03.03.2020 Views

atw - International Journal for Nuclear Power | 03.2020

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information. www.nucmag.com

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information.

www.nucmag.com

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

nucmag.com<br />

2020<br />

3<br />

ISSN · 1431-5254<br />

24.– €<br />

The Future of <strong>Nuclear</strong>:<br />

The Role of <strong>Nuclear</strong> in<br />

the Upcoming Global<br />

Energy Transition<br />

The Dual Fluid Reactor –<br />

An Innovative Fast <strong>Nuclear</strong>-<br />

Reactor Concept with High<br />

Efficiency and Total Burnup<br />

<strong>Nuclear</strong> <strong>Power</strong> World Report<br />

2018<br />

Preliminary Programme Inside!


Competence <strong>for</strong><br />

<strong>Nuclear</strong> Services<br />

Operational Waste and D&D<br />

Spent Fuel Management<br />

<strong>Nuclear</strong> Casks<br />

Calculation Services and Consulting<br />

Waste Processing Systems and Engineering<br />

GNS Gesellschaft für Nuklear-Service mbH<br />

Frohnhauser Str. 67 · 45127 Essen · Germany · info@gns.de · www.gns.de


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

Silver Jubilee, but not even a Second Place at the End:<br />

The UN Climate Change Conference 2019<br />

123<br />

Dear reader, having been ousted from the front headlines of the media in the meantime and hardly noticed by them,<br />

the 25 th UN Climate Change Conference, officially “25 th Conference of the Parties to the Framework Convention on<br />

Climate Change and 15 th Conference of the Parties to the Kyoto Protocol (COP – Conference of the Parties)” as well as<br />

the “4 th Meeting of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement” took place<br />

in the first weeks of December 2019. The COP is the annual conference as the highest body of the United Nations<br />

Framework Convention on Climate Change (UNFCCC). In this international agreement, states have committed<br />

themselves to reducing their emissions of greenhouse gases.<br />

EDITORIAL<br />

This multinational meeting did not augur well <strong>for</strong> 2019 in<br />

organisational terms: Brazil withdrew its offer to host the<br />

conference because of “financial constraints and a change<br />

of government”. As a result, the President of Chile and his<br />

Minister <strong>for</strong> the Environment invited to the country's<br />

capital, Santiago de Chile, in December 2019 or January<br />

2020. Due to the political situation in the country, with<br />

protests by citizens against, among other things, economic<br />

and social policies, Chile also had to withdraw its invitation.<br />

As a third option, Spain stepped in with Madrid as<br />

host, with the political leadership remaining with the<br />

Chilean government.<br />

According to official figures, believe it or not, between<br />

25,000 and 26,000 direct participants in the conferences<br />

found their way to Madrid under the motto “Tiempo De<br />

Actura/Time <strong>for</strong> Action”.<br />

The central theme and goal was the completion of the<br />

supplementary set of rules to the “Paris Convention”. But<br />

what had been ambitiously heralded, at least in terms of its<br />

title, ended up with commentators using terms ranging<br />

from “minimum consensus” to “inconclusive”. The reasons<br />

<strong>for</strong> this are certainly complex. For one thing, the<br />

increasingly negative attitude towards emission bans, by<br />

countries with high emissions is contributing to this. On<br />

the other hand, there is also the fact that the conference is<br />

becoming more and more like a showcase <strong>for</strong> individual<br />

political interests or NGO representatives, and that the<br />

focus is less and less on visible issues and more on bans.<br />

Moreover, there seems to be an increasing lack of visions<br />

<strong>for</strong> the implementation of emission reductions.<br />

The second commitment period of the Kyoto Protocol<br />

ended in the shadow of the conference, as the minimum<br />

number of ratifications had not been reached by the end of<br />

November 2019.<br />

Let us recall that the 1992 Kyoto Protocol had the<br />

objective of reducing emissions of the six gases classified as<br />

particularly climate-affecting – mainly carbon dioxide,<br />

methane and nitrogen oxides – by approximately 5 percent<br />

worldwide in the period 2008–2012, based on the base<br />

year 1990. In terms of carbon dioxide emissions, with<br />

emissions of around 21 billion tonnes in 1990, this meant a<br />

reduction of around 1 billion tonnes of annual emissions.<br />

The indivi dual signatory states have committed themselves<br />

to different emission levels. For example, the EU-15<br />

at the time pro mised to make a contribution of minus<br />

8 percent. In 2012, at the end of the Kyoto period, CO 2<br />

emissions worldwide then stood at around 32 billion<br />

tonnes, which corresponds to an increase of 51 % and not<br />

the targeted 5 % reduction.<br />

If a political goal is not achieved, a new one is agreed. In<br />

view of the “Kyoto I failure”, the struggle <strong>for</strong> new targets,<br />

then lasted five years, from the UN climate conference in<br />

Bali in 2007 to the one in Doha, Qatar in 2012. It ended<br />

with a so-called second commitment period (“Kyoto II”).<br />

However, while “Kyoto I” still contained figures on<br />

reduction targets, “Kyoto II” is becoming more and more<br />

lost in emissions trading. But ultimately “Kyoto II” is only<br />

historical and without any effect.<br />

All in all, from Kyoto to Santiago de Chile/Madrid, after<br />

25 years of political discussions about emission reductions,<br />

little can be identified that would allow a ranking at all.<br />

Irrespective of the question of whether and to what<br />

extent mankind's influence on the climate is significant,<br />

any use of sustainable <strong>for</strong>ms of energy makes sense.<br />

At this point the question arises whether nuclear energy<br />

is at all capable of significantly contributing to reductions?<br />

After all, nuclear energy is currently increasingly coming into<br />

focus as a building block <strong>for</strong> future energy supply. In view<br />

