12.07.2015 Views

cmut fabrication based on a thick buried oxide layer - Khuri-Yakub ...

cmut fabrication based on a thick buried oxide layer - Khuri-Yakub ...

cmut fabrication based on a thick buried oxide layer - Khuri-Yakub ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

acoustic resp<strong>on</strong>se in the electrical impedance [Fig. 4(a)] anddisplacement at the center of a plate of a single cell [Fig. 4(b)].At a dc bias voltage of 115 V (70% of pull-in voltage)and an ac excitati<strong>on</strong> signal of 1 V pp , the maximum centerdisplacement of the plate is 550 nm peak-to-peak [Fig. 4(b)].At this operati<strong>on</strong> point electrical n<strong>on</strong>linearities start to becomevisible [14].The typical total capacitances (measured and calculated) forthese devices are 400 pF and 280 pF for devices with 5 µmand 10 µm <strong>thick</strong> BOX <strong>layer</strong>, respectively. These numberscorresp<strong>on</strong>d to 48% and and 63% reducti<strong>on</strong> in total capacitancedue to a lower parasitic capacitance. The assumpti<strong>on</strong> forthis calculati<strong>on</strong> are devices of equal cell geometry <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong>the c<strong>on</strong>venti<strong>on</strong>al <str<strong>on</strong>g>fabricati<strong>on</strong></str<strong>on</strong>g> process [2], i.e. using the cellstructure as shown in Fig. 1(b). Several of these deviceswere tested up to 1000 V dc bias voltage, repeatedly overa time period of six m<strong>on</strong>ths, without a single occurrence ofan electrical breakdown.V. CONCLUSIONA versatile <str<strong>on</strong>g>fabricati<strong>on</strong></str<strong>on</strong>g> process for wafer-b<strong>on</strong>ded CMUTs ispresented. The process is simple and improves the reliability ofwafer-b<strong>on</strong>ded CMUTs in terms of electrical breakdown. Theproof-of-c<strong>on</strong>cept of the main idea was dem<strong>on</strong>strated in thiswork by fabricating highly reliable single-element transducers,intended for airborne applicati<strong>on</strong>s, such as ultras<strong>on</strong>ic gas flowmetering at elevated temperatures. Furthermore, we expect thisprocess to be ideal for fabricating large and reliable 1D and2D arrays. Thus, at the moment we are fabricating large 2Darrays for medical applicati<strong>on</strong>s, <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> this <strong>thick</strong> BOX <strong>layer</strong>process.ACKNOWLEDGMENTThis work was supported by AVL List GmbH, Graz Austria,Corporate R&D Headquarter, Can<strong>on</strong> Inc., Tokyo, Japan, andNIH grant 5R01CA134720. The authors thank Dr. MichaelCernusca, Dr. Michael Wiesinger, and Dr. Katarzyna Kudlaty,AVL List GmbH, Graz, Austria, for many fruitful discussi<strong>on</strong>s.We also thank Dr. Steve Vargo, ST Systems USA Inc., foradvice <strong>on</strong> all DRIE steps required for this work and we thankKim Vu, GE Sensing, Frem<strong>on</strong>t, CA, USA, for performing theDRIE steps.REFERENCES[1] A. S. Ergun, Y. Huang, X. Zhuang, Ö. Oralkan, G. G. Yaralioglu, andB. T. <strong>Khuri</strong>-<strong>Yakub</strong>, “Capacitive micromachined ultras<strong>on</strong>ic transducer <str<strong>on</strong>g>fabricati<strong>on</strong></str<strong>on</strong>g>technology,” Ultras<strong>on</strong>ics, Ferroelectrics and Frequency C<strong>on</strong>trol,IEEE Transacti<strong>on</strong>s <strong>on</strong>, vol. 52, no. 12, pp. 2242–2258, 2005.[2] Y. Huang, A. S. Ergun, E. Haeggstrom, M. H. Badi, and B. T. <strong>Khuri</strong>-<strong>Yakub</strong>, “Fabricating capacitive micromachined ultras<strong>on</strong>ic transducers withwafer-b<strong>on</strong>ding technology,” Journal of microelectromechanical Systems,vol. 12, no. 2, pp. 128-137, 2003.