13.12.2012 Views

Coater/Developer Evolution or Revolution? - Sematech

Coater/Developer Evolution or Revolution? - Sematech

Coater/Developer Evolution or Revolution? - Sematech

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Double Patterning<br />

<strong>Coater</strong>/<strong>Developer</strong> <strong>Evolution</strong> <strong>or</strong> <strong>Revolution</strong>?<br />

Anita Viswanathan,<br />

M. Nakano, R. Crowell, S. Scheer<br />

6 th International Symposium on Immersion<br />

Lithography Extensions, Oct 2009


Outline<br />

• <strong>Evolution</strong> of CLEAN TRACK Technology<br />

• DP Implications on <strong>Coater</strong>/<strong>Developer</strong> Design<br />

• CLEAN TRACK DP Activity Update<br />

• Summary


i-line<br />

KrF / ArF<br />

Immersion<br />

<strong>Evolution</strong> of CLEAN TRACK<br />

Technology<br />

• Lens Substrate Contamination Reflectivity<br />

• Wafer Amine Edge Contamination Defectivity<br />

• Residual PEB Sensitivity Water Defects<br />

ADH Chill Coat PAB<br />

WEE EXP PEB Chill Dev<br />

ADH Chill BCT Bake Chill Coat PAB<br />

WEE Chill EXP PEB Chill Dev<br />

ADH Chill BCT Bake Chill Coat PAB Chill TCT Bake Chill WEE Rinse Chill EXP Rinse PEB Chill Dev


Double Exp<br />

Neg. Tone<br />

Develop<br />

Complexity of DP Space<br />

LELE LLE<br />

SWT<br />

Scheme 1<br />

Scheme 2<br />

Neg. Tone<br />

Develop<br />

Contact Hole<br />

Line Cutting<br />

Chemical<br />

Thermal<br />

UV Cure<br />

Vap<strong>or</strong><br />

Implant<br />

C<strong>or</strong>e Type 1<br />

C<strong>or</strong>e Type 2<br />

C<strong>or</strong>e Type 3<br />

Pitch Doubling<br />

Dual Tone<br />

Develop<br />

Neg. Tone<br />

Develop<br />

•DP techniques serve unique applications (trench, C/H, etc)<br />

• <strong>Coater</strong>/<strong>Developer</strong>s are required to supp<strong>or</strong>t multiple DP techniques<br />

simultaneously<br />

•Many approaches require dedicated coater/developer modules


1 st Exposure<br />

1 st Etch<br />

2 nd Exposure<br />

2 nd Etch<br />

1 st Exposure<br />

Freeze<br />

2 nd Exposure<br />

Etch<br />

Throughput Demand from DP<br />

ADH ADH Chill Chill BCT BCTBake Bake Chill ChillCoat CoatPABPAB Chill Chill TCT TCT Bake Bake Chill Chill WEE WEERinse Rinse Chill Chill EXP EXPRinse<br />

Rinse PEB PEB Chill Chill Dev Dev<br />

Bake<br />

BARC Gate<br />

Etch Freeze Etch<br />

Coat<br />

UV Cure<br />

Single Exposure LITHO-ETCH 19 processing steps<br />

LITHO-ETCH-LITHO-ETCH 44 processing steps<br />

LITHO-LITHO-ETCH 39 processing steps<br />

Strip<br />

Bake<br />

ADH Chill BCT Bake Chill Coat PAB Chill TCT Bake Chill WEE Rinse Chill EXP Rinse PEB Chill Dev<br />

