forag<strong>in</strong>g success dur<strong>in</strong>gthe breed<strong>in</strong>g season but current projections <strong>of</strong>annual potential evapo-transpiration suggestnegligible atmospheric-driven dry<strong>in</strong>g for the134


Savannah Sparrow (Passerculus sandwichensis)<strong>Vulnerability</strong>: Increase LikelyConfidence: Very HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.foreseeable future (TWS and SNAP). Also thisspecies could potentially switch to less aquaticdependentprey as they have a broad diet(Wheelwright and Ris<strong>in</strong>g 2008).Genetic Diversity: Savannah Sparrows exhibithigh genetic diversity (Z<strong>in</strong>k et al. 2005) andwould thus likely be more resilient to diseaseand other disturbance events than species withlower genetic diversity.Phenological Response: One common breed<strong>in</strong>gpasser<strong>in</strong>e, the Lapland Longspur, appears tohave adjusted nest <strong>in</strong>itiation <strong>in</strong> response toclimate warm<strong>in</strong>g over the last 10 years (J.Liebezeit and S. Zack, unpublished data), but itis unknown whether this result can begeneralized. Dur<strong>in</strong>g a 20-year period (1992-2011) Savannah Sparrows have shown nosignificant shift <strong>in</strong> earlier or later departure datesfrom the Alaska Bird Observatory’s band<strong>in</strong>gstation <strong>in</strong> Fairbanks, Alaska (S. Guers,unpublished data). Little else is known regard<strong>in</strong>gphenology <strong>in</strong> this species (S. Guers, pers.comm.).In general, this assessment suggests thatSavannah Sparrows exhibit high flexibility <strong>in</strong>habitat use and behavior and so will likely<strong>in</strong>crease under current predictions <strong>of</strong> climatechange.Literature CitedBarry, T.W. 1962. Effect <strong>of</strong> late seasons on Atlantic Brantreproduction. Journal <strong>of</strong> Wildlife Management 26: 19-26.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.Wheelwright, N. T. and J. D. Ris<strong>in</strong>g. 2008. SavannahSparrow (Passerculus sandwichensis), The <strong>Birds</strong> <strong>of</strong> NorthAmerica Onl<strong>in</strong>e (A. Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong>Ornithology; Retrieved from the <strong>Birds</strong> <strong>of</strong> North AmericaOnl<strong>in</strong>e: http://bna.birds.cornell.edu/bna/species/045.doi:10.2173/bna.45.Z<strong>in</strong>k, R.M., J.D. Ris<strong>in</strong>g, S. Mockford, A.G. Horn, J.M.Wright, M. Leonard, and M.C. Westberg. 2005.Mitochondrial DNA variation, species limits, and rapidevolution <strong>of</strong> plumage coloration and size <strong>in</strong> the SavannahSparrow. Condor 107(1):21-28.135


White-crowned Sparrow (Zonotrichia leucophrys)<strong>Vulnerability</strong>: Increase LikelyConfidence: HighThe White-crowned Sparrow is a common breed<strong>in</strong>g bird from the Pacific Coast <strong>in</strong> the Lower 48to the northern extent <strong>of</strong> its range <strong>in</strong> <strong>Arctic</strong> Alaska (Chilton et al. 1995). The Gambel’ssubspecies, the breeder <strong>in</strong> Alaska, is most commonly associated with shrubby riparian habitatsthat run through both boreal and tundra environs. White-crowned Sparrows consume a widevariety <strong>of</strong> plant and animal prey and dur<strong>in</strong>g the breed<strong>in</strong>g season feed their young a strict diet <strong>of</strong><strong>in</strong>sect and other animal prey. Alaskan birds are short-distance migrants and w<strong>in</strong>ter <strong>in</strong> temperateNorth America (Chilton et al. 1995). Overall White-crowned Sparrow populations appear to bestable (Chilton et al. 1995).Physiological Thermal Niche: Because thisspecies tolerates warm temperatures at breed<strong>in</strong>gsites <strong>in</strong> the Alaskan <strong>in</strong>terior and further south, itis unlikely that a warm<strong>in</strong>g climate willcompromise its physiological ability to adaptthermally. Warm<strong>in</strong>g could actually facilitatenorthern expansion <strong>of</strong> their range by reduc<strong>in</strong>gcold stress, particularly dur<strong>in</strong>g the nest<strong>in</strong>gperiod.S. Zack @ WCSRange: We used the extant NatureServe rangemap for the assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America (Chilton et al. 1995) andother range descriptions (Johnson and Herter1989).For most <strong>of</strong> the <strong>in</strong>direct exposure andsensitivity categories <strong>in</strong> the assessment, WhitecrownedSparrows were scored as neutral (seetable on next page), and for five categories, theyranked as potentially hav<strong>in</strong>g decreasedvulnerability. As shrubby and boreal habitats<strong>in</strong>crease on the North Slope (Tape et al. 2006),White-crowned Sparrows will be able to exploitnew areas and potentially expand their breed<strong>in</strong>grange further northward (Mart<strong>in</strong> et al. 2009).Human Response to CC: In their Lower 48w<strong>in</strong>ter<strong>in</strong>g range, this species is known to adaptwell to human-dom<strong>in</strong>ated environments and area frequent bird <strong>in</strong> suburban sett<strong>in</strong>gs. Because <strong>of</strong>this, any <strong>in</strong>crease <strong>in</strong> human presence (e.g.activities <strong>in</strong> response to climate change) willlikely have no negative impact on this species,and could, <strong>in</strong> fact, be beneficial through<strong>in</strong>creas<strong>in</strong>g habitat patch<strong>in</strong>ess and heterogeneity.Physiological Hydro Niche: White-crownedSparrow breed<strong>in</strong>g territories are generally foundnear a source <strong>of</strong> water (stand<strong>in</strong>g or runn<strong>in</strong>g), andso it is possible that a dry<strong>in</strong>g trend couldnegatively impact this species. However, adry<strong>in</strong>g trend would more likely affect shallowponds and emergent tundra which are less likelyto be utilized by this riparian-oriented species.Also, it is important to po<strong>in</strong>t out that currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP).136


White-crowned Sparrow (Zonotrichia leucophrys)<strong>Vulnerability</strong>: Increase LikelyConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response:One common breed<strong>in</strong>g passer<strong>in</strong>e, the LaplandLongspur, appears to have adjusted nest<strong>in</strong>itiation <strong>in</strong> response to climate warm<strong>in</strong>g overthe last 10 years (J. Liebezeit and S. Zack,unpublished data), but it is unknown whetherthis result can be generalized. For WhitecrownedSparrows, there are long-term data setsavailable from bird band<strong>in</strong>g stations <strong>in</strong>Fairbanks (Alaska Bird Observatory), Tok(Tetl<strong>in</strong> National Wildlife Refuge), and nearDenali National Park (Alaska Bird Observatory)that <strong>in</strong>clude spr<strong>in</strong>g arrival dates and falldeparture dates. Unfortunately, these data havenot been exam<strong>in</strong>ed or the year-to-year variationmakes it difficult to see trends (S. Sharbaugh,pers. comm.).In general, this assessment suggests thatWhite-crowned Sparrows will likely <strong>in</strong>creaseand expand their breed<strong>in</strong>g range <strong>in</strong> <strong>Arctic</strong>Alaska under the current projections <strong>of</strong> climatechange.Literature CitedChilton, G., M. C. Baker, C. D. Barrent<strong>in</strong>e and M. A.Cunn<strong>in</strong>gham. 1995. White-crowned Sparrow (Zonotrichialeucophrys), The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A. Poole,Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology; Retrieved fromthe <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/183doi:10.2173/bna.183Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Tape, K, M. Sturm, C. Rac<strong>in</strong>e. 2006. The evidence forshrub expansion <strong>in</strong> northern Alaska and the pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.137


Lapland Longspur (Calcarius lapponicus)<strong>Vulnerability</strong>: Increase LikelyConfidence: ModerateThe Lapland Longspur is the most abundant passer<strong>in</strong>e breeder on the North Slope <strong>of</strong> Alaska.This species is most commonly associated with the <strong>Arctic</strong> Coastal Pla<strong>in</strong>, but also nests <strong>in</strong> alp<strong>in</strong>ehabitats <strong>in</strong> the <strong>in</strong>terior Brooks Range. High nest<strong>in</strong>g densities have been found throughout theAlaskan coastal pla<strong>in</strong> (Custer and Pitelka 1977, Liebezeit et al. 2011) with nest<strong>in</strong>g sites <strong>of</strong>ten <strong>in</strong>dry/moist tundra near tussocks and less frequently <strong>in</strong> wetter tundra habitats (Hussell andMontgomerie 2002). Dur<strong>in</strong>g the breed<strong>in</strong>g season they typically forage <strong>in</strong> a wide range <strong>of</strong> habitatson a variety <strong>of</strong> <strong>in</strong>vertebrates but also consume seeds and other vegetative matter (Hussell andMontgomerie 2002). Alaskan Lapland Longspurs are short-distance migrants and are believed tow<strong>in</strong>ter <strong>in</strong> temperate North America. Current North American population estimate is 40-50million.C. Ruttthe next 50 years are probably not drasticenough for this to be an issue (Mart<strong>in</strong> et al.2009).Range: We used the extant NatureServe rangemap for this assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America and other range maps(Hussell and Montgomerie 2002, Bart et al.2012).For most <strong>of</strong> the <strong>in</strong>direct exposure andsensitivity categories <strong>in</strong> the assessment, LaplandLongspurs were ranked with a neutral response(see table on next page). For five categories,longspurs were ranked as potentially hav<strong>in</strong>gdecreased vulnerability. For two categories(“habitat restrictions” and “biotic dispersalpotential”) this rank<strong>in</strong>g is a reflection <strong>of</strong> thisspecies ubiquitous range across the assessmentarea and flexible usage <strong>of</strong> habitats for bothnest<strong>in</strong>g and forag<strong>in</strong>g.Physiological Thermo Niche: Longspurs mayactually benefit from a warmer physiologicalthermal niche, particularly dur<strong>in</strong>g the nestl<strong>in</strong>gstage when their thermo-regulatory capacity iscompromised and cold snaps can be frequentand potentially lethal (Barry 1962) early <strong>in</strong> thebreed<strong>in</strong>g season. At some po<strong>in</strong>t, ambienttemperatures may exceed a critical tipp<strong>in</strong>g po<strong>in</strong>t<strong>in</strong> longspur ability to adjust physiologically,however summer climate warm<strong>in</strong>g estimates <strong>in</strong>Phenological Response: Some evidence<strong>in</strong>dicates that Lapland Longspurs are able totrack phenological changes associated with awarm<strong>in</strong>g climate at least <strong>in</strong> terms <strong>of</strong> nest<strong>in</strong>itiation (J. Liebezeit and S. Zack, unpublisheddata) suggest<strong>in</strong>g they may be able to compensatefor a warm<strong>in</strong>g climate, at least <strong>in</strong> terms <strong>of</strong> nesttim<strong>in</strong>g. However their ability to cope withdecoupl<strong>in</strong>g <strong>of</strong> nest <strong>in</strong>itiation and other events isunknown.Physiological Hydro Niche: In terms <strong>of</strong>hydrological niche, longspurs may experiencesome detrimental impact as they do have somelevel <strong>of</strong> dependency on wetter habitats. Theywould unlikely be significantly affected. In fact,a dry<strong>in</strong>g trend could expand preferred habitat. Itis important to note that current moisture138