of the enormous challenges not only to reduce emissions in<br />

all sectors, but also to supply a growing world population<br />

with sufficient energy, the question arises as to what potential<br />

exists.<br />

So let the facts speak <strong>for</strong> themselves: In recent years,<br />

nuclear energy has accounted <strong>for</strong> around 11 percent of the<br />

world's electricity supply. Approximately 2,500 billion<br />

kilowatt hours are generated annually. <strong>Nuclear</strong> power<br />

plant operation itself is largely free of climate-impacting<br />

emissions. Well-founded, comprehensible studies show<br />

total emissions of 6 to 30 grams of carbon dioxide per<br />

kilowatt hour of electricity generated, taking into account<br />

all process steps <strong>for</strong> the construction, operation and<br />

decommissioning of nuclear power plants. This means that<br />

hydropower, wind and nuclear energy are virtually on a<br />

par. The annual CO 2 emissions avoided by nuclear power<br />

are around 2.5 billion tonnes and thus higher – more than<br />

twice as high – than the Kyoto I target, but never reached.<br />

These concrete figures shall make it clear that nuclear<br />

technology can be used to achieve a wide range of<br />

structured goals such as reducing emissions and a reliable<br />

energy supply.<br />

All in all, low-emission technologies <strong>for</strong>, all energy<br />

sources, must be equally important and not via ideologically<br />

influenced “single- track” paths, which <strong>for</strong><br />

example, deliberately exclude nuclear energy, as is<br />

un<strong>for</strong>tunately happening in some places at European level<br />

in particular.<br />

If the global community is serious about truely<br />

implementing the ambitious climate protection targets,<br />

the use of nuclear energy will certainly be unavoidable.<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

Editorial<br />

Silver Jubilee, but not even a Second Place at the End: The UN Climate Change Conference 2019


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

EDITORIAL 124<br />

Silbernes Jubiläum, aber im Ergebnis noch nicht einmal<br />

ein zweiter Platz: Die UN-Klimakonferenz 2019<br />

Liebe Leserin, lieber Leser, zwischenzeitlich aus den vorderen Schlagzeilen der Medien verdrängt und kaum<br />

noch von diesen vermerkt, fanden in den ersten Dezemberwochen 2019 die 25. UN-Klimakonferenz, offiziell<br />

„25. Vertragsstaatenkonferenz der Klimarahmenkonvention und 15. Vertragsstaatenkonferenz des Kyoto-Protokolls<br />

(COP – Conference of the Parties)“ sowie das „4. Treffen der Conference of the Parties serving as the meeting of the<br />

Parties to the Paris Agreement” statt. Die COP ist die jährliche Konferenz als höchstes Gremium der Klimarahmenkonvention<br />

UNFCCC (United Nations Framework Convention on Climate Change). In diesem internationalen<br />

Übereinkommen haben sich Staaten zur Reduktion ihres Ausstoßes an Treibhausgasen verpflichtet.<br />