BARC Gate<br />

Strip<br />

Etch BARC Etch Gate<br />

Strip<br />

Etch Etch<br />

Chill Coat PAB Chill TCT Bake Chill WEE Rinse Chill EXP Rinse PEB Chill Dev


The Next Generation of CLEAN TRACK<br />

f<strong>or</strong> DP:<br />

LITHIUS Pro V


Key <strong>Coater</strong>/<strong>Developer</strong> DP Concerns<br />

Process Perf<strong>or</strong>mance<br />

• Side Wall Technology<br />

• PR Slimming<br />

• LWR Reduction<br />

• Cross Line C/H<br />

• Pattern Collapse<br />

• Negative Tone Develop<br />

Cost of Ownership<br />

• Process Costs<br />

• SWT<br />

• Dual Tone DP<br />

• Tool Productivity<br />

• OEE<br />

• WPD


TEL Resist C<strong>or</strong>e SWT Overview<br />

Post<br />

Litho<br />

Clean Track<br />

ProV<br />

40nm hp<br />

CDU = 1.9nm<br />

LWR = 4.3nm<br />

BARC<br />

Trim<br />

TACTRAS<br />

VIGUS<br />

Deposit<br />

SiO 2<br />

TELINDY<br />

SiO 2<br />

Etch‐back<br />

C<strong>or</strong>e Strip<br />

TACTRAS<br />

VIGUS<br />

H/M<br />

Etch<br />

TACTRAS<br />

VIGUS<br />

20nm hp<br />

CDU = 2.0nm<br />

LWR = 2.5nm


PR Line Slimming & LWR Reduction<br />

Post<br />

Litho<br />

Clean Track<br />

Pro V<br />

PR Wet<br />

Slimming<br />

Process<br />

PR LWR<br />

Smoothing<br />

Process<br />

40nm hp<br />

CDU = 1.9nm<br />

LWR = 4.3nm<br />

New PR<br />

Process<br />

LWR data samples made by IMEC<br />

BARC<br />

Trim<br />

TACTRAS<br />

VIGUS<br />

SiO2<br />

Depo<br />

TELINDY<br />

SiO2<br />

Etch‐back<br />

C<strong>or</strong>e Strip<br />

TACTRAS<br />

VIGUS<br />

Initial Pattern Post Slimming<br />

CD=49.9nm<br />

LWR=4.9nm<br />

H=92.5nm<br />

H/M<br />

Etch<br />

TACTRAS<br />

VIGUS<br />

CD=32.8nm (-17.1nm)<br />

LWR=4.0nm (-0.9nm)<br />

H=83.3nm (-9.2nm)<br />

Initial Pattern Post Smoothing<br />

LWR3s: 3.1nm LWR3s: 2.7nm<br />

20nm hp<br />

CDU = 2.0nm<br />

LWR = 2.5nm


Freeze‐Free Posi‐Posi Process Cross Line C/H<br />

Initial Si-H-M Etch Carbon Etch TEOS Etch Ashing<br />

Samples made by TOK<br />

1 st Space<br />

2 nd Space<br />

1 st Space<br />

Average:46.18nm<br />

3σ:2.37nm<br />

2 nd Space<br />

Average:45.64nm<br />

3σ:1.91nm


TEL FIRM Impact on Pattern Collapse<br />

Coat freeze<br />

LLE L/S Patterning<br />

DIW Rinse Surfactant Rinse<br />

~170 defects<br />

due to pattern collapse<br />

~0 defects<br />

due to pattern collapse<br />

TEL FIRM has demonstrated effectiveness across multiple LLE<br />

processes.<br />

Data courtesy of IMEC<br />

Reference: Towards 26nm hp: Advances in Litho<br />

Process Litho; P. Wong


Negative Tone Development<br />

Process A —1 st Trial Defect Data<br />

Measurement Area LS RESIST BARC<br />

Classification<br />

Process A Process B Process C<br />

CDU 3σ = 1.39%<br />

DEV = 1 unit/waf<br />

CDU 3σ = 2.75%<br />

DEV = 1 unit/waf<br />

CDU 3σ = 3.2%<br />

DEV = 0.45<br />

unit/waf<br />

Defect Counts [cts/waf] 0 4 2<br />

Defect Density [cts/cm 2 ] 0.000 0.026 0.030


Key <strong>Coater</strong>/<strong>Developer</strong> DP Concerns<br />

Process Perf<strong>or</strong>mance<br />

• Spacer<br />

• PR Slimming<br />

• LWR Reduction<br />

• Cross Line C/H<br />

• Pattern Collapse<br />

• Negative Tone Develop<br />

Cost of Ownership<br />

• Process Costs<br />

• Resist C<strong>or</strong>e SWT<br />

• Dual Tone DP<br />

• Tool Productivity<br />

• Overall Equipment Efficiency<br />

(OEE)<br />

• Wafers Per Day (WPD)


