12.07.2015 Views

S-integral points on hyperelliptic curves Homero Renato Gallegos ...

S-integral points on hyperelliptic curves Homero Renato Gallegos ...

S-integral points on hyperelliptic curves Homero Renato Gallegos ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>hyperelliptic</strong> <strong>curves</strong>by<strong>Homero</strong> <strong>Renato</strong> <strong>Gallegos</strong> RuizThesisSubmitted to the University of Warwickfor the degree ofDoctor of PhilosophyMathematicsDecember 2010


C<strong>on</strong>tentsList of TablesivList of FiguresvAcknowledgmentsviDeclarati<strong>on</strong>sviiiAbstractixChapter 1 Introducti<strong>on</strong> 1Chapter 2 The Mordell–Weil group 72.1 Basic definiti<strong>on</strong>s and theorems . . . . . . . . . . . . . . . . . . . . . . . 82.2 Bounds for the height difference . . . . . . . . . . . . . . . . . . . . . . 102.3 Computing the rank of J(Q) – 2-descent. . . . . . . . . . . . . . . . . . 132.4 The infinite descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Chapter 3Upper bounds for the size of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>hyperelliptic</strong><strong>curves</strong> 183.1 Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.1.1 The Odd Degree Case . . . . . . . . . . . . . . . . . . . . . . . 203.1.2 The Even Degree Case . . . . . . . . . . . . . . . . . . . . . . . 223.2 S-integers and heights . . . . . . . . . . . . . . . . . . . . . . . . . . . 23ii


3.3 Systems of fundamental units . . . . . . . . . . . . . . . . . . . . . . . 273.4 Upper bounds for the regulator and the class number . . . . . . . . . . . 293.5 Linear forms in logarithms . . . . . . . . . . . . . . . . . . . . . . . . . 313.6 Upper bounds for the size of the soluti<strong>on</strong>s to S-unit equati<strong>on</strong>s . . . . . . 323.7 Upper bounds for the size of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>hyperelliptic</strong> <strong>curves</strong> . . 373.8 The Mordell–Weil sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Chapter 4 Periods of genus 2 <strong>curves</strong> defined over the reals 504.1 Reducti<strong>on</strong> of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 524.2 Bost and Mestre’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . 554.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.3.1 A note <strong>on</strong> precisi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . 84Chapter 5 Reducti<strong>on</strong> of the upper bound for the size of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> 885.1 Analytic Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905.2 Computati<strong>on</strong> of periods . . . . . . . . . . . . . . . . . . . . . . . . . . . 925.3 The linear form in <strong>hyperelliptic</strong> logarithms . . . . . . . . . . . . . . . . . 985.3.1 The odd degree case . . . . . . . . . . . . . . . . . . . . . . . . 995.3.2 The even degree case . . . . . . . . . . . . . . . . . . . . . . . . 1055.4 Reducti<strong>on</strong> of the upper bound, the LLL-algorithm . . . . . . . . . . . . . 110Bibliography 116iii


List of Figures5.1 An octag<strong>on</strong> defining a genus 2 surface. . . . . . . . . . . . . . . . . . . 905.2 The Riemann surface of a <strong>hyperelliptic</strong> curve. . . . . . . . . . . . . . . . 935.3 Paths below the cycles in the homology basis. . . . . . . . . . . . . . . . 935.4 Cycles above [a i , a i+1 ] compared to the chosen homology basis. . . . . 95v


AcknowledgmentsTo the glory of my God and Saviour, Jesus Christ.For from Him and through Him and to Him are all things.Dedicated to Noel, my little s<strong>on</strong>. Perhaps some day he will read this work, and he willknow that he has been a great motivati<strong>on</strong> leading to the happy c<strong>on</strong>clusi<strong>on</strong> of this pathof pers<strong>on</strong>al growth.I am grateful to my supervisor Samir Siksek. He is an example of great values inhumankind: patience and encouragement. These virtues make him an excellent guide.His support has been instrumental to the accomplishment of this work.I also thank the financial support of CONACyT, the Mexican Council of Scienceand Technology (Scholarship Number 160194). Without its support, my studies wouldnot have been made real.I would also like to thank my wife Martha. She has given me strength in momentsof discouragement and weakness. She had the ability to endure times when I was notable to be with my family, and she sacrificed time of her own studies, for the sake ofmy academic progress. I thank my parents, Limberg and Betty; and my sister Marce;and Marcos, Lulú, Omar and Sofi. They signify the explanati<strong>on</strong> of my presence in thisworld. Finally, I would like to thank the members of the Church Street Gospel Hall. Theyhave been my true brothers and sisters in the Lord, and they are great examples of thespiritual transformati<strong>on</strong> that God works in the lives of human beings.vi


Agradecimientos 1Para la gloria y la h<strong>on</strong>ra de mi Dios y Salvador, Jesucristo. Porque de Él, por Ély para Él s<strong>on</strong> todas las cosasPara mi supervisor Samir Siksek, muestra de grandes valores del ser humano:paciencia y ánimo, que lo c<strong>on</strong>vierten en inmejorable guía. Su apoyo ha sido determinantepara la realización de este trabajo.Para el C<strong>on</strong>sejo Naci<strong>on</strong>al de Ciencia y Tecnología de México (Beca número160194), sin cuyo respaldo mis estudios no hubieran tenido un lugar en el mundo delas realidades.Para mi esposa, Martha, que me infundió fuerza en los momentos de desánimoy flaqueza; por su capacidad para entender que en aras del progreso académico tuveque sacrificar parte importante del tiempo de c<strong>on</strong>vivencia familiar.Para mis padres, Limberg y Betty; mi hermana Marce, para Marcos, Lulú, Omary Sofi, que significan la explicación de mi presencia en este mundo.Para los miembros de la iglesia Church Street Gospel Hall, verdaderos hermanosen el Señor. Ellos s<strong>on</strong> un gran ejemplo de la transformación espiritual que Diosobra en la vida de los seres humanos.Para Noel, mi pequeño hijo. Algún día leerá este documento y sabrá que fueun motor cuya fuerza me llevó a c<strong>on</strong>cluir venturosamente este camino de crecimientopers<strong>on</strong>al.1 Spanish versi<strong>on</strong> of the Acknowledgmentsvii


Declarati<strong>on</strong>sI declare that, except where acknowledged, the material c<strong>on</strong>tained in this thesis is myown work and it has not been submitted elsewere for the purpose of obtaining an academicdegree.Chapter 2 c<strong>on</strong>sists <strong>on</strong> standard material which is needed in the rest of the work.The material in Chapter 3 has been accepted for publicati<strong>on</strong> in The Internati<strong>on</strong>alJournal of Number Theory.<strong>Homero</strong> <strong>Renato</strong> <strong>Gallegos</strong> Ruiz.December 2010.viii


AbstractLet C : Y 2 = a n X n + · · · + a 0 be a <strong>hyperelliptic</strong> curve with the a i rati<strong>on</strong>al integers,n ≥ 5, and the polynomial <strong>on</strong> the right irreducible. Let J be its Jacobian. Let S be afinite set of rati<strong>on</strong>al primes. In this thesis we give explicit methods for finding all of the<str<strong>on</strong>g>integral</str<strong>on</strong>g> and S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C. The work c<strong>on</strong>sists of the following parts.1. We give a completely explicit upper bound for the size of the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong>the model C, provided we know at least <strong>on</strong>e rati<strong>on</strong>al point <strong>on</strong> C and a Mordell–Weilbasis for J(Q). There is a refinement of the Mordell–Weil sieve that can then beused to determine all the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curve.2. In the case the curve has genus 2 and the polynomial defining the curve hasreal roots <strong>on</strong>ly, we reduce the upper bound for the size of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> tomanageable proporti<strong>on</strong>s using linear forms in <strong>hyperelliptic</strong> logarithms. We thenfind all of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C by a direct search.3. We give an algorithm for the computati<strong>on</strong> of <strong>hyperelliptic</strong> logarithms of real <str<strong>on</strong>g>points</str<strong>on</strong>g><strong>on</strong> genus 2 <strong>curves</strong> defined by a polynomial having real roots <strong>on</strong>ly. This is neededfor 2.We illustrate the practicality of the method by finding all the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong>the curve Y 2 = f(X) = X 5 − 5X 3 − X 2 + 3X + 1, and all the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> thecurve Y 2 − Y = X 5 − X for the set S of the first 22 primes.ix


Chapter 1Introducti<strong>on</strong>C<strong>on</strong>sider the <strong>hyperelliptic</strong> curve with affine modelC : Y 2 = a n X n + a n−1 X n−1 + · · · + a 0 , (1.0.1)where a 0 , . . . , a n are rati<strong>on</strong>al integers, a n ≠ 0, n ≥ 5. Let S be a finite set of rati<strong>on</strong>alprimes. Siegel’s theorem [40] states that (1.0.1) has <strong>on</strong>ly finitely many S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> soluti<strong>on</strong>s.Siegel’s theorem is superseded by Faltings’ theorem [20] that states that thereare <strong>on</strong>ly finitely many rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C. Both Siegel’s and Faltings’ results are ineffective.That is, their proofs do not lead to an algorithm to determine all the rati<strong>on</strong>al<str<strong>on</strong>g>points</str<strong>on</strong>g>.Using his theory of linear forms in logarithms, Baker [1] was the first to providean effective result c<strong>on</strong>cerning the size of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C. He showed that any<str<strong>on</strong>g>integral</str<strong>on</strong>g> point (X, Y ) <strong>on</strong> this affine model satisfiesmax(|X|, |Y |) ≤ exp exp exp{(n 10n H) n2 }, H = maxi=1,...,n {|a i|}.Baker’s result has been improved and extended to soluti<strong>on</strong>s in algebraic integers andS-integers by many authors (see [43, 48, 36, 2, 3, 12]). Despite the improvements, thebounds remain astr<strong>on</strong>omical and often involve inexplicit c<strong>on</strong>stants.Recently, Bugeaud et al. [15] gave the first general practical method for explicitly1


computing <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> affine models (1.0.1) of <strong>hyperelliptic</strong> <strong>curves</strong>. Their methodfalls into two steps.I. They give an upper bound for the size of <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>.II. They describe a variant of the Mordell–Weil sieve capable of searching up to thebounds found in the first step.In this thesis we give a method for explicitly computing S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>hyperelliptic</strong><strong>curves</strong> (1.0.1). As in [15], our strategy falls in two steps.I’. We compute a completely explicit upper bound for the size of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>.This step is based in part <strong>on</strong> the ideas for step (I) above in [15]. The methodhas to be completely reworked for the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> setting. We not <strong>on</strong>ly extend step(I) to the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> case, but we also improve <strong>on</strong> the bounds given in [15] forthe size of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>. Nevertheless, the bounds are very large, and it isimpractical to do a search for S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> up to the bound. This material alsoforms a 22-page paper [25] accepted for publicati<strong>on</strong> in The Internati<strong>on</strong>al Journalof Number Theory.II’. We use <strong>on</strong>e of the following methods.(a) We try to reduce the bound found in Step (I’) to manageable proporti<strong>on</strong>s,using lattice reducti<strong>on</strong>. We show how the bound can be turned into an upperbound for the size of the coefficients of the linear combinati<strong>on</strong>s of the <str<strong>on</strong>g>points</str<strong>on</strong>g><strong>on</strong> the Jacobian corresp<strong>on</strong>ding to <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curve.We turnthe linear combinati<strong>on</strong> in the Mordell–Weil group J(Q) into linear forms in<strong>hyperelliptic</strong> logarithms. We give an upper bound for the linear forms and weuse it to reduce the upper bound for the coefficients of the linear combinati<strong>on</strong>to manageable proporti<strong>on</strong>s.(b) We use step (II) above to sieve up to the bounds found in Step (I’).2


As menti<strong>on</strong>ed earlier, Step (I’) has to be completely reworked from Step (I) for the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> setting.i. We replace some of the bounds of Bugeaud and Győry [13] for the size of systemsof fundamental units and the size of soluti<strong>on</strong>s to S-unit equati<strong>on</strong>s with more recentand sharper bounds due to Győry and Yu [27].ii. We combine Matveev’s bounds for linear forms in logarithms [31] with Yu’s boundsfor linear forms in p-adic logarithms [53] and an idea due to Voutier [49] to get anupper bound for the size of soluti<strong>on</strong>s of a particular type of S-unit equati<strong>on</strong>s.iii. In [15] the authors use an upper bound for the regulator of a number field based<strong>on</strong> a theorem of Landau. The theorem of Landau actually bounds the product ofthe regulator and the class number, which we need to bound in our case.iv. Our bounds for the size of the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> soluti<strong>on</strong>s <strong>on</strong> (1.0.1) depend <strong>on</strong> the classnumber of some number field. We use an upper bound for the class number dueto Lenstra [28].The improvements <strong>on</strong> the first step are the following. First, our c<strong>on</strong>stants aresmaller than those in [15], and do not depend <strong>on</strong> parameters related to Lehmer’s problem.This is due to the improvement <strong>on</strong> systems of fundamental S-units we use. Moreover,though Voutier’s idea had been already used to give effective upper bounds forthe size of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> soluti<strong>on</strong>s in [12], the bounds were inexplicit.Our bounds arecompletely explicit and they are based <strong>on</strong> more recent estimates for linear forms inlogarithms than those used in [12].Step (II’)-(a) in its present form can <strong>on</strong>ly be used to find <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> Cwhen the genus of the curve is 2, and when the polynomial defining the curve has realroots <strong>on</strong>ly. The generalisati<strong>on</strong> of the method to polynomials with complex roots defininggenus 2 <strong>curves</strong> is work in progress.Step (II’)-(b) is practically unchanged with respect to step (II) above, and wemerely summarise what we need for it from [15].3


We need the following assumpti<strong>on</strong>s for all steps:a. The knowledge of at least <strong>on</strong>e rati<strong>on</strong>al point P 0 <strong>on</strong> C.b. The knowledge of a Mordell–Weil basis for J(Q) where J is the Jacobian of C.For the sec<strong>on</strong>d step we also need to assume that the can<strong>on</strong>ical height ĥ :J(Q) → R is explicitly computable and that we have explicit upper and lower boundsfor the differenceµ 1 ≤ h(D) − ĥ(D) ≤ µ 2. (1.0.2)For step (II’)-(a) we further require that generators of J(Q) are divisors supported by<str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C(R) <strong>on</strong>ly.The assumpti<strong>on</strong> that we know a point <strong>on</strong> the curve brings simplificati<strong>on</strong>s to ourmethod. As remarked in [15], if we do not know any rati<strong>on</strong>al point <strong>on</strong> the curve, it ispossible that there are no rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> at all. This can be proved using the techniquesof Bruin and Stoll [9, 10, 11].We have made most of the necessary computati<strong>on</strong>s with the computati<strong>on</strong>al algebrasystem MAGMA [5]. Some computati<strong>on</strong>s have been performed with the Mathematicasystem [52].The thesis is arranged as follows. Chapter 2 outlines the existing methods forthe computati<strong>on</strong> of the bounds for the height difference, and the computati<strong>on</strong> of theMordell–Weil group. It c<strong>on</strong>sists <strong>on</strong> standard material, but it is needed to set up notati<strong>on</strong>which will be used throughout the thesis. Chapter 3 is c<strong>on</strong>cerned with the computati<strong>on</strong>of the upper bounds for the size of the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the affine model 1.0.1.It also explains how <strong>on</strong>e can completely determine all the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> using thevariant of the Mordell–Weil sieve found in [15]. Chapter 5 deals with the reducti<strong>on</strong> of theupper bounds obtained in Chapter 3 for the particular case of <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> genus 2<strong>hyperelliptic</strong> <strong>curves</strong>. The method requires the computati<strong>on</strong> of the periods of the curve,and <strong>hyperelliptic</strong> logarithms of degree 0 divisors <strong>on</strong> C to high precisi<strong>on</strong>. In Chapter 4 we4


present an algorithm of Bost and Mestre [6] for the computati<strong>on</strong> of the periods, and wework <strong>on</strong> an extensi<strong>on</strong> of it so that we can also compute the <strong>hyperelliptic</strong> logarithms.We now briefly describe the available tools for the soluti<strong>on</strong> of Diophantine <strong>hyperelliptic</strong>equati<strong>on</strong>s. After Siegel’s proof of the finiteness of the number of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g><str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>curves</strong> of higher genus, effective methods for finding all the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g><strong>on</strong> <strong>hyperelliptic</strong> <strong>curves</strong> have been developed. Some of them are not general, and thosethat are general are often impractical or inexplicit.1. Chabauty’s method. Chabauty [17] proved that a curve of genus g ≥ 2 has afinite number of rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> whenever the rank of the Mordell–Weil group ofits Jacobian is strictly less than g. His proof often leads to a sharp bound <strong>on</strong> thenumber of <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C. If the bound is attained, then <strong>on</strong>e has not <strong>on</strong>ly the <str<strong>on</strong>g>integral</str<strong>on</strong>g><str<strong>on</strong>g>points</str<strong>on</strong>g>, but all the rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g>. This requires knowledge of generators for theMordell–Weil group or a subgroup of finite index. For notes <strong>on</strong> the applicati<strong>on</strong>of this method see [16, Chapter 13] or [32]. The examples we present in thisthesis are genus 2 <strong>curves</strong> with Mordell–Weil rank ≥ 2, so Chabauty’s methoddoes not apply. There are also some variants of Chabauty’s method (as EllipticCurve Chabauty [7], [8], [23], [24]) that can determine all the rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> a<strong>hyperelliptic</strong> curve, but they are also limited to <strong>curves</strong> of small rank.2. Bilu and Hanrot’s variant of Baker’s method Bilu and Hanrot [4] have produceda method to solve superelliptic Diophantine equati<strong>on</strong>s (i.e. of the formY m = f(X) with m ≥ 3) which computes an upper bound for the size of the<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>. Their method does not involve Thue or unit equati<strong>on</strong>s since theycompute directly a linear form in logarithms from a careful analysis of some numberfields. The upper bound they get is huge, but it is then reduced by an applicati<strong>on</strong>of the LLL-algorithm. The authors claim that <strong>on</strong>e can adjust the methodto the <strong>hyperelliptic</strong> case, but they do not do it explicitly. The method needs somecomputati<strong>on</strong>s of class groups of number fields of large degree (≥ 20) that in manycases in practice are bey<strong>on</strong>d the present abilities of computer algebra.5


3. Baker’s method and the Mordell–Weil sieve. A third method is the <strong>on</strong>e we havementi<strong>on</strong>ed before: Baker’s method combined with the variant of the Mordell–Weilsieve [15] to find the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>. This is the more general method, as it doesnot depend <strong>on</strong> the genus, and it does not involve computati<strong>on</strong>s of unit groups,but <strong>on</strong>ly bounds <strong>on</strong> the regulator of large degree number fields which are easyto compute. Nevertheless, the computati<strong>on</strong>s for the Mordell–Weil sieve can beexpensive. Thus, <strong>on</strong>e would like to reduce the upper bound obtained from Baker’smethod as much as possible, to sieve up to a not so large bound, or not to haveto sieve at all.6


Chapter 2The Mordell–Weil groupThe methods we use for the complete soluti<strong>on</strong> to <strong>hyperelliptic</strong> Diophantine equati<strong>on</strong>sdepend heavily <strong>on</strong> computing explicit generators for the Mordell–Weil group J(Q),which is finitely generated by the Mordell–Weil theorem. The purpose of this chapteris to set up the notati<strong>on</strong> <strong>on</strong> Jacobians that we will use throughout the thesis andgather the standard results <strong>on</strong> Jacobians we will need. We will also describe what arethe existing tools to explicitly compute generators for J(Q). The strategy is mainly inspiredby the elliptic case. One needs to explicitly compute the can<strong>on</strong>ical height of apoint <strong>on</strong> the Jacobian. One also needs to compute the rank of the curve. Then <strong>on</strong>elooks for generators of J(Q)/2J(Q). Finally, <strong>on</strong>e extends that set of generators to acomplete set of generators for J(Q).The chapter is arranged as follows. Secti<strong>on</strong> 2.1 presents the basic definiti<strong>on</strong>sabout <strong>hyperelliptic</strong> <strong>curves</strong> and Jacobians. Secti<strong>on</strong> 2.2 gathers results by Flynn, Smartand Stoll related to the explicit computati<strong>on</strong> of lower and upper bounds for the height differencewhich lead to the explicit computati<strong>on</strong> of the can<strong>on</strong>ical height. Secti<strong>on</strong> 2.3 dealswith the computati<strong>on</strong> of the rank of the curve and the 2-descent. Finally, Secti<strong>on</strong> 2.4explains how <strong>on</strong>e can perform the infinite descent to compute a complete set of generatorsfor J(Q).7


2.1 Basic definiti<strong>on</strong>s and theoremsThe following definiti<strong>on</strong>s and results are standard and are taken from Chapters 1-3 in[16]. Let C be a <strong>hyperelliptic</strong> curve of genus 2 defined over Q given by an affine modelof the formC :Y 2 = f(X),wheref(X) = f 6 X 6 + f 5 X 5 + f 4 X 4 + f 3 X 3 + f 2 X 2 + f 1 X + f 0 ,where the f i s are all integers and f 6 is not zero and f(x) has no multiple factors. Everygenus 2 <strong>hyperelliptic</strong> curve over Q is birati<strong>on</strong>ally equivalent over Q to a curve of thistype, which is unique up to a fracti<strong>on</strong>al linear transformati<strong>on</strong> in X, and an associatedtransformati<strong>on</strong> in Y .When dealing with the degree 6 affine model of a <strong>hyperelliptic</strong> curve <strong>on</strong>e shouldbear in mind that the corresp<strong>on</strong>ding projective model in P 2 has a singularity at infinity.But we think instead <strong>on</strong> a complete n<strong>on</strong>-singular model, either in a weighted projectivespace P X,Y,Z (1, 3, 1) or the model in P 4 resulting from blowing up the singularity atinfinity (see [16, Chapter 1, Secti<strong>on</strong> 1]). This means that as a double cover of P 1 , thecurve C has two <str<strong>on</strong>g>points</str<strong>on</strong>g> over ∞. They are traditi<strong>on</strong>ally named ∞ + and ∞ − , accordingto the sign of Y/X 3 al<strong>on</strong>g the corresp<strong>on</strong>ding branch (see for instance [16, p. 77]). Wewill also c<strong>on</strong>sider affine models given by a degree 5 polynomial f. In this case thereis <strong>on</strong>ly <strong>on</strong>e point over the point at infinity in P 1 which is traditi<strong>on</strong>ally named ∞ as well.Hopefully, in the rest of the work it will be clear from the c<strong>on</strong>text whether we are talkingabout the point ∞ ∈ P 1 or the point ∞ ∈ C.Definiti<strong>on</strong>. The Jacobian of C is defined as J(C) = Pic 0 (C), i.e. degree 0 divisorsmodulo linear equivalence.Let P be a point of C, P = (x, y). We say that the point ¯P = (x, −y) isthe c<strong>on</strong>jugate of P . A divisor of degree 2 of the type P + ¯P is the intersecti<strong>on</strong> of Cwith X = x. We see then that any two divisors of this type are linearly equivalent.8


Denote the corresp<strong>on</strong>ding element of Pic 2 (C) by D. We will choose ∞ + + ∞ − asa representative for D. Since D is the can<strong>on</strong>ical class, the Riemann Roch Theoremimplies that any other element of Pic 2 (C) c<strong>on</strong>tains precisely <strong>on</strong>e effective divisor P + Qfixed as a pair by Gal( ¯Q/Q) (see [16, Chapter 1, Secti<strong>on</strong> 1]). We will identify any suchelement of Pic 2 (C) with its unique effective divisor. We can identify Pic 0 (C) with Pic 2 (C)via additi<strong>on</strong> by D. Doing so identifies 0 ∈ Pic 0 (C) with D. We will in general express<str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the Jacobian other than 0 in the form P + Q − D, where P and Q are notc<strong>on</strong>jugate under the <strong>hyperelliptic</strong> involuti<strong>on</strong>.Let P 0 be a rati<strong>on</strong>al point <strong>on</strong> C. Sometimes we will want to express <str<strong>on</strong>g>points</str<strong>on</strong>g> in theJacobian in the form P ′ + Q ′ − 2P 0 . We will do it in the following way. Let P + Q − Dbe an element in J(C). C<strong>on</strong>sider the divisor D ′ = P + Q − D + P 0 − ¯P 0 ∈ Pic 0 (C). Ingeneral, D ′ will not be linearly equivalent to 0. Let P ′ +Q ′ be the <strong>on</strong>ly degree 2 effectivedivisor such that P ′ +Q ′ −D is linearly equivalent to D ′ . Then the divisor P ′ +Q ′ −2P 0is linearly equivalent to D ′ + D − 2P 0 , which is linearly equivalent to P + Q − P 0 − ¯P 0 ,which is linearly equivalent to P + Q − D.The Jacobian of the curve J(C) can also be thought of as an algebraic varietywhose <str<strong>on</strong>g>points</str<strong>on</strong>g> corresp<strong>on</strong>d to the elements of Pic 0 (C). In [16, Chapter 2] the authorsdescribe explicitly this variety as the intersecti<strong>on</strong> of 72 quadrics in P 15 and they alsogive explicit maps taking divisors of the form P + Q − D to the algebraic variety.The model of the Jacobian variety in P 15 is a large object, difficult to manipulate.There is another variety associated to J(C) that retains much of the informati<strong>on</strong> of theJacobian which is much simpler, the Kummer surface K = K(C). This is a quarticsurface in P 3 . We take its definiti<strong>on</strong> from [16, Chapter 3]. We define K as the projectivelocus in P 3 of the map given byP + Q − D ∈ J(C) ↦→ (k 1 , k 2 , k 3 , k 4 ) = (1, x + u, xu, (F 0 (x, u) − 2yv)/(x − u) 2 ),where P = (x, y), Q = (u, v), P ≠ Q, andF 0 (x, u) = 2f 0 +f 1 (x+u)+2f 2 xu+f 3 xu(x+u)+2f 4 (xu) 2 +f 5 (xu) 2 (x+u)+2f 6 (xu) 3 .9


The Kummer surface is then given by a quartic equati<strong>on</strong>R(k 1 , k 2 , k 3 )k 2 4 + S(k 1 , k 2 , k 3 )k 4 + T (k 1 , k 2 , k 3 ) = 0, (2.1.1)where R, S and T are homogeneous of degree 2, 3 and 4 respectively. These polynomialscan be found in Chapter 3 of [16]. We can extend the map to pairs of <str<strong>on</strong>g>points</str<strong>on</strong>g>P, Q that include the <str<strong>on</strong>g>points</str<strong>on</strong>g> at infinity, and to pairs of the form P, P . The values arethe following, according to Flynn and Smart [22]. For pairs P, P where P is not <strong>on</strong>e ofthe <str<strong>on</strong>g>points</str<strong>on</strong>g> at infinity, k 1 , k 2 , k 3 are as above, and k 4 is uniquely determined by Equati<strong>on</strong>(2.1.1). If the pair is of the form (x, y), ∞ ± , then k 1 = 0, k 2 = 1, k 3 = x 1 , k 4 =f 5 x 2 + 2f 6 x 3 1 − (±2y√ f 6 ). The pair ∞ + , ∞ − is mapped to (0, 0, 0, 1) and if the pairc<strong>on</strong>sists of two equal <str<strong>on</strong>g>points</str<strong>on</strong>g> at infinity, the corresp<strong>on</strong>ding point <strong>on</strong> the Kummer surfaceis (0, 0, 1, k 4 ) where k 4 can be determined from equati<strong>on</strong> (2.1.1). We remark that theJacobian variety is a double cover of the Kummer surface (see [16, Chapter 3, Secti<strong>on</strong>8]).Finally, we state the Mordell–Weil Theorem. The proof for the general theorem<strong>on</strong> Abelian varieties over number fields can be found in Serre’s book [39, Chapter 4].Theorem 2.1.1. The group of <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> J(C) defined over Q is a finitely generatedabelian group.2.2 Bounds for the height differenceWe define a naive height <strong>on</strong> K as the restricti<strong>on</strong> of the naive height in P 3 : let (x 0 , x 1 , x 2 , x 3 )be the homogeneous coordinates of a point in P 3 (Q). Multiplying by a n<strong>on</strong>zero c<strong>on</strong>stant,we can assume that the x i s are all integers having 1 as their greatest comm<strong>on</strong> divisor.We define the (exp<strong>on</strong>ential) naive height of (x 0 , x 1 , x 2 , x 3 ) as max(|x 0 |, |x 1 |, |x 2 |, |x 3 |).We will normally c<strong>on</strong>sider the logarithmic naive height, that is, the logarithm of the naiveheight.Definiti<strong>on</strong>. The naive height or logarithmic height of a point Q <strong>on</strong> the Jacobian variety10


of C is the logarithmic naive height of the corresp<strong>on</strong>ding point <strong>on</strong> the Kummer surface.We denote the naive height of Q by h(Q).This is much easier than computing heights directly <strong>on</strong> P 15 where J(C) is embedded.Note as well that the set of <str<strong>on</strong>g>points</str<strong>on</strong>g>{P ∈ J(Q) : h(P ) ≤ B}is finite since the set in P 3 c<strong>on</strong>sisting of <str<strong>on</strong>g>points</str<strong>on</strong>g> of height ≤ B is finite and the Jacobianis a double cover of the Kummer surface. Taking advantage of the group law <strong>on</strong> theJacobian, <strong>on</strong>e can also define another height, the can<strong>on</strong>ical height, by1ĥ(P ) = lim h(nP ).n→∞ n2 For many <strong>hyperelliptic</strong> <strong>curves</strong>, the can<strong>on</strong>ical height of a given point P <strong>on</strong> J(Q)is explicitly computable. Flynn and Smart [22] were the first to give an algorithm forthe computati<strong>on</strong> of the can<strong>on</strong>ical height. The algorithm has since been improved, inparticular by Stoll [44, 46]. Stoll’s algorithm has been implemented in the ComputerAlgebra system MAGMA and it is the <strong>on</strong>e we use.differenceWe explain now how we can find real c<strong>on</strong>stants µ 1 and µ 2 bounding the heightµ 1 ≤ h(Q) − ĥ(Q) ≤ µ 2. (2.2.1)The idea behind obtaining such bounds is approximating the distance from a givenpoint to twice the point. Let P be a point <strong>on</strong> J(C). Denote by k P = (k 1 , k 2 , k 3 , k 4 )the corresp<strong>on</strong>ding point <strong>on</strong> the Kummer surface. The coordinates of k 2P are given byquartics in terms of the k i s, and we denote them by (δ 1 , δ 2 , δ 3 , δ 4 ). The equati<strong>on</strong>s forthose quartics are given in [21] and they are too large to be reproduced here. Following[22] we define a local error functi<strong>on</strong> for every prime p, including the infinite prime:ε p (k P ) = log( maxi=1,...,4 {|δ i(k P )| p }) − 4 log( maxi=1,...,4 {|k i| p }).11


It can be shown (see [22]) that for all primes of good reducti<strong>on</strong> the error functi<strong>on</strong> vanishes.For the remaining primes upper and lower bounds can be computed. We nowshow how to bound the error functi<strong>on</strong> in the infinite case.Lemma 2.2.1. An upper bound for ε ∞ is given by{∑ }µ (∞)1 = log( max absolute value of the coefficients of δ i ).i=1,...,4Proof. Multiplying by a c<strong>on</strong>stant we can assume that the maximum of the absolutevalue of the entries of k P is <strong>on</strong>e. Then{∑ }max{|δ i (k 1 , k 2 , k 3 , k 4 )|} ≤ max absolute value of the coefficients of δi .ii=1,...,4Because of our assumpti<strong>on</strong> for k,The result follows.ε ∞ = log(max{|δ i (k 1 , k 2 , k 3 , k 4 )|}).iWe could find a sharper bound for ε ∞ , but this <strong>on</strong>e will be enough for our purposes.A lower bound for ε ∞ can be obtained using numerical techniques such assteepest descent.Obtaining sharp lower bounds for the finite primes is the subject of [44, 46]. In[22] the authors show that 0 is always an upper bound for the local error functi<strong>on</strong> at thefinite primes.The following theorem gives the desired lower and upper bounds for the heightdifference. This is Theorem 4 in [22].Theorem 2.2.2. For every prime p, including the infinite prime, let µ (p)1 , µ(p) 2 be n<strong>on</strong>negativereal c<strong>on</strong>stants such thatµ (p)1 ≥ ε p (k P ) ≥ −µ (p)2for all P ∈ J(Q), where all but finitely many of the µ (p)− 1 3∑p µ(p) 1 and µ 2 = 1 31 , µ(p)∑p µ(p) 2 . Then, for all P ∈ J(Q) we haveµ 1 ≤ h(P ) − ĥ(P ) ≤ µ 2.2 are 0. Define µ 1 =12