Dieses multinationale Treffen stand schon organisatorisch<br />

für 2019 unter keinem guten Vorzeichen: Brasilien zog<br />

sein Angebot der Ausrichtung wegen „finanzieller Engpässe<br />

und des Regierungswechsels“ zurück. Daraufhin<br />

luden der Präsident von Chile und seine Umweltministerin<br />

für Dezember 2019 oder Januar 2020 in die Hauptstadt<br />

des Landes, Santiago de Chile, ein. Aufgrund der politischen<br />

Lage im Land, mit Protesten von Bürgern u. a. gegen<br />

die Wirtschafts- und Sozialpolitik, musste auch Chile seine<br />

Einladung zurückziehen. Als dritte Option sprang Spanien<br />

mit Madrid als Ausrichter ein, wobei die politische Leitung<br />

bei der chilenischen Regierung verblieb.<br />

Unter dem Leitmotto „Tiempo De Actura/Time <strong>for</strong><br />

Action“ – Es ist Zeit zu handeln, fanden nach offiziellen<br />

Angaben zwischen sage und schreibe 25.000 und 26.000<br />

direkte Teil nehmende an den Konferenzen den Weg nach<br />

Madrid.<br />

Zentrales Thema und Ziel war die Fertigstellung des<br />

ergänzenden Regelwerks zum „Übereinkommen von<br />

Paris“. Doch was zumindest vom Titel her ambitioniert<br />

eingeläutet worden war, endete bei Kommentatoren unter<br />

Begriffen wie „Minimalkonsens“ bis hin zu „ergebnislos“.<br />

Die Gründe hierfür sind sicherlich vielschichtig. Zum einen<br />

trägt die zunehmend ablehnende Haltung zu Emissionsverboten<br />

von Ländern mit hohen Emissionen dazu bei.<br />

Aber auch ein immer mehr zum Schaulaufen politischer<br />

Einzelinteressen oder NGO-Vertreter abdriftender Konferenzablauf<br />

und ein immer weniger auf sichtbare Sachthemen,<br />

denn mehr auf Verbote fixiertes Regelwerk tun<br />

ihr übriges. An Visionen zur Umsetzung von Emissionsminderungen<br />

scheint es zudem mehr und mehr zu fehlen.<br />

Ganz im Schatten der Konferenz endete dann auch<br />

noch die zweite Verpflichtungsperiode des Kyoto-<br />

Protokolls, da bis Ende November 2019 die Mindestzahl an<br />

Ratifikationen noch nicht erreicht worden war.<br />

Dabei war man einmal so ambitioniert gestartet:<br />

Erinnern wir uns: Das Kyoto-Protokoll von 1992 hatte die<br />

Zielsetzung, die Emissionen der sechs als besonders<br />

klimawirksam eingestuften Gase – im Wesentlichen<br />

Kohlendioxid, Methan und Stickoxide – in der Periode<br />

2008–2012 bezogen auf das Basisjahr 1990 weltweit um<br />

ca. 5 Prozent zu vermindern. Für die Kohlendioxidemissionen<br />

bedeutete dies bei Emissionen von rund<br />

21 Mrd. T onnen in 1990 eine Reduzierung um ca. 1 Milliarde<br />

Tonnen der jährlichen Emissionen. Die einzelnen Unterzeichnerstaaten<br />

verpflichten sich dabei auf unterschiedliche<br />

Emissionsmengen. So sagte die damalige EU-15 zu,<br />

einen Beitrag von minus 8 Prozent zu leisten. Im Jahr 2012,<br />

am Ende der Kyoto-Periode, lagen die CO 2 -Emissionen dann<br />

bei rund 32 Mrd. Tonnen weltweit, was einem Plus von 51 %<br />

entspricht und nicht dem angestrebten Minus von 5 %.<br />

Erreicht man ein politisches Ziel nicht, vereinbart man<br />

ein neues. Das Ringen um neue Ziele währte angesichts der<br />

„Kyoto-I Verfehlung“ dann fünf Jahre, von der UN-<br />

Klimakonferenz auf Bali 2007 bis zu der in Doha, Katar<br />

2012. Es endete mit einer sogenannten zweiten Verpflichtungsperiode<br />

(„Kyoto II“). Doch während aus „ Kyoto I“<br />

noch Zahlen zu Minderungszielen zu lesen waren, verliert<br />

sich „Kyoto II“ mehr und mehr in einem Emissions-<br />

Ablasshandel. Aber letztendlich ist „Kyoto II“ nur noch<br />

historisch und ohne jegliche Wirkung.<br />

In Summe, von Kyoto bis Santiago de Chile/Madrid ist<br />

nach 25 Jahren politischer Diskussionen über Emissionsminderungen<br />

also wenig zu identifizieren, was überhaupt<br />

ein Ranking erlaubt.<br />

Unabhängig von der Frage des Ob und des Umfangs des<br />

Einflusses des Menschen auf das Klima, ist jegliche Nutzung<br />

nachhaltiger Energie<strong>for</strong>men an sich schon sinnvoll.<br />

Es stellt sich an diesem Punkt die Frage, ob die Kernenergie<br />

überhaupt in der Lage ist, einen maßgeblichen<br />

Beitrag zu Reduktionen zu leisten? Denn die Kernenergie<br />

wird aktuell immer stärker als ein Baustein für die zukünftige<br />

Energieversorgung in den Fokus gerückt. Angesichts<br />

der gewaltigen Heraus<strong>for</strong>derungen, nicht nur Emissionen in<br />

allen Sektoren zu mindern, sondern auch eine weiter<br />

wachsende Welt bevölkerung mit ausreichend Energie zu<br />

versorgen, stellt sich die Frage, welche diesbezüglichen<br />

Potenziale vorhanden sind.<br />

Lasst also die Fakten sprechen: Kernenergie hat in den<br />

letzten Jahren einen Anteil an der weltweiten Stromversorgung<br />

von rund 11 Prozent. Jährlich werden<br />

ca. 2.500 Mrd. Kilowattstunden erzeugt. Dabei ist der<br />

Kernkraftwerksbetrieb selbst weitgehend frei von klimawirksamen<br />

Emissionen. Fundierte, nachvollziehbare<br />

Studien weisen unter Einbeziehung aller Prozessschritte<br />

für den Bau, Betrieb und Rückbau von Kernkraftwerken zu<br />

Gesamtemissionen von 6 bis 30 Gramm Kohlendioxid pro<br />

erzeugter Kilowattstunde Strom aus. Damit liegen Wasserkraft,<br />

Wind und Kernenergie quasi gleichauf. Die jährlichen<br />

durch Kernenergie vermiedenen CO 2 -Emissionen<br />

liegen bei rund 2,5 Mrd. t und damit höher – mehr als<br />

doppelt so hoch – als gemäß dem Kyoto-I-Ziel zu erreichen<br />

war, aber nie erreicht wurde.<br />

Diese konkreten Zahlen sollen verdeutlichen, dass sich<br />

mit Kerntechnik vielfältig strukturierte Ziele wie Emissionsminderung<br />

und eine verlässliche Energie versorgung<br />

realisieren lassen.<br />

Insgesamt müssen emissionsarme Technologien für<br />

alle Energieträger, zum Tragen kommen und dürfen nicht<br />

via ideologisch geprägter „einspurige“ Pfade, die z. B. die<br />

Kernenergie bewusst ausschließen wollen, wie es sich<br />

leider gerade auch auf europäischer Ebene mancherorts<br />

abzeichnet.<br />

Sollte es die Weltgemeinschaft ernst meinen mit der<br />

tatsächlichen Umsetzung ihrer ambitionierten Klimaschutzziele,<br />

wird sie an der Nutzung der Kernenergie nicht<br />

vorbei kommen.<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

Editorial<br />

Silver Jubilee, but not even a Second Place at the End: The UN Climate Change Conference 2019


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Atomrecht – Das Recht der radioaktiven Reststoffe und Abfälle RA Dr. Christian Raetzke 10.<strong>03.2020</strong><br />

20.10.2020<br />

Berlin<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chanchen und Regularien<br />

Atomrecht – Ihr Weg durch Genehmigungs- und<br />

Aufsichtsverfahren<br />

RA Kay Höft M.A. (BWL) 17.06.2020 Berlin<br />

RA Dr. Christian Raetzke 25.06.2020 Berlin<br />

Atomrecht – Was Sie wissen müssen<br />

3 Kommunikation und Politik<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

11.11.2020 Berlin<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Dr. Nikolai A. Behr 10.11. - 11.11.2020 Berlin<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

3 <strong>Nuclear</strong> English<br />

Das Strahlenschutzrecht und<br />

seine praktische Umsetzung<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Dr. Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

Dr. Stefan Kirsch<br />

RA Dr. Christian Raetzke<br />

17.03. - 18.<strong>03.2020</strong><br />

16.06. - 17.06.2020<br />

29.10. - 30.10.2020<br />

Berlin<br />

23.09. - 24.09.2020 Berlin<br />

English <strong>for</strong> the <strong>Nuclear</strong> Industry Angela Lloyd 01.04. - 02.04.2020 Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Erfolgreicher Wissenstransfer in der Kerntechnik –<br />

Methoden und praktische Anwendung<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

24.03. - 25.<strong>03.2020</strong> Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı Seminare@KernD.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