Post<br />

Litho<br />

Process Costs:<br />

Non Resist C<strong>or</strong>e SWT vs. Resist C<strong>or</strong>e SWT<br />

Cost Per Patterning ($)<br />

BARC<br />

Trim<br />

SiO 2<br />

Deposition<br />

Exposure Track Etch Clean CVD<br />

Non Resist C<strong>or</strong>e SWT Resist C<strong>or</strong>e SWT<br />

SiO 2<br />

Etch‐back<br />

C<strong>or</strong>e Strip<br />

14% Savings<br />

H/M<br />

Etch<br />

CT PR Wet<br />

Slimming


Process Costs: Dual‐Tone Development<br />

Overview<br />

Reference: Expl<strong>or</strong>ation of …Dual tone<br />

Development; C. Fonseca<br />

1.26NA, Dipole<br />

(K 1 = 0.21)<br />

Current Status<br />

16nm<br />

100X diluted TMAH, PEB2: 150C/60s<br />

64nm Pitch<br />

Mask Pitch: 128nm<br />

• Demonstrated image modulation<br />

• Resolution below single exposure &<br />

develop 1.35NA scanner capability


Process Costs:<br />

Non Resist C<strong>or</strong>e SWT vs. Dual Tone<br />

Post<br />

Litho (2DEV)<br />

Cost Per Patterning ($)<br />

BARC<br />

Trim<br />

Non Resist C<strong>or</strong>e SWT Dual Tone<br />

Development<br />

H/M<br />

Etch<br />

Exposure Track Etch Clean CVD<br />

21% Savings<br />

CT PR Wet<br />

Slimming


Tool Productivity: LITHIUS Pro V<br />

OEE<br />

FOUP Exchanger<br />

System<br />

Multi cycle wafer flow<br />

control Function<br />

PRIME Cascade<br />

Transfer Control<br />

Additional OEE<br />

improvement items<br />

DP Process Capability<br />

Throughput / Footprint<br />

High T.P 250wph<br />

capability and<br />

Flexible Configuration<br />

LITHIUS Pro vs LITHIUS Pro V<br />

25% Greater Throughput with only<br />

10% Footprint Increase<br />

New Process<br />

Wet Slimming<br />

Capability<br />

(PR Pattern Trimming)<br />

Freezing Process<br />

Capability f<strong>or</strong> LLE<br />

Negative Tone<br />

Development Process<br />

Capability<br />

FIRM Process f<strong>or</strong><br />

Defect reduction<br />

Smoothing Process f<strong>or</strong><br />

LWR Improvement<br />

(Future Upgrade)<br />

Pro V<br />

PIR<br />

SRS<br />

SRS


Tool Productivity: Overall Equipment<br />

Efficiency (OEE) Improvement<br />

Conventional LITHIUS Pro<br />

(current)<br />

10% Increase<br />

LITHIUS Pro V


Tool Productivity: Wafers Per Day<br />

(WPD) Improvement<br />

OEE Improvement<br />

Throughput Increase<br />

LITHIUS Pro<br />

180 wph<br />

32%<br />

LITHIUS Pro V<br />

220 wph<br />

54%<br />

LITHIUS Pro V<br />

250 wph


Summary<br />

• DP processes are chosen by technology<br />

perf<strong>or</strong>mance, customer device / layer type, and<br />

integration strategy, creating a complex space<br />

• TEL’s objective is to be a partner, regardless of<br />

the DP technology used, in helping our customers<br />

to:<br />

– Establish w<strong>or</strong>ld class process perf<strong>or</strong>mance<br />

– Achieve the highest productivity with lowest process<br />

cost


• TEL:<br />

Acknowledgements<br />

– S. Shimura, T. Kawasaki, S. Nat<strong>or</strong>i, A. Hara, K. Hontake, T.<br />

Niwa, C. Fonseca, K. Nafus, H. Yaegashi<br />

• IMEC<br />

– P. Wong, R. Gronheid

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!