For the computati<strong>on</strong> of the can<strong>on</strong>ical height and for finding generators of theMordell–Weil group J(Q) <strong>on</strong>e <strong>on</strong>ly needs the upper bound µ 2 for the height difference.MAGMA’s package dealing with <strong>hyperelliptic</strong> <strong>curves</strong> does not implement the lower bound.Nevertheless, we will use the lower bound µ 1 obtained from Lemma 2.2.1 in Chapter 5to relate upper bounds for the naive height of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C to upper boundsfor linear forms in <strong>hyperelliptic</strong> logarithms. We will also need it in Secti<strong>on</strong> 3.8.Remark. The existence of the bounds µ 1 , µ 2 for the height difference implies that theset of <str<strong>on</strong>g>points</str<strong>on</strong>g>{P ∈ J(Q) : ĥ(P ) ≤ B}is finite for a given positive real number B. Then, the intersecti<strong>on</strong> of the image under ĥof J(Q) with the interval [0, B] ⊂ R is a finite set. It follows that ĥ(J(Q)) is a discretesubset of R2.3 Computing the rank of J(Q) – 2-descent.There is no algorithm known so far that provably determines the rank of the Mordell–Weil group J(Q). But many algorithms have been developed to give upper and lowerbounds for it ([37, 38, 45]). In many cases the bounds coincide and then <strong>on</strong>e knows therank. In this secti<strong>on</strong> we outline the main ideas behind such bounds.The proof of the Mordell–Weil theorem looks at the quotient J(Q)/mJ(Q). Thefiniteness of the quotient implies that J(Q) is finitely generated. Normally, <strong>on</strong>e looksat the case m = 2, as the multiplicati<strong>on</strong> by 2 map is available as an isogeny definedover Q and has low degree. Up to the computati<strong>on</strong> of the torsi<strong>on</strong>, <strong>on</strong>e can deduce therank of J(Q) from the structure of J(Q)/2J(Q) <strong>on</strong>ce the torsi<strong>on</strong> subgroup has beencomputed. The computati<strong>on</strong> of generators for J(Q)/2J(Q) is known as 2-descent.Stoll gives an algorithm for the computati<strong>on</strong> of the torsi<strong>on</strong> subgroup J(Q) tors in[44]. The idea of the algorithm is first computing the group J(F p ) for some small primesp of good reducti<strong>on</strong>. The order of the rati<strong>on</strong>al torsi<strong>on</strong> subgroup must divide the greatest13


comm<strong>on</strong> divisor g of the orders of the groups J(F p ). Since the rati<strong>on</strong>al torsi<strong>on</strong> subgroupis a finite abelian group, it suffices to compute the q-parts for all primes dividing theorder of the group. Only primes dividing g can occur. Then, for every prime q dividingg <strong>on</strong>e takes a prime of good reducti<strong>on</strong> p ≠ q. Then <strong>on</strong>e tries to lift <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> J(F p )[q n ]to J(Q). One does so lifting them first to J(Q p ) and finally a computati<strong>on</strong> of heightsdecides whether the point can indeed be lifted or not.An upper bound for the rank is obtained from the 2-Selmer group, as explainedin [45]. Once we get an upper bound r ′ for the rank, we try to search for <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> theJacobian until we get r ′ independent elements. If that is the case we then know that r ′equals the rank of the curve. We can search for <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the Jacobian up to certainheight c by looking for <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the Kummer surface with naive logarithmic height atmost c + µ 2 , as l<strong>on</strong>g as c + µ 2 is not too large (< 10).In order to test whether a finite set W ⊂ J(Q)/J(Q) tors is a linearly independentset in J(Q) we need the following definiti<strong>on</strong>.Definiti<strong>on</strong>. The height pairing <strong>on</strong> J(Q) is the bilinear form〈·, ·〉 : J(Q) × J(Q) → Rgiven by〈P, Q〉 = 1 (ĥ(P + Q) − ĥ(P ) − ĥ(Q)).2Let P 1 , . . . , P n be a sequence of <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> J(Q). The height pairing matrix of the given<str<strong>on</strong>g>points</str<strong>on</strong>g> is the matrix with entries〈P i , P j 〉.The bilinearity of the height pairing follows from the standard fact that the can<strong>on</strong>icalheight is a positive definite quadratic form <strong>on</strong> J(Q). The determinant of the heightpairing matrix of a sequence of <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> J(Q) is 0 if and <strong>on</strong>ly if the <str<strong>on</strong>g>points</str<strong>on</strong>g> are not anindependent set in J(Q)/J(Q) tors . Once we are able to compute explicitly the can<strong>on</strong>icalheight, we have a very useful tool to test for linear independence in J(Q) without theknowledge of an explicit basis.14


Once we find r linearly independent elements in J(Q) we test if they, togetherwith the torsi<strong>on</strong> <str<strong>on</strong>g>points</str<strong>on</strong>g>, generate J(Q)/2J(Q). We do it by testing if they are not thedouble of another point <strong>on</strong> J(Q). We can test whether a point of infinite order P is notthe double of a point Q ∈ J(Q) using heights. If P = 2Q, then ĥ(Q) = 1/4ĥ(P ), as wecan see from the definiti<strong>on</strong> of ĥ. We then can look for <str<strong>on</strong>g>points</str<strong>on</strong>g> Q <strong>on</strong> J(Q) of can<strong>on</strong>icalheight at most 1/4ĥ(P ) and see whether 2Q = P or not.2.4 The infinite descentThe procedure that computes a set of generators for the full Mordell–Weil group out ofa set of generators for J(Q)/2J(Q) is known as infinite descent. There are differentways of performing the infinite descent (see [22, 46]). We will use a simple method dueto Zagier [41, Propositi<strong>on</strong> 7.2].Theorem 2.4.1 (Zagier). Let S c = {P ∈ J(Q) : ĥ(P ) ≤ c}. If S c c<strong>on</strong>tains a full set ofrepresentatives for J(Q)/mJ(Q) (m > 1), then J(Q) is generated by S c .Proof. The proof in [41] also applies in the <strong>hyperelliptic</strong> case. We repeat it here forcompleteness.Let J 1 be the subgroup of J(Q) generated by S c . Suppose that J 1 ≠ J(Q).Then choose a Q ∈ J(Q), with Q /∈ J 1 of minimal height.This is possible, sinceĥ(J(Q)) is a discrete subset of R (see last remark in Secti<strong>on</strong> 2.2). Since Q /∈ S c wehave ĥ(Q) > c. Choose P ∈ S c with P ≡ Q (mod mJ(Q)), so P = Q + mR for someR ∈ J(Q). We note that R /∈ J 1 because of our assumpti<strong>on</strong> <strong>on</strong> Q.Now note thatĥ(R) = 1 m 2 ĥ(P − Q) ≤ 2 (ĥ(P ) + ĥ(Q))m2 ≤ 2 m 2 (c + ĥ(Q)) < 4 m 2 ĥ(Q)≤ ĥ(Q),since m ≥ 2. Since R /∈ J 1 this is a c<strong>on</strong>tradicti<strong>on</strong> to the minimality of Q and henceproves the propositi<strong>on</strong>.15


Once we know a set of generators for J(Q)/2J(Q), we compute the heights ofrepresentatives of every class modulo 2J(Q). Let c be the maximum of those heights.Then, the set S c satisfies the c<strong>on</strong>diti<strong>on</strong>s of the theorem and we know it generates thefull Mordell–Weil group. If the height of <strong>on</strong>e of the generators is very large, or if the rankis very large, then Zagier’s theorem might be impractical, and <strong>on</strong>e would need to usethe lattice enlargement procedures and the sieving techniques from [22, 46].Example 2.4.2. Let C be the genus 2 curve defined by the equati<strong>on</strong>y 2 = 4x 5 − 4x + 1.This curve is equivalent to that in Theorem 1.1 of [15]. There the authors compute theMordell–Weil group of the curve, and we check here the computati<strong>on</strong>s to illustrate themethods presented in this chapter.Using MAGMA we find some rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curve.∞, (−1, ±1), (0, ±1), (1, ±1, 1), (2, ±11),(3, ±31), (1/4, ±1/16), (−15/16, ±679/512), (30, ±9859).MAGMA’s command Torsi<strong>on</strong>Subgroup reveals that the Mordell–Weil group is torsi<strong>on</strong>free. Using the command ReducedBasis we find a set of generators for the subgroupgenerated by the divisors P − Q, where P, Q are in the list we have just found. A list ofindependent generators for the subgroup is(0, 1) − ∞, (1, 1) − ∞, (−1, 1) − ∞.Hence J(Q) has rank at least 3. Now we use the command RankBounds to see that anupper bound obtained from the informati<strong>on</strong> of the 2-Selmer group of J(Q) is 3. ThenJ(Q) has rank 3. We now want to see that n<strong>on</strong>e of the generators is the double ofsome divisor.We first compute an upper bound for the height difference using theHeightC<strong>on</strong>stant command. We find that µ 2 is about 2.17. We compute the can<strong>on</strong>icalheights of the divisors above with the Height command and see that they are respectivelyabout 0.16, 0.60 and 0.79. If the double of a divisor D is <strong>on</strong>e of the divisors above,16


then it should have strictly lower height. Using the upper bound for the height differencewe look for all <str<strong>on</strong>g>points</str<strong>on</strong>g> of naive logarithmic height less than ĥ((−1, 1))+µ 2. We use againthe command ReducedBasis to obtain independent generators for the group generatedby the <str<strong>on</strong>g>points</str<strong>on</strong>g> found in our search, and we obtain the same generators. Hence, n<strong>on</strong>e ofthe original divisors was of the form 2D, and they generate J(Q)/2J(Q). Finally, wecompute the heights of the representatives of each coset, and apply Zagier’s theoremto find a complete set of generators of J(Q). We see that the Mordell–Weil group isgenerated by the divisors above.17


Chapter 3Upper bounds for the size ofS-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>hyperelliptic</strong><strong>curves</strong>The material presented here is a slightly expanded versi<strong>on</strong> of that in my paper [25],which is to appear in The Internati<strong>on</strong>al Journal of Number Theory.C<strong>on</strong>sider the <strong>hyperelliptic</strong> curve with affine modelC : Y 2 = a n X n + a n−1 X n−1 + · · · + a 0 , (3.0.1)where a 0 , . . . , a n are rati<strong>on</strong>al integers, a n ≠ 0, n ≥ 5, where the polynomial <strong>on</strong> theright-hand side is irreducible. Let S be a finite set of rati<strong>on</strong>al primes. A rati<strong>on</strong>al numberx = p/q, p, q ∈ Z, (p, q) = 1, is an S-integer if q is either 1 or it is divisible by primes inS <strong>on</strong>ly. The size (or height) of x, x ≠ 0 is defined by max{log|a|, log|b|}. In this chapterwe give a method for explicitly computing an upper bound for the size of the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g><str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>hyperelliptic</strong> <strong>curves</strong> (3.0.1). Our strategy is based in part <strong>on</strong> the ideas in [15](see Chapter 1 for a detailed explanati<strong>on</strong> of the similarities and the differences betweenthe two approaches).We use a variant of Baker’s method to transform the problem of finding the S-18


<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> a <strong>hyperelliptic</strong> curve into a finite set of S-unit equati<strong>on</strong>s in certainnumber fields. Since the degree of the fields we will deal with will be often large (> 20),the explicit computati<strong>on</strong> of the group of units and the resulting unit equati<strong>on</strong>s is bey<strong>on</strong>dthe present power of computer algebra. We will then bound the size for the soluti<strong>on</strong>sof the unit equati<strong>on</strong>s in terms of invariants of the number fields, namely the regulatorand the class number. Again, these invariants are hard to compute in the cases weneed, but they have been previously bounded in the literature. These bounds are notnecessarily sharp and we use them to save ourselves the expense, obtaining largebounds for the size of the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curve.We need the following assumpti<strong>on</strong>s:a. The knowledge of at least <strong>on</strong>e rati<strong>on</strong>al point P 0 <strong>on</strong> C.b. The knowledge of a Mordell–Weil basis for J(Q) where J is the Jacobian of C.The chapter is arranged as follows. In Secti<strong>on</strong> 3.1 we show, after appropriatescaling, that an S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> point (x, y) satisfies x − α = κξ 2 where α is some fixed algebraicinteger, ξ ∈ Q(α), and κ is an algebraic integer bel<strong>on</strong>ging to a finite computableset. In Secti<strong>on</strong> 3.7 we give bounds for the height of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> soluti<strong>on</strong>s x to an equati<strong>on</strong>of the form x − α = κξ 2 where α and κ are fixed algebraic integers. Thus we obtainbounds for the height of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> our affine model (3.0.1). Secti<strong>on</strong>s 3.2–3.6are preparati<strong>on</strong> for Secti<strong>on</strong> 3.7: in particular Secti<strong>on</strong> 3.2 is c<strong>on</strong>cerned with S-integersand heights; Secti<strong>on</strong> 3.3 collects various results <strong>on</strong> appropriate choices of systemsof fundamental S-units; Secti<strong>on</strong> 3.4 explains how a theorem of Landau can be usedto bound the S-regulator of a number field; Secti<strong>on</strong> 3.5 is devoted to Matveev’s lowerbounds for linear forms in logarithms and to Yu’s lower bounds for linear forms in p-adiclogarithms; in Secti<strong>on</strong> 3.6 we use an idea due to Voutier to adapt recent estimates forthe size of soluti<strong>on</strong>s to S-unit equati<strong>on</strong>s due to Győry and Yu. These estimates aremore suited to our purposes and we use them in Secti<strong>on</strong> 3.7 to deduce the bounds forthe height of x alluded to above from the bounds for soluti<strong>on</strong>s of unit equati<strong>on</strong>s. Finally,19


Secti<strong>on</strong> 3.8 explains how the variant of the Mordell–Weil sieve in [15] can be used to effectivelysieve up to the bounds obtained in Secti<strong>on</strong> 3.6 and thus completely determinethe set of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curve.3.1 DescentC<strong>on</strong>sider a (n<strong>on</strong>-empty) finite set of rati<strong>on</strong>al primes S and the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> theaffine model of the <strong>hyperelliptic</strong> curve (3.0.1), where the polynomial <strong>on</strong> the right-handside is irreducible. By appropriate scaling, <strong>on</strong>e transforms the problem of finding theS-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> (3.0.1) to that of finding the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> a model of the formay 2 = x n + b n−1 x n−1 + · · · + b 0 , (3.1.1)where a and b 0 , . . . , b n−1 are integers, with a ≠ 0. We will denote the polynomial <strong>on</strong>the right-hand side by f.Let α be a root of f. In a similar way to that in [15] we will show that for everyS-<str<strong>on</strong>g>integral</str<strong>on</strong>g> point (x, y) <strong>on</strong> the model (3.1.1) we havex − α = κξ 2 ,where κ, ξ ∈ K = Q(α) and κ is an algebraic integer that comes from a finite computableset. We follow ideas from [15], but we adjust the proofs for the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> case.In particular, the finite computable set is larger than that in [15] in <strong>on</strong>e case.We will suppose that the Mordell–Weil group J(Q) of the curve C is known. Themethod depends <strong>on</strong> whether the degree of f is odd or even.3.1.1 The Odd Degree CaseSchaefer [37, Lemma 2.2] proved that when the polynomial f has odd degree, every degree0 divisor defined over Q is linearly equivalent to a divisor of the form ∑ mi=1 (P i−∞),where the set {P 1 , . . . , P m } is stable under the acti<strong>on</strong> of the Galois group Gal( ¯Q/Q),20


and such that all y(P i ) are n<strong>on</strong>-zero. By [15] claim that we can write x(P i ) = γ i /d 2 iwhere γ i is an algebraic integer and d i ∈ Z ≥1 ; and that if P i , P j are c<strong>on</strong>jugate, we cansuppose that d i = d j and in c<strong>on</strong>sequence γ i , γ j are c<strong>on</strong>jugate. In this odd degree casewe will always choose representatives of the cosets of J(Q)/2J(Q) having this form.Choose a set of representatives for J(Q)/2J(Q) satisfying the c<strong>on</strong>diti<strong>on</strong>s of theprevious paragraph. To each representative we associate the algebraic number∏mκ = a (m mod 2) (γ i − αd 2 i ).Lemma 3.1.1. Let K be a set of κ associated as above to a complete set of cosetrepresentatives for J(Q)/2J(Q). Then K is a finite subset of O K , the ring of integersof K and if (x, y) is a rati<strong>on</strong>al point <strong>on</strong> the model (3.1.1) then x − α = κξ 2 for someκ ∈ K and ξ ∈ K.i=1Remark. This is Lemma 3.1 in [15]. The proof there does not require x to be an integer,but <strong>on</strong>ly a rati<strong>on</strong>al number. Hence the proof is valid for every rati<strong>on</strong>al point in the curve.We present the proof here for completeness.Proof. For <strong>hyperelliptic</strong> <strong>curves</strong> defined by a polynomial f of odd degree Schaefer [37,Lemma 2.1] proved that the mapθ : J(Q)/2J(Q) → K ∗ /K ∗2given by ( m)∑∏mθ (P i − ∞) = a m (x(P i ) − α) (mod K ∗2 )i=1i=1is a well defined homomorphism for coset representatives of the form ∑ (P i − ∞) withy(P i ) ≠ 0. Since f is irreducible over Q, a rati<strong>on</strong>al point P <strong>on</strong> the model (3.1.1) willnecessarily have x(P ) ≠ 0.Then the coset of the divisor P − ∞ will be mappedunder θ to x(P ) − α (mod K ∗2 ). Since K c<strong>on</strong>sists of the image of a complete set ofrepresentatives for J(Q)/2J(Q) the result follows.21


3.1.2 The Even Degree CaseWe are assuming the existence of a rati<strong>on</strong>al point P 0 . If P 0 is <strong>on</strong>e of the two <str<strong>on</strong>g>points</str<strong>on</strong>g> atinfinity, let ɛ 0 = 1. Otherwise, y(P 0 ) ≠ 0 since f is irreducible. Write x 0 = γ 0 /d 2 0 withγ 0 ∈ Z and d 0 ∈ Z ≥1 and let ɛ 0 = γ 0 − αd 2 0 .In this even degree case <strong>on</strong>e needs to modify the homomorphism given in theodd degree case.Since we are assuming the existence of a rati<strong>on</strong>al point <strong>on</strong> thecurve, we can choose a representative of every coset of J(Q)/2J(Q) having the form∑ mi=1 (P i − P 0 ) where the set {P 1 , . . . , P m } is stable under the acti<strong>on</strong> of the Galoisgroup Gal( ¯Q/Q), and such that all y(P i ) are n<strong>on</strong>-zero (see Secti<strong>on</strong> 5 of [45]). Again,as in [15, Secti<strong>on</strong> 3], we can write x(P i ) = γ i /d 2 i where γ i is an algebraic integer andd i ∈ Z ≥1 ; and if P i , P j are c<strong>on</strong>jugate, we may suppose that d i = d j and in c<strong>on</strong>sequenceγ i , γ j are c<strong>on</strong>jugate. We associate to such a coset representative the algebraicnumber(m mod 2)ɛ = ɛ0m∏(γ i − αd 2 i ).Lemma 3.1.2. Let E be a set of ɛ associated as above to a complete set of cosetrepresentatives for J(Q)/2J(Q). Let ∆ be the discriminant of the polynomial f. Foreach ɛ ∈ E let B ɛ be the set of square-free rati<strong>on</strong>al integers supported <strong>on</strong>ly by primesdividing a∆ Norm K/Q (ɛ) ∏ p∈S p. Let K = {ɛb : ɛ ∈ E, b ∈ B ɛ}. Then K is a finitesubset of O K and if (x, y) is an S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> the model (3.1.1), then x − α = κξ 2for some κ ∈ K, ξ ∈ K.Proof. In this even degree case there is also a well defined homomorphismi=1θ : J(Q)/2J(Q) → K ∗ /(Q ∗ K ∗2)given by ( m)∑∏mθ (P i − P 0 ) = a m (x(P i ) − α) (mod Q ∗ K ∗2 )i=1i=1for coset representatives ∑ (P i − P 0 ) with y(P i ) ≠ 0 (see [35] and Secti<strong>on</strong> 5 of [45]).Let P = (x, y) be an S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> the curve. Under θ, the coset of P − P 0 is22


mapped to x − α (mod Q ∗ K ∗2 ). Then we have that (x − α) = ɛbξ 2 for some ɛ ∈ E,ξ ∈ K ∗ and b a square-free rati<strong>on</strong>al integer. Suppose ℘ does not divide a∆ ∏ p∈S p.Write f(x) = (x − α)φ(x) where φ(x) = ∏ n−1i=1 (x − α i) = x n−1 + c 1 x n−2 + · · · + c n−1for some c i ∈ K. C<strong>on</strong>sider the equalityord ℘ (ay 2 ) = ord ℘ (x − α) + ord ℘ φ(x).Assume ord ℘ (x − α) is odd. Then, it is positive and x ≡ α (mod ℘). Hence φ(x) ≡α n−1 + c 1 α n−2 + · · · + c n−1 ≡ 0 (mod ℘), for ℘ divides ay 2 , but it does not dividea, so ord ℘ (ay 2 ) is even and ord ℘ φ(x) is odd. Since α n−1 + c 1 α n−2 + · · · + c n−1 =∏ n−1i=1 (α − α i), we have that ℘ divides ∆ = δ 1 δ 2 , where δ 1 = ∏ n−1i=1 (α − α i) 2 and δ 2 =∏i


Hence for α ∈ K ∗ , the product formula states that∏‖α‖ υ = 1.υ∈M KIn particular, if υ is Archimedean, corresp<strong>on</strong>ding to a real or complex embedding σ ofK then⎧⎪⎨ |σ(α)||α| υ = |σ(α)| and ‖α‖ υ =⎪⎩ |σ(α)| 2if σ is realif σ is complex.If υ is finite and p is a prime ideal corresp<strong>on</strong>ding to υ, then for α ∈ K\{0} we have‖α‖ υ = N(p) − ordp(α) .For α ∈ K, the (absolute) logarithmic height h(α) is given byh(α) =1[K : Q]∑υ∈M Kd υ log max {1, |α| υ } =1[K : Q]∑υ∈M Klog max {1, ‖α‖ υ } .(3.2.1)The absolute logarithmic height of α is independent of the field K c<strong>on</strong>taining α. Notethat in the case K = Q this definiti<strong>on</strong> of height agrees with the definiti<strong>on</strong> of size givenat the beginning of this chapter.Let S be a finite set of places of K including all the infinite places. Set s = |S|(we exclude the case s = 1). We define the ring of S-integers of K asO S = {α ∈ K : |α| υ ≤ 1, υ /∈ S} ,and the group of S-units as the group of units of O S ,O ∗ S = {α ∈ K : |α| υ = 1, υ /∈ S} .The unit theorem of Dirichlet and Chevalley [30, Chapter V] states that the group O ∗ S isa free abelian group of rank s − 1. A set of generators for O ∗ Sis known as a system offundamental S-units in K. For example, let K = Q and S = {∞, 2, 3}. (By abuse ofnotati<strong>on</strong> we write p instead of the place corresp<strong>on</strong>ding to the p-adic valuati<strong>on</strong>.) Then24


the ring of integers of K is the usual ring of integers Z and the ring of S-integers of Kis{±2 i 3 j n : i, j, n ∈ Z}.In this case the group of units of K is {±1} and the group of S-units of K is{±2 i 3 j : i, j ∈ Z},which is free abelian of rank 2.We now define the S-regulator and the S-norm of a fracti<strong>on</strong>al ideal, as in [13].Let {ε 1 , . . . ε s−1 } be a system of fundamental S-units in K. C<strong>on</strong>sider the matrix (log|ε i | υj )where j runs over s − 1 places of K. The absolute value of the determinant of the matrixis called the S-regulator of K. When the set S is the set of infinite places of Kthis coincides with the usual definiti<strong>on</strong> of regulator. The product formula implies that thedefiniti<strong>on</strong> is independent of the choice of places υ 1 , . . . , υ s−1 , for the (s − 1) × s matrixB = (log|ε i | υj ) where j runs over all the places of S has the property that its columnsadd up to 0. Hence the absolute value of the determinant of the matrix obtained bydeleting <strong>on</strong>e of the columns is independent of the choice of column. The definiti<strong>on</strong> isalso independent of the system of fundamental units {ε 1 , . . . ε s−1 } as the S-regulatoris, up to a c<strong>on</strong>stant, the volume of a fundamental domain of the lattice spanned by thevectors L(ε i ) = (log|ε i | υj ) ∈ R s c<strong>on</strong>tained in the s-dimensi<strong>on</strong>al subspace of vectorswhose entries add up to 0, and this lattice is the same for every choice of a system offundamental S-units.If α ∈ K is a n<strong>on</strong>zero algebraic integer, the fracti<strong>on</strong>al ideal generated by α canbe uniquely written in the form a 1 · a 2 , where a 1 is composed of primes outside S anda 2 is composed of primes c<strong>on</strong>tained in S. We define the S-norm of α as N(a 1 ) and wedenote it by N S (α). Note that N S (α) is a positive integer for every α ∈ O S \{0}.Lemma 3.2.1. Let K be a number field. For any n<strong>on</strong>zero algebraic number α ∈ K, wehave h(α −1 ) = h(α). For algebraic numbers α 1 , . . . , α n ∈ K, we haveh(α 1 α 2 · · · α n ) ≤ h(α 1 )+· · ·+h(α n ), h(α 1 +· · ·+α n ) ≤ log n+h(α 1 )+· · ·+h(α n ),25


and for any place υ ∈ M Klog‖α‖ υ ≤ [K : Q] h(α).Proof. The first equality is an immediate c<strong>on</strong>sequence of the definiti<strong>on</strong> of absolute logarithmicheight and the product formula. For the sec<strong>on</strong>d estimate note that for n<strong>on</strong>negativex 1 , . . . , x nmax{1, x 1 x 2 · · · x n } ≤ max{1, x 1 } · · · max{1, x n }.We also havemax{1, x 1 + · · · + x n } ≤ n max{1, x 1 } · · · max{1, x n },which implies the third estimate. Finally, the last inequality is also an immediate c<strong>on</strong>sequenceof the definiti<strong>on</strong> of absolute logarithmic height.Lemma 3.2.2. Let K be a number field of degree d and S a finite set of places of Kincluding the infinite places. Denote by s the cardinality of S. Let ε ∈ K ∗ be a S-unit.Let η ∈ M K be a place of K making ‖ε‖ η minimal. Thenh(ε) ≤ − s d log‖ε‖ η.Proof. Note ‖ε‖ υ = 1 for all υ /∈ S so we can choose η ∈ S. Then 0 < ‖ε‖ η ≤ 1. Now,h(ε) = h(ε −1 ) = 1 ∑max{log‖ε −1 ‖ υ , 0}dυ∈M K≤ 1 ∑log‖ε −1 ‖ η = − s dd log‖ε‖ η,υ∈Sand we have now proved the lemma.Lemma 3.2.3. Let K be a number field of degree d and S a finite set of places of Kincluding the infinite places. Let ε be a S-unit. Then∑|log‖ε‖ υ | = 2d h(ε).υ∈S26


Proof. Recall that ‖ε‖ υ = 1 for all places υ /∈ S. Now∑υ∈M K|log‖ε‖ υ | =∑υ∈M K‖ε‖ υ≤1= ∑υ∈M K‖ε −1 ‖ υ≥1= ∑|log‖ε‖ υ | +log‖ε −1 ‖ υ +∑υ∈M K‖ε‖ υ≥1∑υ∈M K‖ε‖ υ≥1|log‖ε‖ υ |log‖ε‖ υυ∈M Kmax{0, log‖ε −1 ‖ υ } + max{0, log‖ε‖ υ }= d(h(ε −1 ) + h(ε)) = 2d h(ε).The following Lemma is due to Voutier [50, Corollary 2].Lemma 3.2.4. Let K be a number field of degree d and let α ∈ K be a n<strong>on</strong>zeroalgebraic number which is not a root of unity. Then⎧⎪⎨ log 2 d = 1,d h(α) ≥⎪⎩ 2/(log(3d)) 3 d ≥ 2.3.3 Systems of fundamental unitsFor a number field of large degree (≥ 10) it is extremely time c<strong>on</strong>suming to explicitlydescribe the group of units and the group of S-units. But we can find bounds for the sizeof the units in a fundamental system of units in terms of the S-regulator. The followingLemma, which is due to Bugeaud and Győry [13, 14] and Győry and Yu [27, Lemma 2]gives the bounds for the size of units we will use in the rest of this work.We first fix some notati<strong>on</strong> for the whole secti<strong>on</strong>. Let K be a number field ofdegree d, S a finite set c<strong>on</strong>sisting of s places of K including the set S ∞ of infiniteplaces. We denote by R S the S-regulator of K. For a positive real number a we setlog ∗ (a) = max{1, log a}.27


Lemma 3.3.1. Define the c<strong>on</strong>stantsc 1 (s, d) =((s − 1)!)22 s−2 d s−1 ,c 2 (s, d) = 29e √ s − 2 c 1 (s, d)d s−1 log ∗ (d)c 3 (s, d) =((s − 1)!)22 s−1 ⎧⎪⎨⎪ ⎩2/ log 2 if d = 1,(log(3d)) 3 if d ≥ 2.There exists a fundamental system of S-units {ε 1 , . . . , ε s−1 } in K with the followingproperties:i.ii.s−1∏h(ε i ) ≤ c 1 (s, d)R S ,i=1maxi=1,...,s−1 h(ε i) ≤ c 2 (s, d)R S if s ≥ 3,iii. Write M for the (s − 1) × (s − 1)-matrix (log‖ε i ‖ υj ) where υ j runs over s − 1 ofthe places in S and 1 ≤ i ≤ s − 1. Then the absolute values of the entries ofM −1 are bounded above by c 3 (s, d).Later <strong>on</strong> we will need to bound linear forms in logarithms, and we will use thefollowing lemma [27, Lemma 5].Lemma 3.3.2. Let {ε 1 , . . . , ε s−1 } be a system of fundamental S-units in K as in Lemma 3.3.1.For s ≥ 3 define the c<strong>on</strong>stantc 4 (s, d) = dπ s−2 c 2 (s, d).Then⎧s−1∏⎪⎨ max(R S , π) if s = 2,max(d h(ε i ), π) ≤i=1⎪⎩ c 4 (s, d)R S if s ≥ 3.The following Lemma is an improvement <strong>on</strong> [15, Lemma 6.2].Lemma 3.3.3. Let {ε 1 , . . . , ε s−1 } be a system of fundamental S-units in K as in Lemma 3.3.1.Define the c<strong>on</strong>stant c 5 = c 5 (s, d) = 2dc 3 (s, d). Suppose ε = ζε b 11 . . . ε b s−1s−1 , where ζ isa root of unity in K. Thenmax{|b 1 |, . . . , |b s−1 |} ≤ c 5 (s, d) h(ε).28


Proof. Note that for any place υ in S,log‖ε‖ υ = ∑ b i log‖ε i ‖ υ .From part (iii) of Lemma 3.3.1 we have that |b i | ≤ c 3 (s, d) ∑ υ |log‖ε‖ υ|, where the sumruns over all but <strong>on</strong>e of the places in S. Now∑s−1 placesof S|log‖ε‖ υ | ≤ ∑υ∈M K|log‖ε‖ υ | = 2d h(ε),where the last equality follows from Lemma 3.2.3. The proof is now complete.The following result is an special case of Lemma 3 of [27].Lemma 3.3.4. Let α ∈ K be a n<strong>on</strong>zero S-integer. Let h be the class number of Kand r the unit rank of K. Denote by R the regulator of K and by t the number of finiteplaces in S. Let p 1 , . . . , p t be the prime ideals corresp<strong>on</strong>ding to the finite places in S.Set Q = N(p 1 · · · p t ) if t > 0, Q = 1 if t = 0. Then there is a S-unit ε such thath(εα) ≤ 1 d (log N S(α) + h log Q) + c 6 R.where⎧0,⎪⎨r = 0,c 6 (r, d) = 1/d r = 1⎪⎩ 29er!r √ r − 1 log d r ≥ 23.4 Upper bounds for the regulator and the class numberLater <strong>on</strong> we need to give upper bounds for the S-regulators of complicated numberfields of high degree. We can bound the S-regulator of a number field in terms of itsregulator and the class number as in the following lemma due to Bugeaud and Győry,which is Lemma 3 of [13].29


Lemma 3.4.1. Let K be a number field of degree d with regulator R and class numberh. Let S be a finite set of places of K including all infinite places and at least <strong>on</strong>e finiteplace. Let R S be the S-regulator of K. Denote by t the number of finite places in S andby P the largest prime below the finite places in S. ThenR S ≤ Rh(d log ∗ P ) t .Definiti<strong>on</strong>. Let K be a number field and let {b 1 , . . . , b n } be an <str<strong>on</strong>g>integral</str<strong>on</strong>g> basis for thering of integers O K . Denote the embeddings of K in C by σ 1 , . . . , σ n . The absolutediscriminant of K is the square of the determinant of the matrix σ i (b j ).It is a standard fact that the absolute discriminant of a number field does notdepend <strong>on</strong> the choice of basis {b 1 , . . . , b n }.We can bound the product Rh numerically. Our bound is based <strong>on</strong> bounds ofLandau [29].Lemma 3.4.2. Let K be a number field with degree d = u + 2v where u and v arerespectively the numbers of real and complex embeddings. Denote the absolute discriminantof K by D and the regulator by R, and the number of roots of unity in K byw. Suppose, moreover, that L is a real number such that D ≤ L. Leta = 2 −v π √ −d/2 L.Define the functi<strong>on</strong> f K (L, s) byf K (L, s) = 2 −u w a s ( Γ(s/2) ) u (Γ(s)) vs d+1 (s − 1) 1−d ,and let B K (L) = min {f K (L, 2 − t/1000) : t = 0, 1, . . . , 999}. Then Rh < B K (L).Proof. This is Lemma 5.1 in [15]. We note that Landau [29, proof of Hilfssatz 1] establishedthe inequality Rh < f K (D K , s) for all s > 1. (In the proof of [15, Lemma 5.1]<strong>on</strong>ly a bound <strong>on</strong> R was needed and then the result of Landau is <strong>on</strong>ly quoted there asR < f K (D K , s).) Since the functi<strong>on</strong> f K is increasing with respect to the first parameterthe result follows.30