126<br />

Issue 3 | 2020<br />

March<br />

CONTENTS<br />

Contents<br />

Editorial<br />

Silver Jubilee, but not even a Second Place at the End:<br />

The UN Climate Change Conference 2019 E/G 123<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Uzbekistan: Why Energy-Rich Nation is Turning<br />

to <strong>Nuclear</strong> <strong>Power</strong> 128<br />

Did you know...? . . . . . . . . . . . . . . . . . . . . . . . . . . . .129<br />

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

The Future of <strong>Nuclear</strong>: The Role of <strong>Nuclear</strong><br />

in the Upcoming Global Energy Transition 131<br />

Spotlight on <strong>Nuclear</strong> Law<br />

Regulatory Enquiries and About SMRs G 137<br />

Environment and Safety<br />

Toward a New Risk-In<strong>for</strong>med Approach to Cyber Security 138<br />

Research and Innovation<br />

Improved Metrology of Thermophysical Properties<br />

at Very High Temperatures: The EMPIR Project Hi-TRACE 140<br />

Neutronic Simulation of ALFRED Core Using MCNPX Code 142<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor<br />

Concept with High Efficiency and Total Burnup 145<br />

Operation and New Build<br />

36C3 – More Questions Than Answers G 155<br />

World Report<br />

<strong>Nuclear</strong> <strong>Power</strong> World Report 2018 161<br />

Kerntechnik 2020<br />

Preliminary Programme 164<br />

KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169<br />

Cover:<br />

Novovoronesh, Russia.<br />

Courtesy of Rosatom.<br />

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172<br />

<strong>Nuclear</strong> Today<br />

IAEA Chief’s Zeal <strong>for</strong> Change Signals Era of <strong>Nuclear</strong> Renewal 178<br />

G<br />

E/G<br />

= German<br />

= English/German<br />

Imprint 170<br />

Contents


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

Feature<br />

Major Trends in Energy Policy<br />

and <strong>Nuclear</strong> <strong>Power</strong><br />

127<br />

CONTENTS<br />

131 The Future of <strong>Nuclear</strong>: The Role of <strong>Nuclear</strong><br />

in the Upcoming Global Energy Transition<br />

Hans-Wilhelm Schiffer<br />

Environment and Safety<br />

138 Toward a New Risk-In<strong>for</strong>med Approach to Cyber Security<br />

Chris Warren<br />

Research and Innovation<br />

142 Neutronic Simulation of ALFRED Core Using MCNPX Code<br />

Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi<br />

145 The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept<br />

with High Efficiency and Total Burnup<br />

Jan-Christian Lewitz, Armin Huke, Götz Ruprecht,<br />

Daniel Weißbach, Stephan Gottlieb, Ahmed Hussein and Konrad Czerski<br />

Operation and New Build<br />

155 36C3 – More Questions Than Answers<br />

36C3 – Mehr offene Fragen als Antworten<br />

Stefan Loubichi<br />

World Report<br />

161 <strong>Nuclear</strong> <strong>Power</strong> World Report 2018<br />

Editorial office<br />

Contents


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

128<br />

INSIDE NUCLEAR WITH NUCNET<br />

Uzbekistan: Why Energy-Rich Nation<br />

is Turning to <strong>Nuclear</strong> <strong>Power</strong><br />

Uzbekistan has confirmed it has begun preliminary site work <strong>for</strong> the construction of its first<br />

commercial nuclear power units, with the preparation of external infrastructure <strong>for</strong> two<br />

Russia- supplied pressurised water reactor units scheduled to begin next year.<br />