Lapland Longspur (Calcarius lapponicus)<strong>Vulnerability</strong>: Increase LikelyConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.balance predictions suggest, at best, negligibledry<strong>in</strong>g for the foreseeable future (TWS andSNAP). Thus moisture balance, as an exposurefactor was not heavily weighted <strong>in</strong> theassessment.Disturbance regime: Unlike many <strong>of</strong> theshorebirds and waterfowl species, longspurs arenot dependent on shorel<strong>in</strong>e habitats and sowould likely not be significantly impacted byris<strong>in</strong>g sea level or coastal disturbance events.Overall, this assessment suggests thatLapland Longspus could benefit and possibly<strong>in</strong>crease under the current predictions <strong>of</strong> climatechange dur<strong>in</strong>g the timeframe <strong>of</strong> this assessment.Literature CitedBarry, T.W. 1962. Effect <strong>of</strong> late seasons on Atlantic Brantreproduction. Journal <strong>of</strong> Wildlife Management 26: 19-26.Bart, J., S. Brown, B. Andres, R. Platte, and A. Mann<strong>in</strong>g.2012. North slope <strong>of</strong> Alaska. Ch. 4 <strong>in</strong> Bart, J. and V.Johnston, eds. Shorebirds <strong>in</strong> the North American <strong>Arctic</strong>:results <strong>of</strong> ten years <strong>of</strong> an arctic shorebird monitor<strong>in</strong>gprogram. Studies <strong>in</strong> Avian Biology.Custer, T.W. and F.A. Pitelka. 1977. Demographic features<strong>of</strong> a Lapland Longspur population near Barrow, Alaska.Auk 94: 505-525.Hussell, D.J.T. and R. Montgomerie. 2002. LaplandLongspur (Calcarius lapponicus). In The <strong>Birds</strong> <strong>of</strong> NorthAmerica, No. 656 (A. Poole and F. Gill, eds.). The <strong>Birds</strong> <strong>of</strong>North America, Inc. Philadelphia, PA.Liebezeit, J.R., G.C. White, and S. Zack. 2011. <strong>Breed<strong>in</strong>g</strong>ecology <strong>of</strong> birds at Teshekpuk Lake: a key habitat site onthe <strong>Arctic</strong> Coastal Pla<strong>in</strong> <strong>of</strong> Alaska. <strong>Arctic</strong> 64 (1): 32-44.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.139


Smith’s Longspur (Calcarius pictus)<strong>Vulnerability</strong>: Presumed StableConfidence: Very HighThe Smith’s Longspur is a relatively understudied passer<strong>in</strong>e breeder on the North Slope <strong>of</strong>Alaska. In this region, they are most commonly associated with the Brooks Range foothillswhere they are found <strong>in</strong> broad valleys and low passes (S. Kendall, pers. comm.). Smith’sLongspurs are known for their polygynandrous mat<strong>in</strong>g system which is unusual <strong>in</strong> passer<strong>in</strong>es. Inarctic Alaska, this species nests on open tundra, from upland hummocky terra<strong>in</strong> (Briskie 2009) towet meadow habitats (Johnson and Herter 1989). Dur<strong>in</strong>g the breed<strong>in</strong>g season they forage on avariety <strong>of</strong> <strong>in</strong>vertebrates but also consume seeds and other vegetation (Briskie 2009). Smith’sLongspurs are short-distance migrants and w<strong>in</strong>ter <strong>in</strong> the U.S. Midwest. Current populationestimate is unknown but the trend is believed to be stable (BirdLife International 2012).evapo-transpiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Also, this speciescould switch to less aquatic-dependent prey asthey apparently have a broad diet (Briskie 2009).S. Zack @ WCSRange: We used the extant NatureServe rangemap for the assessment as it closely matchedthat described <strong>in</strong> the <strong>Birds</strong> <strong>of</strong> North America(Briskie 2009) and other range descriptions(Johnson and Herter 1989).Physiological Hydro Niche: Smith’s Longspurswere ranked as potentially most vulnerable toclimate change <strong>in</strong> the physiological hydrologicalniche although the range from “neutral” to“<strong>in</strong>creased” vulnerability selected <strong>in</strong> thesecategories reflects uncerta<strong>in</strong>ty <strong>in</strong> the severity <strong>of</strong>impact (see table on next page). This speciesrelies to some degree on wet tundra habitats forforag<strong>in</strong>g and nest<strong>in</strong>g. They also tend to nest <strong>in</strong>association with rivers and streams and mayutilize riparian areas for forag<strong>in</strong>g more than iscurrently documented (S. Kendall, pers. comm.).Reduction <strong>in</strong> <strong>in</strong>vertebrate communities andhabitat loss from a net dry<strong>in</strong>g affect couldnegatively impact forag<strong>in</strong>g success and nest siteavailability dur<strong>in</strong>g the breed<strong>in</strong>g season. Butcurrent projections <strong>of</strong> annual potentialDisturbance Regime: An <strong>in</strong>crease <strong>in</strong> fires(Rac<strong>in</strong>e and Jandt 2008) would likely degradeSmith’s Longspur breed<strong>in</strong>g habitat, but impactsare mostly unknown and likely would belocalized (S. Kendall, pers. comm.). The currentregime <strong>of</strong> <strong>in</strong>frequent fires <strong>in</strong> tundra habitatallows for the growth <strong>of</strong> dwarf and tall/lowshrubs which are habitats utilized by thisspecies. Increased flood<strong>in</strong>g <strong>in</strong> streams and riverscould affect riparian habitat but it is unknownhow these events might impact Smith’sLongspur use <strong>of</strong> these habitats.Genetic Variation: There is little <strong>in</strong>formation <strong>in</strong>the literature regard<strong>in</strong>g genetic variation orrecent evolutionary bottlenecks for this species.140


Smith’s Longspur (Calcarius pictus)<strong>Vulnerability</strong>: Presumed StableConfidence: Very HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response: Although someevidence <strong>in</strong>dicates that their relative, theLapland Longspur, is able to track phenologicalchanges associated with a warm<strong>in</strong>g climate atleast <strong>in</strong> terms <strong>of</strong> nest <strong>in</strong>itiation (J. Liebezeit andS. Zack unpublished data) this has not beendocumented for Smith’s Longspurs. Their abilityto cope with decoupl<strong>in</strong>g <strong>of</strong> nest <strong>in</strong>itiation andother phenological events (Tulp andSchekkerman 2008), on which they aredependent, is also unknown.In summary, this assessment suggests thatSmith’s Longspurs have enough flexibility torema<strong>in</strong> stable under the current predictions <strong>of</strong>climate change with<strong>in</strong> the 50 year timeframe <strong>of</strong>this assessment.Literature CitedBirdLife International. 2012. Calcarius pictus. In: IUCN2012. IUCN Red List <strong>of</strong> Threatened Species. Version2012.1. www.iucnredlist.org.Briskie, James V. 2009. Smith's Longspur (Calcariuspictus), The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e (A. Poole,Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology; Retrieved fromthe <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/034doi:10.2173/bna.34Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Rac<strong>in</strong>e, C. and R. Jandt. 2008. The 2007”AnaktuvukRiver” tundra fire on the <strong>Arctic</strong> Slope <strong>of</strong> Alaska: a newphenomenon? In D.L. Kane and K.M. H<strong>in</strong>kel (Eds.), N<strong>in</strong>thInternational Conference on Permafrost, ExtendedAbstracts (p. 247-248). Institute <strong>of</strong> Northern Eng<strong>in</strong>eer<strong>in</strong>g,University <strong>of</strong> Alaska Fairbanks.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.Tulp, I. and H. Schekkerman. 2008. Has prey availabilityfor arctic birds advanced with climate change? H<strong>in</strong>dcast<strong>in</strong>gthe abundance <strong>of</strong> tundra arthropods us<strong>in</strong>g weatherand seasonal variation. <strong>Arctic</strong> 61: 48-60.141


Snow Bunt<strong>in</strong>g (Plectrophenax nivalis)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateThe Snow Bunt<strong>in</strong>g is one <strong>of</strong> the first birds to return to their <strong>Arctic</strong> breed<strong>in</strong>g grounds, with malesarriv<strong>in</strong>g <strong>in</strong> early April. This species occurs throughout the circumpolar arctic and, as a cavitynester,will use human-made nest sites (e.g. barrels, build<strong>in</strong>gs, pipel<strong>in</strong>es) as readily as naturalones (rock cavities, under boulders, cliff faces; Lyon and Montgomerie 1995). Snow Bunt<strong>in</strong>gsconsume a wide variety <strong>of</strong> both plant (e.g. seeds, plant buds) and animal prey (<strong>in</strong>vertebrates).Their w<strong>in</strong>ter<strong>in</strong>g range is centered <strong>in</strong> the northern cont<strong>in</strong>ental US and southern Canada although itextends north <strong>in</strong>to the low arctic <strong>in</strong> some places (Lyon and Montgomerie 1995). Current globalpopulation estimate is 40 million (Rich et al. 2004).<strong>Arctic</strong> Alaska (see Mart<strong>in</strong> et al. 2009) is notlikely to have a strong negative or positive affecton this species. Current projections <strong>of</strong> annualpotential evapotranspiration suggest negligibleatmospheric-driven dry<strong>in</strong>g for the foreseeablefuture (TWS and SNAP). Thus atmosphericmoisture, as an exposure factor, was not heavilyweighted <strong>in</strong> the assessment.A. LeistRange: We used the extant NatureServe rangemap for the CCVI as it matched the <strong>Birds</strong> <strong>of</strong>North America and other range descriptions(Johnson and Herter 1989).Human Response to CC: Increased humanactivity and <strong>in</strong>frastructure associated withhuman response to climate change could benefitSnow Bunt<strong>in</strong>gs by provid<strong>in</strong>g <strong>in</strong>creased artificialnest<strong>in</strong>g habitat, as they are known to readily takeadvantage <strong>of</strong> human <strong>in</strong>frastructure (Lyon andMontgomerie 1995, J. Liebezeit, pers. obs.).Because it is unlikely that there will besignificant development <strong>of</strong> this type <strong>in</strong> <strong>Arctic</strong>Alaska, the <strong>in</strong>fluence on this species would benom<strong>in</strong>al.Physiological Thermal Niche: <strong>Change</strong>s <strong>in</strong>thermal and hydrological niche will likely not<strong>of</strong>fer a significant benefit or disadvantage forthis species. Increas<strong>in</strong>g temperatures could makesome nest<strong>in</strong>g sites “too hot” while, <strong>in</strong> otherscases provide warmer conditions beneficial forrais<strong>in</strong>g altricial young.Physiological Hydro Niche: Snow bunt<strong>in</strong>gs willutilize wet tundra for forag<strong>in</strong>g but are not tiedstrongly to water-dom<strong>in</strong>ated habitats (Lyon andMontgomerie 1995) and so any tundra dry<strong>in</strong>g <strong>in</strong>Dietary Versatility: The Snow Bunt<strong>in</strong>g’s variedomnivorous diet will likely be beneficial to thisspecies as the climate warms, human activity <strong>in</strong>the region <strong>in</strong>creases, and the food base changes.Physical Habitat Restrictions: Despite bunt<strong>in</strong>guse <strong>of</strong> human structures for nest<strong>in</strong>g, nest<strong>in</strong>g siteson the coastal pla<strong>in</strong> are still quite limited s<strong>in</strong>cethey depend on relatively uncommon geologicfeatures (e.g. cliffs, rock outcrops). This paucity<strong>of</strong> adequate breed<strong>in</strong>g sites on the coastal pla<strong>in</strong>will likely cont<strong>in</strong>ue to be a limit<strong>in</strong>g factor forthis species.142