We will also need a bound for the class number of a given number field. Weshall use the following bound due to Lenstra [28, Theorem 6.5].Lemma 3.4.3. Let K be a number field of degree d = u + 2v where u and v arerespectively the numbers of real and complex embeddings. Let h be the class numberof K. Denote the absolute discriminant of K by D. Suppose that L is a real numbersuch that D ≤ L. Let a = (2/π) v√ L. Thenh ≤ a ·(d − 1 + log a)d−1.(d − 1)!3.5 Linear forms in logarithmsLet L be a number field of degree d and c<strong>on</strong>sider a “linear form”Λ := α b 11 · · · αbn n − 1, (3.5.1)where α 1 , . . . , α n ∈ L ∗ are n ≥ 2 n<strong>on</strong>zero elements of L and b 1 , . . . , b n are rati<strong>on</strong>al integers.In secti<strong>on</strong> 3.6 a unit equati<strong>on</strong> will be transformed into a linear form in logarithms.This form will be written in terms of the S-units in a fundamental system of S-units. Aswe have menti<strong>on</strong>ed before, for number fields of large degree (≥ 20) the explicit computati<strong>on</strong>of the group of units is bey<strong>on</strong>d the present capabilities of computer algebra. Wewill then use lower bounds for the linear forms in terms of the height of the units.andSetB ∗ = max{|b 1 |, . . . , |b n |}A i ≥ max(d h(α i ), π), i = 1, . . . , n.The following lemma is a versi<strong>on</strong> of Matveev’s bound for linear forms in logarithms [31],due to Győry and Yu [27, Propositi<strong>on</strong> 4].Lemma 3.5.1. Suppose Λ ≠ 0, b n = ±1 and let B be a real number satisfyingB ≥ max{B ∗ , 2e max(nπ/ √ 2, A 1 , . . . , A n−1 )A n }.31


Thenlog|Λ| > −c 7 (n, d)A 1 · · · A n log(B/( √ 2A n )),wherec 7 (n, d) = min{1.451(30 √ 2) n+4 (n + 1) 5.5 , π2 6.5n+27 }d 2 log(ed).We c<strong>on</strong>sider again the linear form (3.5.1). Let B, B n be real numbers such thatB ≥ B ∗ , B ≥ B n ≥ |b n |. (3.5.2)Let p be a rati<strong>on</strong>al prime and let p be a prime ideal of O L lying over p. Denote by e pthe ramificati<strong>on</strong> index of p. We denote by N(p) the norm of the ideal p. Define thec<strong>on</strong>stantsc 8 (n, d) = (16ed) 2(n+1) n 3/2 log(2nd) log(2d),c 9 (n, d) = (2d) 2n+1 log(2d) log 3 (3d),The following bound for linear forms in p-adic logarithms is due to Yu [53].Lemma 3.5.2. Assume that ord p b n ≤ ord p b j for j = 1, . . . , n, and for j = 1, . . . , n seth ′ j = max{h(α j ), 1/(16e 2 d 2 )}.If Λ ≠ 0, then for any real number δ with 0 < δ ≤ 1/2 we have{}ord p Λ < c 8 (n, d)e n N(p)p(log N(p)) 2 max h ′ 1 · · · h ′ δBn log M,,B n c 9 (n, d)whereM = (B n /δ)2e (n+1)(6n+5) d 3n log(2d)N(p) n+1 h ′ 1 · · · h ′ n−1.3.6 Upper bounds for the size of the soluti<strong>on</strong>s to S-unit equati<strong>on</strong>sWe now prove an explicit versi<strong>on</strong> of Lemma 4 of [12]. We will follow ideas from theproof of Theorem 1 of [27]. Instead of obtaining an estimate in terms of the regulator of32


a large field, we get <strong>on</strong>e in terms of the product of the regulators of two of its subfields.This often results in a significant improvement of the upper bound for the height. Thisidea is due to Voutier [49]. Recall the notati<strong>on</strong> log ∗ (a) = max{1, log a}.Propositi<strong>on</strong> 3.6.1. Let L be a number field of degree d, which c<strong>on</strong>tains K 1 , K 2 assubfields of degree d 1 , d 2 , respectively. Let S (resp. S 1 , S 2 ) be a finite set of places ofL (resp. K 1 , K 2 ) c<strong>on</strong>taining the set of infinite places. Denote by s (resp. s 1 , s 2 ) thenumber of places in S (resp. S 1 , S 2 ) and assume both s 1 and s 2 are ≥ 3. Denote byP the largest norm of the prime ideals corresp<strong>on</strong>ding to the finite places in S, with thec<strong>on</strong>venti<strong>on</strong> that P = 1 if S does not c<strong>on</strong>tain finite places. Assume that OS ∗ 1and OS ∗ 2are both c<strong>on</strong>tained in OS ∗ . Denote by R i the S i -regulator of K i for i = 1, 2. Supposethat ν 1 , ν 2 , ν 3 are n<strong>on</strong>-zero elements of L with height ≤ H, where H is a c<strong>on</strong>stant≥ max(1, π/d) and c<strong>on</strong>sider the unit equati<strong>on</strong>ν 1 ε 1 + ν 2 ε 2 + ν 3 ε 3 = 0 (3.6.1)where ε 1 is a S 1 -unit of K 1 , ε 2 a S 2 -unit of K 2 and ε 3 a S-unit of L. Define the c<strong>on</strong>stantsc 10 = 2H(s + 1) + 4sHc 4 (s 1 , d 1 )c 4 (s 2 , d 2 )c 7 (s 1 + s 2 − 1, d)R 1 R 2 ×log( √ 2e max{(s 1 + s 2 − 2)π/ √ 2, c 2 (s 1 , d 1 )R 1 , c 2 (s 2 , d 2 )R 2 )}),c 11 = 4sHc 4 (s 1 , d 1 )c 4 (s 2 , d 2 )c 7 (s 1 + s 2 − 1, d)R 1 R 2 ,( )max{c5 (s 1 , d 1 ), c 5 (s 2 , d 2 ), 1)}c 12 = 2H(s + 1) + c 11 log2 √ ,2dHc 13 = log 2 + 2H + 4(s 1 + s 2 − 2)Hc 1 (s 1 , d 1 )c 1 (s 2 , d 2 )c 9 (s 1 + s 2 − 1, d)×R 1 R 2 max{c 2 (s 1 , d 1 )R 1 , c 2 (s 2 , d 2 )R 2 },c 14 = 2Hds 1+s 2 −2 Plog(2) log ∗ P c 1(s 1 , d 1 )c 1 (s 2 , d 2 )c 8 (s 1 + s 2 − 1, d)R 1 R 2 ,c 15 = 2H(s + 1)+()max{c 5 (s 1 , d 1 ), c 5 (s 2 , d 2 ), 1)}e (s 1+s 2 )(6(s 1 +s 2 )−1) d 3(s 1+s 2 −1) log(2d)P s 1+s 2c 14 log.Hc 9 (s 1 + s 2 − 1, d)33


Then( )ν1 ε 1h ≤ max{c 10 , c 12 + c 11 log(max{h(ε 1 ), h(ε 2 ), 1}), c 13 ,ν 3 ε 3c 15 + c 14 log(max{h(ε 1 ), h(ε 2 ), 1})}Proof. Let {µ 1 , . . . , µ s1 −1} and {ρ 1 , . . . , ρ s2 −1} be respectively systems of fundamentalS i -units for K 1 and K 2 as in Lemma 3.3.1; in particular we knows∏1 −1j=1h(µ j ) ≤ c 1 (s 1 , d 1 )R 1 ,s∏2 −1j=1h(ρ j ) ≤ c 1 (s 2 , d 2 )R 2 . (3.6.2)We can writeε 1 = ζ 1 µ b 11 · · · µ b s 1 −1s 1 −1 , ε 2 = ζ 2 ρ f 11 · · · ρf s 2 −1s 2 −1 ,where ζ 1 and ζ 2 are roots of unity and b 1 , . . . , b s1 −1, and f 1 , . . . , f s2 −1 are rati<strong>on</strong>alintegers. SetB 1 = max{|b 1 |, . . . , |b s1 −1|},B 2 = max{|f 1 |, . . . , |f s2 −1|}We deduce from Lemma 3.3.3 thatB 1 ≤ c 5 (s 1 , d 1 ) h(ε 1 ), B 2 ≤ c 5 (s 2 , d 2 ) h(ε 2 ),and henceB := max{c 5 (s 1 , d 1 ), c 5 (s 2 , d 2 ), 1)} max{h(ε 1 ), h(ε 2 ), 1} ≥ max{B 1 , B 2 }. (3.6.3)Set α 0 = −ζ 2 ν 2 /(ζ 1 ν 1 ) and b 0 = 1. By (3.6.1) we haveν 3 ε 3= α b 00ν 1 ε µ−b 11 · · · µ −b s 1 −1s 1 −1 ρ f 11 · · · ρf s 2 −1s 2 −1 − 1. (3.6.4)1Now choose the place υ of L such that ‖ε 3 /ε 1 ‖ υ is minimal. From Lemma 3.2.2 wededuce thath(ε 3 /ε 1 ) ≤ − s d log (‖ε 3/ε 1 ‖ υ ) . (3.6.5)34


We will compute a lower bound for the linear form (3.6.4) using the techniques fromSecti<strong>on</strong> 3.5. Observe that‖ε 3 /ε 1 ‖ υ = ‖ν 3ε 3 /(ν 1 ε 1 )‖ υ‖ν 3 /ν 1 ‖ υ.Combining this with Lemma 3.2.1 and (3.6.5) we get( )ν3 ε 3h ≤ 2H(s + 1) − s ∥ ∥ ∥∥∥ν 1 ε 1 d log ν 3 ε 3 ∥∥∥υ, (3.6.6)ν 1 ε 1and hence a lower bound for log‖ν 3 ε 3 /(ν 1 ε 1 )‖ υ will give an upper bound for h(ν 3 ε 3 /(ν 1 ε 1 )).Assume first that υ is infinite. SetA 0 = 2dH ≥ max(d h(α 0 ), π),⎧⎪⎨ max(d h(µ i ), π), i = 1, . . . , s 1 − 1,A i =⎪⎩ max(d h(ρ i−(s1 −1)), π), i = s 1 , . . . , s 1 + s 2 − 2.(3.6.7)Let n = s 1 + s 2 − 1. Since we assumed s 1 and s 2 to be ≥ 3, we observe that fromLemma 3.3.2andn−1∏i=1A i ≤ c 4 (s 1 , d 1 )c 4 (s 2 , d 2 )R 1 R 2 , (3.6.8)max1≤i≤n−1 A i ≤ max{c 2 (s 1 , d 1 )R 1 , c 2 (s 2 , d 2 )R 2 , π}. (3.6.9)We distinguish two cases. First assume thatB ≤ 2e max((s 1 + s 2 − 2)π/ √ 2, A 1 , . . . , A s1 +s 2 −2)A 0 .From Lemma 3.5.1 and equati<strong>on</strong>s (3.6.8) and (3.6.9) we have∥ logν 3 ε 3 ∥∥∥υ∥ > − 2d υ dHc 4 (s 1 , d 1 )c 4 (s 2 , d 2 )c 7 (n, d)R 1 R 2 ×ν 1 ε 1log( √ 2e max{(s 1 + s 2 − 2)π/ √ 2, c 2 (s 1 , d 1 )R 1 , c 2 (s 2 , d 2 )R 2 )}.(3.6.10)35


Next assume that B > 2e max((s 1 + s 2 − 2)π/ √ 2, A 1 , . . . , A s1 +s 2 −2)A 0 . Then, usingagain Lemma 3.5.1 and (3.6.8) we get the following bound.∥ logν 3 ε 3 ∥∥∥υ∥ > −2d υ dHc 4 (s 1 , d 1 )c 4 (s 2 , d 2 )c 7 (n, d)R 1 R 2 ×ν 1 ε 1log(B/(2 √ 2dH)).(3.6.11)Now assume υ is finite. Let p be a corresp<strong>on</strong>ding prime ideal to υ. Then∥ logν 3 ε 3 ∥∥∥υ∥ = − ord p (α b 00ν 1 ε µ−b 11 · · · µ −b s 1 −1s 1 −1 ρ f 11 · · · ρf s 2 −1s 2 −1 − 1) log N(p). (3.6.12)1Again, we distinguish two cases. First assume thatB < 4c 9 (n, d)H h(µ 1 ) · · · h(µ s1 −1) h(ρ 1 ) · · · h(ρ s2 −1).In this case we will directly compute an upper bound for h(ν 3 ε 3 /(ν 1 ε 1 )). From (3.6.4)and Lemma 3.3.1 we deduce that( )ν3 ε 3h ≤ log 2 + 2H + B(n − 1) max{c 2 (s 1 , d 1 )R 1 , c 2 (s 2 , d 2 )R 2 }.ν 1 ε 1Then, from our assumpti<strong>on</strong> for B and (3.6.2) we get( )ν3 ε 3h ≤ log 2 + 2H + 4(n − 1)Hc 1 (s 1 , d 1 )c 1 (s 2 , d 2 )c 9 (n, d)×ν 1 ε 1R 1 R 2 max{c 2 (s 1 , d 1 )R 1 , c 2 (s 2 , d 2 )R 2 }.(3.6.13)We next assumeB ≥ 4c 9 (n, d)H h(µ 1 ) · · · h(µ s1 −1) h(ρ 1 ) · · · h(ρ s2 −1).Since 2H ≥ 1 we have h ′ 0 = max{h(α 0), 1/(16e 2 d 2 )} ≤ 2H. Moreover, using Lemma3.2.4, for i = 1, . . . , s 1 − 1 and j = 1, . . . , s 2 − 1 we haveh ′ i = max{h(µ i ), (16e 2 d 2 ) −1 } = h(µ i ),andh ′ j+s 1 −1 = max{h(ρ j ), (16e 2 d 2 ) −1 } = h(ρ j ).36


Choose nowδ = 2c 9 (n, d)H h(µ 1 ) · · · h(µ s1 −1) h(ρ 1 ) · · · h(ρ s2 −1)/B.It is clear from our assumpti<strong>on</strong> for B that δ ≤ 1/2. We apply Lemma 3.5.2 to (3.6.4) toobtain the following bound:where∥ logν 3 ε 3 ∥∥∥υ∥ > −c 8 (n, d)d n N(p)s 1 −1ν 1 ε 1 log N(p) 2H ∏s∏2 −1h(µ i ) h(ρ j ) max{log M 0 , 1},i=1j=1M 0 = Be (n+1)(6n+5) d 3n log(2d)N(p) n+1 /(Hc 9 (n, d)).We observe that N(p)/ log N(p) ≤ (1/ log 2)P/ log ∗ P . Hence, using (3.6.2) and thelast inequality we have∥ logν 3 ε 3 ∥∥∥υ∥ > −2Hdn Pν 1 ε 1 log 2 log ∗ P c 1(s 1 , d 1 )c 1 (s 2 , d 2 )c 8 (n, d)R 1 R 2 log M, (3.6.14)whereM = Be (n+1)(6n+5) d 3n log(2d)P n+1 /(Hc 9 (n, d)).The lower bounds for log‖ν 3 ε 3 /(ν 1 ε 1 )‖ υ given in Equati<strong>on</strong>s (3.6.10), (3.6.11) and (3.6.14)together with equati<strong>on</strong> (3.6.6), and (3.6.13) complete the proof of the Propositi<strong>on</strong>.3.7 Upper bounds for the size of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>hyperelliptic</strong><strong>curves</strong>We can now give an explicit bound for the size of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the <strong>hyperelliptic</strong>curve given by the affine model (3.1.1). This is an extensi<strong>on</strong> of Theorem 9.2 of [15]and we follow the proof there, adding the needed details for the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> case. Weinclude the bounds for unit equati<strong>on</strong>s given in the previous secti<strong>on</strong> that are different fromthose <strong>on</strong> [15]. First we will fix some notati<strong>on</strong>. Let S be a finite set of rati<strong>on</strong>al primes ofcardinality s. For a number field K, we will denote by S K the set of places of K overthe primes in S, together with the infinite places.37


Theorem 3.7.1. Let S be a finite set of rati<strong>on</strong>al primes of cardinality s. Let P be thelargest prime in S, with the c<strong>on</strong>venti<strong>on</strong> that P = 1 if S is empty. Let α be an algebraic integerof degree at least 3, and let κ be an integer bel<strong>on</strong>ging to K = Q(α). Let α 1 , α 2 , α 3be different c<strong>on</strong>jugates of α and let κ 1 , κ 2 , κ 3 be the corresp<strong>on</strong>ding c<strong>on</strong>jugates of κ. LetK 1 = Q(α 1 , α 2 , √ κ 1 κ 2 ), K 2 = Q(α 1 , α 3 , √ κ 1 κ 3 ), K 3 = Q(α 2 , α 3 , √ κ 2 κ 3 ),andL = Q(α 1 , α 2 , α 3 , √ κ 1 κ 2 , √ κ 1 κ 3 ).Let d 1 , d 2 , d 3 and r 1 , r 2 , r 3 be the degrees and the unit ranks of K 1 , K 2 , K 3 respectively.Let d be the degree of L. Let R be an upper bound for the regulators of K 1 , K 2 , K 3and R S an upper bound for the respective S Ki -regulators of K 1 , K 2 , K 3 . Let s i be thenumber of places in S Ki . Let h be an upper bound for the class numbers of the K i . Letc ∗ j = maxi=1,2 c j(s i , d i ), j = 1, . . . , 5,c ∗ 6 = max c 6(r i , d i ),i=1,2,3 ∣N = max ∣Norm Q(αi ,α1≤i,j≤3j )/Q(κ i (α i − α j )) ∣ 2 ,⎧⎛ ⎞⎫⎨H ∗ log N= max+ h ⎝ ∑ ⎬log p⎠ + c ∗⎩min i=1,2,3 d6R + h(κ), 1, π/di ⎭ .p∈Sc ∗ 10 = 2H ∗ + 2H ∗ d(s + 1)(1 + 2(c ∗ 4) 2 c 7 (s 1 + s 2 − 1, d)R 2 S×log( √ 2e max{(s 1 + s 2 − 2)π/ √ 2, c ∗ 2R S }),c ∗ 11 = 4d(s + 1)H ∗ (c ∗ 4) 2 c 7 (s 1 + s 2 − 1, d)RS2( )max{cc ∗ 12 = 2H ∗ + 2H ∗ (d(s + 1)) + c ∗ ∗11 log5 , 1}2 √ ,2dH ∗c ∗ 13 = log 2 + 2H ∗ + 4(s 1 + s 2 − 2)H ∗ (c ∗ 1) 2 c ∗ 2c 9 (s 1 + s 2 − 1, d)R 3 S38


c ∗ 14 = 2H∗ d s 1+s 2 −2 P dlog(2) log ∗ (P d ) (c∗ 1) 2 c 8 (s 1 + s 2 , d)R 2 Sc ∗ 15 = 2H ∗ + 2H ∗ d(s + 1)+()c ∗ max{c ∗ 514 log, 1}e(s 1+s 2 )(6(s 1 +s 2 )−1) d 3(s 1+s 2 −1) log(2d)P d(s 1+s 2 )H ∗ .c 9 (s 1 + s 2 − 1, d)If x ∈ Q\{0} is a S-integer satisfying x − α = κξ 2 for some ξ ∈ K thenh(x) ≤ 20 log 2 + 13 h(κ) + 19 h(α) + H ∗ +8 max{c ∗ 10/2, c ∗ 13/2, c ∗ 12 + c ∗ 11 log c ∗ 11, c ∗ 15 + c ∗ 14 log c ∗ 14}.(3.7.1)In the particular case when S is empty, we haveh(x) ≤ 20 log 2 + 13 h(κ) + 19 h(α) + H ∗ + 8 max{c ∗ 10/2, c ∗ 12 + c ∗ 11 log c ∗ 11}.Proof. For a ∈ K and i = 1, 2, 3, we will write a i for the corresp<strong>on</strong>ding c<strong>on</strong>jugates of a.C<strong>on</strong>jugating the relati<strong>on</strong> x − α = κξ 2 appropriately and taking differences we obtainLetα 1 − α 2 = κ 2 ξ 2 2 − κ 1 ξ 2 1, α 3 − α 1 = κ 1 ξ 2 1 − κ 3 ξ 2 3, α 2 − α 3 = κ 3 ξ 2 3 − κ 2 ξ 2 2.Observe thatandτ 1 = κ 1 ξ 1 , τ 2 = √ κ 1 κ 2 ξ 2 , τ 3 = √ κ 1 κ 3 ξ 3 .κ 1 (α 1 − α 2 ) = τ 2 2 − τ 2 1 , κ 1 (α 3 − α 1 ) = τ 2 1 − τ 2 3 , κ 1 (α 2 − α 3 ) = τ 2 3 − τ 2 2 ,τ 2 ± τ 1 ∈ K 1 , τ 1 ± τ 3 ∈ K 2 , τ 3 ± τ 2 ∈ √ κ 1 /κ 2 K 3 .The equati<strong>on</strong> τ 2 2 = κ 1(x − α 2 ) shows that τ 2 is a S K1 -integer, and so are τ 2 + τ 1 andτ 2 − τ 1 . Write ν ′ = τ 2 − τ 1 . Since (τ 2 − τ 1 )(τ 2 + τ 1 ) = κ 1 (α 1 − α 2 ) we haveN SK1 (ν ′ ) ≤ N SK1 (κ 1 (α 1 − α 2 )).By Lemma 3.3.4 there is a S K1 unit ε of K 1 such thath(ν ′ ε) ≤ c 6 (r 1 , d 1 )R + log N S K1(κ 1 (α 1 − α 2 ))[K 1 : Q]⎛⎞+ h ⎝ ∑ log p⎠ .p∈S39


Write ν 1 = ν ′ ε and ε 1 = ε −1 . Hence we have expressed τ 2 − τ 1 in the form ν 1 ε 1 whereε 1 is a S K1 -unit and h(ν 1 ) ≤ H ∗ . We can repeat the same process <strong>on</strong> τ 2 +τ 1 . Similarly,the equati<strong>on</strong> τ3 2 = κ 1(x − α 3 ) shows that τ 3 , τ 1 + τ 3 and τ 1 − τ 3 are S K2 -integers, andwe can repeat the process to write now τ 1 ± τ 3 in the form ν 2 ε 2 where ε 2 is a S K2 -unitand h(ν 2 ) ≤ H ∗ .We now want to express τ 2 ± τ 3 in a similar way. Define ν ′′ = √ κ 2 /κ 1 (τ 2 − τ 3 ).Note ν ′′ = κ 2 ξ 2 − √ κ 2 κ 3 ξ 3 is a S K3 -integer of K 3 . Similarly, √ κ 2 /κ 1 (τ 2 + τ 3 ) is aS K3 -integer of K 3 andν ′′√ κ 2 /κ 1 (τ 2 + τ 3 ) = κ 2 (α 2 − α 3 ).Hence, Norm SK3 (ν ′′ ) ≤ N. Using again Lemma 3.3.4 there is a S K3 -unit ε 3 such thatν ′′ = ν ′ ε andh(ν ′ ) ≤ c 6 (r 3 , d 3 )R + log N S K3(κ 2 (α 2 − α 3 ))[K 1 : Q]⎛⎞+ h ⎝ ∑ log p⎠ .p∈SLet ν = √ κ 1 /κ 2 ν ′ . Thus τ 2 − τ 3 = νε where h(ν) ≤ h(ν ′ ) + h(κ) ≤ H ∗ . We will applyPropositi<strong>on</strong> 3.6.1 to the unit equati<strong>on</strong>(τ 1 − τ 2 ) + (τ 3 − τ 1 ) + (τ 2 − τ 3 ) = 0,which is indeed of the form ν 1 ε 1 + ν 2 ε 2 + ν 3 ε 3 = 0 where ε 1 is a S K1 -unit of K 1 , ε 2 is aS K2 -unit of K 2 and we c<strong>on</strong>sider ε 3 as a S L -unit of L. Observe that, since ∑ υ|p d υ = d,then there are at most d places in S L over a prime in S and hence S has at most d(s+1)elements. We obtain⎧c ∗ 10 ,( )τ1 − τ⎪⎨2c ∗ 13h≤ max,τ 2 − τ 3c ∗ 12 + c∗ 11 log(max{h(ε 1), h(ε 2 ), 1}),⎪⎩ c ∗ 15 + c∗ 14 log(max{h(ε 1), h(ε 2 ), 1}).40


To ease notati<strong>on</strong> we write A 1 + A 2 log(max{h(ε 1 ), h(ε 2 ), 1}) for the expressi<strong>on</strong> thatattains the maximum in the last inequality, where we take A 2 to be 0 if the maximum isattained in <strong>on</strong>e of the first two cases. Note thath(ε i ) ≤ h(ν i ε i ) + h(ν 1 ) ≤ h(ν i ε i ) + H ∗ ,since ε i = ν i ε i /ν i . We derive as in [15] thath(τ i ± τ j ) ≤ 2 log 2 + 3 h(κ) + h(α) + h(x).Hence,( )τ1 − τ 2h≤ A 1 + A 2 log(A 3 + h(x)), (3.7.2)τ 2 − τ 3where A 3 = H ∗ + 2 log 2 + 3 h(κ) + h(α). We also apply Propositi<strong>on</strong> 3.6.1 to the unitequati<strong>on</strong>−(τ 1 + τ 2 ) + (τ 3 + τ 1 ) + (τ 2 − τ 3 ) = 0,to obtain precisely the same bound for h(τ1 +τ 2τ 2 −τ 3). Using the identitywe obtain that( ) ( )τ1 − τ 2 τ1 + τ 2·= κ 1(α 2 − α 1 )τ 2 − τ 3 τ 2 − τ 3 (τ 2 − τ 3 ) 2 ,h(τ 2 − τ 3 ) ≤log 2 + h(κ)2+ h(α) + A 1 + A 2 log(A 3 + h(x)).We derive as in [15] thath(x) ≤ 7 log 2 + 5 h(α) + 3 h(κ) + 4 h(τ 2 − τ 3 ).Thush(x) ≤ 9 log 2 + 9 h(α) + 5 h(κ) + 4A 1 + 4A 2 log(A 3 + h(x)).If A 2 = 0 we obtain (3.7.1) directly. Otherwise, using Lemma 9.1 of [15] we completethe proof of the theorem.41


We use Theorem 3.7.1 in c<strong>on</strong>juncti<strong>on</strong> with Lemmas 3.1.1 and 3.1.2 to obtainan upper bound for the size of all S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> a <strong>hyperelliptic</strong> curve withmodel (3.1.1).Remark. We use here the notati<strong>on</strong> of Secti<strong>on</strong> 3.1. In the even degree case, the setK is the uni<strong>on</strong> of the sets ɛB ɛ , where ɛ ∈ E. The set B ɛ c<strong>on</strong>sists of square free rati<strong>on</strong>alintegers supported by primes dividing a∆ Norm K/Q (ɛ) ∏ p∈Sp. Hence, the fieldsK 1 , K 2 , K 3 and L defined in the statement of the previous theorem are the same forall κ ∈ ɛB ɛ .In order to get the desired upper bound for the size of all S-<str<strong>on</strong>g>integral</str<strong>on</strong>g><str<strong>on</strong>g>points</str<strong>on</strong>g> we <strong>on</strong>ly need to compute the bound for the κ ∈ ɛB ɛ that maximises h(κ) andNorm Q(αi ,α j )/Q(κ i (α i − α j )), namely κ = bɛ where b is the largest square-free rati<strong>on</strong>alinteger dividing a∆ Norm K/Q (ɛ) ∏ p∈Sp. Thus, though in the even degree case the setK is much bigger than in the odd degree case, the computati<strong>on</strong> of the upper bound forthe size of the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> is essentially not more complicated than that in the odddegree case.Example 3.7.2. This is a c<strong>on</strong>tinuati<strong>on</strong> of Example 2.4.2. Let C be the curve defined byY 2 = 4X 5 − 4X + 1,and let S be the set of the first 22 primes. We transform the equati<strong>on</strong> intoC : 2y 2 = x 5 − 16x + 8, (3.7.3)via the change of variables y = 2Y and x = 2X which preserves S-<str<strong>on</strong>g>integral</str<strong>on</strong>g>ity. Thecurve C given by the model (3.7.3) is the same curve as the <strong>on</strong>e in the proof of Theorem1.1 of [15]. The authors compute an upper bound for the size of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong>the curve. We will here compute a bound for the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>. Denote by J theJacobian of C. We had seen in Example 2.4.2 that J(Q) is free of rank 3. A set ofgenerators for J(Q) is given byD 1 = (0, 2) − ∞, D 2 = (2, 2) − ∞, D 3 = (−2, 2) − ∞.42


Let f(x) = x 5 − 16x + 8. Let α be a root of f. We choose for coset representativesof J(Q)/2J(Q) the linear combinati<strong>on</strong>s ∑ 3i=1 n iD i with n i ∈ {0, 1}. For a given set ofprimes S we have that any S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> point of (3.7.3) (in fact, any rati<strong>on</strong>al point) satisfiesx − α = κξ 2 ,where κ ∈ K and K is c<strong>on</strong>structed as in Lemma 3.1.1. Next, we compute the boundsfor h(x) given by Theorem 3.7.1 for every κ ∈ K.We implemented our bounds inMAGMA [5]. As remarked in [15], the Galois group of f is S 5 , which implies that the fieldsK 1 , K 2 , K 3 corresp<strong>on</strong>ding to a particular κ are isomorphic. We tabulate the bounds foreach κ ∈ K for the set S of primes up to 79 in Table 3.1. Thus, if (x, y) is an S-<str<strong>on</strong>g>integral</str<strong>on</strong>g>Table 3.1: Bounds for the height of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> (3.7.3)coset of κ S Ki -unit bound R for bound forJ(Q)/2J(Q) rank of K i S Ki -regulator of K i h(x)0 1 154 8.5 × 10 301 7.8 × 10 4025D 1 −2α 266 1.6 × 10 603 1.6 × 10 8421D 2 4 − 2α 258 4.2 × 10 576 1.9 × 10 8160D 3 −4 − 2α 262 1.0 × 10 596 4.7 × 10 8301D 1 + D 2 −2α + α 2 257 1.7 × 10 581 1.3 × 10 8135D 1 + D 3 2α + α 2 264 7.1 × 10 591 5.6 × 10 8352D 2 + D 3 −4 + α 2 264 3.1 × 10 600 1.2 × 10 8364D 1 + D 2 + D 3 8α − 2α 3 266 2.2 × 10 596 1.5 × 10 8415point of (3.7.3) we haveh(x) ≤ 1.6 × 10 8421 .We have also computed the bounds in the case when S is the empty set, in other words,a bound for the size of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> (3.7.3). We get h(x) ≤ 4.4 × 10 428 . Thebound in [15] is 5.1 × 10 565 . Recalling the definiti<strong>on</strong> of size given at the beginning ofthis chapter, this means that an S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> point P = (x, y) <strong>on</strong> the curve, with x = p/q,p, q ∈ Z and (p, q) = 1 will havemax{|p|, |q|} ≤ exp(1.6 × 10 8421 ).43


If the point P is an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> the curve, then|x| ≤ exp(4.4 × 10 428 )which gives a significant improvement <strong>on</strong> the bound given in [15].Example 3.7.3. Let C be the genus 2 curve defined by the equati<strong>on</strong>y 2 = f(x) = x 6 + x + 2. (3.7.4)Let S = {2, 3, 5}. Using MAGMA we find some rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curve:∞ + , ∞ − , (1, −2), (1, 2), (−2, −8), (−2, 8).The Mordell–Weil group of the curve is free of rank 2, so Chabauty’s method to find theS-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curve does not apply in this case.A basis for the Mordell–Weil group is given byD 1 = ∞ + − ∞ − , D 2 = (1, 2) − ∞ − .We will now compute the set K as in Lemma 3.1.2. We choose as representativesfor J(Q)/2J(Q) the divisors 0, D 1 , D 2 , and D 1 − D 2 , which is linearly equivalent to(1, −2) − ∞ − . Take P 0 = ∞ − . We then choose ɛ 0 = 1, and we can easily see thatthe ɛ we associate to 0 and D 1 is 1, whereas we associate 1 − α to D 2 , and D 1 − D 2 ,where α is a root of f. The discriminant ∆ of the polynomial f is −1489867, which isprime. Let K = Q(α). We have that Norm K/Q (1 − α) = 4. Following the notati<strong>on</strong> ofLemma 3.1.2, the set B 1 c<strong>on</strong>sists of the square-free rati<strong>on</strong>al integers supported by theprime 1489867 and the primes in S. The set B 1−α c<strong>on</strong>sists of the square-free rati<strong>on</strong>alintegers supported by the primes 2, 1489867, and the primes in S. Finally, the set Kc<strong>on</strong>sists of the set B 1 together with the set (1 − α)B 1−α .According to the remark following Theorem 3.7.1, we <strong>on</strong>ly need to compute theupper bounds given by κ 1 = 2 · 3 · 5 · 1489867 and κ 2 = 2 · 3 · 5 · 1489867(1 − α). UsingMAGMA we find that an upper bound for the size of the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curve Cis 5.57 × 10 2218 .44