The central Asian country signed an inter-governmental<br />

agreement with Russia in September 2018 <strong>for</strong> the<br />

development of the its first nuclear power station. The<br />

facility, which will be constructed by Russian state-owned<br />

nuclear corporation Rosatom, will have two blocks with a<br />

combined capacity of 2,400 MW. The first is due to come<br />

on line in 2028 and the second in 2030.<br />

Engineering and geological work has begun at the site,<br />

an area near Lake Tuzkan in Jizzakh province, west of the<br />

capital Tashkent in the east of the country.<br />

First deputy minister of energy Jurabek Mirzamahmudov<br />

told NucNet Uzbekistan is in the process of preparing the<br />

environmental impact assessment and expects to finalise<br />

all the documentation <strong>for</strong> site approvals this year.<br />

Next year site preparation will be stepped up and the<br />

preparation of external infrastructure will begin.<br />

Mr Mirzamahmudov, who is also head of the Uzatom<br />

state nuclear agency, which was established in July 2018 to<br />

lead national nuclear development, said the units will<br />

provide about 15 % of the country’s electricity generation<br />

and be a “long-term baseload power resource”.<br />

The construction of the station is scheduled to begin in<br />

2022 with a soft loan from the Russian government,<br />

although Mr Mirzamahmudov said exact details of the<br />

financing package and the cost of the units had not yet<br />

been finalised.<br />

Rosatom head Alexei Likhachev told reporters in Russia<br />

recently that further negotiations are planned in the<br />

coming months and no details would be released until they<br />

are complete.<br />

“We want to add nuclear power as well as renewables<br />

to ensure the sustainability of our energy mix,” said<br />

Mr Mirzamahmudov. “With nuclear, you can plan your<br />

energy strategy <strong>for</strong> the next 60 years – and we are one of<br />

the top countries in the world <strong>for</strong> uranium production, so<br />

we have the raw material.”<br />

Uzbekistan, the world’s seventh largest uranium<br />

producer, sees the nuclear project as a pass into the “elite<br />

club” of nuclear powers, according to Mr Mirzamakhmudov.<br />

“We will be joining the club of countries with peaceful use<br />

of nuclear energy. That is an elite club. This is a whole new<br />

level, different type of relationships, new technologies,<br />

science and education development.”<br />

A significant role in ensuring the country’s energy<br />

efficiency is given to diversification of energy sources.<br />

To this end Uzbekistan has made “a historic decision” to<br />

begin the development of nuclear energy generation,<br />

Mr Mirzamahmudov said.<br />

The country’s power complex has traditionally struggled<br />

to meet the demands of a rapidly growing population and<br />

developing economy due to outdated infrastructure and<br />

inefficient management. With consumption <strong>for</strong>ecast to<br />

surge over the coming years, as economic re<strong>for</strong>ms spur a<br />

jump in industrial production, the need <strong>for</strong> change has<br />

become urgent. “We are seeing new industries coming on<br />

line in processing, textiles, agriculture, manufacturing and<br />

metallurgy, as well as a huge expansion in tourism and<br />

other services,” said Mr Mirzamahmudov. “All of these will<br />

need access to a stable and reliable electricity supply.”<br />

The choice was made in favour of nuclear power given<br />

uranium availability and most importantly, economic<br />

benefits to the country. “Today this is one of the cleanest,<br />

ecologically safest sources of power, as well as the cheapest<br />

one after hydropower,” Mr Mirzamakhmudov said.<br />

Meeting this demand will not come cheap. Over the<br />

next five years, officials estimate that more than $ 2.8 bn<br />

will be required to upgrade existing infrastructure, while<br />

adding new power generation, not including nuclear,<br />

could cost as much as $ 14.4 bn.<br />

The <strong>International</strong> Energy Agency said that despite<br />

being energy self-sufficient thanks to its oil and gas sectors,<br />

Uzbekistan’s ageing electricity infrastructure struggles to<br />

meet growing domestic energy demand. Oil and natural<br />

gas make up about 97 % of the country’s energy mix.<br />

Uzbekistan’s current reliance on coal, gas, oil and<br />

hydropower will not be enough to meet growing demand,<br />

even with plans to double hydropower capacity by 2030.<br />

With nuclear energy expected to account <strong>for</strong> 15 % of the<br />

country’s power balance and ensure stable energy supply<br />

with expectations of power demand doubling by 2030,<br />

according to Uzatom.<br />

Uzbekistan was also taking steps to develop solar and<br />

wind energy, but would only rely on them <strong>for</strong> about 3 %<br />

of power generation in a decade as neither was a stable<br />

supply source, Mr Mirzamakhmudov said.<br />

The Uzbekistan nuclear project is of strategic interest to<br />

both Russia and Uzbeks. It will help Uzbekistan generate<br />

economic growth and it will enable the Russians to<br />

re-establish themselves as the primary regional power<br />

in terms of security and economic muscle, according to<br />

Camilla Hagelund, principal analyst at UK-based risk<br />

consultancy, Verisk Maplecroft.<br />

Quoted in the London-based Financial Times newspaper,<br />

Ms Hagelund said: “Central Asia is often described<br />

as the soft underbelly of Russia. You have continued<br />

security issues in Afghanistan. Central Asia is like a buffer<br />

in between that and a potential security threat in its own<br />

right.”<br />

Moreover, China has been expanding its influence in<br />

the region: “There is a level of competition between Russia<br />

and China, and it is very important <strong>for</strong> Russia to continue<br />

to demonstrate that it is the primary regional power <strong>for</strong><br />

central Asia.”<br />

Author<br />

NucNet<br />

The Independent Global <strong>Nuclear</strong> News Agency<br />

Editor responsible <strong>for</strong> this story: David Dalton<br />

Avenue des Arts 56 2/C<br />

1000 Bruxelles<br />

www.nucnet.org<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Uzbekistan: Why Energy-Rich Nation is Turning to <strong>Nuclear</strong> <strong>Power</strong>


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

Did you know...?<br />

Carbon Leakage into the EU ETS<br />

region in the Electricity Market<br />

The electricity markets subject to the EU Emissions Trading<br />

System (ETS; EU member states, Norway, Switzerland) are<br />

connected to electricity markets outside the ETS, namely Russia,<br />

Belarus, Ukraine, Turkey, North Macedonia, Serbia, Bosnia and<br />

Hercegovina, Montenegro, Albania and Morocco. The recent<br />

study by the climate policy think tank Sandbag “The path of least<br />

resistance – How electricity generated from coal is leaking into<br />

the EU” analyses the implications of this situation. It shows that<br />

the ETS region is a net importer of electricity from theses countries<br />

and the net import as well as the associated carbon emissions<br />

increased substantially in the past years (see graph below). In<br />

2019 gross electricity imports totaled 33.3 TWh worth 1.6 billion<br />

Euro. This import was associated with 25.6 million tons of<br />

CO 2 -emissions worth 630 million Euro in the EU ETS. Since the<br />

carbon intensity of the electricity generation in the above<br />

mentioned countries that have no or no significant carbon pricing<br />

is higher than in the respective importing countries connected,<br />

some additional 11 million tons of CO 2 were produced by these<br />

imports as compared to generation inside the importing<br />

ETS-countries. Because the EU plans to increase total<br />

interconnector capacity to outside of the ETS by 31 percent<br />

including connections to additional countries (Egypt, Tunisia,<br />

Libya, Israel, Moldova), the electricity imports from non-ETS<br />

countries are likely to continue to grow. At the same time the<br />

above mentioned countries plan to increase their coal generation<br />

capacity by a total of 37.2 GW (e.g. Turkey: 14.7 GW, Egypt:<br />

10.6 GW, Russia: 5 GW, Bosnia and Hercegovina: 4.1 GW), so that<br />

a considerable carbon leakage effect in the electricity market is to<br />

be feared. To prevent such a development Sandbag proposes a so<br />

called border carbon adjustment (BCA) <strong>for</strong> gross electricity<br />

imports into the EU ETS region, a policy that in principle is already<br />

supported by the European Commission in its Green Deal<br />

communications.<br />

DID YOU EDITORIAL KNOW...?<br />

129<br />

Net electricity import into the EU ETS region an associated net carbon emissions<br />

p Electricity (TWh) p Carbon (MtCO2)<br />

25<br />

20.7<br />

20.7<br />

20<br />

19.2<br />

19.6<br />

15<br />

13<br />

10<br />

5<br />

0<br />

9.5<br />

3<br />

2015<br />

8.20<br />

2016<br />

9.4<br />

3.10<br />

2017<br />

2018<br />

2019<br />

For further details please<br />

contact:<br />

Nicolas Wendler<br />

KernD<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

KernD.de<br />

www.KernD.de<br />

Did you know...?