Snow Bunt<strong>in</strong>g (Plectrophenax nivalis)<strong>Vulnerability</strong>: Presumed StableConfidence: ModerateD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Genetic Varitation: There are currently noSnow Bunt<strong>in</strong>g studies that add <strong>in</strong>sight <strong>in</strong>to howclimate change impacts would <strong>in</strong>fluence theirpopulation genetics.Phenological Response: There are also no longtermdata sets to provide sufficient <strong>in</strong>formationon how Snow Bunt<strong>in</strong>gs will respond to chang<strong>in</strong>garctic phenology.In summary, this vulnerability assessmentsuggests that Snow Bunt<strong>in</strong>gs are relativelyflexible <strong>in</strong> most sensitivity factors and have anexpansive enough breed<strong>in</strong>g range to adjust toclimate changes and rema<strong>in</strong> stable (andpotentially even benefit) <strong>in</strong> the region over thenext 50 years.Literature CitedJohnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Lyon, B. and R. Montgomerie. 1995. Snow Bunt<strong>in</strong>g(Plectrophenax nivalis). In: The <strong>Birds</strong> <strong>of</strong> North AmericaNo. 198 (Poole, A. and Gill, F. eds.), Philadelphia, andAmerican Ornithologists' Union, Wash<strong>in</strong>gton D.C.:Academy <strong>of</strong> Natural Sciences.Mart<strong>in</strong>, P., J. Jenk<strong>in</strong>s, F.J. Adams, M.T. Jorgenson, A.C.Matz, D.C. Payer, P.E. Reynolds, A.C. Tidwell, and J.R.Zelenak. 2009. Wildlife response to environmental <strong>Arctic</strong>change: Predict<strong>in</strong>g future habitats <strong>of</strong> <strong>Arctic</strong> Alaska. Report<strong>of</strong> the Wildlife Response to Environmental <strong>Arctic</strong> <strong>Change</strong>(WildREACH), Predict<strong>in</strong>g Future Habitats <strong>of</strong> <strong>Arctic</strong> AlaskaWorkshop, 17-18 November 2008. Fairbanks, Alaska,USFWS, 148 pages.Rich, T.D., C.J. Beardmore, H. Berlanga, P.J. Blancher, M.S.W. Bradstreet, G.S. Butcher, D.W. Demarest, E.H. Dunn,W.C. Hunter, E.E. Iñigo-Elias, J.A. Kennedy, A.M.Martell, A.O. Panjabi, D.N. Pashley, K.V. Rosenberg,C.M. Rustay, J.S. Wendt, and T.C. Will. 2004. Partners <strong>in</strong>Flight North American Landbird Conservation Plan.Cornell Lab <strong>of</strong> Ornithology. Ithaca, New York.http://www.partners<strong>in</strong>flight.org/cont_plan/default.htm.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.143


Common Redpoll (Acanthis flammea)<strong>Vulnerability</strong>: Increase LikelyConfidence: LowThe Common Redpoll is an abundant f<strong>in</strong>ch <strong>of</strong> northern regions around the world. Redpolls occurthroughout Alaska, thriv<strong>in</strong>g <strong>in</strong> habitats rang<strong>in</strong>g from boreal to tundra across a wide elevationgradient (Knox and Lowther 2000). This species nests <strong>in</strong> trees when available. In tundra habitats,they nest <strong>in</strong> willows (primarily along riparian areas) or on the ground (Knox and Lowther 2000,J. Liebezeit, unpublished data). While primarily a seed eater, <strong>in</strong> summer this species consumesarthropods to feed young (Knox and Lowther 2000). Common Redpolls w<strong>in</strong>ter as far north as theBrooks Range but will wander further south <strong>in</strong> irruptive years when seed-crop production fails(Knox and Lowther 2000). While their global population numbers <strong>in</strong> the millions, they arebelieved to be experienc<strong>in</strong>g an overall population decl<strong>in</strong>e (Rich et al. 2004).S. Zack @ WCSRange: We used the extant NatureServe rangemap for this assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America (Knox and Lowther2000) and other range descriptions (Johnson andHerter 1989).For most <strong>of</strong> the <strong>in</strong>direct exposure andsensitivity categories <strong>in</strong> the assessment,Common Redpolls were ranked with a neutralresponse (see table on next page).Physiological thermal niche: This speciesshows no close association with a particularthermal environment. Early work has shown thattheir upper thermal limit is ~38ºC and canwithstand temperatures as low as -51ºC (Brooks1968, S. Sharbaugh, pers. comm.). As such, theywould likely be able to withstand a warm<strong>in</strong>gclimate for years to come although little isknown about thermal conditions necessary forsuccessful hatch and fledg<strong>in</strong>g <strong>of</strong> their altricialyoung.Physiological hydro niche: Common Redpollsare not known to be closely associated withaquatic/wetland habitats or moisture regimes(Knox and Lowther 2000) though they do <strong>of</strong>tenuse willow habitats along riparian stretches onthe coastal pla<strong>in</strong> (J. Liebezeit, unpublisheddata.). Reduction <strong>in</strong> <strong>in</strong>vertebrate communitiesfrom net dry<strong>in</strong>g could negatively affect forag<strong>in</strong>gsuccess dur<strong>in</strong>g the breed<strong>in</strong>g season. Currentprojections <strong>of</strong> annual potential evapotranspirationsuggest negligible atmosphericdrivendry<strong>in</strong>g for the foreseeable future (TWSand SNAP). Also, this species could potentiallyswitch to less aquatic-dependent prey as theyhave a broad diet (Knox and Lowther 2000).Disturbance Regime: As shrubby and borealhabitats <strong>in</strong>crease on the North Slope (Tape et al.2006), Common Redpolls will be able to exploitnew areas and potentially nest <strong>in</strong> higher densitieson the coastal pla<strong>in</strong>. An <strong>in</strong>crease <strong>in</strong> firefrequency could speed up the advance <strong>of</strong>shrubification (Rac<strong>in</strong>e et al. 2004).Phenological Response: One common breed<strong>in</strong>gpasser<strong>in</strong>e, the Lapland Longspur, appears tohave adjusted nest <strong>in</strong>itiation <strong>in</strong> response toclimate warm<strong>in</strong>g over the last 10 years (J.Liebezeit and S. Zack, unpublished data), but itis unknown whether this result can begeneralized. However there are apparently144


Common Redpoll (Acanthis flammea)<strong>Vulnerability</strong>: Increase LikelyConfidence: LowD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.no long-term datasets for Common Redpollbreed<strong>in</strong>g or migration activities and so little isknown regard<strong>in</strong>g phenology <strong>in</strong> this species (S.Sharbaugh, pers. comm.).In general, this assessment suggests thatCommon Redpolls will likely <strong>in</strong>crease <strong>in</strong> <strong>Arctic</strong>Alaska under the current projections <strong>of</strong> climatechange. They would likely take advantage <strong>of</strong>new shrubby nest<strong>in</strong>g habitats and have enoughflexibility, both physiologically andbehaviorally, to cope with expected climatechanges over the next 50 years <strong>in</strong> <strong>Arctic</strong> Alaska.Literature CitedBrooks, W.S. 1968. Comparative adaptations <strong>of</strong> theAlaskan Redpoll to the <strong>Arctic</strong> Environment. WilsonBullet<strong>in</strong> 80:253-276.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Knox, A.G. and P.E. Lowther. 2000. Common Redpoll(Acanthis flammea), The <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e(A. Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology;Retrieved from the <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/543.doi:10.2173/bna.543Rac<strong>in</strong>e, C., R. Jandt, C. Meyers, and J. Dennis. 2004.Tundra fire and vegetation change along a hillslope on theSeward Pen<strong>in</strong>sula, Alaska, USA. <strong>Arctic</strong>, Antarctic, andAlp<strong>in</strong>e Research 36: 1-10.Rich, T.D., C.J. Beardmore, H. Berlanga, P.J. Blancher, M.S.W. Bradstreet, G.S. Butcher, D.W. Demarest, E.H. Dunn,W.C. Hunter, E.E. Iñigo-Elias, J.A. Kennedy, A.M.Martell, A.O. Panjabi, D.N. Pashley, K.V. Rosenberg, C.M.Rustay, J.S. Wendt, and T.C. Will. 2004. Partners <strong>in</strong> FlightNorth American Landbird Conservation Plan. Cornell Lab<strong>of</strong> Ornithology. Ithaca, New York.http://www.partners<strong>in</strong>flight.org/cont_plan/default.htmTape, K, M. Sturm, C. Rac<strong>in</strong>e. 2006. The evidence forshrub expansion <strong>in</strong> northern Alaska and the pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.145