3.8 The Mordell–Weil sieveWe have given explicit upper bounds for the size of the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> of a <strong>hyperelliptic</strong>curve. As we saw in the examples, the bounds are astr<strong>on</strong>omical, and we cannot expectto search for all <str<strong>on</strong>g>points</str<strong>on</strong>g> below that bound. One usually looks for <str<strong>on</strong>g>points</str<strong>on</strong>g> of small sizeand tries to prove the <str<strong>on</strong>g>points</str<strong>on</strong>g> found are all the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curve. In thissecti<strong>on</strong> we use a powerful variant of the Mordell–Weil sieve [15, Secti<strong>on</strong>s 10–12] toshow that any rati<strong>on</strong>al point <strong>on</strong> a curve is either a known rati<strong>on</strong>al point or a point withvery large height. If the unknown rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> have a height larger than the upperbound obtained for the size of the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>, then we have found all the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g><str<strong>on</strong>g>points</str<strong>on</strong>g>.We now summarize the method described in [15]. Let C/Q be a smooth projectivecurve (not necessarily <strong>hyperelliptic</strong>) of genus g ≥ 2 and let J be its Jacobian. Asindicated in the introducti<strong>on</strong>, we assume the knowledge of some rati<strong>on</strong>al point <strong>on</strong> C. LetP 0 be a fixed rati<strong>on</strong>al point <strong>on</strong> C and let j be the corresp<strong>on</strong>ding Abel–Jacobi map:j : C → J, P ↦→ [P − P 0 ].Let W be the image in J of the known rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C. Let r be the rank of J(Q)and D 1 , . . . , D r generators for the free part of J(Q). Letφ : Z r → J(Q), φ(a 1 , ..., a r ) = ∑ a i D i ,so that the image of φ is simply the free part of J(Q). The variant of the Mordell-Weilsieve as explained in [15] is a strategy for obtaining a very l<strong>on</strong>g decreasing sequenceof lattices in Z r :L 0 L 1 L 2 · · · L k = L (3.8.1)such thatj(C(Q)) ⊂ W + φ(L j )for j = 1, . . . , k. It c<strong>on</strong>sists of two steps. The first is finding a large integer B such thatj(C(Q)) ⊂ W + φ(BZ r ).45


Set L 0 = BZ r . The sec<strong>on</strong>d step requires running through many primes q of goodreducti<strong>on</strong> for C. Reducing modulo q, the authors get under certain c<strong>on</strong>diti<strong>on</strong>s an explicitsequence of sublattices with the required properties. We remark that many ofthe primes will not give any new informati<strong>on</strong>, or will make the computati<strong>on</strong>s very slow.Eventually we expect to get a lattice L such that j(C(Q)) ⊂ W + φ(L). Since explicitgenerators for the lattice can be computed, we can compute as well a positive integerB 1 such that L ⊆ B 1 Z r . If the generators of the lattice are large enough, this integerwill be c<strong>on</strong>siderably larger than B. We can restart the applicati<strong>on</strong> of the sec<strong>on</strong>d strategyusing this new integer and c<strong>on</strong>sider now the primes that did not give new informati<strong>on</strong>in the previous round. Many of these primes will now give new informati<strong>on</strong> and we willget a smaller lattice L ′ satisfying the required c<strong>on</strong>diti<strong>on</strong>s. In our computati<strong>on</strong>s this hasresulted in a quicker way of finding a lattice with very large generators compared to <strong>on</strong>lycarrying <strong>on</strong> with larger and larger primes q of good reducti<strong>on</strong>.The following lemma [15, Lemma 12.1] gives a lower bound for the size of rati<strong>on</strong>al<str<strong>on</strong>g>points</str<strong>on</strong>g> whose image does not bel<strong>on</strong>g to the set W .Lemma 3.8.1. Let W be a finite subset of J(Q), and let L be a sublattice of Z r . Supposethat j(C(Q)) ⊂ W + φ(L). Let µ 1 be a lower bound for h − ĥ as in (2.2.1).Let{√}µ 2 = max ĥ(w) : w ∈ W .Let M be the height-pairing matrix for the Mordell–Weil basis D 1 , . . . , D r and let λ 1 , . . . , λ rbe its eigenvalues. Let{ √λj }µ 3 = min : j = 1, . . . , r .Let m(L) be the Euclidean norm of the shortest n<strong>on</strong>-zero vector of L, and suppose thatµ 3 m(L) ≥ µ 2 . Then, for any P ∈ C(Q), either j(P ) ∈ W orh(j(P )) ≥ (µ 3 m(L) − µ 2 ) 2 − µ 1 .Example 3.8.2. This is a c<strong>on</strong>tinuati<strong>on</strong> of Example 3.7.2. C<strong>on</strong>sider the genus 2 curveY 2 − Y = X 5 − X. This curve is the same as in Theorem 1.1 in [15]. Let S be the set46


of the first 22 primes. We transform the equati<strong>on</strong> Y 2 − Y = X 5 − X intoC : 2y 2 = x 5 − 16x + 8, (3.8.2)via the change of variables y = 4Y − 2 and x = 2X which preserves S-<str<strong>on</strong>g>integral</str<strong>on</strong>g>ity. Thecurve C is the same c<strong>on</strong>sidered in Example 3.7.2. In that example we proved that if(x, y) is an S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> point of (3.7.3) we haveh(x) ≤ 1.6 × 10 8421 .We also computed a set of generators for J(Q). It is given byD 1 = (0, 2) − ∞, D 2 = (2, 2) − ∞, D 3 = (−2, 2) − ∞.The set of known rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C c<strong>on</strong>sists of the following 17 <str<strong>on</strong>g>points</str<strong>on</strong>g>:∞, (−2, ±2), (0, ±2), (2, ±2), (4, ±22), (6, ±62),(1/2, ±1/8), (−15/8, ±697/256), (60, ±19718).We now apply the implementati<strong>on</strong> of the Mordell–Weil sieve explained in thischapter. Let W denote the image of this set in J(Q). From [15] we know that j(C(Q)) ⊆W + BJ(Q) whereB = 4449329780614748206472972686179940652515754483274306796568214048000.We are now ready to start the implementati<strong>on</strong> of the variant of the Mordell–Weil sieveexplained in the present secti<strong>on</strong>. We apply Lemma 11.1 in [15] successively to primesof good reducti<strong>on</strong> that satisfy the c<strong>on</strong>diti<strong>on</strong>s of the lemma and Criteria (I)–(IV) in [15,p. 878]. Once we have tried with all the first 50000 primes in N, we obtain a lattice L 1of approximate index 7.6 × 10 2534 . This lattice satisfiesL 1 ⊂ B 1 Z 3 ,47


whereB 1 = 5186741896925513071830083009825556124942917192193989646274007029699373573973400334073122166989734932220032461464914836423781724500387155455257408447361695982490888926739368195706524280686958842758289131220782597477643207682612837102714721726154880000.We start again with this B 1 instead of B and we now sieve using the primes which didnot satisfied the criteria in the first applicati<strong>on</strong>. We go <strong>on</strong> using the first 50000 primes,and after three more repetiti<strong>on</strong>s replacing the values of B, we find a lattice L in Z 3 ofapproximate index 5.7 × 10 13161 with j(C(Q)) ⊂ W + φ(L). Let µ 1 , µ 2 , µ 3 be as in thenotati<strong>on</strong> of Lemma 3.8.1. Using MAGMA we find µ 1 = 2.167, µ 2 = 2.612, µ 3 = 0.378 (to 3decimal places). The shortest n<strong>on</strong>zero vector of L has Euclidean length approximately1.06 × 10 4387 . Lemma 3.8.1 implies that if P is not <strong>on</strong>e of the known rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong>C, thenh(j(P )) ≥ 1.6 × 10 8773 .Write P = (x, y). Then h(j(P )) = h(2x 2 ) ≤ log 2 + 2 h(x) andh(x) ≥ 8.02 × 10 8772 .This c<strong>on</strong>tradicts the bounds given in Table 3.1 for h(x) for the set of S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>where S is the set of the first 22 primes and shows that the <strong>on</strong>ly S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> thecurve Y 2 − Y = X 5 − X are(−1, 0), (−1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2, −5), (2, 6),(3, −15), (3, 16), (1/64, 15/32), (1/64, 17/32), (−15/4096, −185/1024),(−15/4096, 1209/1024), (30, −4929), (30, 4930).48


The reader can find the MAGMA programs for verifying the above computati<strong>on</strong>sat:http://www.warwick.ac.uk/staff/H.R.<strong>Gallegos</strong>-Ruiz/programs/s<str<strong>on</strong>g>integral</str<strong>on</strong>g>/Remark. The variant of the Mordell–Weil sieve used in this secti<strong>on</strong> works in a generalsetting. But it is computati<strong>on</strong>ally expensive, in particular it is memory and timec<strong>on</strong>suming.The computati<strong>on</strong>s for the example presented above took about 17 daysin a workstati<strong>on</strong> equipped with 120 GB in RAM and four 2.4 GHz Quad-Core AMDOpter<strong>on</strong> processors.49


Chapter 4Periods of genus 2 <strong>curves</strong> definedover the realsLet f be a degree 5 or 6 polynomial defined over R with real roots <strong>on</strong>ly, all different. Inthe next chapter, we will need to compute numerically <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the form∫ x2x 1S(t)dt√|f(t)|,for x 1 , x 2 ∈ R, where S(t) = s 1 t + s 2 is a degree 1 polynomial with real coefficients. Inthis chapter we explain how <strong>on</strong>e can compute such <str<strong>on</strong>g>integral</str<strong>on</strong>g>s. We first remark that wheneither x 1 or x 2 is <strong>on</strong>e of the roots of f the usual numerical methods of integrati<strong>on</strong> taketoo l<strong>on</strong>g when <strong>on</strong>e tries to compute the <str<strong>on</strong>g>integral</str<strong>on</strong>g> to hundreds or thousands of decimalplaces. Therefore we need to use another method, as we will need such high precisi<strong>on</strong>in the next chapter.In an expository article Bost and Mestre [6] present a versi<strong>on</strong> of an algorithmdue to Richelot for the numerical computati<strong>on</strong> of the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s∫ a ′aS(t)dt√|f(t)|,∫ b ′bS(t)dt√|f(t)|, and∫ c ′cS(t)dt√|f(t)|, (4.0.1)with a < a ′ < b < b ′ < c < c ′ , f(t) = (t − a)(t − a ′ )(t − b)(t − b ′ )(t − c)(t − c ′ ) and S isa polynomial with real coefficients of degree ≤ 1. The algorithm is based <strong>on</strong> a modifiedversi<strong>on</strong> of the Arithmetic-Geometric Mean (AGM).50


The AGM of two positive real numbers a, b is defined as the limit of the recurrentlydefined sequencesa n+1 = a n + b n, b n+1 = √ a n b n ,2where a 0 = a and b 0 = b. The sequences a n , b n have a comm<strong>on</strong> limit, so the AGMis well defined. A good expositi<strong>on</strong> <strong>on</strong> the AGM can be found in [18]. A very importantproperty of the AGM is that the c<strong>on</strong>vergence of the sequences a n , b n is quadratic, whichroughly means that the precisi<strong>on</strong> of the n-th iterati<strong>on</strong> with respect to the limit is doubledat the following iterati<strong>on</strong>. The AGM had been used before to compute elliptic <str<strong>on</strong>g>integral</str<strong>on</strong>g>s(that is, when the degree of f is either 3 or 4). Bost and Mestre explain how <strong>on</strong>e candefine an ‘arithmetic-geometric mean’ of six real numbers, and how it is related to the<str<strong>on</strong>g>integral</str<strong>on</strong>g>s (4.0.1). More precisely, given six different real numbers a < a ′ < b < b ′


Under the corresp<strong>on</strong>dences, every point <strong>on</strong> the first curve corresp<strong>on</strong>ds to two <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong>the sec<strong>on</strong>d curve. Say (x 1 , √ f(x 1 )) corresp<strong>on</strong>ds to (z 1 , w 1 ), (z 2 , w 2 ) and (x 2 , √ f(x 2 ))corresp<strong>on</strong>ds to (z 3 , w 3 ), (z 4 , w 4 ). Then <strong>on</strong>e can compute a direct relati<strong>on</strong> between the<str<strong>on</strong>g>integral</str<strong>on</strong>g>s (4.1.1)∫ z3z 1S(t) dt√|f1 (t)|and∫ z4z 2S(t) dt√|f1 (t)| .The chapter is arranged as follows. In Secti<strong>on</strong> 4.1 we show how the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s(4.1.1) can be computed from <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of that form, but with the following restricti<strong>on</strong>s: fis precisely of degree 6 and x 1 is a root of f. In Secti<strong>on</strong> 4.2 we first show the correctnessof Bost and Mestre’s algorithm and we present the modified versi<strong>on</strong> of it alluded toabove. Finally, in Secti<strong>on</strong> 4.3 we present the algorithms in c<strong>on</strong>cise form.4.1 Reducti<strong>on</strong> of the problemWe will show that in order to compute the desired <str<strong>on</strong>g>integral</str<strong>on</strong>g>s for general f, S, x 1 , x 2 , it isenough to compute <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the form∫ x2x 1S(t)dt√|f(t)|, (4.1.1)where S is of degree 1, f is m<strong>on</strong>ic of degree 6 with real roots <strong>on</strong>ly, x 1 is <strong>on</strong>e of the rootsof f, and f is negative al<strong>on</strong>g (x 1 , x 2 ).Assume first that f has degree 5. Let x 0 ∈ R with x 0 not a root of f. Denotethe roots of f by a 1 < a 2 < a 3 < a 4 < a 5 , and let f 5 be the leading coefficient of f.C<strong>on</strong>sider the change of variablest ′ = 1t − x 0.For a n<strong>on</strong>zero real number x write sgn(x) for the sign of x. Then, if x 0 < x 1 or x 0 > x 2∫ x2x 1S(t)dt√|f(t)|=∫−1 x ′2√|f5 f(x 0 )| x ′ 1s 1 + t ′ S(x 0 )√|t ′ ∏ (t ′ − a ′ i )| sgn(t′ )dt ′ .52


Note that sgn(t) does not change al<strong>on</strong>g [x 1 , x 2 ] in this case. Now, if x 1 ≤ x 0 ≤ x 2∫ x2x 1S(t)dt√|f(t)|=∫−1 x ′1√|f5 f(x 0 )| −∞s 1 + t ′ S(x 0 )√|t ′ ∏ (t ′ − a ′ i )|dt′ +∫1 ∞s√ 1 + t ′ S(x 0 )√|f5 f(x 0 )| x ′ 2 |t ′ ∏ (t ′ − a ′ . (4.1.2)i )|dt′In the next chapter we will simultaneously compute many <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the present kind,and we will choose <strong>on</strong>ly <strong>on</strong>e change of variables to do them all. For our c<strong>on</strong>venience,in this degree five case, the point x 0 will be chosen in between a 1 and a 2 . Then all ofthe inequalities c<strong>on</strong>sidered before involving x 1 , x 2 and x 0 will be present in practice.The degree 5 case has then been reduced to the degree 6 case. From now <strong>on</strong>we will assume that f has exactly degree 6.Now denote the roots of f by a < a ′ < b < b ′ < c < c ′ , and let f 6 be the leadingcoefficient of f. Note that∫ x2S(t)dt√ =|f(t)|and∫ x2x 1x 1S(t)dt√ = 1 ∫ x2|f(t)| |f 6 | x 1∫ x2Then it suffices to compute <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the forma∫S(t)dt x1√ −|f(t)| aS(t)dt√|f(t)|S(t)dt√|(t − a)(t − a ′ )(t − b)(t − b ′ )(t − c)(t − c ′ )| .∫ xaS(t)dt√|f(t)|,with f m<strong>on</strong>ic. If x ≥ a, denote by x 0 the largest root of f with x 0 ≤ x. Then∫ xaS(t)dt√|f(t)|=∫ x0aS(t)dt√|f(t)|+Therefore, we <strong>on</strong>ly need to compute the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s∫ x2x 1S(t)dt√|f(t)|,∫ xx 0S(t)dt√|f(t)|.where x 1 and x 2 are two c<strong>on</strong>secutive roots of f, and also <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the form∫ axS(t)dt√|f(t)|and∫ xx 0S(t)dt√|f(t)|,53


where, in the first case x < a, and in the sec<strong>on</strong>d case x ≥ a and there are no roots off in the interval (x 0 , x).We will now assume that f is m<strong>on</strong>ic. As we menti<strong>on</strong>ed before, there is no lossof generality in doing this. In this case, f(t) is positive al<strong>on</strong>g the intervals (−∞, a),(a ′ , b), (b ′ , c) and (c ′ , ∞), and negative al<strong>on</strong>g the intervals (a, a ′ ), (b, b ′ ) and (c, c ′ ). Wewill make a further simplificati<strong>on</strong> of the problem. Let x 1 < x 2 be real numbers such thatf is n<strong>on</strong>-negative al<strong>on</strong>g [x 1 , x 2 ]. Let x 0 ∈ R with f(x 0 ) < 0. We introduce the changeof variabless = g(t) = 1t − x 0.Let ˜f be the polynomial˜f(s) = (s − g(a))(s − g(a ′ ))(s − g(b))(s − g(b ′ ))(s − g(c))(s − g(c ′ )).Then∫ x2x 1S(t)dt√|f(t)|=∫−1 1/(x2 −x 0 )s√ 1 + sS(x 0 )√−f(x0 ) 1/(x 1 −x 0 )− ˜f(s)sgn(s)ds.The sign of s does not change in the interval [1/(x 2 − x 0 ), 1/(x 1 − x 0 )], and ˜f isnegative al<strong>on</strong>g [1/(x 2 − x 0 ), 1/(x 1 − x 0 )]. Moreover, there are no roots of ˜f in theinterval (1/(x 2 − x 0 ), 1/(x 1 − x 0 )). We have thus reduced the problem of computingthe <str<strong>on</strong>g>integral</str<strong>on</strong>g>s∫ xaS(t)dt√|f(t)|,∫ xx 0S(t)dt√|f(t)|with x < a in the first case, and x 0 = a ′ , b ′ or c ′ and f(t) positive al<strong>on</strong>g (x 0 , x) to thecomputati<strong>on</strong> of <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the form∫ xa∫S(t)dt xS(t)dt√ , √ , and|f(t)| b |f(t)|where x lies in [a, a ′ ], [b, b ′ ] or [c, c ′ ] respectively.∫ xcS(t)dt√|f(t)|,54


4.2 Bost and Mestre’s algorithmIn this secti<strong>on</strong> we solve some of the exercises in [6, Appendice A3] which lead to anelementary proof of the correctness of Bost and Mestre’s algorithm. We describe thealgorithm, we show why it works, and we extend it to the computati<strong>on</strong> of the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s∫ xa∫S(t)dt xS(t)dt√ , √ , and|f(t)| b |f(t)|where x lies in [a, a ′ ], [b, b ′ ] or [c, c ′ ] respectively.∫ xcS(t)dt√|f(t)|,Let P, Q ∈ R[X] be polynomials with real coefficients. We denote by [P, Q] thepolynomial P ′ Q − P Q ′ . The following properties follow easily from the definiti<strong>on</strong>:• [P, P ] = 0;• [P, Q] = −[Q, P ];• [λP, Q] = λ[P, Q] = [P, λQ] for λ ∈ R;• [P 1 + P 2 , Q] = [P 1 , Q] + [P 2 , Q], for P 1 , P 2 ∈ R[X].The following lemmas are soluti<strong>on</strong>s to some of the exercises alluded to above. We willindicate in brackets the number of the corresp<strong>on</strong>ding exercise in [6, Appendice A3].Lemma 4.2.1 (I–1–a). Let P ≠ 0 be a fixed polynomial of degree n in R[X]. Then[P, Q] = 0 if and <strong>on</strong>ly if Q = λP for some λ ∈ R.Proof. The ‘if’ statement is a c<strong>on</strong>sequence of the properties previously menti<strong>on</strong>ed. Weuse inducti<strong>on</strong> <strong>on</strong> the degree n of P . If n = 0, 1 the result is clear. Let Q ≠ 0 be a degreem polynomial such that [P, Q] = 0. Let p n be the leading coefficient of P and q m theleading coefficient of Q. Then 0 = [P, Q] = (m − n)p n q m X n+m + ∑ n+m−1i=0a i X i , witha i ∈ R. Since p n q m ≠ 0, then m = n. Since [P, Q] = 0, then [P −p n /q m Q, Q] = 0. ButP − p n /q m Q has degree < n. Then P − p n /q m Q = 0. Choosing λ = p n /q m completesthe proof.55


Remark. If P has degree ≤ 1, then the degree of [P, Q] is at most the degree ofQ, as P ′ has degree < 1. If P, Q both have degree 2, then [P, Q] has degree 2 aswell, for if p 2 , q 2 are the leading coefficients of P and Q, respectively, then [P, Q] =(2 − 2)p 2 q 2 X 3 + a 2 X 2 + a 1 X + a 0 for some real numbers a 0 , a 1 , a 2 .Lemma 4.2.2 (I–2–a). Let P, Q ∈ R[X] be degree 2 polynomials. If P and Q have acomm<strong>on</strong> root, that root is a double root of [P, Q].Proof. Write P = (X − a)f(X) and Q(X) = (X − a)g(X) for some a ∈ R andsome degree 1 polynomials f, g. Then P ′ (X) = (X − a)f ′ (X) + f(X) and Q ′ (X) =(X − a)g ′ (X) + g(X). Then [P, Q] = (X − a) 2 f ′ (X)g(X) + (X − a)f(x)g(x) − (X −a) 2 f(X)g ′ (X) − (X − a)f(X)g(X) = (X − a) 2 h(X), for some polynomial h(X). Thena is a double root of [P, Q].Lemma 4.2.3 (I–2–b). Let P (X) = (X − x)(X − x ′ ). Let Q be a degree 2 polynomialwith [P, Q] ≠ 0. The discriminant of [P, Q] is 4Q(x)Q(x ′ )Proof. Write Q(X) = a(X − y)(X − y ′ ). Then P ′ (X) = 2X − (x + x ′ ) and Q ′ (X) =a(2X − (y + y ′ )). So[P, Q](X) =[2a(x + x ′ − y − y ′ ) − a(x + x ′ − y − y ′ )]X 2+ [2a(yy ′ − xx ′ ) + (a − a)(x + x ′ )(y + y ′ )]X+ a[xx ′ (y + y ′ ) − yy ′ (x + x ′ )].Then, the discriminant of [P, Q] is 4a 2 (yy ′ − xx ′ ) 2 − 4a 2 (x + x ′ − y − y ′ )(xx ′ (y + y ′ ) −yy ′ (x+x ′ )). Now, Q(x) = a(x−y)(x−y ′ ) and Q(x ′ ) = a(x ′ −y)(x ′ −y ′ ). Expanding theproduct Q(x)Q(x ′ ) and comparing it to the expansi<strong>on</strong> of the discriminant of [P, Q] wesee that the discriminant equals 4Q(x)Q(x ′ ) = 4a 2 (x − y)(x − y ′ )(x ′ − y)(x ′ − y ′ ).Remark. Note that since P and Q are defined over R, Q(¯x) = Q(x).Hence thediscriminant of [P, Q] is equal to 4‖Q(x)‖ 2 ≥ 0 if P has complex roots. In this case[P, Q] has real roots.56


Lemma 4.2.4 (I–3). Let P, Q ∈ R[X] be two degree 2 polynomials. Suppose that P(resp. Q) has two different real roots a < a ′ (resp. b < b ′ ), and that a ′ < b. Then [P, Q]has two different real roots w, w ′ with a < w < a ′ < b < w ′ < b ′ .Proof. Note that the roots of [P, Q], [λP, Q] and [P, λQ] are the same. We can thensuppose P and Q are m<strong>on</strong>ic and hence P (X) = (X − a)(X − a ′ ) and Q(X) =(X − b)(X − b ′ ). From Lemma 4.2.3, the discriminant of [P, Q] equals4Q(a)Q(a ′ ) = 4(a − b)(a − b ′ )(a ′ − b)(a ′ − b ′ ).Since a < a ′< b < b ′ all the factors in the product are n<strong>on</strong>zero, and they are allnegative. Then, the discriminant of [P, Q] is positive, and [P, Q] has two different realroots w < w ′ .Now, we compute the values of [P, Q] at a, a ′ , b, b ′ . From the definiti<strong>on</strong> of [P, Q]we see [P, Q](a) = (a − a ′ )Q(a) = (a − a ′ )(a − b)(a − b ′ ) and [P, Q](a ′ ) = (a ′ −a)Q(a ′ ) = (a ′ − a)(a ′ − b)(a ′ − b ′ ). Then [P, Q](a) < 0 < [P, Q](a ′ ) and hence, <strong>on</strong>eof the roots of [P, Q] must lie in the interval (a, a ′ ). Recalling that [P, Q] = −[Q, P ] andusing a similar argument, we see that [P, Q](b) > 0 > [P, Q](b ′ ). Then the other rootlies <strong>on</strong> the interval (b, b ′ ) and a < w < a ′ < b < w ′ < b ′ .Let P, Q, R ∈ R[X] be degree 2 polynomials. We denote by ∆(P, Q, R) thedeterminant of P, Q, R with respect to the basis 1, X, X 2 . We will associate to a triple(P, Q, R) of degree 2 polynomials the triple (U, V, W ) defined byU = [Q, R], V = [R, P ], W = [P, Q].We will say that (U, V, W ) is the associated triple to (P, Q, R).Lemma 4.2.5 (II–1 and 2). For every triple (P, Q, R) of degree 2 polynomials in R[X],we have, for every pair of real numbers (x, z):P (x)U(z) + Q(x)V (z) + R(x)W (z) + (x − z) 2 ∆(P, Q, R) = 0,where (U, V, W ) is the associated triple to (P, Q, R).57


Proof. C<strong>on</strong>sider the matrix⎛⎞P (z) P ′ (z) P (x)A = ⎜Q(z) Q⎝′ (z) Q(x) ⎟⎠ .R(z) R ′ (z) R(x)Note that the determinant of A is −P (x)U(z) − Q(x)V (z) − R(x)W (z). We will showthat it also equals (x−z) 2 ∆(P, Q, R). Expand P (x), Q(x) and R(x) in Taylor expansi<strong>on</strong>around z,P (x) = P (z) + (z − x)P ′ (z) + (x − z) 2 P ′′ (z)/2,Q(x) = Q(z) + (z − x)Q ′ (z) + (x − z) 2 Q ′′ (z)/2,R(x) = R(z) + (z − x)R ′ (z) + (x − z) 2 R ′′ (z)/2.Using elementary column operati<strong>on</strong>s we can reduce the last column of A to⎛⎞(x − z)12 P ′′ (z)⎜(x − z)2 ⎝2 Q ′′ (z) ⎟⎠ .(x − z) 2 R ′′ (z)Write P = p 0 + p 1 X + p 2 X 2 , Q = q 0 + q 1 X + q 2 X 2 and R = r 0 + r 1 X + r 2 X 2 .Then P ′ = 2p 2 X + p 1 and P ′′ = 2p 2 , and similar expressi<strong>on</strong>s hold for Q and R. Usingelementary column operati<strong>on</strong>s we see that the determinant of A is∣ ∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣p 0 p 1 p 2(x − z) 2 q 0 q 1 q 2r 0 r 1 r 2which equals (x − z) 2 ∆(P, Q, R). Since this matrix has the same discriminant as A wehave proved the result.Lemma 4.2.6 (II–3). Let P, Q, R ∈ R[X] be three degree 2 polynomials, and let (U, V, W )be the associated triple to (P, Q, R). Then∆(U, V, W ) = −2∆(P, Q, R) 258


and[U, V ] = −2R∆(P, Q, R),[V, W ] = −2P ∆(P, Q, R),[W, U] = −2Q∆(P, Q, R).Proof. Let A be the matrix⎛⎞P (x) P ′ (x) P ′′ (x)⎜Q(x) Q⎝′ (x) Q ′′ (x) ⎟⎠ .R(x) R ′ (x) R ′′ (x)Note that as in the proof of the previous lemma, using elementary column operati<strong>on</strong>swe can see that the determinant of A equals 2∆(P, Q, R). Now we compute the firstand sec<strong>on</strong>d derivatives of U = [Q, R]. We obtainU ′ = (Q ′ R − QR ′ ) ′ = Q ′′ R − QR ′′ ,andU ′′ = Q ′′ R ′ − Q ′ R ′′ ,since Q ′′′ = R ′′′ = 0 for they are degree 2 polynomials. We get similar expressi<strong>on</strong>s forV ′ , V ′′ , W ′ and W ′′ . We can now compute [U, V ] in terms of P, Q, R using the definiti<strong>on</strong>of [U, V ] and the derivatives we have just computed. We obtain [U, V ] = −R det(A) =−2R∆(P, Q, R). Repeating the same argument proves the corresp<strong>on</strong>ding result for[V, W ] and [W, U]. We now use the relati<strong>on</strong> from Lemma 4.2.5 with U, V, W instead ofP, Q, R to obtain−2∆(P, Q, R)(P (x)U(z) + Q(x)V (z) + R(x)W (x)) + (x − z) 2 ∆(U, V, W ) = 0,for all x, z ∈ R. Since (P (x)U(z) + Q(x)V (z) + R(x)W (x) = −(x − z) 2 ∆(P, Q, R) forall x, z, setting x = 1, z = 0 we have∆(U, V, W ) = −2∆(P, Q, R) 259