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

130<br />

Calendar<br />

2020<br />

CALENDAR<br />

19.04. – 24.04.2020<br />

<strong>International</strong> Conference on Individual<br />

Monitoring. Budapest, Hungary, EUROSAFE,<br />

www.eurosafe-<strong>for</strong>um.org<br />

20.04. – 21.04.2020<br />

The 53 rd JAIF Annual Conference. Tokyo, Japan,<br />

Japan Atomic Industrial Forum (JAIF), www.jaif.or.jp<br />

20.04. – 22.04.2020<br />

World <strong>Nuclear</strong> Fuel Cycle 2020. Stockholm,<br />

Sweden, WNA World <strong>Nuclear</strong> Association,<br />

www.world-nuclear.org<br />

05.05. – 06.05.2020<br />

KERNTECHNIK 2020.<br />

Berlin, Germany, KernD and KTG,<br />

www.kerntechnik.com<br />

10.05. – 15.05.2020<br />

ICG-EAC Annual Meeting 2020. Helsinki, Finland,<br />

ICG-EAC, www.icg-eac.org<br />

11.05. – 15.05.2020<br />

<strong>International</strong> Conference on Operational Safety<br />

of <strong>Nuclear</strong> <strong>Power</strong> Plants. Beijing, China, IAEA,<br />

www.iaea.org<br />

11.05. – 15.05.2020<br />

Fusion Energy Conference Programme<br />

Committee Meeting. Vienna, Austria, IAEA,<br />

www.iaea.org<br />

12.05. – 13.05.2020<br />

INSC — <strong>International</strong> <strong>Nuclear</strong> Supply Chain<br />

Symposium. Munich, Germany, TÜV SÜD,<br />

www.tuev-sued.de<br />

17.05. – 22.05.2020<br />

BEPU2020– Best Estimate Plus Uncertainty <strong>International</strong><br />

Conference, Giardini Naxos. Sicily, Italy,<br />

NINE, www.nineeng.com<br />

18.05. – 22.05.2020<br />

SNA+MC2020 – Joint <strong>International</strong> Conference on<br />

Supercomputing in <strong>Nuclear</strong> Applications + Monte<br />

Carlo 2020, Makuhari Messe. Chiba, Japan, Atomic<br />

Energy Society of Japan, www.snamc2020.jpn.org<br />

20.05. – 22.05.2020<br />

<strong>Nuclear</strong> Energy Assembly. Washington, D.C., USA,<br />

NEI, www.nei.org<br />

31.05. – 03.06.2020<br />

13 th <strong>International</strong> Conference of the Croatian<br />

<strong>Nuclear</strong> Society. Zadar, Croatia, Croatian <strong>Nuclear</strong><br />

Society, www.nuclear-option.org<br />

31.05. – 03.06.2020<br />

40 th Annual CNS Conference & 44 th CNS-CNA<br />

Student Conference. Saint John, NB, Canada,<br />

Canadian <strong>Nuclear</strong> Society, www.cns-snc.ca<br />

06.06. – 12.06.2020<br />

ATALANTE 2020. Montpellier, France, CEA,<br />

www.atalante2020.org<br />

07.06. – 12.06.2020<br />

Plutonium Futures. Montpellier, France, CEA,<br />

www.pufutures2020.org<br />

08.06. – 12.06.2020<br />

20 th WCNDT – World Conference on<br />

Non-Destructive Testing. Seoul, Korea, EPRI,<br />

www.wcndt2020.com<br />

10.06. – 12.06.2020<br />

Innovation <strong>for</strong> the Future of <strong>Nuclear</strong> Energy –<br />

A Global Forum. Gyeongju, South Korea,<br />

www.globalnuclearinnovation.com<br />

14.06. – 17.06.2020<br />

The Society <strong>for</strong> Risk Analysis – European<br />

Conference. Espoo, Finland, Aalto University,<br />

www.blogs.aalto.fi<br />

15.06. – 19.06.2020<br />

<strong>International</strong> Conference on <strong>Nuclear</strong> Knowledge<br />

Management and Human Resources Development:<br />

Challenges and Opportunities. Moscow,<br />

Russian Federation, IAEA, www.iaea.org<br />

15.06. – 20.07.2020<br />

WNU Summer Institute 2020. Japan, World <strong>Nuclear</strong><br />

University, www.world-nuclear-university.org<br />

18.06.2020<br />

NDA Group Supply Chain Event. Tel<strong>for</strong>d,<br />

Shropshire, Cvent, www.web-eur.cvent.com<br />

23.06. – 25.06.2020<br />

World <strong>Nuclear</strong> Exhibition 2020. Paris Nord<br />

Villepinte, France, Gifen,<br />

www.world-nuclear-exhibition.com<br />

25.06. – 26.06.2020<br />

<strong>Nuclear</strong>Europe 2020 – <strong>Nuclear</strong> <strong>for</strong> a sustainable<br />

future. Paris, France, Foratom,<br />

www.events.<strong>for</strong>atom.org<br />

13.07. – 16.07.2020<br />

46 th NITSL Conference - Fusing <strong>Power</strong> & People.<br />

Baltimore, MD, USA, Aalto University, www.nitsl.org<br />

02.08. – 06.08.2020<br />

ICONE 28 – 28 th <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Engineering. Disneyland Hotel, Anaheim,<br />