Hoary Redpoll (Acanthis hornemanni)<strong>Vulnerability</strong>: Presumed StableConfidence: HighThe Hoary Redpoll, closely related and <strong>of</strong>ten difficult to dist<strong>in</strong>guish from the Common Redpoll,is a common f<strong>in</strong>ch <strong>of</strong> the circumpolar arctic. In Alaska their range is largely sympatric with theCommon Redpoll although they tend to be more common further north. Like the CommonRedpoll, they utilize both forested and tundra habitats although they tend to utilize tundrahabitats more extensively (Knox and Lowther 2000). In <strong>Arctic</strong> Alaska tundra, this species nests<strong>in</strong> willows (primarily along riparian areas) or on the ground <strong>in</strong> shrubby areas (Knox and Lowther2000, J. Liebezeit, unpublished data). While primarily a seed eater, <strong>in</strong> summer this speciesconsumes arthropods to feed young (Knox and Lowther 2000). Hoary Redpolls <strong>of</strong>ten w<strong>in</strong>terwith<strong>in</strong> their breed<strong>in</strong>g range but will wander further south <strong>in</strong> irruptive years when seed-cropproduction fails (Knox and Lowther 2000). Their overall population estimate is unknown.C. RuttRange: We used the extant NatureServe rangemap for the assessment as it closely matched the<strong>Birds</strong> <strong>of</strong> North America and other rangedescriptions (Johnson and Herter 1989, Knoxand Lowther 2000).For most <strong>of</strong> the <strong>in</strong>direct exposure andsensitivity categories <strong>in</strong> the assessment, HoaryRedpolls were ranked with a neutral response(see table on next page).Physiological Thermo Niche: This speciesshows no close association with a particularthermal environment. Early work has shown thattheir upper thermal limit is ~38ºC and canwithstand temperatures as low as -57ºC (Brooks1968, S. Sharbaugh, pers. obs.). As such, theywould likely be able to withstand a warm<strong>in</strong>gclimate although little is known about thermalconditions necessary for successful hatch andfledg<strong>in</strong>g <strong>of</strong> their altricial young. They tend tonest further north <strong>in</strong> greater numbers thanCommon Redpoll, which suggests some aff<strong>in</strong>ityfor colder temperatures although this behaviorcould be related to a factor(s) unrelated tothermal conditions.Physiological Hydro Niche: Hoary Redpolls arenot known to be closely associated withaquatic/wetland habitats or moisture regimesalthough they do rely on willow habitats alongriparian stretches on the coastal pla<strong>in</strong> (Knox andLowther 2000, J. Liebezeit, unpublished data)more than Common Redpolls which will <strong>of</strong>tenchoose willows <strong>in</strong> more upland tundra (Knoxand Lowther 2000).Dietary Versatility: Reduction <strong>in</strong> <strong>in</strong>vertebratecommunities from net dry<strong>in</strong>g affect couldnegatively affect forag<strong>in</strong>g success dur<strong>in</strong>g thebreed<strong>in</strong>g season but current predictions forchanges <strong>in</strong> atmospheric dry<strong>in</strong>g are neglibile(TWS and SNAP). Also, this species couldpotentially switch to less aquatic-dependent preyas they have a broad diet (Knox and Lowther2000).Disturbance Regime: As shrubby and borealhabitats <strong>in</strong>crease on the North Slope (Tape et al.2006), Hoary Redpolls will be able to exploitnew areas and potentially nest <strong>in</strong> higher densitieson the coastal pla<strong>in</strong>. An <strong>in</strong>crease <strong>in</strong> firefrequency could speed up the advance <strong>of</strong>shrubification (Rac<strong>in</strong>e et al. 2004).146


Hoary Redpoll (Acanthis hornemanni)<strong>Vulnerability</strong>: Presumed StableConfidence: HighD=Decrease vulnerability, SD=Somewhat decrease vulnerability, N=Neutral effect, SI=Slightly <strong>in</strong>crease vulnerability,I=Increase vulnerability, GI=Greatly <strong>in</strong>crease vulnerability.Phenological Response:One common breed<strong>in</strong>g passer<strong>in</strong>e, the LaplandLongspur, appears to have adjusted nest<strong>in</strong>itiation <strong>in</strong> response to climate warm<strong>in</strong>g overthe last 10 years (J. Liebezeit and S. Zack,unpublished data), but it is unknown whetherthis result can be generalized. However, thereare apparently no long-term datasets for HoaryRedpoll breed<strong>in</strong>g or migration activities and solittle is known regard<strong>in</strong>g phenology <strong>in</strong> thisspecies (S. Sharbaugh, pers. comm.).In general, this assessment suggests thatHoary Redpolls will likely rema<strong>in</strong> stable <strong>in</strong><strong>Arctic</strong> Alaska under the current projections <strong>of</strong>climate change. Though with<strong>in</strong> the “presumedstable” category, assessment results suggest theydo lean toward the “<strong>in</strong>crease likely” category asthey could take advantage <strong>of</strong> new shrubbynest<strong>in</strong>g habitats and have enough flexibility,both physiologically and behaviorally, to copewith expected climate changes over the next 50years <strong>in</strong> <strong>Arctic</strong> Alaska.Literature CitedBrooks, W.S. 1968. Comparative adaptations <strong>of</strong> theAlaskan Redpoll to the <strong>Arctic</strong> Environment. WilsonBullet<strong>in</strong> 80:253-276.Johnson, S.R. and D.R. Herter. 1989. The birds <strong>of</strong> theBeaufort Sea, Anchorage: British Petroleum Exploration(Alaska), Inc.Knox, Alan G. and Peter E. Lowther. 2000. Hoary Redpoll(Acanthis hornemanni), The <strong>Birds</strong> <strong>of</strong> North AmericaOnl<strong>in</strong>e (A. Poole, Ed.). Ithaca: Cornell Lab <strong>of</strong> Ornithology;Retrieved from the <strong>Birds</strong> <strong>of</strong> North America Onl<strong>in</strong>e:http://bna.birds.cornell.edu/bna/species/544.doi:10.2173/bna.544.Rac<strong>in</strong>e, C., R. Jandt, C. Meyers, and J. Dennis. 2004.Tundra fire and vegetation change along a hillslope on theSeward Pen<strong>in</strong>sula, Alaska, USA. <strong>Arctic</strong>, Antarctic, andAlp<strong>in</strong>e Research 36: 1-10.Tape, K, M. Sturm, C. Rac<strong>in</strong>e. 2006. The evidence forshrub expansion <strong>in</strong> northern Alaska and the pan-<strong>Arctic</strong>.Global <strong>Change</strong> Biology 12: 686-702.The Wilderness Society (TWS) and Scenarios Network forAlaska Plann<strong>in</strong>g (SNAP), Projected (2001-2099: A1Bscenario) monthly total potential evapotranspiration from 5AR4 GCMs that perform best across Alaska and the <strong>Arctic</strong>,utiliz<strong>in</strong>g 2km downscaled temperature as model <strong>in</strong>puts.http://www.snap.uaf.edu/data.php.147


Appendix CSummary <strong>of</strong> the <strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong> AssessmentsFor W<strong>in</strong>ter Range and Passage MigrationShorebirds are long distant migrants andonly spend a short part <strong>of</strong> their lives on thebreed<strong>in</strong>g grounds. At migration stopoverpo<strong>in</strong>ts and on the w<strong>in</strong>ter<strong>in</strong>g grounds they<strong>in</strong>evitably encounter climate changestressors that may be quite different than onthe breed<strong>in</strong>g grounds. For this reason, weconducted separate climate changevulnerability assessments for 17 shorebirdspecies 1 (Table AB.1) focused on theirw<strong>in</strong>ter<strong>in</strong>g grounds and key passagemigration areas. The <strong>in</strong>tent was to provide aclimate change vulnerability rank<strong>in</strong>gcomb<strong>in</strong><strong>in</strong>g all three portions <strong>of</strong> theirlifecycle for an overall vulnerability scorespann<strong>in</strong>g their entire annual range. Theresults <strong>of</strong> the additional assessments areprelim<strong>in</strong>ary s<strong>in</strong>ce shorebird usage <strong>of</strong>stopover and w<strong>in</strong>ter<strong>in</strong>g areas (particularly <strong>in</strong>South America and Asia) is poorly known,and reviewers recommended majormodifications to our method for evaluat<strong>in</strong>gvulnerability dur<strong>in</strong>g passage migration thatwere too significant to address with<strong>in</strong> thetimeframe <strong>of</strong> the current project. Here we<strong>of</strong>fer a brief summary <strong>of</strong> the pilot effort.W<strong>in</strong>ter Range <strong>Vulnerability</strong> Assessment:Methods and ResultsMethods: We assessed the vulnerability <strong>of</strong>the 17 shorebird species <strong>in</strong> their w<strong>in</strong>ter<strong>in</strong>ggrounds us<strong>in</strong>g the NatureServe <strong>Climate</strong><strong>Change</strong> <strong>Vulnerability</strong> Index tool (CCVIVersion 2.1, Young et al. 2010) as we didfor the breed<strong>in</strong>g grounds assessment. Weengaged experts from with<strong>in</strong> and outside the1 The same 17 <strong>in</strong>cluded <strong>in</strong> the breed<strong>in</strong>g seasonassessmentUnited States to score the sensitivity factors.Overall, the methods were nearly identicalto those described previously (see Methods<strong>in</strong> ma<strong>in</strong> body <strong>of</strong> the report). The keydifferences <strong>in</strong>cluded:• The assessment was based on theentire w<strong>in</strong>ter range <strong>of</strong> each species.The ranges were <strong>of</strong>ten quite large,commonly captur<strong>in</strong>g significantclimate variability (e.g., FigureAB.1). For species that w<strong>in</strong>ter <strong>in</strong> theWestern Hemisphere, we used w<strong>in</strong>terranges <strong>of</strong>fered through NatureServeas a start<strong>in</strong>g po<strong>in</strong>t. For speciesw<strong>in</strong>ter<strong>in</strong>g <strong>in</strong> the Austral-Asianflyway, GIS shapefiles were <strong>in</strong>itiallysought through the USGS AlaskaScience Center Avian InfluenzaResearch program(http://alaska.usgs.gov/science/biology/avian_<strong>in</strong>fluenza/<strong>in</strong>dex.php). Editsto the <strong>in</strong>itial range maps for both theWestern Hemisphere and Austral-Asian flyway were made based oncomments or alternate sourcessuggested by experts who completedthe sensitivity surveys. Initial rangemaps were also compared with GISshapefiles published by Bird LifeInternational, but this source was notused as a basis for alter<strong>in</strong>g maps(http://www.birdlife.org/datazone).• We used <strong>Climate</strong> Wizard’s 50-kmresolution climate projection dataexclusively, as it was the onlyreadily accessible climate dataavailable for all the cont<strong>in</strong>ents(www.climatewizardcustom.org/).148