Let P, Q, R ∈ R[X] be three degree 2 m<strong>on</strong>ic polynomials, and let (U, V, W )be the associated triple to (P, Q, R). Assume that P (resp. Q, resp. R) has two realroots a, a ′ (resp. b, b ′ , resp. c, c ′ ) such that a < a ′ < b < b ′ < c < c ′ . It follows fromLemma 4.2.4 that U (resp. V , resp. W ) has two different real roots that we denote byu, u ′ (with b < u < b ′ < c < u ′ < c ′ ) (resp. v, v ′ , with a < v < a ′ < c < v ′ < c ′ , resp.w, w ′ , with a < w < a ′ < b < w ′ < b ′ ).Remark. In this setting ∆(P, Q, R) ≠ 0. We have proved that[U, V ] = −2R∆(P, Q, R).Recall that, since U, V are n<strong>on</strong>zero, [U, V ] = 0 if and <strong>on</strong>ly if U = λV for some n<strong>on</strong>zeroreal number λ. But then U and V would have the same roots. The locati<strong>on</strong> of the rootsu, u ′ , v, v ′ given before shows that this is not the case. Note as well that the roots of Uare different to the roots of V , as if they had a comm<strong>on</strong> root, then this root would be adouble root of [U, V ] = −2R∆(P, Q, R). But R is assumed to have different roots. Itfollows that the six roots of UV W are all different.We now express explicitly the polynomials U, V, W and the value ∆(P, Q, R) interms of a, a ′ , b, b ′ , c, c ′ . SetA 1 = −a − a ′ , B 1 = −b − b ′ , C 1 = −c − c ′ ,A 2 = aa ′ , B 2 = bb ′ , C 2 = cc ′ .Then,P (x) = (x − a)(x − a ′ ) = x 2 + A 1 x + A 2 ,Q(x) = (x − b)(x − b ′ ) = x 2 + B 1 x + B 2 ,R(x) = (x − c)(x − c ′ ) = x 2 + C 1 x + C 2 .The determinant ∆(P, Q, R) is then given by∆(P, Q, R) = aa ′ (c + c ′ − b − b ′ ) + bb ′ (a + a ′ − c − c ′ ) + cc ′ (b + b ′ − a − a ′ ),60


andU(x) = [Q, R](x) = (b + b ′ − c − c ′ )x 2 + 2(cc ′ − bb ′ )x + bb ′ (c + c ′ ) − cc ′ (b + b ′ ),V (x) = [R, P ](x) = (c + c ′ − a − a ′ )x 2 + 2(aa ′ − cc ′ )x + cc ′ (a + a ′ ) − aa ′ (c + c ′ ),W (x) = [P, Q](x) = (a + a ′ − b − b ′ )x 2 + 2(bb ′ − aa ′ )x + aa ′ (b + b ′ ) − bb ′ (a + a ′ ).Lemma 4.2.3 states that the discriminant of W equals4Q(a)Q(a ′ ) = 4(a − b)(a − b ′ )(a ′ − b)(a ′ − b ′ ).Similarly, the discriminant of U and V are given respectively by4(c − b)(c − b ′ )(c ′ − b)(c ′ − b ′ ) and 4(c − a)(c − a ′ )(c ′ − a)(c ′ − a ′ ).We then have the following identitiesu = bb′ − cc ′ − √ (c − b)(c − b ′ )(c ′ − b)(c ′ − b ′ )b + b ′ − c − c ′ ,u ′ = bb′ − cc ′ + √ (c − b)(c − b ′ )(c ′ − b)(c ′ − b ′ )b + b ′ − c − c ′ ,v = cc′ − aa ′ − √ (c − a)(c − a ′ )(c ′ − a)(c ′ − a ′ )c + c ′ − a − a ′ ,v ′ = cc′ − aa ′ + √ (c − a)(c − a ′ )(c ′ − a)(c ′ − a ′ )c + c ′ − a − a ′ ,w = aa′ − bb ′ − √ (a − b)(a − b ′ )(a ′ − b)(a ′ − b ′ )(a + a ′ − b − b ′ ,)w ′ = aa′ − bb ′ + √ (a − b)(a − b ′ )(a ′ − b)(a ′ − b ′ )(a + a ′ − b − b ′ .)Lemma 4.2.7 (III–3). The roots u, u ′ of U, v, v ′ of V , and w, w ′ of W satisfy the followinginequalitiesa < v < w < a ′ < b < w ′ < u < b ′ < c < u ′ < v ′ < c ′ .Proof. The discriminant of [(X − v)(X − v ′ ), (X − w)(X − w ′ )] is positive, as [V, W ] =−2P ∆(P, Q, R) and P has two different real roots. From Lemma 4.2.3 we see that(v + v ′ − w − w ′ ) 2 (a − a ′ ) 2 = 4(v − w)(v − w ′ )(v ′ − w)(v ′ − w ′ ),61


since the expressi<strong>on</strong> <strong>on</strong> the left equals the discriminant of [(X−v)(X−v ′ ), (X−w)(X−w ′ )], for v +v ′ −w −w ′ is the leading coefficient of [(X −v)(X −v ′ ), (X −w)(X −w ′ )],and a, a ′ are its roots. Note that v −w ′ < 0 and that v ′ −w and v ′ −w ′ are both positive,as a < v, w < a ′ < b < w ′ < b ′ < c < v ′ < c. Then we must have v − w < 0,or equivalently, v < w. Repeating the argument with [U, V ] and [W, U] completes theproof.Put F 1 (x, z) = P (x)U(z) + Q(x)V (z), F 2 (x, z) = Q(x)V (z) + R(x)W (z) andF 3 (x, z) = P (x)U(z) + R(x)W (z).Lemma 4.2.8 (III–4). As polynomials in z, F 1 , F 2 , F 3 are precisely of degree 2 forx ∈ [a, a ′ ], x ∈ [b, b ′ ], and x ∈ [c, c ′ ] respectively. Moreover, in the same intervals for x,F 1 , F 2 and F 3 have positive discriminant as polynomials in z.Proof. WriteF 1 (x, z) = φ 0 (x)z 2 + φ 1 (x)z + φ 2 (x),where φ 0 , φ 1 , φ 2 are polynomials in x of degree ≤ 2. We will compute the sign of φ 0 (a ′ )and φ 0 (b). Note that F (a ′ , z) = Q(a)V (z). Recall that the leading coefficient of V isc+c ′ −a−a ′ . Now, Q(a ′ ) > 0 since Q is m<strong>on</strong>ic and the roots of Q are both > a ′ . Then,the leading coefficient of F (a ′ , z) as a polynomial in z, φ 0 (a ′ ), is positive. Similarly,looking at F (b, z) we get φ 0 (b) < 0. Then φ 0 has a root x 0 with a ′ < x 0 < b.Using the identity from Lemma 4.2.5 we see that F (x, z) = −R(x)W (z) − (x −z) 2 ∆(P, Q, R). Note that 0 = F (a, v) = −R(a)W (v) − (a − v) 2 ∆(P, Q, R). SinceR(a) > 0 and W (v) < 0 we have −R(a)W (v) > 0. Then ∆(P, Q, R) > 0. Lookingnow at F (c ′ , z) = −(c ′ − z) 2 ∆(P, Q, R), we see that φ 0 (c ′ ) < 0. Since the leadingcoefficient of W is a + a ′ − b − b ′ < 0 and R(x) > 0 for all x > c ′ , we see that forlarge enough x, −R(x)W (z) − (x − z) 2 ∆(P, Q, R) has a positive leading coefficientas a polynomial in z. Then for x > c ′ large enough φ 0 (x) > 0 and thus φ 0 has a rootx 1 > c ′ . In summary, the degree 2 polynomial φ 0 takes positive values for x ∈ [a, a ′ ] and62


then F 1 is precisely of degree 2 as claimed. The same argument adjusted accordinglyshows the corresp<strong>on</strong>ding statements for F 2 and F 3 .Now, the discriminant of F 1 equals φ 2 1 − 4φ 0φ 2 . It is a polynomial of degree atmost 4. If φ 0 (x) ≠ 0, then the discriminant vanishes if and <strong>on</strong>ly if F 1 has a double rootδ as a polynomial in z. Lemma 4.2.5 implies that c, c ′ are roots of φ 2 1 − 4φ 0φ 2 . Dividingφ 2 1 − 4φ 0φ 2 by R(x) we get 4g 1 g 2 where g 1 = x(c(b + b ′ − a − a ′ ) + aa ′ − bb ′ ) + c(aa ′ −bb ′ ) + bb ′ (a + a ′ ) − aa ′ (b + b ′ ) and g 2 = x(c ′ (b + b ′ − a − a ′ ) + aa ′ − bb ′ ) + c ′ (aa ′ −bb ′ ) + bb ′ (a + a ′ ) − aa ′ (b + b ′ ). We can see that n<strong>on</strong>e of the roots of φ 2 1 − 4φ 0φ 2 lie inthe interval [a, a ′ ], as if x 0 is a root of the discriminant and δ ∈ R is such thatP (x 0 )U(z) + Q(x 0 )V (z) = φ 0 (x 0 )(z − δ) 2 ,for all z ∈ R, then P (x 0 ) and Q(x 0 ) must have the same sign, for U is negative and Vis positive al<strong>on</strong>g (−∞, v). However, P (z) and Q(z) have opposite signs al<strong>on</strong>g (a, a ′ ).Moreover, since F 1 (a) = Q(a)W (z) and Q(a) ≠ 0, F 1 (a) has two different roots, andthen φ 2 1 − 4φ 0φ 2 is positive at x = a. Hence it is positive al<strong>on</strong>g all of [a, a ′ ]. The sameanalysis adjusted accordingly proves the statements for F 2 and F 3 .It follows from the Implicit Functi<strong>on</strong> Theorem that there are two different functi<strong>on</strong>sz 1 and z 2 defined <strong>on</strong> [a, a ′ ]∪[b, b ′ ]∪[c, c ′ ] to R, c<strong>on</strong>tinuous <strong>on</strong> [a, a ′ ]∪[b, b ′ ]∪[c, c ′ ],C ∞ <strong>on</strong> (a, a ′ ) ∪ (b, b ′ ) ∪ (c, c ′ ), with z 1 (x) < z 2 (x) and such thatF 1 (x, z 1 (x)) = F 1 (x, z 2 (x)) = 0,for all x ∈ [a, a ′ ],F 2 (x, z 1 (x)) = F 2 (x, z 2 (x)) = 0,for all x ∈ [b, b ′ ], andF 3 (x, z 1 (x)) = F 3 (x, z 2 (x)) = 0,63


for all x ∈ [c, c ′ ]. Define functi<strong>on</strong>s y 1 , y 2 <strong>on</strong> (a, a ′ ) ∪ (b, b ′ ) ∪ (c, c ′ ) by⎧P (x)U(z i (x))(x−z i (x))√ , |P (x)Q(x)R(x)| ⎪⎨x ∈ (a, a ′ )y i (x) =Q(x)V (z i (x))(x−z i (x))√ , |P (x)Q(x)R(x)|x ∈ (b, b ′ )⎪⎩R(x)W (z i (x))(x−z i (x))√|P (x)Q(x)R(x)|, x ∈ (c, c ′ ).Lemma 4.2.9 (III–6–a). For x ∈ (a, a ′ ) ∪ (b, b ′ ) ∪ (c, c ′ ) and for i = 1, 2yi 2 = |U(z i(x))V (z i (x))W (z i (x))|.|∆(P, Q, R)|Proof. We prove the identity for x ∈ (a, a ′ ). The proof for the other intervals is similar.For i = 1, 2yi 2 (x) = P 2 (x)U 2 (z i (x))(x − z i (x)) 2,|P (x)Q(x)R(x)|From Lemma 4.2.5 and the definiti<strong>on</strong> of z i (x) we see that0 = P (x)U(z i (x)) + Q(x)V (z i (x)) = R(x)W (z i (x)) + (x − z i (x)) 2 ∆(P, Q, R).ThenandWe then haveP (x)U(z i (x)) = −Q(x)V (z i (x))(x − z i (x)) 2 = −R(x)W (z i (x))/∆(P, Q, R).yi 2 (x) = P (x)Q(x)R(x)|P (x)Q(x)R(x)| · U(z i(x))V (z i (x))W (z i (x))∆(P, Q, R)= |U(z i(x))V (z i (x))W (z i (x))|.|∆(P, Q, R)|We now study the functi<strong>on</strong>s z 1 , z 2 , y 1 , y 2 al<strong>on</strong>g (a, a ′ ), (b, b ′ ) and (c, c ′ ).64


Lemma 4.2.10 (III–3–a). We have z 1 (a) = v = z 1 (a ′ ), z 2 (a) = v ′ = z 2 (a ′ ), z 1 (b) =w = z 1 (b ′ ), z 2 (b) = w ′ = z 2 (b ′ ), z 1 (c) = u = z 1 (c ′ ) and z 2 (c) = u ′ = z 2 (c ′ ). Moreover,z 1 ([a, a ′ ]) = [v, w], z 2 ([a, a ′ ]) ⊂ (u ′ , v ′ ], z 1 ([b, b ′ ]) ⊂ (v, w],z 2 ([b, b ′ ]) = [w ′ , u], z 1 ([c, c ′ ]) ⊂ (w ′ , u], z 2 ([c, c ′ ]) = [u ′ , v ′ ],and z 1 (x) = w for x ∈ (a, a ′ ) if and <strong>on</strong>ly if x = w, z 2 (x) = u for x ∈ (b, b ′ ) if <strong>on</strong>ly ifx = u, z 2 (x) = v ′ for x ∈ (c, c ′ ) if and <strong>on</strong>ly if x = v ′ . We also have⎧⎪⎨ ≤ 0 a ≤ x ≤ wy 1 (x)y 2 (x) ≤ 0, x ∈ [a, a ′ ]⎪⎩ ≥ 0 w ≤ x ≤ a ′ ,⎧⎪⎨ ≤ 0 b ≤ x ≤ uy 2 (x)y 1 (x) ≥ 0, x ∈ [b, b ′ ]⎪⎩ ≥ 0 u ≤ x ≤ b ′ ,⎧⎪⎨ ≤ 0 c ≤ x ≤ v ′y 2 (x)y 1 (x) ≥ 0, x ∈ [c, c ′ ]⎪⎩ ≥ 0 v ′ ≤ x ≤ c ′ ,Proof. Note that 0 = F 1 (a, z i (a)) = Q(a)V (z i (a)). Since Q(a) ≠ 0 it follows thatV (z i (a)) = 0, that is z 1 (a) = v, z 2 (a) = v ′ . Similarly, z 1 (a ′ ) = v, z 2 (a ′ ) = v ′ . Sincea < v < a ′ , there is a point x ∈ (a, a ′ ) such that z 1 (x) = x. Then F (x, z 1 (x)) = 0 =R(x)W (z 1 (x)), but R(x) ≠ 0. Thus z 1 (x) must be equal to w and there is <strong>on</strong>ly a pointin (a, a ′ ) satisfying z 1 (x) = x. Similarly, if z 1 (x) = w we have that x = z 1 (x) = w forF (x, z 1 (x)) = (x − z 1 (x)) 2 ∆(P, Q, R). In particular, z 1 (x) attains its maximum at w.At this point we have that y 1 (x) = 0. We will now show that z 1 (x) ≥ v for x ∈ (a, a ′ ).Since F (x, z 1 (x)) = P (x)U(z 1 (x)) + Q(x)V (z 1 (x)) = 0, and P is negative and Q ispositive al<strong>on</strong>g (a, a ′ ), then U(z 1 (x)) and V (z 1 (x)) cannot have opposite signs. But forz < v we have V (z) > 0 and U(z) < 0. The same argument shows that z 2 (x) ≤ v ′ .Now, <strong>on</strong> (a, a ′ ) we have P (x) < 0, and since z 1 (x) ∈ [v, w], we have thatU(z 1 (x)) < 0. Then y 1 (x) is negative al<strong>on</strong>g (a, w) and positive al<strong>on</strong>g (w, a ′ ). Note nowthat there is no point x ∈ (a, a ′ ) with z 2 (x) = u ′ , for if z 2 (x) = u ′ then F (x, z 2 (x)) =65


Q(x)V (z 2 (x)) = 0, but since V (u ′ ) ≠ 0 we would have Q(x) = 0. But the roots of x are> a ′ . Then z 2 (x) > u ′ for all x ∈ [a, a ′ ]. In particular, x − z 2 (x) < 0 and U(z 2 (x)) < 0for all x ∈ (a, a ′ ). Then y 2 (x) < 0 for all x ∈ (a, a ′ ).The corresp<strong>on</strong>ding statements for [b, b ′ ] and [c, c ′ ] are proved in a similar way.We have not been able to prove the following result (Exercise III–6–b). Nevertheless,when we have needed it, we have proved the identity in specific cases usingsymbolic computati<strong>on</strong>s with Mathematica [52].Lemma 4.2.11 (III–6–b). Let S(X) ∈ R[X] be a polynomial of degree at most 1. Then,for all x ∈ [a, a ′ ] ∪ [b, b ′ ] ∪ [c, c ′ ]∫ x0aS(z 1 (x)) z′ 1 (x)y 1 (x) + S(z 2(x)) z′ 2 (x)y 2 (x) = − S(x)√ .|P (x)Q(x)R(x)|Let x 0 ∈ [a, a ′ ]. The previous Lemma implies thatS(x)dx√|P (x)Q(x)R(x)|= −∫ x0aS(z 1 (x))z ′ 1 (x)dxy 1 (x)∫ x0−aS(z 2 (x))z 2 ′ (x)dx .y 2 (x)Write ∆ = ∆(P, Q, R). Since y 2 (x) < 0 for all x ∈ (a, a ′ ) we can use the substituti<strong>on</strong>formula <strong>on</strong> the sec<strong>on</strong>d <str<strong>on</strong>g>integral</str<strong>on</strong>g> to obtain∫ x0aS(z 2 (x))z ′ 2 (x)dxy 2 (x)= √ |∆|∫ v ′z 2 (x 0 )S(x)dx√|U(x)V (x)W (x)|,as ∆y 2 (x) 2 = |U(z 2 (x))V (z 2 (x))W (z 2 (x))|. Now y 1 (w) = 0, so we need to take careof that when using the substituti<strong>on</strong> formula for the <str<strong>on</strong>g>integral</str<strong>on</strong>g>Note that∫ x0aS(z 1 (x))z ′ 1 (x)dxy 1 (x)=∫ x0a∫ waS(z 1 (x))z 1 ′ (x)dx .y 1 (x)S(z 1 (x))z ′ 1 (x)dxy 1 (x)∫ x0+wS(z 1 (x))z 1 ′ (x)dx .y 1 (x)Recall that y 1 (x) is negative al<strong>on</strong>g (a, w) and positive al<strong>on</strong>g (w, a ′ ). Recall as well thaty 1 (x) 2 = |U(z 1 (x))V (z 1 (x))W (z 1 (x))|. Then,∫ waS(z 1 (x))z ′ 1 (x)dxy 1 (x)= − √ |∆|66∫ wvS(x)dx√|U(x)V (x)W (x)|,


and∫ x0wS(z 1 (x))z ′ 1 (x)dxy 1 (x)= (−1) ε√ ∫ z1 (x 0 )S(x)dx|∆| √ ,w |U(x)V (x)W (x)|where we choose ε = 0, 1 according to the sign of y 1 al<strong>on</strong>g the interval of integrati<strong>on</strong>.In the same way we can compute identities for x ∈ [b, b ′ ]∪[c, c ′ ]. It is now easy to checkthat for x 0 ∈ [a, w]∫ x0aS(x)dx√|(P QR)(x)|= √ ∆and for x 0 ∈ [w, a ′ ],∫ x0aFor x 0 ∈ [b, u]∫ x0b= √ ∆S(x)dx√|(P QR)(x)|= √ ∆= √ ∆S(x)dx√|(P QR)(x)|= √ ∆= √ ∆( ∫ z a1 (x 0 )v( ∫ z a1 (x 0 )v∫ z a2 (x 0 )+( ∫ w(u ′v∫ v ′−2−∫S(x)dxv ′√ −|(UV W )(x)| z2 a(x 0)∫S(x)dxv ′√ −|(UV W )(x)| u ′)S(x)dx√ .|(UV W )(x)|∫S(x)dxw√ +|(UV W )(x)| z1 a(x 0)z2 a(x 0)∫ wv∫ v ′u ′( ∫ z b2 (x 0 )w ′( ∫ z b2 (x 0 ))S(x)dx√|(UV W )(x)|S(x)dx√|(UV W )(x)|−w ′∫ z b1 (x 0 )−v∫ z a1 (x 0 )∫S(x)dxz a2 (x 0 )√ +|(UV W )(x)| u ′∫S(x)dxw√ +|(UV W )(x)| z1 b(x 0)∫S(x)dxw√ +|(UV W )(x)| v)S(x)dx√ ,|(UV W )(x)|v)S(x)dx√|(UV W )(x)|S(x)dx√|(UV W )(x)|S(x)dx√|(UV W )(x)|S(x)dx√|(UV W )(x)|(4.2.1))S(x)dx√ .|(UV W )(x)|(4.2.2))S(x)dx√|(UV W )(x)|S(x)dx√|(UV W )(x)|(4.2.3)67


and for x 0 ∈ [u, b ′ ]∫ x0bS(x)dx√|(P QR)(x)|= √ ∆= √ ∆( ∫ u(w ′∫ w+2+∫S(x)dxu√ +|(UV W )(x)| z2 b(x 0)z1 b(x 0)∫ uw ′∫ wv)S(x)dx√|(UV W )(x)|S(x)dx√|(UV W )(x)|−∫ z b2 (x 0 )w ′∫S(x)dxz b1 (x 0 )√ −|(UV W )(x)| vS(x)dx√|(UV W )(x)|S(x)dx√|(UV W )(x)|)S(x)dx√ .|(UV W )(x)|(4.2.4)For x 0 ∈ [c, v ′ ]∫ x0cS(x)dx√|(P QR)(x)|= √ ∆and for x 0 ∈ [v ′ , c]∫ x0c= √ ∆S(x)dx√|(P QR)(x)|= √ ∆= √ ∆( ∫ z c2 (x 0 )u ′( ∫ z c2 (x 0 )u ′∫ z c1 (x 0 )−( ∫ v ′(w ′u ′∫ v ′+2+∫S(x)dxu√ +|(UV W )(x)| z1 c(x 0)∫S(x)dxu√ +|(UV W )(x)| w ′)S(x)dx√ ,|(UV W )(x)|∫S(x)dxv ′√ +|(UV W )(x)| z2 c(x 0)z2 c(x 0)∫ v ′u ′∫ uw ′)S(x)dx√ .|(UV W )(x)|S(x)dx√|(UV W )(x)|−∫ z c2 (x 0 )u ′∫S(x)dxz c1 (x 0 )√ −|(UV W )(x)| w ′)S(x)dx√|(UV W )(x)|S(x)dx√|(UV W )(x)|S(x)dx√|(UV W )(x)|S(x)dx√|(UV W )(x)|(4.2.5))S(x)dx√ .|(UV W )(x)|(4.2.6)The final expressi<strong>on</strong>s in the previous identities are formed by either <str<strong>on</strong>g>integral</str<strong>on</strong>g>s al<strong>on</strong>g68


intervals whose end<str<strong>on</strong>g>points</str<strong>on</strong>g> are two c<strong>on</strong>secutive roots of UV W , or <str<strong>on</strong>g>integral</str<strong>on</strong>g>s∫ xx 1S(x)dx√|(UV W )(x)|,where x 1 is a root of UV W . Those identities will help us to compute the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s tohigh precisi<strong>on</strong> recursively and more easily. We note that when x = a ′ , b ′ and c ′ we haverespectively(Exercise III–7.)of∫ a ′a∫ b ′b∫ c ′cS(t)dt√ = 2 √ ∫ w|∆||f(t)| vS(t)dt√ = 2 √ ∫ u|∆||f(t)| w ′S(t)dt√| ˜f(t)|, (4.2.7)S(t)dt√| ˜f(t)|, (4.2.8)S(t)dt√ = 2 √ ∫ vS(t)dt|∆| √|f(t)| u ′| ˜f(t)|. (4.2.9)We are now ready to explain the idea behind the algorithm for the computati<strong>on</strong>∫ a ′aS(t)dt√|f(t)|(4.2.10)We follow Secti<strong>on</strong> 3 of [6]. The <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the form (4.2.10) can be thought as <str<strong>on</strong>g>integral</str<strong>on</strong>g>sof the holomorphic differentials S(x)dx/y of the <strong>hyperelliptic</strong> curve given by theequati<strong>on</strong> y 2 = f(x). Now, let f ∈ R[x] be a degree 6 m<strong>on</strong>ic polynomial with real roots<strong>on</strong>ly. Denote the roots of f by a < a ′ < b < b ′ < c < c ′ . Let P = (x − a)(x − a ′ ),Q = (x − b)(x − b ′ ) and R = (x − c)(x − c ′ ). Let (U, V, W ) be the associated tripleto (P, Q, R). We have shown that the polynomial ˜f = U(x)V (x)W (x) has six differentroots v < w < w ′ < u < u ′ < v ′ , where u, u ′ are the roots of U, v, v ′ the roots ofV , and w, w ′ the roots of W . C<strong>on</strong>sider the genus 2 <strong>hyperelliptic</strong> <strong>curves</strong> C and C ′ givenby the equati<strong>on</strong>s y 2 = f(x) and ∆y ′2 = ˜f(x ′ ), where ∆ = ∆(P, Q, R). We take thefollowing definiti<strong>on</strong> from Chapter 2, Secti<strong>on</strong> 5 of [26].Definiti<strong>on</strong>. A corresp<strong>on</strong>dence of degree d between two <strong>curves</strong> C and C ′ defined overC associates to every point p ∈ C a divisor T (p) of degree d <strong>on</strong> C ′ , varying holomor-69


phically with p. It can be given by its curve of corresp<strong>on</strong>denceD = {(p, q) : q ∈ T (p)} ⊂ C × C ′ ;c<strong>on</strong>versely, given any curve D ⊂ C × C ′ , we can define an associated corresp<strong>on</strong>dencebyT (p) = i ∗ p(D) ∈ Div(C ′ ),where i p : C ′ → C × C ′ is defined by q ↦→ (p, q).There are three corresp<strong>on</strong>dences of degree 2 between C and C ′ defined by thefollowing <strong>curves</strong>: let Z 1 , Z 2 , Z 3 be the <strong>curves</strong> over C × C ′ given by the equati<strong>on</strong>s⎧⎪⎨ P (x)U(x ′ ) + Q(x)V (x ′ ) = 0,Z 1 :⎪⎩ yy ′ = P (x)U(x ′ )(x − x ′ ),⎧⎪⎨ Q(x)V (x ′ ) + R(x)W (x ′ ) = 0,Z 2 :⎪⎩ yy ′ = Q(x)V (x ′ )(x − x ′ ),⎧⎪⎨ P (x)U(x ′ ) + R(x)W (x ′ ) = 0,Z 3 :⎪⎩ yy ′ = W (x)R(x ′ )(x − x ′ ),What we have d<strong>on</strong>e before when solving the exercises is computing explicitly for (x, y) ∈C with x ∈ [a, a ′ ] the corresp<strong>on</strong>ding degree 2 divisor (z 1 (x), iy 1 (x))+(z 2 (x), iy 2 (x)) <strong>on</strong>C ′ under the corresp<strong>on</strong>dence defined by Z 1 , and we have d<strong>on</strong>e accordingly for <str<strong>on</strong>g>points</str<strong>on</strong>g>(x, y) ∈ C with x ∈ [b, b ′ ] and [c, c ′ ] and the <strong>curves</strong> Z 2 and Z 3 . These corresp<strong>on</strong>dencesdefine linear maps δ Zi: Ω 1 (C ′ ) → Ω 1 (C) as follows: let p 1,i , p 2,i be the restricti<strong>on</strong>sto Z i of the projecti<strong>on</strong>s of C × C ′ to C and C ′ ; the map p 2,i defines an “inverse image”p ∗ 2,i : Ω 1(C ′ ) → Ω 1 (Z i ) , and the map p 1,i defines a “trace” map p 1,i∗ : Ω 1 (Z i ) → Ω 1 (C).We define δ Zi = p 1,i∗ ◦ p ∗ 2,i . Lemma 4.2.11 implies that( )δ Zi S(x ′ ) dx′y ′ = S(x) dx y .We did a careful study of the acti<strong>on</strong> of the corresp<strong>on</strong>dences Z i <strong>on</strong> the cycles of Cassociated to the intervals (a, a ′ ), (b, b ′ ), (c, c ′ ) when we compared the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s al<strong>on</strong>g70


C to the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s al<strong>on</strong>g C ′ just after Lemma 4.2.11. In particular, when proving (4.2.7)what we were doing was showing that the cycle associated to (a, a ′ ) (resp. (b, b ′ ), (c, c ′ ))corresp<strong>on</strong>ds to two cycles: a c<strong>on</strong>tractible cycle and twice the cycle associated to (v, w)(resp. (w ′ , u), (u ′ , v ′ )).We will now see that repeating the c<strong>on</strong>structi<strong>on</strong> with U, V and W instead ofP, Q, R will lead to the value of the desired <str<strong>on</strong>g>integral</str<strong>on</strong>g>s to high precisi<strong>on</strong>. Let a 1 < a ′ 1


and that similar relati<strong>on</strong>s hold for (b n ), (b ′ n), (c n ) and (c ′ n).This shows that the sequencesc<strong>on</strong>verge respectively to a, a ′ , b, b ′ , c, c ′ , say, and that the limits satisfya ≤ a ′ < b ≤ b ′ < c ≤ c ′ .We will prove that a = a ′ . The proof that b = b ′ and c = c ′ follows the same lines. Recallthat the discriminant of W n = [P n , Q n ] is given by 4Q n (a n )Q n (a n ) = 4(b n − a n )(b ′ n −a n )(b n − a ′ n)(b ′ n − a ′ n). Now, since the roots of W n are a ′ n+1 and b n+1 (Lemma 4.2.7),the discriminant also equals (a n + a ′ n − b n − b ′ n) 2 (a ′ n+1 − b n+1) 2 , for a n + a ′ n − b n − b ′ nis the leading coefficient of W n . Taking limits we see that(a + a ′ − b − b ′ ) 2 (a ′ − b) 2 = 4(b − a)(b ′ − a)(b − a ′ )(b ′ − a ′ ).Note thatb ′ − a ≥ b − a > 0 and b ′ − a ′ ≥ b − a ′ > 0.Then(b ′ − a)(b ′ − a ′ )(b − a)(b − a ′ ) ≥ (b − a) 2 (b − a ′ ) 2 , (4.2.11)and if a < a ′ we get a strict inequality. Similarly,(b ′ − a)(b ′ − a ′ )(b − a)(b − a ′ ) ≥ (b ′ − a ′ ) 2 (b − a ′ ) 2 , (4.2.12)where again, a ≠ a ′ implies a strict inequality. Finally, we also have(b ′ − a)(b ′ − a ′ )(b − a)(b − a ′ ) ≥ (b ′ − a ′ )(b − a)(b − a ′ ) 2 . (4.2.13)If a < a ′ , adding (4.2.11) plus (4.2.12) plus twice (4.2.13) we then get that4(b ′ − a)(b ′ − a ′ )(b − a)(b − a ′ ) > (b − a ′ ) 2 (b ′ − a ′ + b − a) 2 ,which is a c<strong>on</strong>tradicti<strong>on</strong>. Therefore a = a ′ . We now prove the existence of the c<strong>on</strong>stantM. Using the identity [V n , W n ] = −P n ∆(P n , Q n , R n ), and the corresp<strong>on</strong>ding identities72


for [U n , V n ] and [W n , U n ], computing discriminants we see thatand thena ′ n+1 − a n+1 = (c′ n+1 − b n+1 − a ′ n+1 + a n+1) 2 (a ′ n − a n ) 24(b n+1 − a n+1 )(c ′ n+1 − a′ n+1 )(c′ n+1 − b n+1) ,b ′ n+1 − b n+1 = (c n+1 − a ′ n+1 + b′ n+1 − b n+1) 2 (b ′ n − b n ) 24(b ′ n+1 − a′ n+1 )(c n+1 − a ′ n+1 )(c′ n+1 − b n+1) ,c ′ n+1 − c n+1 = (b′ n+1 − a n+1 − c ′ n+1 + c n+1) 2 (c ′ n − c n ) 24(b n+1 − a n+1 )(c ′ n+1 − a′ n+1 )(c′ n+1 − b n+1) ,a ′ n+1 − a n+1 < (c′ 1 − b 1 + a ′ 1 − a 1) 2 (a ′ n − a n ) 24(b 1 − a ′ 1 )(c 1 − a ′ 1 )(c 1 − b ′ 1 ) ,b ′ n+1 − b n+1 < (c′ 1 − a 1 + b ′ 1 − b 1) 2 (b ′ n − b n ) 24(b 1 − a ′ 1 )(c 1 − a ′ 1 )(c 1 − b ′ 1 ) ,c ′ n+1 − c n+1 < (b′ 1 − a 1 + c ′ 1 − c 1) 2 (c ′ n − c n ) 24(b 1 − a ′ 1 )(c 1 − a ′ 1 )(c 1 − b ′ 1 ) .If we setM = (c′ 1 − a 1 + max{a ′ 1 − a 1, b ′ 1 − b 1, c ′ 1 − c 1}) 24(b 1 − a ′ 1 )(c 1 − a ′ 1 )(c 1 − b ′ 1 ) ,we arrive to the required inequalities.Remark. The previous lemma states that the c<strong>on</strong>vergence of the sequences a n , b n , c nis quadratic. Note that if a ′ n−a n ≤ 10 −k , for some positive integer k, then a ′ n+1 −a n+1 isabout 10 −2k . That is, each step in the c<strong>on</strong>structi<strong>on</strong> of the sequence ‘doubles’ precisi<strong>on</strong>.This is very good for practical purposes, as we can find the limit a to thousands ofdecimal digits of precisi<strong>on</strong> in a few iterati<strong>on</strong>s.Write as in the proof of the previous lemma a = lim(a n ), b = lim(b n ) andc = lim(c n ). Let ∆ n = ∆(P n , Q n , R n ) andt n =2 √ ∆ n√(bn + b ′ n − c n − c ′ n)(c n + c ′ n − a n − a ′ n)(a n + a ′ n − b n − b ′ n) .(The factors in the denominator are, up to sign, the leading coefficients of P n , Q n , R n .)Let S ∈ R[X] be a polynomial of degree at most 1. PutI n =∫ a ′na nS(t)dt√|Pn (t)Q n (t)R n (t)| .73


Lemma 4.2.13 (IV –2 and 3). The sequences (I n ) and ( ∏ ni=1 t i) c<strong>on</strong>verge. The limit of(I n ) isI =πS(a)(b − a)(c − a) .Moreover, I 1 = T I, where T is the limit of ( ∏ ni=1 t i).Proof. Let n be a positive integer. We introduce the change of variablest = a n + (a ′ n − a n ) sin 2 (t ′ ), t ′ ∈ [0, π/2], (4.2.14)to obtain∫ π/2S(a n cos 2 t ′ + a ′ n sin 2 t ′ )dt ′I n = 2 √ ∏40i=1 (A n,i cos 2 t ′ + A ′ n,i sin2 t ),′whereA n,1 = b n − a n , A ′ n,1 = b n − a ′ n,A n,2 = b ′ n − a n , A ′ n,2 = b ′ n − a ′ n,A n,3 = c n − a n , A ′ n,3 = c n − a ′ n,A n,4 = c ′ n − a n A ′ n,4 = c ′ n − a ′ n.Using the relati<strong>on</strong>s A ′ n,i < A n,i, A n,i < A n,i+1 and A ′ n,i < A′ n,i+1 we see that∏(b n − a ′ n)(c n − a ′ n) < √ 4 (A n,i cos 2 t ′ + A ′ n,i sin2 t ′ ) < (b ′ n − a n )(c ′ n − a n ).i=1Note now that a n < a n cos 2 t ′ + a ′ n sin 2 t ′ < a ′ n . It is now clear that from our bounds wecan c<strong>on</strong>struct two sequences H n and J n with H n < I n < J n and that the sequencesc<strong>on</strong>verge to the comm<strong>on</strong> limitI =πS(a)(b − a)(c − a) .Now choose S to be the c<strong>on</strong>stant polynomial 1. Then the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s I n corresp<strong>on</strong>ding toS are n<strong>on</strong>zero. From equati<strong>on</strong> (4.2.7) we see that t n = I n /I n+1 . ThenI 1 = t 1 I 2 = t 1 t 2 I 3 = · · · = T n I n+1 .74


