13.07.2015 Views

Liquid interfaces in viscous straining flows ... - Itai Cohen Group

Liquid interfaces in viscous straining flows ... - Itai Cohen Group

Liquid interfaces in viscous straining flows ... - Itai Cohen Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

180 M. Kle<strong>in</strong>e Berkenbusch, I. <strong>Cohen</strong> and W. W. ZhangVolume s<strong>in</strong>kS<strong>in</strong>k height SFluid 2nFluid 1zrS Iu ext2aS R , held at constant p 0Figure 2. Simplified numerical model of selective withdrawal. The upper and lower liquidlayers are separated by an <strong>in</strong>terface S I , constra<strong>in</strong>ed so that the deflection is non-zero onlywith<strong>in</strong> a radius a. At a f<strong>in</strong>ite withdrawal flux, the surface S R lies entirely with<strong>in</strong> the lowerlayer.from S I to u 1 rema<strong>in</strong>s. From (3.6), the velocity at a po<strong>in</strong>t on the <strong>in</strong>terface is given by∫1u(x) = J · (n · σ2 1 )dS y + n · K · u 1 dS y for x ∈ S I . (3.7)∫S I S IF<strong>in</strong>ally, consider a po<strong>in</strong>t x on the surface S R given by z = 0, as depicted <strong>in</strong> figure 2.At a f<strong>in</strong>ite withdrawal flux, the <strong>in</strong>terface is deflected away from the z = 0 plane. As aresult, po<strong>in</strong>ts on S R lie entirely <strong>in</strong>side the lower layer and therefore are not enclosedby the surface S I + S ∞ ; therefore the contribution from the surface <strong>in</strong>tegral overS I + S ∞ vanishes at a po<strong>in</strong>t x on S R ,or∫∫0 = J · (n · σ 1 )dS y + n · K · u 1 dS y for x ∈ S R . (3.8)S I S INext we consider the volume of liquid <strong>in</strong> the lower layer enclosed by the closedsurface comprised of S R and S I . Aga<strong>in</strong>, start<strong>in</strong>g with (3.6), we can write the velocityat a po<strong>in</strong>t x on either the liquid <strong>in</strong>terface S I or the surface S R , here <strong>in</strong> after referredto as the ‘reservoir surface’, as∫∫1u(x) = J · (n · σ2 2 )dS y + n · K · u 2 dS y + J · (n · σ 2 )dS y∫S I S I S∫R+ n · K · u 2 dS y for x ∈ S I or S R , (3.9)S Rwhere n is the outward po<strong>in</strong>t<strong>in</strong>g surface normal. As a result, for a po<strong>in</strong>t x on theliquid <strong>in</strong>terface S I , the surface <strong>in</strong>tegral over S I <strong>in</strong> (3.9) has exactly the opposite signto the surface <strong>in</strong>tegral over S I <strong>in</strong> (3.7). S<strong>in</strong>ce the velocity is cont<strong>in</strong>uous across the<strong>in</strong>terface, the two surface <strong>in</strong>tegrals <strong>in</strong>volv<strong>in</strong>g the K tensor cancel exactly when thetwo equations, (3.9) and (3.7), for the velocity at a po<strong>in</strong>t x on the <strong>in</strong>terface are addedtogether. As a result, the velocity on the liquid <strong>in</strong>terface can be re-written as∫∫u(x) = J · [n · σ ] + − dS y + J · (n · σ 2 )dS yS I S∫R+ n · K · u 2 dS y for x ∈ S I , (3.10)S R

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!