• Only one scenario <strong>of</strong> future climatewas considered for each species,which was the ensemble output <strong>of</strong>the16 general circulation models(GCMs) from the IPCC report (IPCC2007).• There were no readily available datafor the climate change effects on thepelagic w<strong>in</strong>ter ranges <strong>of</strong> bothphalarope species. Geospatial data <strong>of</strong>historical changes <strong>in</strong> oceantemperature and acidification wereused as proxies (Halpern et al. 2008-http://www.nceas.ucsb.edu/globalmar<strong>in</strong>e).Table AB.1. Seventeen shorebird species considered<strong>in</strong> the vulnerability assessment.Common NameBlack-bellied PloverAmerican Golden-ploverWhimbrelBar-tailed GodwitRuddy TurnstoneRed KnotSemipalmated SandpiperWestern SandpiperWhite-rumped SandpiperBaird's SandpiperPectoral SandpiperDunl<strong>in</strong>Stilt SandpiperBuff-breasted SandpiperLong-billed DowitcherRed-necked PhalaropeRed PhalaropeScientific NamePluvialis squatarolaPluvialis dom<strong>in</strong>icaNumenius phaeopusLimosa lapponicaArenaria <strong>in</strong>terpresCalidris canutusCalidris pusillaCalidris mauriCalidris fuscicollisCalidris bairdiiCalidris melanotosCalidris alp<strong>in</strong>aCalidris himantopusTryngitessubruficollisLimnodromusscolopaceusPhalaropus lobatusPhalaropusfulicariusFigure AB.1. An example <strong>of</strong> a range map used <strong>in</strong> thew<strong>in</strong>ter range assessment.Results: The results <strong>of</strong> the assessment<strong>in</strong>dicate that 5 <strong>of</strong> the 17 species weconsidered were highly (Long-billedDowitcher, Black-bellied Plover) ormoderately (Western Sandpiper,Semipalmated Sandpiper, and Dunl<strong>in</strong>)vulnerable to climate change <strong>in</strong> their w<strong>in</strong>terranges (Figure AB.2). The sensitivities or<strong>in</strong>direct exposure factors contribut<strong>in</strong>g to thevulnerability <strong>of</strong> these species <strong>in</strong>cludeddependencies on physiological hydrologicalniche, sea level rise impacts, changes to keydisturbance regimes, and impacts by humanactivities <strong>in</strong> response to climate change. Thelife history and other <strong>in</strong>formation providedfor the rema<strong>in</strong><strong>in</strong>g 12 species suggest thatwith respect to climate-mediated changes,they will be able to “rema<strong>in</strong> stable”.149


Figure AB.2. Sensitivity factor scores provided by species’ expert for the 17 shorebird species and their result<strong>in</strong>gclimate change vulnerability. Blue boxes show factors that contributed most to vulnerability results.Passage Migration <strong>Vulnerability</strong>Assessment: Methods and ResultsMethods: For passage migration, we onlyaddressed the sensitivity component <strong>of</strong>vulnerability, with questions targeted onmigratory behavior, routes, and numbers andconditions <strong>of</strong> key stag<strong>in</strong>g stopover sites (asdef<strong>in</strong>ed by Warnock 2010, Figure AB.4).The passage migration questions were<strong>in</strong>cluded <strong>in</strong> the sensitivity survey (e.g., seeAppendix F for the breed<strong>in</strong>g range example)sent to species experts for the w<strong>in</strong>ter rangeassessment. Two species (WesternSandpiper and Whimbrel) were scored bymultiple experts (2). The NatureServe toolwas not applied because <strong>of</strong> the extensivegeographic range used by many shorebirdsas they migrate between breed<strong>in</strong>g andw<strong>in</strong>ter<strong>in</strong>g grounds and the tremendousvariation <strong>in</strong> the projected changes to climatealong these corridors (Figure AB.3). Writtendescriptions from various sources (e.g.,NatureServe) and expert <strong>in</strong>put helped togenerally identify key stopover sites with<strong>in</strong>migratory corridors. Ideally, a spatiallyexplicit exposure component would be<strong>in</strong>tegrated and focused on key stag<strong>in</strong>g andstopover grounds <strong>in</strong> the assessment.We developed a straightforward scor<strong>in</strong>gsystem for the sensitivity factors (TableAB.3) with positive values <strong>in</strong>dicat<strong>in</strong>g acontribution toward <strong>in</strong>creas<strong>in</strong>g vulnerability.We simply summed the scores assigned to agiven species. We <strong>in</strong>tentionally capped themaximum value <strong>of</strong> 10 allowed by thisscor<strong>in</strong>g system to be generally consistentwith the threshold value <strong>of</strong> 10 used by theNatureServe tool to assign the “Extremelyvulnerable” category to a species (seeMethods <strong>in</strong> ma<strong>in</strong> body <strong>of</strong> report). Withlimited basis for assess<strong>in</strong>g climate changevulnerability for migratory species atpresent, we chose this simple approach toenable the generation <strong>of</strong> a numericalvulnerability score, as well as <strong>in</strong>itiatediscussion at the expert workshop <strong>in</strong>December 2011 about how climate changemight affect species dur<strong>in</strong>g migration.150


Figure AB.3. An example <strong>of</strong> the passage migrationrange used <strong>in</strong> this component <strong>of</strong> the assessment.Results: The results <strong>of</strong> this assessment maybest be considered a start<strong>in</strong>g po<strong>in</strong>t todevelop an alternative method, but they dohighlight potential sources <strong>of</strong> vulnerabilitydur<strong>in</strong>g migration. The results, depicted <strong>in</strong>table AB.3, <strong>in</strong>dicate <strong>in</strong>creas<strong>in</strong>g level <strong>of</strong>vulnerability as <strong>in</strong>teger value <strong>in</strong>creases (upto maximum score <strong>of</strong> 10). Several species(total scores >3) might warrant furtherscrut<strong>in</strong>y, such as, the Western Sandpiper,White-rumped Sandpiper, Bar-tailedGodwit, and Whimbrel (Table AB.3).Potential sources <strong>of</strong> vulnerability for thesespecies <strong>in</strong>clude: migration routes restrictedto coastl<strong>in</strong>es, a limited number <strong>of</strong> sites forstag<strong>in</strong>g prior to migration (500 at stopover sites(c) Intermix with other speciesDependence on w<strong>in</strong>d as migration aidGeography on northbound and southbound migrationroutes (coastal/<strong>in</strong>land/open ocean)Number <strong>of</strong> Stag<strong>in</strong>g AreasMigration site bottlenecks (>50% population stop <strong>in</strong>given area)Stopover tim<strong>in</strong>g l<strong>in</strong>ked to food source availabilityLocation (a) and number (b) <strong>of</strong> key w<strong>in</strong>ter<strong>in</strong>g areasFigure AB.4. Scor<strong>in</strong>g options for the sensitivityfactors considered <strong>in</strong> the passage migrationvulnerability assessment. A score <strong>of</strong> 0.5 was givenwhen experts responded with “sometimes”. SeeTable A2.2 for further factor explanations.151


Table A2.3. Total <strong>of</strong> scores assigned to migrationrelatedsensitivity factors for the 17 shorebirdspecies. “Partial response” <strong>in</strong>dicates that thesensitivity survey was <strong>in</strong>complete.Common Name Summed TotalStilt Sandpiper -2Western Sandpiper 1 6.5Long-billed Dowitcher 2White-rumped Sandpiper 3.5Black-bellied Plover 1Buff-breasted Sandpiper -1Ruddy Turnstone 5(partial response)Red Knot 2Red-necked Phalarope 0Whimbrel 1 1Bar-tailed Godwit 6Whimbrel 2 3Western Sandpiper 2 3Semipalmated Sandpiper 3(partial response)Red Phalarope 5Dunl<strong>in</strong> 1American Golden-plover -1(partial response)Pectoral Sandpiper -4.5Baird’s Sandpiper 0DiscussionUndoubtedly different parts <strong>of</strong> the annualrange <strong>of</strong> a migratory species will contributedifferentially to their vulnerability to climatechange. Even if the species’ degree <strong>of</strong>vulnerability is similar throughout theannual life cycle, it is likely that the factors<strong>in</strong>fluenc<strong>in</strong>g vulnerability <strong>in</strong> differentgeographies will vary. While tentative,Figure A2.5 illustrates how climate changevulnerability might be apportioned amongthe components <strong>of</strong> the shorebirds’ life cycle.For many species, our results veryspeculatively suggest that the greatestcontributions toward climate changevulnerability may occur <strong>in</strong> w<strong>in</strong>ter<strong>in</strong>g rangesand along migratory routes. While the vastareas occupied by some species dur<strong>in</strong>gmigration and w<strong>in</strong>ter pose challenges forpotential adaptation <strong>in</strong>terventions, they mayactually <strong>of</strong>fer the best opportunities forconservation actions. In general, themagnitude <strong>of</strong> change projected for theseportions <strong>of</strong> the species’ ranges are muchlower than projections <strong>of</strong> climate change andrelated impacts anticipated for <strong>Arctic</strong>Alaska. If little else, our prelim<strong>in</strong>ary effortto <strong>in</strong>tegrate climate change vulnerabilityacross the annual life cycle <strong>of</strong> the migratoryshorebirds re<strong>in</strong>forces the acknowledgedneed to consider the potential effects <strong>of</strong>climate change and options for adaptation(management and conservation) <strong>in</strong>geographies beyond the arctic breed<strong>in</strong>ggrounds.152


Figure A2. 5. Cumulative climate change vulnerability for the 17 shorebird species throughout their annual lifecycle.ReferencesBirdLife International and NatureServe. 2011. Bird species distribution maps <strong>of</strong> the world. BirdLife International,Cambridge, UK and NatureServe, Arl<strong>in</strong>gton, USA.Halpern B.S,, S. Walbridge, K.A. Selkoe, C.V. Kappel F. Micheli, K. D'Agrosa, J.F. Bruno, K.S. Casey, C. Ebert,H.F. Fox, R. Fujita, D. He<strong>in</strong>emann, H.S. Lenihan, E.M.P. Mad<strong>in</strong>, M.T. Perry, E.R. Selig, M. Spald<strong>in</strong>g, R. Steneck.2008. A Global Map <strong>of</strong> Human Impact on Mar<strong>in</strong>e Ecosystems.Science 319 (5865): 948-952 and Support<strong>in</strong>g Onl<strong>in</strong>eMaterial.Warnock, N. 2010. Stopp<strong>in</strong>g vs. stag<strong>in</strong>g: the difference between a hop and a jump. Journal <strong>of</strong> Avian Biology 41:621-626.153


Appendix DSensitivity Survey ExpertsExpertBrad AndresStacia BackenstoRebecca BentzenTravis BoomsStephen BrownPhil BrunerKatie ChristieChris DauSusan EarnstRobert GillSue GuersChris HarwoodJerry HuppDavid IronsJim JohnsonSteve KendallEunbi KwonRichard LanctotJoe LiebezeitPhilip Mart<strong>in</strong>Kate Mart<strong>in</strong>Laura McK<strong>in</strong>nonSteffen OppelAbby PowellJohn ReedBob RichieDan RizzoloDavid Saf<strong>in</strong>eBrett SandercockJoel SchmutzMatt SexsonSusan SharbaughJohn ShookPaul SmithIa<strong>in</strong> StenhouseAffiliation<strong>Breed<strong>in</strong>g</strong> GroundsU.S. Fish and WildlifeNational Park ServiceUniversity <strong>of</strong> Alaska - FairbanksAlaska Department <strong>of</strong> Fish and GameManomet Center for Conservation SciencesBrigham Young UniversityUniversity <strong>of</strong> Alaska - FairbanksU.S. Fish and Wildlife ServiceU.S. Geological SurveyU.S. Geological SurveyAlaska Bird ObservatoryU.S. Fish and Wildlife ServiceU.S. Geological SurveyU.S. Fish and Wildlife ServiceU.S. Fish and Wildlife ServiceU.S. Fish and Wildlife ServiceKansas State UniversityU.S. Fish and Wildlife ServiceWildlife Conservation Society<strong>Arctic</strong> Landscape Conservation CooperativeU.S. Fish and Wildlife ServiceTrent UniversityRoyal Society for the Protection <strong>of</strong> <strong>Birds</strong>University <strong>of</strong> Alaska - FairbanksU.S. Geological SurveyABR, Inc – Environmental research & servicesU.S. Geological SurveyU.S. Fish and Wildlife ServiceKansas State UniversityU.S. Geological SurveyU.S. Geological SurveyResearch Pr<strong>of</strong>essionalABR, Inc – Environmental research & servicesSmith and Associates Ecological Research, Ltd.Biodiversity Research Institute154