Since I n c<strong>on</strong>verges, T n c<strong>on</strong>verges as well. The last statement of the Lemma followsand the proof is now complete.way thatandUsing the corresp<strong>on</strong>dences given by the <strong>curves</strong> Z 2 , Z 3 we can show in the same∫ b ′1b 1∫ c ′1c 1S(t)dt√|P1 (t)Q 1 (t)R 1 (t)| = πT S(b)(b − a)(c − b)S(t)dt√|P1 (t)Q 1 (t)R 1 (t)| = πT S(c)(c − a)(c − b) .Lemma 4.2.13 implies that the algorithm given in Appendix A2 of [6] is correct and thatit terminates. We will reproduce it in the next secti<strong>on</strong> for completeness. We will nowmake the necessary modificati<strong>on</strong>s of the algorithm so that we can compute the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s∫ x2x 1S(t)dt√|P1 (t)Q 1 (t)R 1 (t)| ,where x 1 = a 1 , b 1 or c 1 and x 2 ∈ (a 1 , a ′ 1 ), (b 1, b ′ 1 ), or (c 1, c ′ 1 ). Assume for simplicitythat x 1 = a 1 and a 1 < x 2 < a ′ 1 . We will now write x instead of x 2. In the proof ofLemma 4.2.13 we introduced the change of variables (4.2.14). Under the change ofvariables for n = 1 we obtain∫ xa 1∫S(t)dtx ′√|P1 (t)Q 1 (t)R 1 (t)| , = 20S(a 1 cos 2 t ′ + a ′ 1 sin2 t ′ )dt√ ∏4i=1 (A 1,i cos 2 t ′ + A ′ 1,i sin2 t ′ ),√where x ′ = arcsin x−a1a ′ 1 −a . As in the proof of the lemma, we can bound the <str<strong>on</strong>g>integral</str<strong>on</strong>g> as1follows:2 x′ min{S(a 1 ), S(a ′ 1 )}(b ′ 1 − a 1)(c ′ 1 − a 1)≤∫ xa 1S(t)dt√|P1 (t)Q 1 (t)R 1 (t)| ≤ max{S(a 1 ), S(a ′2x′ 1 )}(b 1 − a ′ 1 )(c 1 − a ′ 1 ) .In the same way we can find explicit upper and lower bounds for the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s∫ xa nS(t)dt√|Pn (t)Q n (t)R n (t)| ,with x ∈ (a n , a ′ n), and the other cases where the <str<strong>on</strong>g>integral</str<strong>on</strong>g> is from b n to x ∈ (b n , b ′ n) orfrom c n to x ∈ (c n , c ′ n).75


We start then with <strong>on</strong>e point x ∈ (a 1 , a ′ 1 ). Under the corresp<strong>on</strong>dence given bythe curve Z 1 we find two <str<strong>on</strong>g>points</str<strong>on</strong>g> x 1,1 , x 1,2 with a 2 < x 1,1 < a ′ 2 and c 2 < x 1,2 < c ′ 2 . Wewill use equati<strong>on</strong>s (4.2.1)-(4.2.6) in order to represent the <str<strong>on</strong>g>integral</str<strong>on</strong>g> we want to computein terms of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> ofS(t)dt√|P2 (t)Q 2 (t)R 2 (t)| al<strong>on</strong>g (a 2, a ′ 2 ), (b 2, b ′ 2 ), (c 2, c ′ 2 ), (a 2, x 1 ) and(c 2 , x 2 ). Since there are many cases to be c<strong>on</strong>sidered, we will choose <strong>on</strong>ly <strong>on</strong>e toshow how the algorithm will work. The other cases are handled similarly. Suppose thata ′ 2 < x < a′ 1 . Then,∫ xa 1S(t)dt√|P1 (t)Q 1 (t)R 1 (t)| = √ ∆ 1(2∫ a ′2a 2∫ c ′2−c 2S(t)dt√|(U1 V 1 W 1 )(t)| − ∫ x1,1a 2S(t)dt√|(U1 V 1 W 1 )(t)| + ∫ x1,2Now, from equati<strong>on</strong> (4.2.7) we see that the first <str<strong>on</strong>g>integral</str<strong>on</strong>g> <strong>on</strong> the right equalsand the third equalsMoreover,∫ a ′1a 1∫1 c ′12 c 1S(t)dt√|P1 (t)Q 1 (t)R 1 (t)|S(t)dt√|P1 (t)Q 1 (t)R 1 (t)| .√∆1√|(U1 V 1 W 1 )(t)| = t 12 · 1√|P2 (t)Q 2 (t)R 2 (t)| .c 2S(t)dt√|(U1 V 1 W 1 )(t)|)S(t)dt√ .|(U1 V 1 W 1 )(t)|We can then find upper and lower bounds for every <str<strong>on</strong>g>integral</str<strong>on</strong>g> <strong>on</strong> the right as we menti<strong>on</strong>edbefore, and then taking care of the signs, we can compute a lower and upper boundfor their sum, obtaining a bound for the original <str<strong>on</strong>g>integral</str<strong>on</strong>g> we want to estimate. If thedifference between the two bounds is not small enough, we repeat the process to the<str<strong>on</strong>g>integral</str<strong>on</strong>g>st 12∫ x1,1a 2S(t)dt√|(P2 Q 2 R 2 )(t)|andt 12∫ x1,2c 2S(t)dt√|(P2 Q 2 R 2 )(t)| .We obtain then four real numbers x 2,1 , x 2,2 , x 2,3 , x 2,4 from the corresp<strong>on</strong>dences. Usingequati<strong>on</strong>s (4.2.1)-(4.2.6) again we obtain an expressi<strong>on</strong> of the first <str<strong>on</strong>g>integral</str<strong>on</strong>g> as a sum ofa fracti<strong>on</strong> of the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s∫ a ′1a 1S(t)dt√|P1 Q 1 R 1 (t)| , ∫ b ′1b 1S(t)dt√|P1 Q 1 R 1 (t)| , ∫ c ′176c 1S(t)dt√|P1 Q 1 R 1 (t)| ,


and a sum of <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the formε 2,it 1 t 22 2 ∫ x2,ia 2,iS(t)dt√|P3 Q 3 R 3 (t)| ,where a 2,i is the largest root of P 3 Q 3 R 3 which is smaller than x 2,i and ε 2,i = ±1. Wecarry <strong>on</strong> with the process using the appropriate corresp<strong>on</strong>dences. Then at the n-th stepwe have a list of 2 n real numbers x n,i , i = 1 . . . 2 n , all in (a n+1 , a ′ n+1 ) ∪ (b n+1, b ′ n+1 ) ∪(c n+1 , c ′ n+1 ) and the original <str<strong>on</strong>g>integral</str<strong>on</strong>g> equals a sum of <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the form∏n ∫ xn,i2 −n t jj=1a n,iS(t)dt√|Pn+1 Q n+1 R n+1 (t)| ,where a n,i is the largest root of P n+1 Q n+1 R n+1 which is smaller than x n,i , together witha fracti<strong>on</strong> of the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s ofS(t)dt√ al<strong>on</strong>g (a |P11, a ′ (t)Q 1 (t)W 1 (t)|1 ), (b 1, b ′ 1 ) and (c 1, c ′ 1 ). Theprecise relati<strong>on</strong> is obtained from equati<strong>on</strong>s (4.2.1)-(4.2.6) and equati<strong>on</strong> 4.2.7. Sincewe can sharply bound those <str<strong>on</strong>g>integral</str<strong>on</strong>g>s in terms of arcsines of expressi<strong>on</strong>s involving x n,iand the roots of P n+1 Q n+1 R n+1 as we menti<strong>on</strong>ed before, we obtain explicit upper andlower boundsH n ≤∫ xa 1S(t)dt√|P1 (t)Q 1 (t)R 1 (t)| ≤ J n, (4.2.15)and at every step, the difference between those bounds J n − H n gets smaller as thesequences (a n ), (b n ) and (c n ) c<strong>on</strong>verge quadratically. We stop the algorithm when thedifference is smaller than the required precisi<strong>on</strong>.4.3 AlgorithmsIn this secti<strong>on</strong> we present the algorithms we have developed in the previous secti<strong>on</strong> inc<strong>on</strong>cise form.Let a < a ′ < b < b ′ < c < c ′ be six real numbers. Put f(x) = P (x)Q(x)R(x),where P (x) = (x − a)(x − a ′ ), Q(x) = (x − b)(x − b ′ ), and R(x) = (x − c)(x − c ′ ).Let S ∈ R[x] be a polynomial of degree at most 1.77


The following is Bost and Mestre’s algorithm found in [6, Appendice A2].Bost and Mestre’s algorithm for the computati<strong>on</strong> of the <str<strong>on</strong>g>integral</str<strong>on</strong>g>sI a =∫ a ′a∫S(t)dtb ′√ , I b =|f(t)| b∫S(t)dtc ′√ , and I c =|f(t)| cS(t)dt√|f(t)|.INPUT: Six real numbers a < a ′ < b < b ′ < c < c ′ . An integer p > 0:the required number of digits of precisi<strong>on</strong>.OUTPUT: Three real numbers Ia, ∗ Ib ∗, I∗ c such that |I a −Ia|, ∗ |I b −Ib ∗|, |I c−Ic ∗ | ≤ 10 −p .1. Put a 1 = a, a ′ 1 = a′ , b 1 = b, b ′ 1 = b′ c 1 = c, c ′ 1 = c′ and d = 1.2. While the required precisi<strong>on</strong> has not been attained do:• Compute the maximum M of the following quantities:max{S(a 1 ), S(a ′ 1 )}(b 1 − a ′ 1 )(c 1 − a ′ 1 ) − min{S(a 1), S(a ′ 1 )}(b ′ 1 − a 1)(c ′ 1 − a 1) ,max{S(b 1 ), S(b ′ 1 )}(b 1 − a ′ 1 )(c 1 − b ′ 1 ) − min{S(b 1), S(b ′ 1 )}(b ′ 1 − a 1)(c ′ 1 − b 1) ,max{S(c 1 ), S(c ′ 1 )}(c 1 − a ′ 1 )(c 1 − b ′ 1 ) − min{S(c 1), S(c ′ 1 )}(c ′ 1 − a 1)(c ′ 1 − b 1) .These are the differences between the upper and lower boundsfor the desired <str<strong>on</strong>g>integral</str<strong>on</strong>g>s computed in the proof ofLemma 4.2.13.• Put M 1 = π √ dM.• If M 1 ≤ 10 −p go directly to Step 3.• Puta 2 = c 1c ′ 1 − a 1a ′ 1 − √ (c 1 − a 1 )(c 1 − a ′ 1 )(c′ 1 − a 1)(c ′ 1 − a′ 1 )c 1 + c ′ 1 − a 1 − a ′ ,1a ′ 2 = a 1a ′ 1 − b 1b ′ 1 − √ (a 1 − b 1 )(a 1 − b ′ 1 )(a′ 1 − b 1)(a ′ 1 − b′ 1 )(a 1 + a ′ 1 − b 1 − b ′ 1 ) ,78


2 = a 1a ′ 1 − b 1b ′ 1 + √ (a 1 − b 1 )(a 1 − b ′ 1 )(a′ 1 − b 1)(a ′ 1 − b′ 1 )(a 1 + a ′ 1 − b 1 − b ′ 1 ) .b ′ 2 = b 1b ′ 1 − c 1c ′ 1 − √ (c 1 − b 1 )(c 1 − b ′ 1 )(c′ 1 − b 1)(c ′ 1 − b′ 1 )b 1 + b ′ 1 − c 1 − c ′ ,1c 2 = b 1b ′ 1 − c 1c ′ 1 + √ (c 1 − b 1 )(c 1 − b ′ 1 )(c′ 1 − b 1)(c ′ 1 − b′ 1 )b 1 + b ′ 1 − c 1 − c ′ ,1c ′ 2 = c 1c ′ 1 − a 1a ′ 1 + √ (c 1 − a 1 )(c 1 − a ′ 1 )(c′ 1 − a 1)(c ′ 1 − a′ 1 )c 1 + c ′ 1 − a 1 − a ′ ,1and3. Putd 1 = (a 1 a ′ 1(c 1 + c ′ 1 − b 1 − b ′ 1)+b 1 b ′ 1(a 1 + a ′ 1 − c 1 − c ′ 1) + c 1 c ′ 1(b 1 + b ′ 1 − a 1 − a ′ 1))×4d(b 1 + b ′ 1 − c 1 − c ′ 1 )(c 1 + c ′ 1 − a 1 − a ′ 1 )(a 1 + a ′ 1 − b 1 − b ′ 1 ).Note that √ d 1 /d = t n in the notati<strong>on</strong> of Lemma 4.2.13.• Put a 1 = a 2 , a ′ 1 = a′ 2 , b 1 = b 2 , b ′ 1 = b′ 2 , c 1 = c 2 , c ′ 1 = c′ 2 , d = d 1.I ∗ a =π √ dS(a 1 )(a 1 − b 1 )(a 1 − c 1 ) , I∗ b = π √ dS(b 1 )(b 1 − a 1 )(c 1 − b 1 ) , I∗ c =π √ dS(c 1 )(c 1 − b 1 )(c 1 − a 1 ) .Now we present the modified algorithm for the computati<strong>on</strong> of the <str<strong>on</strong>g>integral</str<strong>on</strong>g>I =∫ x2x 1S(t)dt√|P (t)Q(t)R(t)|,where x 2 ∈ (a, a ′ ) ∪ (b, b ′ ) ∪ (c, c ′ ) and x 1 is the largest of the roots of f with x 1 < x 2 .We will use two procedures, <strong>on</strong>e computing an upper and a lower bound for I at then-th step of the algorithm, as in the discussi<strong>on</strong> preceding equati<strong>on</strong> (4.2.15), and <strong>on</strong>e tocompute the exact relati<strong>on</strong> between the <str<strong>on</strong>g>integral</str<strong>on</strong>g> I and the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s I a , I b , I c , and∫ xn,ia n,iobtained from equati<strong>on</strong>s (4.2.1)-(4.2.6).S(t)dt√|Pn+1 Q n+1 R n+1 (t)|79


Procedure ALet x n,i ∈ (a n+1 , a ′ n+1 ) ∪ (b n+1, b ′ n+1 ) ∪ (c n+1, c ′ n+1 ), ε n,i = ±1, i = 1, . . . , 2 n andα, β, γ ∈ Q such thatI = αI a + βI b + γI c + 2 −nn ∏j=1t j∑εn,i∫ xn,ia n,iwhere a n,i is the largest of a n+1 , b n+1 , c n+1 with a n,i < x n,i .Compute a lower and an upper bound for I.S(t)dt√|Pn+1 Q n+1 R n+1 (t)| ,INPUT: Six real numbers a < a ′ < b < b ′ < c < c ′ , a n<strong>on</strong>-negativeinteger n, three rati<strong>on</strong>al numbers α, β, γ, a list of 2 npairs (x n,i , ε n,i ) ∈ D × Q, D = (a, a ′ ) ∪ (b, b ′ ) ∪ (c, c ′ ), a realnumber d.OUTPUT: Two real numbers H, J such that H < I < J.1. Put I 1 =1(b ′ −a)(c ′ −a) , I′ 1 = 1(b−a ′ )(c−a ′ ) , I 2 =1(b ′ −a)(c ′ −b) , I′ 2 = 1(b−a ′ )(c−b ′ ) ,I 3 =1(c ′ −a)(c ′ −b) , I′ 3 = 1(c−a ′ )(c−b ′ ) .2. For i = 1 . . . 2 n do• Compute a n,i , the largest of a n+1 , b n+1 , c n+1 with a n,i < x n,i . Seta ′ n,i to be a ′ , b ′ , c ′ according to whether a n,i = a, b or c.√xn,i −a• Put θ i = arcsinn,ia ′ n,i −a .n,i• If ε n,i = −1 then– PutandIH i = − θ √⎧⎪1 ′ a n,i = a,i d ⎨2 n−1 × I 2 ′ a n,i = b,⎪ ⎩I ′ 3 a n,i = c,IJ i = − θ √⎧⎪ 1 a n,i = a,i d ⎨2 n−1 × I 2 a n,i = b,⎪ ⎩I 3 a n,i = c,80


• Else do– PutandIH i = θ √⎧⎪ 1 a n,i = a,i d ⎨2 n−1 × I 2 a n,i = b,⎪ ⎩I 3 a n,i = c,IJ i = θ √⎧⎪1 ′ a n,i = a,i d ⎨2 n−1 × I 2 ′ a n,i = b,⎪ ⎩I ′ 3 a n,i = c.3. Putand⎧⎧H a = απ √ ⎪⎨ I 1 α ≥ 0,d ×, J a = απ √ ⎪⎨ I 1 ′ α ≥ 0,d ×,⎪⎩ I 1 ′ α < 0,⎪⎩ I 1 α < 0,⎧⎧H b = βπ √ ⎪⎨ I 2 β ≥ 0,d ×, J b = βπ √ ⎪⎨ I 2 ′ β ≥ 0,d ×⎪⎩ I 2 ′ β < 0,⎪⎩ I 2 β < 0,⎧⎧H c = γπ √ ⎪⎨ I 3 γ ≥ 0,d ×, J c = γπ √ ⎪⎨ I 3 ′ γ ≥ 0,d ×⎪⎩ I 3 ′ γ < 0,⎪⎩ I 3 γ < 0.4. Put H = H a + H b + H c + ∑ 2 ni=1 H i and J = J a + J b + J c + ∑ 2 ni=1 J i.We now present the sec<strong>on</strong>d procedure.Procedure BLet x n,i ∈ (a n+1 , a ′ n+1 ) ∪ (b n+1, b ′ n+1 ) ∪ (c n+1, c ′ n+1 ), ε n,i = ±1, i = 1, . . . , 2 n andα, β, γ ∈ Q such thatI = αI a + βI b + γI c + 2 −nn ∏j=1t j∑εn,i∫ xn,i81a n,iS(t)dt√|Pn+1 Q n+1 R n+1 (t)| ,


where a n,i is the largest of a n+1 , b n+1 , c n+1 with a n,i < x n,i .Compute α ′ , β ′ , γ ′ ∈ Q and for every i = 1, . . . , 2 n compute the values z 1 (x n,i ), z 2 (x n,i ),and η i , ξ i ∈ {−1, 1} such thatI = α ′ I a + β ′ I b + γ ′ I c +2 n ∑i=1η i∫ z1 (x n,i )b n,iS(t)dt√|Pn+1 Q n+1 R n+1 (t)| +2 n ∑i=1ξ i∫ z2 (x n,i )c n,iS(t)dt√|Pn+1 Q n+1 R n+1 (t)| ,where b n,i (resp. c n,i ) is the largest of the roots of P n+1 Q n+1 R n+1 with b n,i < z 1 (x n,i )(resp. c n,i < z 2 (x n,i )).INPUT: Twelve different real numbers a, v, w, a ′ , b, w ′ , u, b ′ , c, u ′ , v ′ , c ′ordered increasingly, a n<strong>on</strong>-negative integer n, threerati<strong>on</strong>al numbers α, β, γ, a list of 2 n pairs (x n,i , ε n,i ) ∈D × Q,D = (a, a ′ ) ∪ (b, b ′ ) ∪ (c, c ′ ), a real number d.OUTPUT: Three rati<strong>on</strong>al numbers α ′ , β ′ , γ ′ , a list of 2 n+1 pairs(x n+1,i , ε n+1,i ) with ε n+1,i = ±1 andx n+1,i ∈ (v, w) ∪ (w ′ , u) ∪ (u ′ , v ′ ).1. For i = 1 . . . 2 n do• Compute a n,i , the largest of a n+1 , b n+1 , c n+1 with a n,i < x n,i .• Set a ′ n,i to be a ′ , b ′ , c ′ according to whether a n,i = a, b or c.• Compute the roots z 1 (x n,i ) < z 2 (x n,i ) of the degree 2polynomial F (z) given by⎧P (x n,i )U(z) + Q(x n,i )V (z),⎪⎨a n,i = a,F (z) = Q(x n,i )V (z) + R(x n,i )W (z), a n,i = b,⎪⎩ P (x n,i )U(z) + R(x n,i )W (z), a n,i = c.• Put⎧⎪⎨ 1, a n,i = a and x n,i ≤ w,η i = ε n,i ×⎪⎩ −1, all other cases,82


and⎧⎪⎨ −1, (a n,i = b and x n,i > u) or (a n,i = c and x n,i > v ′ ),ξ i = ε n,i ×⎪⎩ 1, all other cases.• Put⎧2⎪⎨x n,i ∈ (b, b ′ ),α i = ε n,i × 2 −n x n,i ∈ (w, a ′ )⎪⎩ 0 all other cases.⎧2⎪⎨−n−1 x n,i ∈ (c, c ′ ),β i = ε n,i × 2 −n x n,i ∈ (u, b ′ )⎪⎩ 0 all other cases.and⎧−2⎪⎨x n,i ∈ (a, a ′ ),γ i = ε n,i × 2 −n x n,i ∈ (v ′ , c ′ )⎪⎩ 0 all other cases.2. Put α ′ = α + ∑ 2 ni=1 α i, β ′ = β + ∑ 2 ni=1 β i, , γ ′ = γ + ∑ 2 ni=1 γ i.3. Put x n+1,2i−1 = z 1 (x n,i ), x n+1,2i = z 2 (x n,i ), ε n+1,2i−1 = η i and ε n+1,2i =ξ i , i = 1, . . . , 2 n .We are now ready to present the modificati<strong>on</strong> of Bost and Mestre’s algorithm.Algorithm for the computati<strong>on</strong> of the <str<strong>on</strong>g>integral</str<strong>on</strong>g>I =∫ x2x 1S(t)dt√|f(t)|.83


INPUT:Six real numbers a < a ′ < b < b ′ < c < c ′ , a real number x ∈(a, a ′ ) ∪ (b, b ′ ) ∪ (c, c ′ ). An integer p > 0,the required number of digits of precisi<strong>on</strong>.OUTPUT: A real number I ∗ such that |I − I ∗ | ≤ 10 −p .1. Put a 1 = a, a ′ 1 = a′ , b 1 = b, b ′ 1 = b′ c 1 = c, c ′ 1 = c′ , d = 1, n = 0, andα = β = γ = 0.2. Let L be the list c<strong>on</strong>sisting of the pair (x, 1).3. While the precisi<strong>on</strong> has not been attained do• Let H, J be the lower and upper bounds for I obtained fromProcedure A applied to a 1 , a ′ 1 , b 1, b ′ 1 , c 1, c ′ 1 , n, α, β, γ and d.• Put M 1 = J − H.• If (M 1 < 10 −p ) go directly to Step 4.• Compute a 2 , a ′ 2 , b 2, b ′ 2 , c 2, c ′ 2 and d 1 as in Bost and Mestre’s algorithm,• Apply Procedure B to a 1 , a ′ 1 , b 1, b ′ 1 , c 1, c ′ 1 , n, α, β, γ and dto obtain a list L ′ and rati<strong>on</strong>al numbers α ′ , β ′ , γ ′ .• n = n + 1. Put a 1 = a 2 , a ′ 1 = a′ 2 , b 1 = b 2 , b ′ 1 = b′ 2 , c 1 = c 2 , c ′ 1 = c′ 2 , d =d 1 .• Put L = L ′ , α = α ′ , β = β ′ , γ = γ ′ .4. Put I ∗ = H.Note that since H < I < J and J − H ≤ 10 −p , then |I − H| ≤ 10 −p and the output ofthe algorithm is correct.4.3.1 A note <strong>on</strong> precisi<strong>on</strong>The complexity of Bost and Mestre’s algorithm is O(M(N) log N), where N is the numberof decimal places of required precisi<strong>on</strong> and M(N) stands for the complexity of the84


algorithm used for the multiplicati<strong>on</strong> of two N-digit numbers. (See Secti<strong>on</strong> 9.2.2 of [19].)In practice we will want to compute the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s to a specific number of digits.We can estimate the number of iterati<strong>on</strong>s of the algorithms needed to attain such precisi<strong>on</strong>by means of the last statement of Lemma 4.2.12. We note that a coarse estimateshows that we lose about 10 digits of precisi<strong>on</strong> with respect to the precisi<strong>on</strong> of the inputat every iterati<strong>on</strong> of Bost and Mestre’s algorithm. When we compute the final outputwe lose about 8 more digits. We can use these estimates to know how much precisi<strong>on</strong>we need <strong>on</strong> the input in order to have a correct output. For instance, in the examplepresented below, we require 1000 digits of precisi<strong>on</strong>. We first estimate that we will need12 steps to attain 1000 digits of precisi<strong>on</strong>. Then, if the input is given with m digits ofprecisi<strong>on</strong>, the final output will be correct to m − 130 digits. Then, if the input is given tomore than 1130 digits of precisi<strong>on</strong> our output will be correct to 1000 digits as required.For the example below we used real numbers given with 3000 digits of precisi<strong>on</strong>, whichis far more than what we need.The modificati<strong>on</strong> of Bost and Mestre’s algorithm will require more precisi<strong>on</strong> <strong>on</strong>the input, as every iterati<strong>on</strong> involves more operati<strong>on</strong>s, and the final output will alsorequire many operati<strong>on</strong>s. A coarse estimate shows that we lose about 23 digits ofprecisi<strong>on</strong> at every iterati<strong>on</strong>. If we stop the algorithm at the m-th iterati<strong>on</strong>, we lose 2 m +2digits from the computati<strong>on</strong> of the final output. In the example below in order to obtain1000 digits of precisi<strong>on</strong> we need 12 iterati<strong>on</strong>s. Then the final output will have 4374 digitsof precisi<strong>on</strong> less than the input. We thus need more than 5374 digits of precisi<strong>on</strong> <strong>on</strong> theinput. For the example, we used 10000 digits of precisi<strong>on</strong> <strong>on</strong> the input.The MAGMA algebra system prints reliable output.When <strong>on</strong>e requires MAGMAto work with 3000-digit arithmetic, it does not always print 3000 decimal places of arequired number. It presents less digits, but the digits printed are reliable. We c<strong>on</strong>formourselves with obtaining a printed output with slightly more than the required digits ofprecisi<strong>on</strong>, for we know that the output will be reliable to that precisi<strong>on</strong>.Example 4.3.1. C<strong>on</strong>sider the polynomial f(X) = X 5 − 5X 3 − X 2 + 3X + 1. It has five85


eal roots given bya 1 = −1.96002661715932491777 . . . , a 2 = −0.72281270157961201762 . . . ,a 3 = −0.36968038412101119752 . . . , a 4 = 0.87809490178975922400 . . . ,a 5 = 2.17442480107018890892 . . . ,to 20 decimal places. (We will not write here the more-than-2000 decimal places printedby MAGMA.)Note that f(0) = f(−1) = 1, and f(9/4) = (59/32) 2 . Let x 1 = −1, x 2 = 0,and x 3 = 9/4. We note that they lie respectively in the intervals (a 1 , a 2 ), (a 3 , a 4 ) and(a 5 , ∞). We will now use the algorithms presented in this chapter to compute the<str<strong>on</strong>g>integral</str<strong>on</strong>g>s ofal<strong>on</strong>g the intervalsdt√f(t),t dt√f(t),(a 1 , a 2 ), (a 5 , ∞),(x 1 , a 2 ), (x 2 , a 4 ), (x 3 , ∞).Since the degree of f is 5, we need to introduce a change of variables as explained inSecti<strong>on</strong> 4.1. We choose the following change of variables:t ′ = g(t) =1t − (a 2 + a 3 )/2 .Note that according to Secti<strong>on</strong> 4.1 the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s we need to compute are now of theform∫dt ′√˜f(t ′ ),∫t ′ dt ′√˜f(t ′ ),where ˜f is of degree 6. The precise relati<strong>on</strong> can be computed from Equati<strong>on</strong> 4.1.2. Wehave chosen (a 2 + a 3 )/2 as the point mapping to ∞ under the change of variables,so that ˜f is negative al<strong>on</strong>g the intervals corresp<strong>on</strong>ding to the original intervals we are86


interested in. The roots of f are mapped to five of the roots of ˜f, and ∞ is mapped to0, which is the sixth root of ˜f. The roots of ˜f are ordered as followsa ′ 2 < a ′ 1 < 0 < a ′ 5 < a ′ 4 < a ′ 3,where a ′ i = g(a i ). Moreover, the intervals (x 1 , a 2 ), (x 2 , a 4 ), (x 3 , ∞) are mapped to(a ′ 2 , x′ 1 ), (a′ 4 , x′ 2 ), (0, x′ 3 ), so all <str<strong>on</strong>g>integral</str<strong>on</strong>g>s we need to compute are already in the formrequired by the algorithms to work. After <strong>on</strong>ly 7 iterati<strong>on</strong>s we find the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s al<strong>on</strong>gall the intervals to 32 decimal places, and after 12 iterati<strong>on</strong>s, the precisi<strong>on</strong> is at leastof 1026 decimal places, as computed by the difference of the bounds for the <str<strong>on</strong>g>integral</str<strong>on</strong>g>described in the previous secti<strong>on</strong>. The computati<strong>on</strong> of each <str<strong>on</strong>g>integral</str<strong>on</strong>g> took less than twominutes. We reproduce the values of the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s in Table 4.1, to 20 decimal places.(The full output, with 1026 decimal places can be found in the address below.) WeTable 4.1:∫Value√of the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s to 20 decimal∫places.√Intervaldt/ f(t)t dt/ f(t)(a 1 , a 2 ) 1.345612414294682752214 −1.560324774496408198666(a 3 , ∞) 0.386988322453914193981 1.81246715789527708463(x 1 , a 2 ) 0.66475800776085826705 −0.53709088385333377913(x 2 , a 4 ) 0.90105534714502372440 0.46327467596785800929(x 3 , ∞) 0.30138196613949747325 1.62420319614817059241have computed the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s al<strong>on</strong>g (a 1 , a 2 ) and (x 1 , a 2 ) using the numerical integrati<strong>on</strong>methods provided by Mathematica [52]. We obtain the following values∫ a2a 1∫ a2x 1dt√f(t)= 1.34561241208,dt√f(t)= 0.66475800739,∫ a2a 1∫ a2x 1t dt√f(t)= −1.5603247725,t dt√f(t)= −0.5370908835,Mathematica displayed a warning stating that the algorithm failed to c<strong>on</strong>verge at theninth iterati<strong>on</strong>. Note that the values computed by Mathematica agree with the values wehave computed for the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s to 9 decimal places. But as remarked at the beginningof this subsecti<strong>on</strong>, our output is correct in the places where it differs from that given byMathematica.87