CA, ASME, www.event.asme.org<br />

26.08.-04.09.2020<br />

The Frédéric Joliot/Otto Hahn Summer School<br />

on <strong>Nuclear</strong> Reactors “Physics, Fuels and Systems”.<br />

Aix-en-Provence, France, CEA & KIT, www.fjohss.eu<br />

01.09. – 04.09.2020<br />

IGORR – Standard Cooperation Event in the <strong>International</strong><br />

Group on Research Reactors Conference.<br />

Kazan, Russian Federation, IAEA, www.iaea.org<br />

07.09. – 10.09.2020<br />

<strong>International</strong> Forum on Enhancing a Sustainable<br />

<strong>Nuclear</strong> Supply Chain. Helsinki, Finland, Foratom,<br />

www.events.<strong>for</strong>atom.org<br />

09.09. – 10.09.2020<br />

VGB Congress 2020 – 100 Years VGB. Essen,<br />

Germany, VGB <strong>Power</strong>Tech e.V., www.vgb.org<br />

09.09. – 11.09.2020<br />

World <strong>Nuclear</strong> Association Symposium 2020.<br />

London, United Kingdom, WNA World <strong>Nuclear</strong><br />

Association, www.world-nuclear.org<br />

16.09. – 18.09.2020<br />

3 rd <strong>International</strong> Conference on Concrete<br />

Sustainability. Prague, Czech Republic, fib,<br />

www.fibiccs.org<br />

16.09. – 18.09.2020<br />

<strong>International</strong> <strong>Nuclear</strong> Reactor Materials<br />

Reliability Conference and Exhibition.<br />

New Orleans, Louisiana, USA, EPRI, www.snetp.eu<br />

21.09.-25.09.2020<br />

64 th IAEA General Conference. Vienna, Austria,<br />

<strong>International</strong> Atomic Energy Agency IAEA,<br />

www.iaea.org<br />

28.09. – 01.10.2020<br />

NPC 2020 <strong>International</strong> Conference on <strong>Nuclear</strong><br />

Plant Chemistry. Antibes, France, SFEN Société Française<br />

d’Energie Nucléaire,<br />

www.sfen-npc2020.org<br />

28.09. – 02.10.2020<br />

Jahrestagung 2020 – Fachverband Strahlenschutz<br />

und Entsorgung. Aachen, Germany, Fachverband<br />

für Strahlenschutz, www.fs-ev.org<br />

30.09. – 03.10.2020<br />

<strong>Nuclear</strong> Energy: Challenges and Prospects. Sochi,<br />

Russia, Pocatom, www.nsconf2020.ru<br />

12.10. – 17.10.2020<br />

FEC 2020 – 28 th IAEA Fusion Energy Conference.<br />

Nice, France, IAEA, www.iaea.org<br />

19.10. – 23.10.2020<br />

<strong>International</strong> Conference on the Management<br />

of Naturally Occurring Radioactive Materials<br />

(NORM) in Industry. Vienna, Austria, IAEA,<br />

www.iaea.org<br />

26.10. – 30.10.2020<br />

NuMat 2020 – 6 th <strong>Nuclear</strong> Materials Conference.<br />

Gent, Belgium, IAEA, www.iaea.org<br />

27.10. – 29.10.2020<br />

enlit (<strong>for</strong>mer European Utility Week and<br />

POWERGEN Europe). Milano, Italy,<br />

www.powergeneurope.com<br />

02.11. – 06.11.2020<br />

<strong>International</strong> <strong>Nuclear</strong> Reactor Materials<br />

Reliability Conference and Exhibition.<br />

New Orleans, Louisiana, EPRI, www.custom.cvent.com<br />

09.11. – 13.11.2020<br />

<strong>International</strong> Conference on Radiation Safety:<br />

Improving Radiation Protection in Practice.<br />

Vienna, Austria, IAEA, www.iaea.org<br />

24.11. – 26.11.2020<br />

ICOND 2020 – 9 th <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Decommissioning. Aachen, Germany,<br />

AiNT, www.icond.de<br />

07.12. – 10.12.2020<br />

SAMMI 2020 – Specialist Workshop on Advanced<br />

Measurement Method and Instrumentation<br />

<strong>for</strong> enhancing Severe Accident Management in<br />

an NPP addressing Emergency, Stabilization and<br />

Long-term Recovery Phases. Fukushima, Japan,<br />

NEA, www.sammi-2020.org<br />

17.12. – 18.12.2020<br />

ICNESPP 2020 – 14. <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Engineering Systems and <strong>Power</strong> Plants.<br />

Kuala Lumpur, Malaysia, WASET, www.waset.org<br />

This is not a full list and may be subject to change.<br />

Calendar


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

The Future of <strong>Nuclear</strong>: The Role of <strong>Nuclear</strong><br />

in the Upcoming Global Energy Transition<br />

Hans-Wilhelm Schiffer<br />

1 Introduction The paper presents the main findings, which the World Energy Council (the Council) presented<br />

in a paper on The Future of <strong>Nuclear</strong>: Diverse Harmonies in the Energy Transition with contributions from the World<br />

<strong>Nuclear</strong> Association and the Paul Scherrer Institute. In this report, the future of nuclear is described through the lens of<br />

the Council´s World Energy Scenarios archetype framework – Modern Jazz, Unfinished Symphony and Hard Rock – in<br />

three plausible, alternative pathways <strong>for</strong> the future development of the sector. This report also describes implications<br />

<strong>for</strong> the role of nuclear energy in the global energy transition. <strong>Nuclear</strong> energy could take three different pathways within<br />

the upcoming decades. In the main part of this paper – following a brief section on the current role of nuclear in the<br />

global energy supply (Chapter 2) – the characteristics of the three scenarios including the methodology underlying<br />

their quantification (Chapter 3), and the key findings of the identified future pathways (Chapter 4) are explained.<br />

Chapter 5 deals with a comparison of the global results of the EIA´s <strong>International</strong> Energy Outlook 2019 (U.S. Energy<br />

In<strong>for</strong>mation Administration, September 2019) and the IEA´s World Energy Outlook 2019 (<strong>International</strong> Energy Agency,<br />