Appendix D (cont<strong>in</strong>ued)Audrey TaylorDiane TracyDavid WardNils WarnockEmily WeiserTeri WildKent WohlSteve ZackUniversity <strong>of</strong> Alaska - AnchorageResearch Pr<strong>of</strong>essionalU.S. Geological SurveyAudubon AlaskaUniversity <strong>of</strong> OtagoUniversity <strong>of</strong> Alaska - FairbanksU.S. Fish and Wildlife Service (retired)Wildlife Conservation SocietyPassage Migration and W<strong>in</strong>ter<strong>in</strong>g GroundsPhil BattleyMassey UniversityJoseph BuchananWash<strong>in</strong>gton Department <strong>of</strong> Fish and WildlifeRob ClemensThe University <strong>of</strong> QueenslandJesse Conkl<strong>in</strong>Massey UniversityRichard FullerThe University <strong>of</strong> QueenslandGuillermo Fernandez Aceves University <strong>of</strong> MazatlanDavid MizrahiNew Jersey AudubonPablo RoccaAves Uruguay* Seven <strong>of</strong> the breed<strong>in</strong>g season experts also completed passage migration/w<strong>in</strong>ter<strong>in</strong>g groundssensitivity surveys.Reassessment ExpertsExpertGreg BaloghJoe LiebezeitPhilip Mart<strong>in</strong>Paul SmithDavid WardSteve ZackAffiliation<strong>Breed<strong>in</strong>g</strong> Grounds<strong>Arctic</strong> Landscape Conservation CooperativeWildlife Conservation Society<strong>Arctic</strong> Landscape Conservation CooperativeSmith and Associates Ecological Research, Ltd.U.S. Geological SurveyWildlife Conservation Society155


Appendix EWorkshop Attendees and AgendaDecember 9-10, 2011Expert AttendeesGreg BaloghTravis BoomsStephen BrownPhil Bruner*Roy Churchwell*Molly CrossGeorge DivokyGuillermo Fernandez AcevesTom Fondell*Chris HarwoodJerry HuppRichard LanctotJoe LiebezeitWendy LoyaPhilip Mart<strong>in</strong>Brian McCafferyDavid PayerJohn Pearce*Abby PowellMart<strong>in</strong> RobardsPablo RoccaErika RowlandSarah Saalfeld*Susan SavageJoel Schmutz*Jon SlaghtPaul SmithDiana SolovyevaDavid WardNils WarnockRyan WilsonSteve Zack* Day 1 onlyAffiliation<strong>Breed<strong>in</strong>g</strong> Grounds<strong>Arctic</strong> Landscape Conservation CooperativeAlaska Department <strong>of</strong> Fish and GameManomet Center for Conservation SciencesBrigham Young UniversityUniversity <strong>of</strong> Alaska - FairbanksWildlife Conservation SocietyFriends <strong>of</strong> Cooper IslandUniversity <strong>of</strong> MazatlanU.S. Geological SurveyU.S. Fish and Wildlife ServiceU.S. Geological SurveyU.S. Fish and Wildlife ServiceWildlife Conservation SocietyThe Wilderness Society<strong>Arctic</strong> Landscape Conservation CooperativeU.S. Fish and Wildlife ServiceU.S. Fish and Wildlife ServiceU.S. Geological SurveyUniversity <strong>of</strong> Alaska - FairbanksWildlife Conservation SocietyAves UruguayWildlife Conservation SocietyManomet Center for Conservation SciencesU.S. Forest ServiceU.S. Geological SurveyWildlife Conservation SocietySmith and Associates Ecological Research, Ltd.Zoological College <strong>of</strong> the Russian Academy <strong>of</strong> ScienceU.S. Geological SurveyAudubon AlaskaThe Wilderness SocietyWildlife Conservation Society156


Appendix E (cont<strong>in</strong>ued)<strong>Climate</strong> change vulnerability assessment for breed<strong>in</strong>g birds<strong>in</strong> <strong>Arctic</strong> AlaskaA collaborative workshop sponsored by the Wildlife Conservation SocietyUSGS Alaska Science Center – Glenn Olds Build<strong>in</strong>g4210 University DriveAnchorage, Alaska 99503December 9-10, 2011AGENDAWorkshop objectives:• Describe the methods and present results <strong>of</strong> our assessment rank<strong>in</strong>g the climate changevulnerability <strong>of</strong> bird species that breed <strong>in</strong> <strong>Arctic</strong> Alaska.• Get feedback from workshop participants on the prelim<strong>in</strong>ary f<strong>in</strong>d<strong>in</strong>gs and suggest anyref<strong>in</strong>ements <strong>in</strong> the assessment that may improve its efficacy.• Identify how this <strong>in</strong>formation can feed <strong>in</strong>to subsequent plann<strong>in</strong>g, conservation, andmanagement (e.g. adaptation plann<strong>in</strong>g, research and management focus, etc.).Day 18:45 am Welcome and <strong>in</strong>troductions – Joe Liebezeit9:00 am Overview <strong>of</strong> workshop: Background, scope & objectives – Steve Zack / JoeLiebezeit9:15 am Current state <strong>of</strong> knowledge on <strong>Climate</strong> <strong>Change</strong> impacts to <strong>Arctic</strong> Alaskan birds –Philip Mart<strong>in</strong>9:45 am What is a vulnerability assessment and why do one? – Molly Cross10:15 am Break (beverages/snacks provided)10:35 am Methods used for the <strong>Arctic</strong> Alaska breed<strong>in</strong>g bird vulnerability assessment –Erika Rowland11:30 am Questions regard<strong>in</strong>g the methods12:00pmLunch break (deli lunch provided)12:15 pm Lunchtime talk #1: Population structure and genetic identity <strong>of</strong> WesternSandpipers dur<strong>in</strong>g the nonbreed<strong>in</strong>g season <strong>in</strong> Northwestern Mexico – GuillermoFernández Aceves157


Appendix E (cont<strong>in</strong>ued)12:45 pm Lunchtime talk #2: <strong>Change</strong>s <strong>in</strong> bird communities <strong>in</strong> Chaun Delta, ChukotkaRussia, from 1970 to the present with reference to climate change andanthropogenic factors – Diana Soloveyva1:30 pm Presentation <strong>of</strong> the vulnerability assessment results – Erika Rowland2:15 pm Break (beverages/snacks provided)2:35 pm Discussion <strong>of</strong> vulnerability assessment results5:00 pm Adjourn6:30 pm D<strong>in</strong>ner provided by WCS at the Snow Goose RestaurantDay 29:00 am Recap <strong>of</strong> Day 1 and overview <strong>of</strong> Day 2 – Joe Liebezeit9:15 am Apply<strong>in</strong>g vulnerability <strong>in</strong>formation – Molly Cross10:00 am Discussion: How might we use the vulnerability analyses presented here10:30 am Break (beverages/snacks provided)10:50 am Cont<strong>in</strong>ue discussion on apply<strong>in</strong>g vulnerability assessment <strong>in</strong>formation12:00 pm Lunch (deli lunch provided)12:15 pm Lunchtime talk: Towards bird vulnerability assessment and adaptation to climatechange <strong>in</strong> Laguna de Rocha, Uruguay – Pablo Rocca1:00 pm <strong>Arctic</strong> LCC goals and direction and “habitat / species group” effort – PhilipMart<strong>in</strong>1:30 pm Next steps and/or recommendations3:45pmConclud<strong>in</strong>g comments – Joe Liebezeit4:00 pm Adjourn158


Appendix FNatureServe <strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong> IndexSpecies Sensitivity WorksheetsRevision(In response to comments made at workshop <strong>in</strong> Anchorage, AK on 12/9-10/2011)2/26/2012Based on: Young et al. (2010). Guidel<strong>in</strong>es for Us<strong>in</strong>g the NatureServe <strong>Climate</strong> <strong>Change</strong> <strong>Vulnerability</strong> Index, Release2.01. NatureServe, Arl<strong>in</strong>gton VA.159


PLEASE KEEP THESE POINTS IN MIND AS WE COMPLETE THE REASSESSMENT OFARCTIC BREEDING BIRD SPECIES:1. Multiple responses to each factor may be made to capture uncerta<strong>in</strong>ty.2. In the orig<strong>in</strong>al assessment, we also requested “confidence rat<strong>in</strong>gs” for factor responses tounderstand whether uncerta<strong>in</strong>ty <strong>in</strong> responses was due to uncerta<strong>in</strong>ty <strong>in</strong> the exposure/climatechange components <strong>of</strong> each factor question or lack <strong>of</strong> knowledge about the given speciesecology/biology. Because we have tried to reduce the exposure-sensitivity confound<strong>in</strong>g <strong>in</strong> therevised questions, we will only assign a 1-2-3 confidence rat<strong>in</strong>g associated with the groupsunderstand<strong>in</strong>g <strong>of</strong> species biology/ecology.3. If there is no <strong>in</strong>formation known that addresses the factor questions, “<strong>in</strong>sufficient data forassessment” is an option. However, I did not <strong>in</strong>clude it with each factor.(B2) Distribution Relative to BarriersThis factor assesses the degree to which natural and anthropogenic barriers limit a species' abilityto shift its range <strong>in</strong> response to climate change. This factor assesses the distribution <strong>of</strong> thespecies on the landscape and focuses on conditions that limit dispersal at the range boundaries.This factor is not meant to address habitat fragmentation or how the availability <strong>of</strong> suitablehabitat might shift with<strong>in</strong> the species' range. These issues will be addressed <strong>in</strong> other factors.NOTE: Barriers are not considered to contribute to the vulnerability <strong>of</strong> most bird species. Butrange shifts for bird species whose distributions are limited to the coast <strong>of</strong> the <strong>Arctic</strong> CoastalPla<strong>in</strong> (ACP) <strong>in</strong> Alaska will likely be impaired, assum<strong>in</strong>g that because there is no landmass to thenorth, the extensive northern ocean represents a barrier to birds that have restricted distributionsalong the northernmost circumpolar coastl<strong>in</strong>es. Please follow the ACP guidance <strong>in</strong>structionsembedded <strong>in</strong> the questions for your response to this factor.1. Barriers completely or almost completely surround the current distribution such that thespecies' range <strong>in</strong> the assessment area is unlikely to be able to shift significantly OR the direction<strong>of</strong> climate change-caused shift <strong>in</strong> the species' favorable climate envelope is fairly wellunderstood and barriers prevent a range shift <strong>in</strong> that direction. Examples: None for migratorybird species breed<strong>in</strong>g <strong>in</strong> Alaska.2. Barriers border the current distribution such that climate change-caused distributional shifts <strong>in</strong>the assessment area are likely to be greatly impaired. Examples: None for migratory bird speciesbreed<strong>in</strong>g <strong>in</strong> Alaska.3. Barriers border the current distribution such that climate change-caused distributional shifts <strong>in</strong>the assessment area are likely to be significantly impaired. Examples: Coastally breed<strong>in</strong>g birdspecies, with the majority <strong>of</strong> the breed<strong>in</strong>g population with<strong>in</strong> the northern 1/3 rd <strong>of</strong> the <strong>Arctic</strong>Coastal Pla<strong>in</strong> (e.g., Steller’s Eider, Spectacled Eider.)4. Small barriers exist for this species but are not likely to significantly impair distributionalshifts with climate change. Examples: Species that have coastal to near-coastal breed<strong>in</strong>g(northern 2/3 rd <strong>of</strong> <strong>Arctic</strong> Coastal Pla<strong>in</strong>) but whose distributions also extend <strong>in</strong>to the high arcticCanadian Archipelago and/or Yukon-Kuskokwim Delta (e.g., Snow Goose).160