Chapter 5Reducti<strong>on</strong> of the upper bound forthe size of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>In Chapter 3 we described how <strong>on</strong>e can completely determine all the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g><strong>on</strong> a <strong>hyperelliptic</strong> curve. We noted that the sec<strong>on</strong>d step for the determinati<strong>on</strong> of theS-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>, namely the variant of the Mordell–Weil sieve can be time c<strong>on</strong>sumingand memory demanding, specially if <strong>on</strong>e needs to sieve up to a very large bound. Wewould like to reduce the upper bound for the size of the S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> so that we cansearch for all the <str<strong>on</strong>g>points</str<strong>on</strong>g> below the bound, instead of performing an expensive sieve.In [47], Stroeker and Tzanakis describe how <strong>on</strong>e can solve elliptic Diophantineequati<strong>on</strong>s by estimating linear forms in elliptic logarithms. Their approach c<strong>on</strong>sistsof using the classical theory of elliptic logarithms to turn the informati<strong>on</strong> given by theMordell–Weil group of an elliptic curve E into numerical data that says how far an <str<strong>on</strong>g>integral</str<strong>on</strong>g>point is from the point at infinity <strong>on</strong> E. They obtain an upper bound for the coefficientsof the linear combinati<strong>on</strong> for a given point P in terms of the generators of E(Q)and then they reduce it to manageable proporti<strong>on</strong>s using the LLL-algorithm.In this chapter we develop an analogous method for the genus 2 case. We mustrestrict our attenti<strong>on</strong> to the <str<strong>on</strong>g>integral</str<strong>on</strong>g> case (S = ∅). From now <strong>on</strong> we will <strong>on</strong>ly look for the<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> a genus 2 <strong>hyperelliptic</strong> curve. A further restricti<strong>on</strong> that we will need is88


assuming that the polynomial f defining the curve has real roots <strong>on</strong>ly, all different, andthat the generators of the free part of J(Q) are given by representatives supported byreal <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong>ly.We now briefly sketch the strategy to find all the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> a genus 2<strong>hyperelliptic</strong> curve. First, we obtain a bound for the size of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> usingthe techniques from Chapter 3. We also take advantage of the Abel–Jacobi map φ toidentify J(C) with C 2 /Λ, where Λ is a rank 4 lattice generated by the periods of C.Choose a fundamental domain in C 2 for the lattice. Let D 1 , . . . , D r be generators forthe free part of J(Q). Assume P is an (unknown) <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C. Then, if P 0 is afixed rati<strong>on</strong>al point <strong>on</strong> C, the relati<strong>on</strong>P − P 0 = m 1 D 1 + · · · + m r D r + Tin J(Q), where T is a torsi<strong>on</strong> element, can be translated into a relati<strong>on</strong>ship between theimage φ(D i ) in the fundamental domain of the generators of the D i s and the (unknown)image φ(P −P 0 ) of the degree 0 divisor P −P 0 modulo the lattice Λ. This relati<strong>on</strong> is thelinear form in <strong>hyperelliptic</strong> logarithms we will use. By completely elementary methods,<strong>on</strong>e can also compute bounds for the norm of the entries in C of the vector φ(P − P 0 ).The upper bound for the size of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> is translated to an upper bound Mfor the absolute value of the coefficients m i , i = 1, . . . r. We can rephrase the existenceof this bound as follows: if P is an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C, then the coefficients of the divisorP − P 0 in terms of the D i s are at most M. The aim of the method is to reduce thebound M in such a way that <strong>on</strong>e can practically look for all possible combinati<strong>on</strong>s inJ(Q) of the D i s and the torsi<strong>on</strong> <str<strong>on</strong>g>points</str<strong>on</strong>g> with coefficients bounded by M and deducewhich combinati<strong>on</strong>s come from <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g>. This would completely determine all the<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C.The chapter is arranged as follows. The first secti<strong>on</strong> is devoted to the backgroundneeded, namely, the standard material <strong>on</strong> the theory of Jacobians of a Riemannsurface. Secti<strong>on</strong> 5.2 is c<strong>on</strong>cerned with the numerical computati<strong>on</strong> of the periods of agenus 2 <strong>curves</strong> defined over the reals and <strong>hyperelliptic</strong> logarithms using the algorithms89


presented in Chapter 4. Secti<strong>on</strong> 5.3 explains how <strong>on</strong>e obtains and estimates linearforms in <strong>hyperelliptic</strong> logarithms from the informati<strong>on</strong> given by J(Q). Lastly, Secti<strong>on</strong> 5.4describes how using the LLL-algorithm, <strong>on</strong>e can reduce the estimates for the coefficientsof the linear forms to manageable proporti<strong>on</strong>s.5.1 Analytic JacobiansHere we summarise standard material <strong>on</strong> the analytic Jacobian found in [33, 34, 26]. LetS be a compact Riemann surface of genus g. The genus g is the ‘number of handles’ ofthe surface S. The genus is also the dimensi<strong>on</strong> of the space of holomorphic differentials<strong>on</strong> S. The Riemann surface S can be represented as a polyg<strong>on</strong> with 4g sides identifiedas in Figure 5.1. The simple paths A i , B i are disjoint except at their starting point. WeFigure 5.1: An octag<strong>on</strong> defining a genus 2 surface.note that the intersecti<strong>on</strong> product of the cycles A i and A j is 0, with i ≠ j, and the samefor the cycles B i and B j , whereas the intersecti<strong>on</strong> product of the cycles A i and B j isδ ij . The cycles A i and B i are then a basis for H 1 (S, Z).Now, let φ 1 , . . . , φ g ∈ H 0 (S, Ω 1 ) be a basis for the space of holomorphic 1-forms<strong>on</strong> S. We take the following definiti<strong>on</strong> from [26, Chapter 2, Secti<strong>on</strong> 2].Definiti<strong>on</strong>. The period matrix of S with respect to the basis A i , B i and the basis φ j is90


the g × 2g matrix⎛∫∫∫ ⎞A 1φ 1 · · ·∫A gφ 1 B 1φ 1 · · ·B gφ 1Ω = ⎜ . · · · . . · · · . ⎟⎝⎠ .∫∫∫A 1φ g · · ·∫A gφ g B 1φ g · · ·B gφ g( ∫The column vectorsA iφ 1 , . . . , ∫ )( ∫A iφ g ∈ C g andB iφ 1 , . . . , ∫ )B iφ g∈ C g arecalled the periods of S.The 2g periods of S are linearly independent vectors over R [26, p. 228]. Thenthe periods generate a rank 2g lattice Λ in C g called the period lattice of S.Definiti<strong>on</strong>. The Analytic Jacobian variety J(S) of S is the complex torus C g /Λ.We now pick a base point P 0 ∈ S. C<strong>on</strong>sider the map(∫ P ∫ P)φ : S → J(S), P ↦→ φ 1 , . . . , φ g mod Λ.P 0 P 0This is well defined, as if γ 1 and γ 2 are paths c<strong>on</strong>necting P 0 to P , the difference betweenthe two vectors of <str<strong>on</strong>g>integral</str<strong>on</strong>g>s is a vector of <str<strong>on</strong>g>integral</str<strong>on</strong>g>s al<strong>on</strong>g a closed path and hence it is inthe period lattice Λ. The map can be extended linearly to the group of degree 0 divisors<strong>on</strong> S, Div 0 (S) by(∑φ Pi − ∑ )Q i = ∑ (φ(P i )) − ∑ (φ(Q i ))= ∑ (∫ P i∫ Pi)φ 1 , . . . , φ g mod Λ.Q i Q iThe following Propositi<strong>on</strong> is Propositi<strong>on</strong> §II.2.4 of [33].Propositi<strong>on</strong> 5.1.1. Let f be a meromorphic functi<strong>on</strong> <strong>on</strong> S. Then φ((f)) = 0, where(f) denotes the principal divisor of f.We then have a well defined morphismφ : Pic 0 (S) → J(S).Abel’s theorem states that φ is an injecti<strong>on</strong>. We present it here without proof and referthe reader to Chapter 2 of [33].91


Theorem 5.1.2 (Abel’s Theorem). Let D be a degree 0 divisor <strong>on</strong> S. Then φ(D) =0 mod Λ if and <strong>on</strong>ly if D is a principal divisor.Further, we have the following theorem [26, p. 235], telling us that we in facthave an isomorphism.Theorem 5.1.3 (Jacobi Inversi<strong>on</strong>). The mapφ : Pic 0 (S) → J(S)is surjective.5.2 Computati<strong>on</strong> of periodsWe want to compute numerically the periods of the Riemann surface of a genus 2<strong>hyperelliptic</strong> curve C(C) and we also want to compute the value φ(P ) for a given pointP ∈ C(C) and a choice of a base point P 0∈ C(Q), where φ : C(C) → J(C(C))is defined as in the previous secti<strong>on</strong>, and J(C(C)) is the analytic Jacobian variety ofC(C).We first need to choose a homology basis A i , B i as in the previous secti<strong>on</strong>.There is a traditi<strong>on</strong>al way to do this. We follow Mumford [34, §III.5] with some smallmodificati<strong>on</strong>s. The curveC : Y 2 = f(X),is a double cover of the projective line P 1 (C), via the meromorphic functi<strong>on</strong> X, whenc<strong>on</strong>sidered as a compact Riemann surface.Let a 1 , a 2 , a 3 , a 4 , a 5 , a 6 be the branch<str<strong>on</strong>g>points</str<strong>on</strong>g>.These are the roots of f(X), together with the point at infinity if f has degree5. A linear transformati<strong>on</strong> X ′ = 1/(X − a) and an associated transformati<strong>on</strong>of Y ′ = Y/(X + a) 3 takes a <strong>hyperelliptic</strong> curve C defined by a degree 5 polynomialto a <strong>hyperelliptic</strong> curve given by a degree 6 polynomial, for a suitable choice of a (itshould be different from the roots of f). So we can assume that the branch <str<strong>on</strong>g>points</str<strong>on</strong>g> areall in the complex plane C and the curve has two <str<strong>on</strong>g>points</str<strong>on</strong>g> at infinity. (Mumford takes92


<strong>curves</strong> with the point at infinity as a branch point. But the present form is best for ourpurposes.) Figure 5.2 gives an illustrati<strong>on</strong> of how the Riemann surface of C(C) lookslike. We choose disjoint segments <strong>on</strong> C joining a 1 and a 2 , a 3 and a 4 , a 5 and a 6 . NoteFigure 5.2: The Riemann surface of a <strong>hyperelliptic</strong> curve.that if we choose a point x ∈ (a 1 , a 2 ), and a square root for f(x), and then we gocounter-clockwise around a 1 , choosing c<strong>on</strong>tinuously a square root, when we return tox we have a different root to the <strong>on</strong>e we had chosen in the beginning. In other words,when we think of the Riemann surface of C(C) as a two-layered cover of P 1 (C), the liftof the path in P 1 (C) to the Riemann surface ‘interchanges’ layers. To get the topologicalpicture what we are doing is taking two copies of P 1 , we cut al<strong>on</strong>g the segments joiningthe a i s, and we glue the two layers al<strong>on</strong>g the corresp<strong>on</strong>ding segments as in the figure.We will need to choose representatives for a homology basis. We now takepaths <strong>on</strong> P 1 (C) \ {a 1 , . . . , a 6 } as in Figure 5.3. Since each path circles an even numberFigure 5.3: Paths below the cycles in the homology basis.of branch <str<strong>on</strong>g>points</str<strong>on</strong>g>, these paths can be lifted to the double cover C(C). We will choose<strong>on</strong>e lift for each path and that will be our choice of homology basis. We will denote by93


A 1 the lift of the path around a 1 , a 2 and by A 2 the the lift of the path around a 3 , a 4 . (Wetake care of choosing the lifts A 1 , A 2 <strong>on</strong> the same layer.) We will denote by B 1 andB 2 the lifts of the paths around a 2 , a 3 , a 4 , a 5 and a 4 , a 5 respectively. We also needto choose a basis for the space of holomorphic differentials <strong>on</strong> C(C). The following isPropositi<strong>on</strong> §III.5.2 in [34].Propositi<strong>on</strong> 5.2.1. The 2-dimensi<strong>on</strong>al vector space Γ(C(C), Ω 1 ) c<strong>on</strong>sists of the 1-formsω = P (X)dX , P a polynomial of degree < 2.YProof. Since Y 2 = f(X) we have 2Y dY = f ′ (X)dX. HenceP (X)dXY=2P (X)dYf ′ (X).On the affine piece of C(C), Y = 0 implies that f(X) = 0, and hence f ′ (X) ≠ 0as f has no double roots.This implies that the form ω has no poles <strong>on</strong> the affinepiece. Now, for the <str<strong>on</strong>g>points</str<strong>on</strong>g> at infinity we look at the affine piece with coordinates givenby X ′ = 1/(X + a), Y ′ = Y/(X + a) 3 , where a ∈ C is not <strong>on</strong>e of the branch <str<strong>on</strong>g>points</str<strong>on</strong>g>.We then havedY ′ dY=(X + a) 3 − 3 Y dX(X + a) 4( f ′ (X)=2(X + a) 3 − 3 Y 2 ) dX(X + a) 4 Y( f ′ )(X)(X + a) − 6f(X) dX=2(X + a) 4 Y ,and hencedXY = 2(X + a) 4f ′ (X)(X + a) − 6f(X) · dY ′ .Note that the denominator <strong>on</strong> the right hand side of the equati<strong>on</strong> is a degree 5 polynomial,so at the <str<strong>on</strong>g>points</str<strong>on</strong>g> at infinityis holomorphic as the degree of P is at most 1.2(X+a) 4f ′ (X)(X+a)−6f(X)has an order 1 zero. Then, the form ωWe choose the differentials {φ 1 , φ 2 } = {dX/Y, XdX/Y } as a basis for thespace Γ(C(C), Ω 1 ).94


We are now interested in the numerical computati<strong>on</strong> of the period lattice Λ ofC(C) relative to our choice of homology basis and the basis for the holomorphic forms.In the previous chapter we presented Bost and Mestre’s algorithm [6] to compute <str<strong>on</strong>g>integral</str<strong>on</strong>g>sof the form∫ baS(t) dt√|f(t)|to high precisi<strong>on</strong>, where S is a degree <strong>on</strong>e polynomial defined over the reals, f is adegree 6 m<strong>on</strong>ic polynomial defined over the reals with 6 real roots, and a and b aretwo c<strong>on</strong>secutive roots of f.We will first see how these <str<strong>on</strong>g>integral</str<strong>on</strong>g>s are related to theperiods of C. Let a 1 < a 2 < a 3 < a 4 < a 5 < a 6 be the roots of f in ascending order.Since f is m<strong>on</strong>ic, and all the roots are in R we have that f is n<strong>on</strong>-negative al<strong>on</strong>g thesegments (−∞, a 1 ], [a 2 , a 3 ], [a 4 , a 5 ] and [a 6 , ∞); and it is negative al<strong>on</strong>g the segmentsI 1 = (a 1 , a 2 ), I 2 = (a 3 , a 4 ), and I 3 = (a 5 , a 6 ). The intervals I i are covered by the loopsin C(C) c<strong>on</strong>sisting of the <str<strong>on</strong>g>points</str<strong>on</strong>g> (x, ±i √ −f(x)), with x ∈ I i . The loop covering I 1 ishomologous to A 1 , whereas the loop covering I 2 is homologous to A 2 . Similarly, thesegment [a 2 , a 3 ] is covered by a loop in C(C) homologous to B 1 − B 2 , and the interval[a 4 , a 5 ] is covered by a loop homologous to B 2 . See Figure 5.4. (cf. Figure 5.2 and5.3.) The period lattice Λ of C(C) is then generated by the vectors of <str<strong>on</strong>g>integral</str<strong>on</strong>g>sFigure 5.4: Cycles above [a i , a i+1 ] compared to the chosen homology basis.95


⎛⎜2 ∫ ⎞⎛a 3 √dta 2 f(t)ω 1 = ⎝2 ∫ ⎟⎜2 ∫ ⎞a 5 √dta 4 f(t)⎠ , ω 2 = ⎝a 3√t dta 22 ∫ ⎟⎠ ,a 5√t dtf(t) a 4 f(t)⎛⎜2i ∫ ⎞⎛a 2 √ dta 1 −f(t)ω 3 = ⎝2i ∫ ⎟⎜2i ∫ ⎞a 4 √ dta 3 −f(t)⎠ , ω 4 = ⎝a 2√t dta 12i ∫ ⎟⎠ .a 4√t dt−f(t) a 3 −f(t)We note that the first two vectors in our list have real coordinates, whereas the lasttwo vectors have purely imaginary coordinates. In particular the rank 2 lattice Λ ′ =Λ ∩ R 2 ⊂ R 2 is generated by ω 1 and ω 2 . Then, Bost and Mestre’s algorithm servesour purposes for the computati<strong>on</strong> of a set of generators for the period lattice, as the<str<strong>on</strong>g>integral</str<strong>on</strong>g>s computed by it are half-periods of C.We recall that Bost and Mestre’s algorithm <strong>on</strong>ly computes the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s∫S(t)dt√−f(x)I ifor the intervals I i where f is negative. The authors of the algorithm observe that somemodificati<strong>on</strong>s would allow <strong>on</strong>e to compute the <str<strong>on</strong>g>integral</str<strong>on</strong>g> al<strong>on</strong>g the intervals where f ispositive, and we have given full details and proofs of the modificati<strong>on</strong>s in Chapter 4.We will also need to numerically compute the value(∫ P ∫ P)φ(P ) = φ 1 , φ 2 ,P 0 P 0for a fixed base point P 0 and a point P ∈ C(R).Definiti<strong>on</strong>. Let D be a fundamental domain of the period lattice of C. For every degree0 divisor D the <strong>hyperelliptic</strong> logarithm of D is the <strong>on</strong>ly point z ∈ D such that φ(D) =z mod Λ. If P 0 is a base point in C, the <strong>hyperelliptic</strong> logarithm of P is the <strong>hyperelliptic</strong>logarithm of P − P 0 .Note that these <strong>hyperelliptic</strong> logarithms are not the same as those logarithmsin Chapter 3, Secti<strong>on</strong>s 3.5 and 3.6. There we mapped the group of S-units into thereals or a p-adic field.Since the group of S-units cannot be explicitly computed inall cases we need, the logarithms there cannot be computed explicitly either and we96


c<strong>on</strong>formed ourselves with estimates given by Matveev, Győry and Yu for them. In thepresent chapter, we are c<strong>on</strong>cerned with the group J(Q). We will map its generators toC 2 modulo the period lattice. In this case, we can explicitly compute the period latticeand the values of the logarithms of the generators of J(Q) to high precisi<strong>on</strong> with thealgorithms given in Chapter 5 as we will see below.Assume for a moment that P 0 = (a, 0) where a is <strong>on</strong>e of the roots of f. If P 0 isnot of that form, we choose <strong>on</strong>e root a of f and define P 1 = (a, 0) and we note that(∫ P ∫ P) (∫ P0∫ P0)φ(P ) = φ 1 , φ 2 − φ 1 , φ 2 .P 1 P 1 P 1 P 1Let (x, y) be the coordinates of P . We recall that the vector(∫ Pφ 1 ,∫ P)φ 2P 0 P 0is well defined independently of the choice of a path c<strong>on</strong>necting P 0 to P up to an elementof Λ. We can assume for simplicity that y > 0, as the divisor (x, y)+(x, −y)−2P 0is linearly equivalent to 0, and then φ(ı(P )) = −φ(P ), where ı denotes the <strong>hyperelliptic</strong>involuti<strong>on</strong> (x, y) ↦→ (x, −y). If x ≥ a and y > 0 we will choose as a path the following:for t ∈ [a, x] let γ t = (t, √ f(t)), where if f(t) ≥ 0 we take the usual positive squareroot of f(t), and if f(t) < 0 we choose i √ −f(t) as the square root of f(t). We choosea similar path from P 0 to P when x < a and y > 0. Note that if b is the nearest root off that is less or equal than x, then( ∫ b ∫ )dt bt dtφ(P ) = √ , √ +a f(t) a f(t)( ∫ xb∫ )dt xt dt√ , √ mod Λ. (5.2.1)f(t) b f(t)The first vector in the right hand side is a sum of half-periods computable by Bost andMestre’s algorithm. In particular,(∫ x2φ(P ) = 2 φ 1 ,b∫ xbφ 2)mod Λ.Thus we <strong>on</strong>ly need to be able to compute <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the form∫ xaS(t)dt√|f(t)|, (5.2.2)97


where a is a root of f, x ≥ a, and x smaller than the roots of f which are > a. Bost andMestre say that a c<strong>on</strong>venient modificati<strong>on</strong> of the algorithm given for the computati<strong>on</strong> ofthe half-periods allows <strong>on</strong>e to compute the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s∫ baS(t)dt√|f(t)|,for arbitrary real numbers a and b. We have d<strong>on</strong>e the required modificati<strong>on</strong>s to computethe <str<strong>on</strong>g>integral</str<strong>on</strong>g>s of the form (5.2.2) and the details are also given in Chapter 4.5.3 The linear form in <strong>hyperelliptic</strong> logarithmsStroeker and Tzanakis [47] describe a method for finding all the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> anelliptic curve by estimating a linear form in elliptic logarithms. They transformed theinformati<strong>on</strong> provided by the Mordell–Weil group of the elliptic curve into a linear formand they gave estimates for it. What they did in the elliptic case, we want to do in the<strong>hyperelliptic</strong> case. In this secti<strong>on</strong> we explain how we transform the informati<strong>on</strong> providedby the Mordell–Weil group J(Q) into a linear form in <strong>hyperelliptic</strong> logarithms and howwe can give estimates for it.We assume the existence of a rati<strong>on</strong>al point P 0 ∈ C(Q). As menti<strong>on</strong>ed in theIntroducti<strong>on</strong>, if we do not know a rati<strong>on</strong>al point <strong>on</strong> the curve, it is possible that there areno rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> at all, and that this can be proved using the techniques of Bruin andStoll [9, 10, 11].We will make use of the Abel–Jacobi mapj : C → J(Q), j(P ) = P − P 0 .Then, for any P ∈ C(Q) there exist rati<strong>on</strong>al integers m 1 , . . . , m r such thatj(P ) = ∑ m i D i + T, (5.3.1)where {D 1 , . . . , D r } is a set of generators of the free part of the Mordell–Weil groupJ(Q) and T is a torsi<strong>on</strong> element of the finite torsi<strong>on</strong> subgroup J(Q) tors .98


Let P be an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point in C(Q), and let M be the maximum of the m i fromEquati<strong>on</strong> (5.3.1). We want to find a small upper bound for M so that we can computelinear combinati<strong>on</strong>s of the generators of the Mordell–Weil group with small coefficientsand decide which of those come from <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curve. With the tools developedin Chapter 3 we can find an upper bound for M as we explain in what followsin this secti<strong>on</strong>, though in practice this bound will be very large. The next secti<strong>on</strong> willexplain how we can improve the bound.We also want to use the informati<strong>on</strong> provided by Equati<strong>on</strong> (5.3.1) numerically, ina similar way as it is d<strong>on</strong>e in the elliptic case in [47]. As explained in the last secti<strong>on</strong>, wecan compute the images of <str<strong>on</strong>g>points</str<strong>on</strong>g> in C(R) under the isomorphism φ : Pic 0 (C) → C 2 /Λwith the tools from the previous secti<strong>on</strong>, as l<strong>on</strong>g as we are given a model over the realsfor our <strong>hyperelliptic</strong> curve defined by a degree 6 polynomial with 6 real roots. This ispossible in the degree 5 case if the polynomial f defining C has real roots <strong>on</strong>ly, as alinear transformati<strong>on</strong> in X of the form 1/(X + a) and the associated transformati<strong>on</strong> inY will give a model of a curve defined by a degree 6 polynomial with real roots <strong>on</strong>lyas l<strong>on</strong>g as a is not <strong>on</strong>e of the roots of f. We will then assume that those c<strong>on</strong>diti<strong>on</strong>sare satisfied. We will transform the relati<strong>on</strong> in Equati<strong>on</strong> (5.3.1) into a linear form in<strong>hyperelliptic</strong> logarithms.The method for obtaining the linear forms and for bounding M depends <strong>on</strong>whether the degree of f is 5 or 6.5.3.1 The odd degree caseWhen the polynomial f has degree 5, then the point at infinity of C is defined over Q,so it will be our choice for P 0 .Let P be an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C. Using Theorem 3.7.1 we can find an upperbound B <strong>on</strong> the size of X(P ). We will transform that bound into a bound for M. Wefirst will transform the bound for the height of X(P ) into a bound for the height of j(P ).Recall that the height of j(P ) is the height of the corresp<strong>on</strong>ding point in the Kummer99


surface. In order to explicitly compute that height, we need to transform our curve into acurve defined by a degree 6 polynomial. We do it by means of the linear transformati<strong>on</strong>X ′ = 1/X and the associated transformati<strong>on</strong> of Y , Y ′ = Y/X 3 , if the point (0, 0) doesnot bel<strong>on</strong>g to C. Otherwise we need to choose X ′ = 1/(X + a), where a is not <strong>on</strong>e ofthe roots of f. Let f 0 , . . . , f 5 ∈ Z be the coefficients of the polynomial f defining C. Thenew curve is then given byY ′2 = f 5 X ′ + f 4 X ′ 2 + f3 X ′ 3 + f2 X ′ 4 + f1 X ′ 5 + f0 X ′ 6 .Then, the point P 0 corresp<strong>on</strong>ds to X ′ = 0, Y ′ = 0. Assume that X(P ) ≠ 0. Thenthe divisor j(P ) = P − ∞ = P + ∞ − 2∞ corresp<strong>on</strong>ds to P ′ + (0, 0) − ∞ + − ∞ − ,where P ′ = (X ′ (P ), Y ′ (P )). Then, j(P ) is the following point in the Kummer surface,according to the formulae given in Chapter 2:(1, X ′ (P ), 0, f 5 /X ′ (P )) = (1, 1/X(P ), 0, f 5 X(P )) = (X(P ), 1, 0, f 5 X(P ) 2 ).Then, if P is an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point with X(P ) ≠ 0, we haveh(j(P )) = log(|f 5 |X(P ) 2 ) = log|f 5 | + 2 log|X(P )| = log(|f 5 |) + 2 h(X(P )). (5.3.2)We will need the following lemma to bound the size of M in terms of B. The proof isidentical to the corresp<strong>on</strong>ding result in the elliptic case [47, Inequality 1].Lemma 5.3.1. Denote by H the height pairing matrix for the Mordell–Weil basis {D 1 , . . . , D r }(see Secti<strong>on</strong> 2.3 for its definiti<strong>on</strong>) and let λ 1 , . . . , λ r be its eigenvalues. Let µ 3 =min i {λ i }. Let P ∈ C(Q) be expressed as in (5.3.1). Thenĥ(j(P )) ≥ µ 3 max1≤i≤r m2 i , (5.3.3)Proof. We can write H = N t ΛN, where N is orthog<strong>on</strong>al and Λ is the diag<strong>on</strong>al matrixwith diag<strong>on</strong>al entries λ i . Write x = Nm. Thenĥ(j(P )) = m t Hm = x t Λx ≥ µ 3 ‖x‖ 2 = µ 3 ‖m‖ 2 ≥ µ 3 max1≤i≤r m2 i .100


We will now find an upper bound for M. We require a lower bound for the heightdifference as in (2.2.1).Lemma 5.3.2. Let B be an upper bound for the height of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C. LetP be an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C. Express j(P ) as in (5.3.1). Write M = max i m i . Then√M ≤ µ −13 (log|f 5 | + 2B − µ 1 ),where µ 1 is a lower bound for the height difference h(Q) − ĥ(Q).Proof. From Equati<strong>on</strong> (5.3.2) we see thath(j(P )) ≤ log|f 5 | + 2B.Now, using the lower bound for the height difference we haveĥ(j(P )) ≤ log|f 5 | + 2B − µ 1 .Finally, form the previous Lemma we infer thatwhich proves the Lemma.µ 3 M 2 ≤ log|f 5 | + 2B − µ 1 ,In order to reduce the bound for M to manageable proporti<strong>on</strong>s, we will turn thelinear combinati<strong>on</strong> (5.3.1) into a linear form in the <strong>hyperelliptic</strong> logarithms of the D i s,in a similar way as it is d<strong>on</strong>e in the elliptic case [47]. From now <strong>on</strong>, for a degree zerodivisor D we will write φ(D) for the <strong>hyperelliptic</strong> logarithm of D, that is, we choose a representativefor φ(D) ∈ C 2 /Λ in the fundamental parallelogram generated by ω 1 , ω 2 , ω 3and ω 4 , where these vectors are defined as in the previous secti<strong>on</strong>. We note that, sinceφ is an isomorphism, thenφ(nD) = nφ(D)(mod Λ).Now, nφ(D) is in the parallelogram generated by the vectors nω i and then there existintegers n i with |n i | ≤ |n| such thatφ(nD) = nφ(D) + n 1 ω 1 + n 2 ω 2 + n 3 ω 3 + n 4 ω 4 . (5.3.4)101


Similarly, if D 1 , . . . , D n are degree zero divisors, and m 1 , . . . m n are integers, then thepointn∑m i φ(D i )i=1is inside the parallelogram generated by the vectors (|m 1 | + · · · + |m n |)ω i or <strong>on</strong>e ofits translati<strong>on</strong>s which have the origin as <strong>on</strong>e of its vertices. Then there are integersn 1 , n 2 , n 3 , n 4 such that( ∑φiD i)= ∑ m i φ(D i ) + n 1 ω 1 + n 2 ω 2 + n 3 ω 3 + n 4 ω 4 , (5.3.5)with |n i | ≤ |m 1 | + · · · + |m n |.We recall that if Q = (x, y) is a real point <strong>on</strong> C, then( ∫ a ∫ )dt at dtφ(Q) = √ , √ + ω,x f(t) x f(t)where a is the smallest of the real roots of f that are ≥ x, or a = ∞ if x is greater orequal than all the roots of f, and ω is a sum of half periods of C, as we noted in page97. Then, if D = P 1 + P 2 − 2∞ and P 1 , P 2 are real <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C, we have that φ(2D) isin R 2 /Λ ′ , where Λ ′ = R 2 ∩ Λ. We also note that if P is an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point and X(P ) islarger than all the roots of f, then( ∫ ∞φ(P ) =X(P )∫ )dt ∞t dt√ , √f(t) X(P ) f(t)is also in R 2 /Λ ′ . Over R, the curve C c<strong>on</strong>sists of two compact comp<strong>on</strong>ents and a n<strong>on</strong>compact comp<strong>on</strong>ent, which includes the point (α 5 , 0), where α 5 is the largest of theroots of f. We can compute easily <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> bel<strong>on</strong>ging to the compact comp<strong>on</strong>entsof C(R) by a direct search. We will <strong>on</strong>ly c<strong>on</strong>sider then the problem of finding <str<strong>on</strong>g>integral</str<strong>on</strong>g><str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the infinite comp<strong>on</strong>ent.Example 5.3.3. This is a c<strong>on</strong>tinuati<strong>on</strong> of Example 4.3.1. Put f(X) = X 5 −5X 3 −X 2 +3X + 1. As noted in Example 4.3.1 f has real roots <strong>on</strong>ly. We computed in that examplethe <str<strong>on</strong>g>integral</str<strong>on</strong>g>s we need in this secti<strong>on</strong> defining the periods ω 1 , ω 2 and the values φ(D)102


for the divisors D 1 = (−1, 1) − ∞, D 2 = (0, 1) − ∞, and D 3 = (9/4, 59/32) − ∞. Wehave⎛⎞⎛⎞ω 1 = ⎝ 2.691224828589365 . . . ⎠ ω 2 = ⎝ 0.773976644907828 . . . ⎠−3.120649548992816 . . .3.624934315790554 . . .⎛⎞⎛⎞φ(2D 1 )= ⎝ 0.664758007760858 . . . ⎠ φ(2D 2)= ⎝ 0.901055347145023 . . . ⎠2 −0.537090883853333 . . . 2 0.463274675967858 . . .and⎛⎞φ(D 3 ) = ⎝ 0.301381966139497 . . . ⎠ .1.624203196148170 . . .Using MAGMA we see that the Mordell–Weil group J(Q) is free of rank 2 generated byD 1 and D 2 . The divisor D 3 equals 2D 1 − 2D 2 . According to what we have discussedin the previous page, there should exist integers n 1 , n 2 with |n i | ≤ 2 such that φ(D 3 ) =φ(2D 1 )−φ(2D 2 )+n 1 ω 1 +n 2 ω 2 . Note that we can check numerically the identity settingn 1 = 0 and n 2 = 1.Let t be the order of the torsi<strong>on</strong> subgroup J(Q) tors and denote by ˜t the leastcomm<strong>on</strong> multiple of t and 2. In view of Equati<strong>on</strong> (5.3.1), for an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point P ∈ C wehave that˜tj(P ) = ∑ m i˜t2 (2D i). (5.3.6)We now apply the homomorphism φ to this equati<strong>on</strong> and we obtain˜tφ(P ) ≡ φ(˜tj(P )) ≡ ∑ m i˜t2 φ(2D i) (mod Λ).If, as we have assumed, the divisors D i are supported by <str<strong>on</strong>g>points</str<strong>on</strong>g> with real coordinates,and X(P ) is larger than all the roots of f, then all the φ values <strong>on</strong> the previous equati<strong>on</strong>are in R 2 and the equivalence is up to an element in Λ ′ . Then there are integers n 1 , n 2such thatω 1φ(P ) = n 1˜t + n ω 22˜t + ∑ φ(2D i )m i ,2103


with |n i | ≤ ˜trM/2 + ˜t (recall (5.3.4) and (5.3.5)), where M = max i m i . Now put(L 1 (P ), L 2 (P )) = (L 1 (n 1 , n 2 , m 1 , . . . , m r ), L 2 (n 1 , n 2 , m 1 , . . . , m r ))ω 1= n 1˜t + n ω 22˜t + ∑ φ(2D i )m i .2The L i s are the linear forms in <strong>hyperelliptic</strong> logarithms we will estimate in order toreduce our bound for M. Let f ∈ R[x] and define c 16 asWe will use the following Lemma.c 16 (f) = max{1, 2 max {|α|}}.α∈C,f(α)=0Lemma 5.3.4. Let α 1 , . . . , α 5 be the roots of f. For all x ≥ c 16{ ∫ ∞ ∫ }dt ∞t dtmax √ , √ ≤ 2 7/2 (f 5 x) −1/2 .x f(t) x f(t)Proof. Note that 0 < f(t) = f 5∏ |t − αi | for every t ≥ x. Because of our assumpti<strong>on</strong>for x, we see that |t − α i | ≥ t − |α i | ≥ t/2. Then√ ( )f5 t−5/2√ ≤andf(t) 2t √ ( )f√ 5 t −3/2≤ .f(t) 2We can see then that for large N√∫ N ∫dt N( t −5/2f5 √ ≤dt =x f(t) x 2) 27/23 (x−3/2 − N −3/2 ),and√f5∫ Nx∫tdt N( ) t −3/2√ ≤dt = 2 7/2 (x −1/2 − N −1/2 ).f(t) x 2Letting N tend to infinity completes the proof.We can easily find all the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C with X(P ) < c 16 by a directsearch, as l<strong>on</strong>g as c 16 is not too large (≤ exp(15)). For the remaining <str<strong>on</strong>g>points</str<strong>on</strong>g> we canfind an upper bound for the linear form in <strong>hyperelliptic</strong> logarithms.Lemma 5.3.5. If P is an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C and X(P ) ≥ c 16 , thenmax{|L 1 (P )|, |L 2 (P )|} ≤ 2 7/2 f −1/45 e −µ 1/4 e −(µ 3/4)M 2 .104