[3] X. Zhuang, I. O. Wygant, D. Lin, M. Kupnik, Ö. Oralkan, and B. T. <strong>Khuri</strong>-<strong>Yakub</strong>, “Wafer-b<strong>on</strong>ded 2D CMUT arrays incorporating through-wafertrench-isolated interc<strong>on</strong>nects with a supporting frame,” Ultras<strong>on</strong>ics, Ferroelectricsand Frequency C<strong>on</strong>trol, IEEE Transacti<strong>on</strong>s <strong>on</strong>, vol. 56, no. 1,pp. 182–192, 2009.[4] X. C. Jin, C. H. Cheng, Ö. Oralkan, S. Calmes, F .L. Degertekin, and B.T.<strong>Khuri</strong>-<strong>Yakub</strong> “Recent progress in capacitive micromachined ultras<strong>on</strong>icimmersi<strong>on</strong> transducer arrays,” Proc. of Eighth Internati<strong>on</strong>al Symposium<strong>on</strong> Integrated Circuits, Devices, and Systems, pp. 159-162, 1999.Amplitude (Z)Phase (Z)806040200-20-40-60-80250k 275k 300k 325k 350k 375k(a) LensFrequency (Hz)700Displacement at center of <strong>on</strong>e plate (nm)(b)40k35k30k25k20k15k10k5kProbe from4294A95 V95 V75 V55 V35 V250k 275k 300k 325k 350k 375k650600550500450400350300250200150100505 mmLaserCMUTFrequency (Hz)Vdc = 115 V115 VElectrical n<strong>on</strong>linearityis visibleVdc = 115 V95 V75 V55 V35 V75 V55 V1 Vpp ACexcitati<strong>on</strong> <strong>on</strong>ly35 V0250k 275k 300k 325k 350k 375kFrequency (Hz)Fig. 4. Two preliminary measurement results (electrical impedance of aCMUT (a) and plate displacement of <strong>on</strong>e single cell of the same device (b)as a functi<strong>on</strong> of dc bias voltage). The <strong>thick</strong> BOX <strong>layer</strong> for this device is 5 µm.[5] M. Kupnik, A. S. Ergun, Y. Huang, and B. T. <strong>Khuri</strong>-<strong>Yakub</strong>, “Extendedinsulati<strong>on</strong> <strong>layer</strong> structure for capacitive micromachined ultras<strong>on</strong>ic transducers,”in Proc. IEEE Ultras<strong>on</strong>ics Symposium, pp. 511-514, 2007.[6] M.-C Ho, M. Kupnik, and B. T. <strong>Khuri</strong>-<strong>Yakub</strong>, “FEA of CMUTs suitablefor wide gas pressure range applicati<strong>on</strong>s,” in Proc. IEEE Ultras<strong>on</strong>icsSymposium, to appear, 2010.[7] A. Nikoozadeh, and B. T. <strong>Khuri</strong>-<strong>Yakub</strong>, “CMUT with substrate-embeddedsprings for n<strong>on</strong>-flexural plate movement,” in Proc. IEEE Ultras<strong>on</strong>icsSymposium, to appear, 2010.[8] M. Kupnik and B. T. <strong>Khuri</strong>-<strong>Yakub</strong>, “Direct wafer-b<strong>on</strong>ded 2D CMUTarray,” US patent, US 2009/0122651 A1, 2009.[9] L. A. D<strong>on</strong>ohue, J. Hopkins, R. Barnett, A. Newt<strong>on</strong>, and A. Barker,“Developments in Si and SiO2 etching for MEMS <str<strong>on</strong>g>based</str<strong>on</strong>g> optical applicati<strong>on</strong>s,”Micromachining Technology for Micro-Optics and Nano-OpticsII, Proceedings of SPIE, vol. 5347, pp. 44-53, 2004.[10] M. Kupnik and B. T. <strong>Khuri</strong>-<strong>Yakub</strong>, “Wafer b<strong>on</strong>ded CMUT meetsCMOS,” Slides for CMOS Emerging Technology Workshop, available atwww.cmoset.com/uploads/Mario Kupnik 2010.pdf, 2009.[11] M. Kupnik and B. T. <strong>Khuri</strong>-<strong>Yakub</strong>, “M<strong>on</strong>olithic integrated CMUTsfabricated by low temperature wafer b<strong>on</strong>ding,” filed for US and PCTpatent applicati<strong>on</strong>, 2009.[12] J. Köhler, C. Strandman, Ö. Vallin, C. Hedlund, and Y. Bäcklund,“Silic<strong>on</strong> fusi<strong>on</strong> b<strong>on</strong>d interfaces resilient to wet anisotropic etchants,”Journal of Micromechanics and Microengineering, vol. 11, pp. 359-363,2001.[13] S. J. Cunningham and M. Kupnik, “Wafer b<strong>on</strong>ding,” Chapter 11 inMEMS Material and Process Handbook, Springer, to appear, December2010.[14] V. Kaajakari, T. Mattila, A. Oja, and H. Seppä, “N<strong>on</strong>linear Limits forsingle-crystal silic<strong>on</strong> microres<strong>on</strong>ators,” Journal of microelectromechanicalSystems, vol. 13, no. 5, pp. 715-724, 2004.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!