5. Significant barriers do not exist for this species. Examples: Most birds with broad distributionsoutside arctic Alaska and Canada (e.g. Greater Scaup, Lapland Longspur)(B3) Predicted Impact <strong>of</strong> Land Use <strong>Change</strong>s Result<strong>in</strong>g from HumanResponses to <strong>Climate</strong> <strong>Change</strong>Strategies designed to mitigate or adapt to climate change have the potential to physically affectlarge areas <strong>of</strong> land and the species that depend on these areas. This factor is NOT <strong>in</strong>tended tocapture habitat loss result<strong>in</strong>g from on-go<strong>in</strong>g human activities, as these are already <strong>in</strong>cluded<strong>in</strong> exist<strong>in</strong>g conservation status ranks. Also, consider only the direct physical impacts <strong>of</strong> theland use change, <strong>in</strong>clud<strong>in</strong>g direct habitat destruction or habitat loss through result<strong>in</strong>g impacts onhydrology (e.g. impoundment <strong>of</strong> water from road construction) or other physical processes. DoNOT consider any <strong>in</strong>direct affects <strong>of</strong> human activity here (e.g. <strong>in</strong>creased subsistence hunt<strong>in</strong>g,<strong>in</strong>creas<strong>in</strong>g subsidized predators) that may be associated with these activities. Lastly, <strong>in</strong>cludeonly new activities related directly to climate change mitigation or adaptation here.Examples <strong>of</strong> ongo<strong>in</strong>g or highly plausible activities ONLY <strong>in</strong> the <strong>Arctic</strong> LCC 1 :• Shorel<strong>in</strong>e erod<strong>in</strong>g fortification• Conversion <strong>of</strong> ice roads to all-weather roads (residents and related to energy)/additionalculverts and water-cross<strong>in</strong>gs1Other potential climate change related human mitigation activities (e.g. w<strong>in</strong>d-farm developments, hydro dams,natural gas <strong>in</strong>frastructure) were deemed unlikely to be developed <strong>in</strong> the region <strong>in</strong> the next 50 years.Note: As you answer these questions take <strong>in</strong>to account the likely scale <strong>of</strong> themitigation/adaptation related land use change as well as the importance to the species <strong>of</strong><strong>in</strong>dividual sites where such developments are likely to be constructed.1. The species is likely or very likely to be significantly impacted by mitigation/adaptationrelatedland use changes that are occurr<strong>in</strong>g or likely will occur <strong>in</strong> the assessment area <strong>in</strong> the next50 years.2. The species may possibly be significantly impacted by mitigation/adaptation-related land usechanges that are occurr<strong>in</strong>g or likely will occur <strong>in</strong> the assessment area/species’ range <strong>in</strong> the next50 years.3. The species is unlikely to be significantly affected by mitigation/adaptation-related land usechanges that are occurr<strong>in</strong>g or likely will occur with<strong>in</strong> the assessment area OR it is unlikely thatany mitigation/adaptation-related land use changes will affect large areas <strong>of</strong> the assessmentarea/the species’ range.4. The species may possibly benefit from mitigation/adaptation-related land use changes that areoccurr<strong>in</strong>g or likely will occur with<strong>in</strong> the assessment area/the species’ range.5. The species is likely to benefit from mitigation/adaptation-related land use changes that arelikely or very likely to occur with<strong>in</strong> the assessment area/the species’ range.161


(C2aii) Physiological Thermal NicheThis factor assesses the degree to which a species is restricted to relatively cool or cold abovegroundterrestrial or aquatic environments for at least part <strong>of</strong> their stay on the breed<strong>in</strong>g grounds.Because the upper thermal tolerance is not documented for most species, this question is<strong>in</strong>tended to approach thermal niche <strong>in</strong>directly through habitat association, whereby it isactually the preferred habitat that is thermally limited. It is meant to refer to the cold sites with<strong>in</strong>the assessment area--the highest elevations, northernmost areas, but not sites that are likely tosimply shift <strong>in</strong> location without reduction or loss (e.g. shady rav<strong>in</strong>es). The restriction to theserelatively cool environments may be permanent or seasonal. Consider the extent <strong>of</strong> andconstra<strong>in</strong>ts on the species’ distribution <strong>in</strong> Alaska and adjacent Canada outside the <strong>Arctic</strong> LLCboundaries, if relevant, <strong>in</strong> your response to this factor.Note: While thermal and hydrological niche are sometimes closely l<strong>in</strong>ked, if species is morestrongly restricted by hydrology, select option #3 and respond with reference to hydrologicalconstra<strong>in</strong>ts <strong>in</strong> the next question.1. Species is completely or almost completely restricted (>90% <strong>of</strong> occurrences or range) torelatively cool or cold environments <strong>in</strong> the assessment area. (we don’t know <strong>of</strong> any examples)2. Species is moderately restricted (50-90% <strong>of</strong> occurrences or range) to relatively cool or coldenvironments <strong>in</strong> the assessment area. (We don’t know <strong>of</strong> any examples)3. Species distribution is not restricted to cool or cold environment <strong>in</strong> the assessment area.(most species)4. Species shows a preference for environments towards the warmer environments <strong>in</strong> theassessment area (e.g. south-fac<strong>in</strong>g slopes). (e.g. Lapland Longspur nest<strong>in</strong>g on south fac<strong>in</strong>gsubstrates)(C2bii) Physiological Hydrologic NicheCheck multiple boxes to capture uncerta<strong>in</strong>ty and also do a bit <strong>of</strong> a sensitivity analysis. Themultiple choices do not have to fall along a cont<strong>in</strong>uum—especially given the uncerta<strong>in</strong>ty <strong>in</strong>hydrological trajectories for the region (dry<strong>in</strong>g or wett<strong>in</strong>g).This factor perta<strong>in</strong>s to a species' dependence on a narrowly def<strong>in</strong>ed precipitation/hydrologicregime, <strong>in</strong>clud<strong>in</strong>g strongly seasonal precipitation patterns and/or specific aquatic wetlandhabitats. Consider the level <strong>of</strong> dependence <strong>of</strong> the species on particular hydrologic conditions.Dependence may be permanent or seasonal.Examples:• Specific aquatic wetland habitats-wet and emergent tundra• <strong>Birds</strong> dependent on forag<strong>in</strong>g <strong>in</strong> small waterbodies and nest<strong>in</strong>g <strong>in</strong> wet tundra habitat• <strong>Birds</strong> nest<strong>in</strong>g on “island” sites to avoid predators1. Species is completely or almost completely dependent (>90% <strong>of</strong> occurrences or range) on aspecific aquatic/wetland habitat or seasonal precipitation patterns.162


2. Species is moderately dependent (50-90% <strong>of</strong> occurrences or range) on a specificaquatic/wetland habitat or localized moisture regime.3. Species is somewhat dependent (10-50% <strong>of</strong> occurrences or range) on a specificaquatic/wetland habitat or seasonal precipitation.4. Species has little or no dependence on a specific aquatic/wetland habitat or seasonalprecipitation patterns.5. Species has very broad moisture tolerances.(C2c) Dependence on Specific Disturbance RegimesThis factor perta<strong>in</strong>s to a species' response to specific disturbance regimes that are likely to beimpacted by climate change, such as fires, floods, severe w<strong>in</strong>ds, pathogen outbreaks, or similarevents. Consider disturbances that impact species <strong>in</strong>directly, such as changes <strong>in</strong> flood frequencyimpact<strong>in</strong>g sand/gravel bar nest<strong>in</strong>g species. Also consider potential impacts on species thatcurrently benefit from a lack <strong>of</strong> disturbance.Consider ONLY the follow<strong>in</strong>g disturbances, recent trends <strong>in</strong> changes to their frequency, severityand extent and their potential impacts:• Increased coastal erosion and overwash l<strong>in</strong>ked to storm frequency/<strong>in</strong>tensity (e.g.,Common Eider nest<strong>in</strong>g sites on barrier islands)• Thermokarst processes/events— lake dra<strong>in</strong>age, ice wedge degradation <strong>in</strong> dra<strong>in</strong>age areas,upland slumps and effects on aquatic systems (e.g. <strong>in</strong>fluenc<strong>in</strong>g prey availability forpiscivorous species like loons.)• Upland tundra fire impact on quality <strong>of</strong> nest<strong>in</strong>g sites• Extreme ra<strong>in</strong>/snow events (e.g. snow storms can cause region-wide abandonment ordelay <strong>in</strong> nest<strong>in</strong>g)• Expansion <strong>in</strong>to assessment area <strong>of</strong> pathogens currently <strong>in</strong> adjacent regions1. Species’ distribution, abundance, or habitat quality.is very likely to be reduced by a change<strong>in</strong> the frequency, severity, or extent <strong>of</strong> a disturbance regime over the next 50 years.2. Species’ distribution, abundance, or habitat quality may possibly be reduced by a change <strong>in</strong>the frequency, severity, or extent <strong>of</strong> a disturbance regime over the next 50 years.3. Species’ distribution, abundance, or habitat quality is unlikely to be affected by a change <strong>in</strong>the frequency, severity, or extent <strong>of</strong> a disturbance regime over the next 50 years.4. Species’ distribution, abundance, or habitat quality may possibly be <strong>in</strong>creased by a change <strong>in</strong>the frequency, severity, or extent <strong>of</strong> a disturbance regime over the next 50 years.5. Species’ distribution, abundance, or habitat quality is likely to be <strong>in</strong>creased by a change <strong>in</strong>the frequency, severity, or extent <strong>of</strong> a disturbance regime over the next 50 years.163