Proof. Since c 16 > 0, then X(P ) is positive. Then either P or ı(P ) has positive Y -coordinate, where ı denotes the <strong>hyperelliptic</strong> involuti<strong>on</strong>.In any case, we recall thatP + ı(P ) is linearly equivalent to 2∞, and then φ(P ) = −φ(ı(P )). Assume then thatP has positive Y -coordinate. Then the <str<strong>on</strong>g>integral</str<strong>on</strong>g>s defining φ(P ) = (L 1 (P ), L 2 (P )) areboth positive. The inequality from Lemma 5.3.4 impliesmax{|L 1 (P )|, |L 2 (P )|} ≤ 2 7/2 f −1/25 X(P ) −1/2 .Now, X(P ) −1/2 = e −(log X(P ))/2 , and since X(P ) is a positive integer we have h(X(P )) =log(X(P )). Now, from (5.3.2) and the bounds for the height difference (2.2.1)h(X(P )) = (h(j(P )) − log f 5 )/2 ≥ (µ 1 + ĥ(j(P )) − log f 5)/2,which impliesmax{|L 1 (P )|, |L 2 (P )|} ≤ 2 7/2 f −1/4 −µ 5 e1/4exp(−ĥ(j(P ))/4).The result now follows from Lemma 5.3.1.5.3.2 The even degree caseWhen the polynomial has degree 6 then the divisor ∞ − + ∞ + is defined over Q, butthe point ∞ + is a rati<strong>on</strong>al point if and <strong>on</strong>ly if the leading coefficient f 6 of f is a square.If this is the case we choose P 0 = ∞ + . If it is not, then we need to find a rati<strong>on</strong>al pointP 0 <strong>on</strong> the affine model of C. We note that if f 6 < 0, then the curve C(R) c<strong>on</strong>sists ofcompact closed <strong>curves</strong> in R 2 and then we can find all <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C by a directsearch, as l<strong>on</strong>g as the maximum of the absolute value of the roots of f is not very large(≤ exp(15)). We will assume then that f 6 > 0.If the <str<strong>on</strong>g>points</str<strong>on</strong>g> at infinity are not rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C and P 0 is a rati<strong>on</strong>al point <strong>on</strong>C, we will further assume that X(P 0 ) = 0. There is no loss of generality as we nowshow. Write P 0 = (m/n, y 0 ) with y 0 ∈ Q and m, n ∈ Z with n > 0 and (m, n) = 1.We introduce the change of variables X ′ = nX − m, Y ′ = n 3 Y . Note that X ′ , Y ′ are105


integers if X, Y ∈ Z. Then, the problem of finding the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C : Y 2 = f(X)is solved if we can find all the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> the curveC ′ : Y ′2 = ˜f(X ′ ),where ˜f(X ′ ) = n 6 f((X ′ + m)/n). The point P 0 <strong>on</strong> C corresp<strong>on</strong>ds to the point P 0 ′ =(0, n 3 y 0 ).Let P be an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C. We can find an upper bound B for the sizeof X(P ) using the methods from Chapter 3. As in the odd degree case, we want totransform this bound into a bound for M = max i m i in (5.3.1). We need to relate firstthe height of X(P ) to the height of j(P ).Lemma 5.3.6. There is an effectively computable c<strong>on</strong>stant k 1 ∈ Z, with k 1 > 0 suchthat, for all <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> P in C we haveh(j(P )) ≤ log(k 1 X(P ) 3 ),whenever X(P ) ≠ 0.Proof. Assume first that P 0 = ∞ + , in particular the integer f 6 is a square. The divisorj(P ) = P − ∞ + is equal to P + ∞ − − (∞ + + ∞ − ). Then, according to the formulaefor the corresp<strong>on</strong>ding point <strong>on</strong> the Kummer surface given in page 10, the height of j(P )is{∣h(j(P )) = log max 1, |X(P )|, ∣f 5 X(P ) 2 + 2f 6 X(P ) 3 + 2y √ ∣}∣∣f 6 .Let c 17 = max i |f i |. Then, using the triangle inequality we have that y 2 = f(x) ≤7c 17 X(P ) 6 , if X(P ) ≠ 0, and then |y|≤ √ 7c 17 |X(P ) 3 |. The triangle inequality appliedto f 5 X(P ) 2 + 2f 6 X(P ) 3 + 2y √ f 6 implies thath(j(P )) ≤ log(9c 17 |X(P ) 3 |).Putting k 1 = 9c 17 completes the proof in this case. Now, in the case that P 0 is not <strong>on</strong>eof the <str<strong>on</strong>g>points</str<strong>on</strong>g> at infinity, P 0 = (0, y 0 ) with y 0 ∈ Z. Let P be an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C. We106


now want to estimate the height of the corresp<strong>on</strong>ding point <strong>on</strong> the Kummer surface toj(P ) = P −P 0 which is linearly equivalent to P +(0, −y 0 )−(∞ + +∞ − ). The formulaegiven in page 2.1 imply thatj(P ) = (1, X(P ), 0, (2f 0 + f 1 X(P ) + 2Y (P )y 0 )/X(P ) 2 ).For <str<strong>on</strong>g>integral</str<strong>on</strong>g> P , we can then find a c<strong>on</strong>stant k 1 in a similar way as we did before for thecase P 0 = ∞ + . This completes the proof of the Lemma.We now can describe explicitly an upper bound for M.Lemma 5.3.7. Let B be an upper bound for the height of the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C. LetP be an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C. Express j(P ) as in (5.3.1). Write M = max i m i . ThenM ≤√µ −13 (log k 1 + 3B − µ 1 ),where µ 1 is a lower bound for the height difference h(Q) − ĥ(Q) and k 1 is as inLemma 5.3.6.Proof. From Lemma 5.3.6 we haveh(j(P )) ≤ log k 1 + 3 log(|X(P )|).As X(P ) is an integer, log(|X(P )|) = h(X(P )). Now the result follows from the lowerbound for the height difference and Lemma 5.3.1, as in the proof of Lemma 5.3.2.Now, let D be a degree 0 divisor of the form P 1 + P 2 − ∞ + − ∞ − . We want tocompute numerically the <strong>hyperelliptic</strong> logarithm of D relative to the basis for the periodlattice ω 1 , ω 2 , ω 3 , ω 4 defined in Secti<strong>on</strong> 5.2. We can do so if P 1 , P 2 are real <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C.As in the degree 5 case, we can see that if P 1 , P 2 are real <str<strong>on</strong>g>points</str<strong>on</strong>g>, then the value φ(2D)is in R 2 /Λ ′ , where Λ ′ is the lattice generated by the real periods ω 1 and ω 2 . We want touse the linear combinati<strong>on</strong> given in (5.3.1) and the homomorphism φ to obtain a linearform in logarithms that we can bound.107


Let t be the order of the torsi<strong>on</strong> subgroup J(Q) tors and let ˜t be the least comm<strong>on</strong>multiple of 2 and t. As in the degree 5 case, we have that˜tj(P ) = ∑ m i˜t2 (2D i).We now work over the Jacobian of the curve defined over C. We add to both sides ofthe previous equati<strong>on</strong> the degree zero divisor ˜t(P 0 − ∞ + ) (note we are adding zero ifthe base point for the Abel–Jacobi map is ∞ + ). The equality becomes˜t(P − ∞ + ) = ˜t(P 0 − ∞ + ) + ∑ m i˜t2 (2D i).We now apply the isomorphism φ to the last equati<strong>on</strong> and we get˜tφ(P −∞ + ) ≡ φ(˜t(P −∞ + )) ≡ ˜tφ(P 0 −∞ + )+ ∑ m i˜t2 φ(2D i) (mod Λ). (5.3.7)Note that if P is an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C and |X(P )| is at least the maximum of theabsolute value of the roots of f, then φ(P ) is in R 2 /Λ ′ . The <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> with |X(P )|less than the maximum of the absolute value of the roots of f can be found by a directsearch. Because of our assumpti<strong>on</strong>s for D i , all the φ values in Equati<strong>on</strong> (5.3.7) haverepresentatives in R 2 and then the equivalence is up to an element in Λ ′ . Then thereare integers n 1 , n 2 such that˜tφ(P − ∞ + ) = ˜tφ(P 0 − ∞ + ) + n 1 ω 1 + n 2 ω 2 + ∑ m i˜t2 φ(2D i),with |n i | ≤ ˜trM/2 + 2˜t (recall (5.3.4) and (5.3.5)), where M = max i m i . Now put(L 1 (P ), L 2 (P )) = (L 1 (n 1 , n 2 , m 1 , . . . , m r ), L 2 (n 1 , n 2 , m 1 , . . . , m r ))= φ(2P 0 − 2∞ + )2ω 1+ n 1˜t + n ω 22˜t + ∑ φ(2D i )m i2The L i s are the linear forms in <strong>hyperelliptic</strong> logarithms we were after in this degree 6case. We will estimate the linear forms by means of the following Lemma..Lemma 5.3.8. Let α 1 , . . . , α 6 be the roots of f. For all x ≥ c 16{ ∫ ∞ ∫ }dt ∞t dtmax √ , √ ≤ 8f −1/26 x −1 ,f(t) x f(t)x108


and for all x ≤ −c 16max{ ∫ x−∞∫ }dt x|t|dt√ , √ ≤ 8f −1/26 |x| −1 .f(t) −∞ f(t)Proof. The proof is very similar to that of Lemma 5.3.4. We have that 0 < f(t) =∏f 6 |t − αi | for every t with |t| ≥ |x|. We also have |t − α i | ≥ |t| − |α i | ≥ |t|/2. Then,{}√ 1 |t|f6 max √ , √ ≤ 8f(t) f(t) t 2 .Then, for large N and x ≥ c 16 ,√f6∫ Nx∫dtN√ ≤ 8 t −2 dt = 8(x −1 − N −1 ).f(t) xSimilar relati<strong>on</strong>s hold for the other <str<strong>on</strong>g>integral</str<strong>on</strong>g>s. Letting N tend to infinity completes theproof.We can find all the <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C with |X(P )| < c 16 by a direct search.For the remaining <str<strong>on</strong>g>points</str<strong>on</strong>g> we can bound the linear form in <strong>hyperelliptic</strong> logarithms. Wewill limit ourselves to find <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> with Y (P )/X(P ) 3 > 0. This roughly meansthat they are closer to ∞ + than to ∞ − . The remaining <str<strong>on</strong>g>points</str<strong>on</strong>g> are found by changingthe sign of Y .Lemma 5.3.9. If P is an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C, with Y (P )/X(P ) 3 > 0 and |X(P )| ≥ c 16 ,thenmax{|L 1 (P )|, |L 2 (P )|} ≤ 8f −1/26√3 k1 e −µ 1/3 e −(µ 3/3)M 2 ,where k 1 is the c<strong>on</strong>stant from Lemma 5.3.6 and µ 1 is a lower bound for the heightdifference.Proof. Since |X(P )| ≥ c 16 and the sign of Y (P ) is the same as the sign of X(P ), then⎧( ∫ ∞ ⎪⎨X(P )φ(P ) = ( ∫⎪⎩ X(P )−∞√dt, ∫ ∞f(t) X(P )√dt, ∫ X(P )f(t) −∞)√t dt, X(P ) > 0,f(t))√t dt, X(P ) < 0.f(t)109


The inequality from Lemma 5.3.8 implies thatmax{|L 1 (P )|, |L 2 (P )|} ≤ 8f −1/26 |X(P )| −1 .Since X(P ) is a n<strong>on</strong>zero integer, h(X(P )) = log(|X(P )|). Then |X(P )| −1 = exp(− h(X(P ))).From Lemma 5.3.6 and the bound for the height difference we see thath(X(P )) ≥ (h(j(P )) − log k 1 )/3 ≥ (µ 1 + ĥ(j(P )) − log k 1)/3,which impliesmax{|L 1 (P )|, |L 2 (P )|} ≤ 8f −1/26The result now follows from Lemma 5.3.1.√3 k1 e−µ 1/3exp(−ĥ(j(P ))/3).5.4 Reducti<strong>on</strong> of the upper bound, the LLL-algorithmAs noted in the previous secti<strong>on</strong>, the upper bounds we have so far for the size of thecoefficients m i in the equati<strong>on</strong>j(P ) =r∑m i D i + Ti=1are huge.In this secti<strong>on</strong> we explain how to reduce the bound to manageable proporti<strong>on</strong>s.The bounds given by Lemmas 5.3.2 and 5.3.5 in the degree 5 case, andLemmas 5.3.7 and 5.3.9 in the degree 6 case, can be rewritten as|L 1 (P )|, |L 2 (P )| ≤ K 1 e −K 2M 2 , M ≤ K 3 , (5.4.1)where M = max i=1,...,r m i . Let ω 1 , ω 2 be the real periods of C generating Λ ′ . Writeω i˜t = (ω i,1, ω i,2 ) ∈ R 2 , i = 1, 2,andφ(2P 0 − 2∞ + )2= (α 1 , α 2 ) ∈ R 2 ,110


andφ(2D i )2= (d i,1 , d i,2 ) ∈ R 2 , quadi = 1, . . . r.For real r we denote by [r] the nearest integer value to r, with any fixed c<strong>on</strong>venti<strong>on</strong> forreals of the form (2n + 1)/2, n ∈ Z. Let C be a ‘large’ positive integer and c<strong>on</strong>sider thematrix⎛⎞1 0 · · · 0 0 00 1 · · · 0 0 0. . . .. .A =.0 0 · · · 1 0 0⎜⎝[Cd 1,1 ] [Cd 2,1 ] · · · [Cd r,1 ] [Cω 1,1 ] [Cω 2,1 ] ⎟⎠[Cd 1,2 ] [Cd 2,2 ] · · · [Cd r,2 ] [Cω 1,2 ] [Cω 2,2 ]The entries of the matrix A can be computed with the algorithms given in Chapter 4, asexplained in Secti<strong>on</strong> 5.2. Since the periods ω 1 and ω 2 are linearly independent over R,the matrix A is n<strong>on</strong>-singular. We will explain later what large C means. The columns ofthe matrix A define then a full rank lattice in R r+2 .Let y be the vector⎛ ⎞0.y =0.⎜⎝−[Cα 1 ] ⎟⎠−[Cα 2 ]Let L be the lattice in R r+2 generated by the columns of A. We define the quantityl(L, y) as follows:⎧⎪⎨ min x∈L ‖x − y‖, y /∈ L,l(L, y) =⎪⎩ min x∈L\0 ‖x‖, y ∈ L.Remark. The vector y is n<strong>on</strong>zero <strong>on</strong>ly in the case when the polynomial f defining Chas degree 6 and the point ∞ + is not a rati<strong>on</strong>al point <strong>on</strong> C.111


Let m 1 , . . . , m r , n 1 , n 2 ∈ Z. Put x = Az, where z = (m 1 , . . . , m r , n 1 , n 2 ). Thelast two entries of the vector x−y are an approximati<strong>on</strong> of the linear forms in logarithmsgiven above multiplied by the c<strong>on</strong>stant C. The length of x−y is then bounded by aboveby a c<strong>on</strong>stant depending <strong>on</strong> C, K 1 , K 2 and M. We can combine this informati<strong>on</strong> withthe quantity l(L, y). This will result <strong>on</strong> an improvement <strong>on</strong> the bound for M. Unlesswe are very unlucky, see below, the following lemma will give an improvement <strong>on</strong> thebound for M (cf. [42, Lemma VI.1]).Lemma 5.4.1. Set T to be the c<strong>on</strong>stant T = (rK 3 (˜t +1)+3˜t +1)/2. Let c 18 be a lowerbound for l(L, y). If c 2 18 > 2T 2 + rK3 2 then,√ ())1M ≤ log(CK 1 ) − log(√(c 2 18K − rK2 3 )/2 − T .2Proof. We follow the proof <strong>on</strong> [42]. PutNotice thatΦ i := [Cα i ] + n 1 [Cω 1,i ] + n 2 [Cω 2,i ] +|Φ i − C(α i + n 1 ω 1,i + n 2 ω 2,i +r∑m j [Cd j,i ], i = 1, 2.j=1r∑m j d j,i )| ≤ (rK 3 + (rK 3 + 3)˜t + 1)/2 = T,j=1(recall n 1 , n 2 ≤ (rK 3 + 3)˜t/2) which implies|Φ i | ≤ T + CK 1 e −K 2M 2 .Now c<strong>on</strong>sider the lattice point x = Az, where z = (m 1 , . . . , m r , n 1 , n 2 ), soThen either x = y orx − y = (m 1 , . . . , m r , Φ 1 , Φ 2 ).c 2 18 ≤ l(L, y) ≤ rK 2 3 + Φ 2 1 + Φ 2 2 ≤ rK 2 3 + 2(T + CK 1 e −K 2M 2 ) 2 .By assumpti<strong>on</strong>, c 2 18 − rK2 3 ≥ 0, soe −K 2M 2 ≥ 1CK 1(√(c 2 18 − rK2 3 )/2 − T ).112


Again, by our assumpti<strong>on</strong>, the right hand side is positive, and then we can take logarithmsof both sides. The result follows.A lower bound for l(L, y) can be computed from an LLL-reduced basis for thelattice generated by the column vectors of the matrix A. The following Lemmas ([42,Theorems V.9 and V.10]) give those bounds explicitly.Lemma 5.4.2. Let {b 1 , . . . , b r+2 } be an LLL-reduced basis for the lattice L.Let{b 1 ∗ , . . . b r+2 ∗ } be the Gram–Schmidt basis associated to the b i s. A lower boundfor the minimum of L is given byc = min{‖b i ∗ ‖ : i = 1, . . . , r + 2}.Lemma 5.4.3. Let B be the basis matrix of an LLL-reduced basis for the lattice L. Lety ′ = B −1 y and denote by i 0 the largest index such that y ′ ≠ 0. A lower bound forl(L, y) is given byc = {y ′ i 0} −1/2 min{‖b i ∗ ‖ : i = 1, . . . , r + 2},where {r} denotes the distance from r ∈ R to the nearest integer.In practice, the c<strong>on</strong>stant min{‖b i ∗ ‖ : i = 1, . . . , r + 2} has norm close to thenorm of the first vector of an LLL-reduced basis. It can be argued that the norm ofsuch vector is about of the order of C 2/(r+2) , since A has discriminant of the order of(C 2 . Then, if we choose C to be larger than K √ r+23˜t r 2 + r)we should expect thatthe lower bound for l(L, y) satisfies the required inequality in the statements of theprevious two lemmas. If it does not, then we choose a larger C, so that we can applythe corresp<strong>on</strong>ding Lemma.The ideas involved in the strategy to reduce the bound M are not new. But theyhad not been implemented in the past because there was not a published algorithmto compute the <strong>hyperelliptic</strong> logarithms to high precisi<strong>on</strong>. There lies the importance ofChapter 4.113


In the example we give at the end of the secti<strong>on</strong>, the upper bound for M is about10 239 , and r = 2. We choose C to be 10 1000 , so we need to compute the periods andthe values φ(2D i ) to more than 1000 digits of precisi<strong>on</strong>. With the algorithms given inChapter 4 we can make the computati<strong>on</strong> to high precisi<strong>on</strong> in a short time.Example 5.4.4. Let C be the curve defined by Y 2 = f(X) = X 5 − 5X 3 − X 2 + 3X + 1.Note that f(X) is irreducible over Q and then an upper bound for the size of the <str<strong>on</strong>g>integral</str<strong>on</strong>g><str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C can be computed using the techniques from Chapter 3. We obtain that if Pis an <str<strong>on</strong>g>integral</str<strong>on</strong>g> point <strong>on</strong> C, thenh(X(P )) ≤ 7.02 × 10 477 .An upper bound for M is then given by 1.2 × 10 239 from Lemma 5.3.2. We search forsome <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C and we find(X, Y ) = (−1, −1), (−1, 1), (0, −1), (0, 1). (5.4.2)We proceed then to the reducti<strong>on</strong> process. Using MAGMA [5] we see that J(Q) is free ofrank 2 generated byD 1 = (−1, 1) − ∞, and D 2 = (0, 1) − ∞.We choose our large c<strong>on</strong>stant C to be 10 1000 , which is larger than (2M + 1) 2 . Wecompute the <strong>hyperelliptic</strong> logarithms of 2D 1 and 2D 2 , and the real periods of C to morethan 1000 digits of precisi<strong>on</strong> with the algorithms in Chapter 4 (this was d<strong>on</strong>e in Example4.3.1). We then apply MAGMA’s implementati<strong>on</strong> of the LLL-algorithm with the matrixA given in Lemma 5.4.1 and we get the desired inequality for c 18 . The new bound forM is now 63. We repeat the process with this new bound and we now get that an upperbound for M is 6. Searching for <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> using that bound is not difficult and wedo not find any more <str<strong>on</strong>g>points</str<strong>on</strong>g>. We <strong>on</strong>ly need to look for <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> with X(P ) ≤ 5,but that regi<strong>on</strong> had already been covered by our previous search of <str<strong>on</strong>g>points</str<strong>on</strong>g>. Therefore,the <strong>on</strong>ly <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> C are those given in (5.4.2).114


The reader can find the MAGMA programs for verifying the above computati<strong>on</strong>sat:http://www.warwick.ac.uk/staff/H.R.<strong>Gallegos</strong>-Ruiz/programs/hyperlogs/115


Bibliography[1] A. Baker, Bounds for the soluti<strong>on</strong>s of the <strong>hyperelliptic</strong> equati<strong>on</strong>, Proc. CambridgePhilos. Soc. 65 (1969), 439–444.[2] Yuri Bilu, Effective analysis of <str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> algebraic <strong>curves</strong>, Israel J. Math.90 (1995), no. 1-3, 235–252.[3] Yuri F. Bilu, Quantitative Siegel’s theorem for Galois coverings, Compositio Math.106 (1997), no. 2, 125–158.[4] Yuri F. Bilu and Guillaume Hanrot, Solving superelliptic Diophantine equati<strong>on</strong>s byBaker’s method, Compositio Math. 112 (1998), no. 3, 273–312.[5] Wieb Bosma, John Cann<strong>on</strong>, and Catherine Playoust, The Magma algebra system.I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computati<strong>on</strong>alalgebra and number theory (L<strong>on</strong>d<strong>on</strong>, 1993).[6] Jean-Benoît Bost and Jean-François Mestre, Moyenne arithmético-géométrique etpériodes des courbes de genre 1 et 2, Gaz. Math. (1988), no. 38, 36–64.[7] N. R. Bruin, Chabauty methods and covering techniques applied to generalizedFermat equati<strong>on</strong>s, CWI Tract, vol. 133, Stichting Mathematisch Centrum Centrumvoor Wiskunde en Informatica, Amsterdam, 2002, Dissertati<strong>on</strong>, University of Leiden,Leiden, 1999.116


[8] Nils Bruin, Chabauty methods using elliptic <strong>curves</strong>, J. Reine Angew. Math. 562(2003), 27–49.[9] Nils Bruin and Michael Stoll, Deciding existence of rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>curves</strong>: anexperiment, Experiment. Math. 17 (2008), no. 2, 181–189.[10] , Two-cover descent <strong>on</strong> <strong>hyperelliptic</strong> <strong>curves</strong>, Math. Comp. 78 (2009),no. 268, 2347–2370.[11] Nils Bruin and Michael Stoll, The Mordel–Weil sieve: proving n<strong>on</strong>-existence of rati<strong>on</strong>al<str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>curves</strong>, LMS Journal of Computati<strong>on</strong> and Mathematics 13 (2010),no. -1, 272–306.[12] Yann Bugeaud, Bounds for the soluti<strong>on</strong>s of superelliptic equati<strong>on</strong>s, CompositioMathematica 107 (1997), 187–219.[13] Yann Bugeaud and Kálmán Győry, Bounds for the soluti<strong>on</strong>s of unit equati<strong>on</strong>s, ActaArithmetica LXXIV (1996), no. 1, 67–80.[14] Yann Bugeaud and Kálmán Győry, Bounds for the soluti<strong>on</strong>s of Thue-Mahler equati<strong>on</strong>sand norm form equati<strong>on</strong>s, Acta Arith. 74 (1996), no. 3, 273–292.[15] Yann Bugeaud, Maurice Mignotte, Samir Siksek, Michael Stoll, and SzabolcsTengely, Integral <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>hyperelliptic</strong> <strong>curves</strong>, Algebra & Number Theory 2(2008), no. 8, 859–885.[16] J. W. S. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of<strong>curves</strong> of genus 2, L<strong>on</strong>d<strong>on</strong> Mathematical Society Lecture Note Series, vol. 230,Cambridge University Press, Cambridge, 1996.[17] Claude Chabauty, Sur les <str<strong>on</strong>g>points</str<strong>on</strong>g> rati<strong>on</strong>nels des courbes algébriques de genresupérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885.[18] David A. Cox, Gauss and the arithmetic-geometric mean, Notices Amer. Math.Soc. 32 (1985), no. 2, 147–151.117


[19] Régis Dup<strong>on</strong>t, Moyenne arithḿetico-géométrique, suites de Borchardt et applicati<strong>on</strong>s,Ph.D. thesis, École Polytechnique, 1997.[20] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent.Math. 73 (1983), no. 3, 349–366.[21] E. V. Flynn, The group law <strong>on</strong> the Jacobian of a curve of genus 2, J. Reine Angew.Math. 439 (1993), 45–69.[22] E. V. Flynn and N. P. Smart, Can<strong>on</strong>ical heights <strong>on</strong> the Jacobians of <strong>curves</strong> of genus2 and the infinite descent, Acta Arith. 79 (1997), no. 4, 333–352.[23] E. Victor Flynn and Joseph L. Wetherell, Finding rati<strong>on</strong>al <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> bielliptic genus2 <strong>curves</strong>, Manuscripta Math. 100 (1999), no. 4, 519–533.[24] , Covering collecti<strong>on</strong>s and a challenge problem of Serre, Acta Arith. 98(2001), no. 2, 197–205.[25] <strong>Homero</strong> R. <strong>Gallegos</strong>-Ruiz, s-<str<strong>on</strong>g>integral</str<strong>on</strong>g> <str<strong>on</strong>g>points</str<strong>on</strong>g> <strong>on</strong> <strong>hyperelliptic</strong> <strong>curves</strong>, To appear inThe Internati<strong>on</strong>al Journal of Number Theory, ≥ 2010.[26] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley ClassicsLibrary, John Wiley & S<strong>on</strong>s Inc., New York, 1994, Reprint of the 1978 original.[27] Kálmán Győry and Kunrui Yu, Bounds for the soluti<strong>on</strong>s of S-unit equati<strong>on</strong>s anddecomposable form equati<strong>on</strong>s, Acta Arith. 123 (2006), no. 1, 9–41.[28] H.W. Lenstra Jr., Algorithms in algebraic number theory, Bulletin of the AmericanMathematical Society 26 (1992), no. 2, 211–244.[29] Edmund Landau, Verallgemeinerung eines polyaschen satzes auf algebraischezahlkörper, Nachrichten v<strong>on</strong> der Gesellschaft der Wissenschaften zu Göttingen,Mathematisch–Physikalische Klasse (1918), 478–488.118


[30] Serge Lang, Algebraic number theory, sec<strong>on</strong>d ed., Graduate Texts in Mathematics,vol. 110, Springer-Verlag, New York, 1994.[31] E. M. Matveev, An explicit lower bound for a homogeneous rati<strong>on</strong>al form in logarithmsof algebraic numbers. II, Izv. Ross. Acad. Nauk Ser. Mat. 64 (2000), no. 6,125–180, English translati<strong>on</strong> in Izv. Math. 64 (2000), no. 6, 1217–1269.[32] William McCallum and Bjorn Po<strong>on</strong>en, The method of Chabauty and Coleman,http://www-math.mit.edu/˜po<strong>on</strong>en/papers/chabauty.pdf, June 2010.[33] David Mumford, Tata lectures <strong>on</strong> theta. I, Modern Birkhäuser Classics, BirkhäuserBost<strong>on</strong> Inc., Bost<strong>on</strong>, MA, 2007, With the collaborati<strong>on</strong> of C. Musili, M. Nori, E.Previato and M. Stillman, Reprint of the 1983 editi<strong>on</strong>.[34] , Tata lectures <strong>on</strong> theta. II, Modern Birkhäuser Classics, Birkhäuser Bost<strong>on</strong>Inc., Bost<strong>on</strong>, MA, 2007, Jacobian theta functi<strong>on</strong>s and differential equati<strong>on</strong>s, Withthe collaborati<strong>on</strong> of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura,Reprint of the 1984 original.[35] Bjorn Po<strong>on</strong>en and Edward F. Schaefer, Explicit descent for Jacobians of cycliccovers of the projective line, J. Reine Angew. Math. 488 (1997), 141–188.[36] Dimitrios Poulakis, Soluti<strong>on</strong>s entières de l’équati<strong>on</strong> Y m = f(X), Sém. Théor.Nombres Bordeaux (2) 3 (1991), no. 1, 187–199.[37] Edward F. Schaefer, 2-descent <strong>on</strong> the Jacobians of <strong>hyperelliptic</strong> <strong>curves</strong>, J. NumberTheory 51 (1995), no. 2, 219–232.[38] , Computing a Selmer group of a Jacobian using functi<strong>on</strong>s <strong>on</strong> the curve,Math. Ann. 310 (1998), no. 3, 447–471.[39] Jean-Pierre Serre, Lectures <strong>on</strong> the Mordell-Weil theorem, Aspects of Mathematics,E15, Friedr. Vieweg & Sohn, Braunschweig, 1989, Translated from the French andedited by Martin Brown from notes by Michel Waldschmidt.119


[40] Carl L. Siegel, Über einige Anwendungen diophantischer Approximati<strong>on</strong>en, Abh.Pr. Akad. Wiss. (1929), no. 1.[41] Joseph H. Silverman, The difference between the Weil height and the can<strong>on</strong>icalheight <strong>on</strong> elliptic <strong>curves</strong>, Math. Comp. 55 (1990), no. 192, 723–743.[42] Nigel P. Smart, The algorithmic resoluti<strong>on</strong> of Diophantine equati<strong>on</strong>s, L<strong>on</strong>d<strong>on</strong> MathematicalSociety Student Texts, vol. 41, Cambridge University Press, Cambridge,1998.[43] V. G. Sprindžuk, The arithmetic structure of integer polynomials and class numbers,Trudy Mat. Inst. Steklov. 143 (1977), 152–174, 210, Analytic number theory,mathematical analysis and their applicati<strong>on</strong>s (dedicated to I. M. Vinogradov <strong>on</strong> his85th birthday).[44] Michael Stoll, On the height c<strong>on</strong>stant for <strong>curves</strong> of genus two, Acta Arith. 90 (1999),no. 2, 183–201.[45] , Implementing 2-descent for Jacobians of <strong>hyperelliptic</strong> <strong>curves</strong>, Acta Arith.98 (2001), no. 3, 245–277.[46] , On the height c<strong>on</strong>stant for <strong>curves</strong> of genus two. II, Acta Arith. 104 (2002),no. 2, 165–182.[47] R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equati<strong>on</strong>s by estimatinglinear forms in elliptic logarithms, Acta Arith. 67 (1994), no. 2, 177–196.[48] L. A. Trelina, S-<str<strong>on</strong>g>integral</str<strong>on</strong>g> soluti<strong>on</strong>s of Diophantine equati<strong>on</strong>s of hyperbolic type, Dokl.Akad. Nauk BSSR 22 (1978), no. 10, 881–884, 955.[49] P. M. Voutier, An upper bound for the size of <str<strong>on</strong>g>integral</str<strong>on</strong>g> soluti<strong>on</strong>s to y m = f(x), J.Number Theory 53 (1995), no. 2, 247–271.[50] , An effective lower bound for the height of algebraic numbers, Acta ArithmeticaLXXIV (1996), no. 1, 81–95.120


[51] Michel Waldschmidt, Diophantine approximati<strong>on</strong> <strong>on</strong> linear algebraic groups,Grundlehren der Mathematischen Wissenschaften [Fundamental Principles ofMathematical Sciences], vol. 326, Springer-Verlag, Berlin, 2000, Transcendenceproperties of the exp<strong>on</strong>ential functi<strong>on</strong> in several variables.[52] Wolfram Research, Inc., Mathematica Editi<strong>on</strong>: Versi<strong>on</strong> 7.0, 2008.[53] Kunrui Yu, p-adic logarithmic forms and group varieties. III, Forum Math. 19 (2007),no. 2, 187–280.121

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!