(C3) Restriction to Uncommon Geological FeaturesThis factor perta<strong>in</strong>s to a species' need for a particular soil/substrate, geology, water chemistry, orspecific physical feature (e.g., caves, cliffs, active sand dunes) for one or more portions <strong>of</strong> its lifecycle. Do not <strong>in</strong>clude features that have been addressed by previous factors, such as spr<strong>in</strong>gs orephemeral pools or biotic habitat components, such as a particular type <strong>of</strong> plant community, asthese will be addressed elsewhere. Response should be based on the commonness <strong>of</strong> feature anddegree <strong>of</strong> species restriction.Example:• Species dependent on cliffs for nest<strong>in</strong>g (e.g. Gyrfalcon)• Species that utilize protected waters as on the leeward side <strong>of</strong> barrier islands (e.g. postbreed<strong>in</strong>gphalaropes)• Species dependent on gravel river/stream bed habitat for nest<strong>in</strong>g (e.g. SemipalmatedPlover)1. Species is very highly dependent on (>85% <strong>of</strong> occurrences) a particular highly uncommongeological feature or derivative.2. Species is moderately to highly dependent on (65-85% <strong>of</strong> occurrences) a particular highlyuncommon geological feature or derivative OR is restricted to a geological feature or derivativethat is not one <strong>of</strong> the dom<strong>in</strong>ant types with<strong>in</strong> the species' range.3. Species is dependent on (>85% <strong>of</strong> occurrences) a common geological feature or derivativethat is among the dom<strong>in</strong>ant types with<strong>in</strong> the species' range.4. Species is somewhat flexible but not highly generalized <strong>in</strong> dependence upon geologicalfeatures or derivatives. This category should <strong>in</strong>clude species found on a subset <strong>of</strong> dom<strong>in</strong>antsubstrates occurr<strong>in</strong>g with<strong>in</strong> the species' range (e.g., many birds and mammals).5. Species is highly generalized relative to dependence upon geological features or derivatives.(C4a) Dependence on Other Species to Generate HabitatFor this factor, habitat refers to any physical habitat necessary for completion <strong>of</strong> the life cycle,<strong>in</strong>clud<strong>in</strong>g those used on a seasonal basis (but not <strong>in</strong>clud<strong>in</strong>g restricted diets-next factor). Considerhow specialized the species is <strong>in</strong> its association with another species to generate habitat. If aspecies is dependent on a s<strong>in</strong>gle species to generate habitat, but the vulnerability <strong>of</strong> that speciesis unknown, check the first two boxes below — (We could th<strong>in</strong>k <strong>of</strong> no examples for <strong>Arctic</strong>Alaska).1. Required habitat is generated primarily by a s<strong>in</strong>gle species and that species may be highlyvulnerable to climate change with<strong>in</strong> the assessment area.2. Required habitat is generated primarily by a s<strong>in</strong>gle species and that species may bevulnerable to climate change with<strong>in</strong> the assessment area.164


3. Required habitat is generated by one or more, but not more than a few species.Examples: burrow<strong>in</strong>g owls depend on excavations made by relatively few species <strong>of</strong> mammals,marbled murrelets depend on a few species <strong>of</strong> large trees to provide nest<strong>in</strong>g platforms4. Required habitat is generated by more than a few species or does not <strong>in</strong>volve species-specificprocesses.(C4b) Dietary VersatilityThis factor perta<strong>in</strong>s to the diversity <strong>of</strong> food types consumed by animal species.1. Diet is completely or almost completely dependent (>90%) on one species dur<strong>in</strong>g any part <strong>of</strong>the year. Example: Clark's nutcracker depends heavily on the seeds <strong>of</strong> whitebark p<strong>in</strong>e; pomar<strong>in</strong>ejaeger depends on brown lemm<strong>in</strong>g population eruptions for successful reproduction2. Diet is completely or almost complete dependent (>90%) on a few species from a s<strong>in</strong>gle guild<strong>of</strong> species dur<strong>in</strong>g any part <strong>of</strong> the year. Example: the larvae <strong>of</strong> various fritillary butterflies relyheavily on a few species <strong>of</strong> violets, dur<strong>in</strong>g w<strong>in</strong>ter ptarmigan depend heavily on few species <strong>of</strong>willows for forage3. Diet is flexible, <strong>in</strong>clud<strong>in</strong>g several species but either solely plant or animal-based.Example: post-breed<strong>in</strong>g shorebird species may rely on a few species <strong>of</strong> benthic <strong>in</strong>vertebrates4. Omnivorous diet, <strong>in</strong>cludes several species <strong>of</strong> both plants and animals.(C4e) Other Interspecific InteractionsThis factor refers to <strong>in</strong>teractions unrelated to habitat, diet, or propagule dispersal, such asmutualism, parasitism, or commensalism, or predator-prey relationships.Examples:• Some waterfowl species are known to nest with<strong>in</strong> the nest<strong>in</strong>g territory <strong>of</strong> birds <strong>of</strong> prey afford<strong>in</strong>gprotection from nest predators• Documented changes <strong>in</strong> predator-prey relationships - e.g., ability <strong>of</strong> waterfowl to fend <strong>of</strong>f <strong>Arctic</strong>fox vs. red fox predation1. Species requires an <strong>in</strong>teraction with a s<strong>in</strong>gle other species for persistence OR changes <strong>in</strong> aspecific predator-prey relationship has the potential to strongly effect the persistence <strong>of</strong> thespecies.2. Species requires an <strong>in</strong>teraction with one member <strong>of</strong> a small group <strong>of</strong> taxonomically relatedspecies for persistence OR changes <strong>in</strong> a specific predator-prey relationship has the potential tosomewhat effect the persistence <strong>of</strong> the species. Select this category <strong>in</strong> cases for which specificityis suspected but not known for certa<strong>in</strong>.3. Does not require an <strong>in</strong>terspecific <strong>in</strong>teraction OR many potential candidates can be used.(C5a) Measured Genetic Variation (not <strong>in</strong>cluded <strong>in</strong> revision)165


(C6) Phenological ResponseThis factor assesses changes <strong>in</strong> a species' phenological response (e.g., tim<strong>in</strong>g <strong>of</strong> migration,breed<strong>in</strong>g, etc.) relative to observed (historical) changes <strong>in</strong> temperature or precipitation dynamicsPotential sources <strong>of</strong> data <strong>in</strong>clude large databases such as that <strong>of</strong> the U.S. National PhenologyNetwork other multi-species studies.Note: If there are no data available to make comparisons between the observed responses<strong>of</strong> the species under question with other species <strong>in</strong> similar habitats or taxonomic groups, selectall <strong>of</strong> the last 3 options.1. Phenological variables measured for the species show no detectable change <strong>in</strong> response todocumented changes <strong>in</strong> seasonal temperature or precipitation patterns or other climate-relatedphenological variables (green-up, snowmelt/cover, ice-out, freeze up, etc.) with<strong>in</strong> the assessmentarea. (Increase vulnerability)2. Phenological variables measured for the species show detectable change <strong>in</strong> response todocumented changes <strong>in</strong> seasonal temperature or precipitation patterns or other climate-relatedphenological variables (green-up, snowmelt/cover, ice-out, freeze up, etc.) with<strong>in</strong> the assessmentarea, but the phenological change is significantly less than that <strong>of</strong> other species <strong>in</strong> similar habitatsor taxonomic groups. (Somewhat <strong>in</strong>crease vulnerability)3. Phenological variables measured for the species <strong>in</strong>dicate detectable change <strong>in</strong> response todocumented changes <strong>in</strong> seasonal temperature or precipitation patterns or other climate-relatedphenological variables (green-up, snowmelt/cover, ice-out, freeze up, etc.) with<strong>in</strong> the assessmentarea, but the phenological change is similar to that <strong>of</strong> other species <strong>in</strong> similar habitats ortaxonomic groups (Neutral)4. Phenological variables measured for the species <strong>in</strong>dicate detectable change <strong>in</strong> response todocumented changes <strong>in</strong> seasonal temperature or precipitation patterns or other climate-relatedphenological variables (green-up, snowmelt/cover, ice-out, freeze up, etc.) with<strong>in</strong> the assessmentarea but the phenological change is significantly greater than that <strong>of</strong> other species <strong>in</strong> similarhabitats or taxonomic groups (Somewhat decrease vulnerability)(D1) Documented <strong>Change</strong>s <strong>in</strong> Distribution or Abundance <strong>in</strong> Response toRecent <strong>Climate</strong> <strong>Change</strong>This factor perta<strong>in</strong>s to the degree to which distribution or abundance has changed <strong>in</strong> response torecent climate change, for example range contractions or population decl<strong>in</strong>es due to phenologymismatches and critical resources. Consider a time frame <strong>of</strong> 10 years or three generations,whichever is longer. — Only consider population level decl<strong>in</strong>es <strong>in</strong> abundance or distributioncontractions for responses #1, #2, and #3. Northward shifts <strong>in</strong> range limits without overallreductions/contractions at the southern edge should are captured <strong>in</strong> #5 and #6 (e.g., mallard).1. Distribution or abundance has undergone a major reduction (>70% over 10 years or threegenerations) believed to be associated with climate change.166


2. Distribution or abundance has undergone a moderate reduction (30-70% over 10 years orthree generations) believed to be associated with climate change.3. Distribution or abundance has undergone a small but measurable reduction (10-30% over 10years or three generations) believed to be associated with climate change.4. Distribution or abundance is not known to be <strong>in</strong>creas<strong>in</strong>g or decreas<strong>in</strong>g with climate change.Includes species undergo<strong>in</strong>g range shifts without significant change <strong>in</strong> distributional area orspecies undergo<strong>in</strong>g changes <strong>in</strong> phenology but without a change <strong>in</strong> net range or population size.5. Distribution or abundance has undergone a small but measurable <strong>in</strong>crease (10-30% over 10years or three generations) believed to be associated with climate change. Distribution changesmust be true <strong>in</strong>creases <strong>in</strong> area, not range shifts.6. Distribution or abundance has undergone a moderate or major <strong>in</strong>crease (>30% over 10 yearsor three generations) believed to be associated with climate change. Distribution changes mustbe true <strong>in</strong>creases <strong>in</strong> area, not range shifts.Note: Eighteen <strong>of</strong> the 54 experts responded to this question. The response can alter the overallvulnerability results just based on the B&C sections if they are contrary to those results. Forexample, if a species is calculated to be MV based on the B&C factor responses, D responses<strong>in</strong>dicat<strong>in</strong>g that model or observed changes to distribution show reductions, the MV could getbumped to a HV.167

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!