November 2019). A conclusion is presented in Chapter 6.<br />

2 Current role of nuclear energy<br />

in global energy supply<br />

Global electricity generation increased fivefold compared<br />

to the level in 1971 to 26,615 TWh in 2018. 63 % of the<br />

growth recorded during this period was covered by fossil<br />

fuels, 25 % by renewable energies and 12 % by nuclear<br />

energy. As a result, the energy mix in global electricity<br />

generation has changed as follows: The share of fossil<br />

energies in total electricity generation has decreased from<br />

74 % in 1971 to 65 % in 2018. This decline was compensated<br />

<strong>for</strong> by an increase in the share of nuclear energy from<br />

2 % to 10 % and of renewable energies from 24 % to 25 %<br />

(Figure 1).<br />

In the 1970s and 1980s, nuclear power plants were heavily<br />

expanded. The number of plants in operation worldwide<br />

had quintupled from 84 in 1970 to 420 in 1989. Since<br />

then, there has only been a slight increase – to 449 plants<br />

in operation by December 2019 with a capacity of around<br />

400 gigawatts (GW). Correspondingly, electricity generation<br />

based on nuclear energy increased from 1970 to 1990<br />

with annual growth rates of 17.5 %. This was followed by a<br />

significant slowdown in the average growth rates to 2.6 %<br />

per year in the decade from 1990 to 2000. Since 2000,<br />

electricity generation based on nuclear energy has stagnated.<br />

In 2018, it amounted to around 2,700 TWh.<br />

The nuclear power capacities are installed in 31 countries.<br />

The installed capacity is mainly concentrated on<br />

countries in North America (29 %), Western Europe<br />

(28 %), Asia (28 %), Eastern Europe including Russia<br />

(14 %) and to a lesser extent in South America (< 1 %) and<br />

the Middle East / Africa (< 1 %). The United States leads<br />

the ranking of states according to the number of nuclear<br />

power plants with 96 plants, followed by France with<br />

58 plants, China with 48 plants and Russia with 36 plants.<br />

52 nuclear power plants are under construction, including<br />

nine in China, seven in India, six in Russia, and four each in<br />

South Korea and UAE. In addition to Turkey, Belarus and<br />

Bangladesh, the UAE belong to the new nuclear energy<br />

states, i.e. the countries in which nuclear power plants have<br />

not yet been connected to the grid, but are now under<br />

construction.<br />

The contribution of nuclear energy to electricity<br />

generation is very different in the countries that use<br />

nuclear energy. There is a range from 2 % in Iran to 72 % in<br />

France (Figure 2).<br />

| Fig. 1.<br />

World Electricity Production by Energy Source in TWh. Source: IAEA<br />

| Fig. 2.<br />

Share of nuclear power in total electricity generation 2018. Source: H.-W. Schiffer based on World<br />

<strong>Nuclear</strong> Association, London, August 2019<br />

The age of the existing nuclear power plants extends<br />

over a period of half a century. Corresponding to the focus<br />

of the commissioning of nuclear power plants in the 1970s<br />

and 1980s, the age group 30 to 40 is the most populated.<br />

A good 200 plants and thus almost half of the reactors in<br />

operation can be assigned to this category. Just under 100<br />

plants are younger than 20 years, about 50 plants are<br />

between 20 and 30 years old and almost 100 plants are<br />

older than 40 years (Figure 3).<br />

131<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER<br />

Feature<br />

The Future of <strong>Nuclear</strong>: The Role of <strong>Nuclear</strong> in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 132<br />

| Fig. 3.<br />

Age of Operating Reactors. Source: IAEA Source: IAEA <strong>Power</strong> Reactor In<strong>for</strong>mation System (PRIS)<br />

| Fig. 4.<br />

Scenarios and projections of various institutions on the development of the global energy supply.<br />

* In addition, the BP study includes “alternative” Scenarios, among others „More Energy,<br />

Less Globalization“<br />

3 The World Energy Council's<br />

global energy scenarios<br />

In 2019, a series of <strong>for</strong>ecasts and scenarios on the development<br />

of global energy supply in the coming decades were<br />

published. These include – among others (Figure 4) – the<br />

scenarios of the World Energy Council, which this organization<br />

presented at the World Energy Congress in Abu<br />

Dhabi in September 2019. (WEC 2019a). The Council's<br />

scenarios selected are exploratory routes through the<br />

Grand Transition. They do not follow a normative approach<br />

that is designed to meet a future goal. Neither are they to<br />

be understood as a <strong>for</strong>ecast. Rather, they span a range of<br />

plausible pathways to the development of the global<br />

energy supply.<br />

3.1 Description of the scenarios<br />

When naming the three scenarios considered, the Council<br />

used Modern Jazz, Unfinished Symphony and Hard Rock<br />

to reflect different music genres, giving an idea of the<br />

mood of each scenario (Figure 5).<br />

p For example, Modern Jazz reflects the notion that<br />

Jazz is the music of boundless individualism where<br />

improvisation and innovation are essential elements.<br />

p Unfinished Symphony: You cannot play a symphony<br />

alone; it takes an orchestra to play it and a conductor to<br />

take the lead.<br />

p And finally, Hard Rock is an expression of the strength<br />

of spirit in facing hard times.<br />

p “While all three scenarios reflect the same predetermined<br />

factors, each individual scenario places a<br />

different emphasis on how four critical uncertainties<br />

might play out.” (WEC 2019b).<br />

p Pre-determined factors are: Lower rates of growth in<br />

population than in the past, a rise in the penetration of<br />

new technologies, an increasing appreciation of the<br />

planet´s environmental boundaries, and a shift in<br />

economic power towards Asia.<br />

p The Council recognizes four critical uncertainties: The<br />

pace of innovation and productivity gains, the evolvement<br />

of international governance and geopolitics, the<br />

priority given to climate change and connected issues<br />

and the preferred mode of managing the energy sector<br />

– via state regulation, market mechanisms or a mixture.<br />

p “These four critical uncertainties interplay and create<br />

the underpinnings of the Council's three unique<br />

scenarios to 2060 – Modern Jazz, Unfinished Symphony<br />

and Hard Rock.” (WEC 2019b).<br />

p Modern Jazz follows a market-driven approach. The<br />

world is highly productive, with fast economic growth<br />

and strong technological development. Digitally<br />

enabled technology innovation and new business<br />

models address sustainability.<br />

p Unfinished Symphony follows a government-driven<br />

approach to achieving sustainability through international<br />

cooperation. An extensive network of fiscal<br />

incentives such as green subsidies and converging and<br />

effective carbon pricing across the different parts of the<br />

world is assumed.<br />

p In Hard Rock, national interests prevent countries from<br />

collaborating effectively on a global level, with limited<br />

attention to addressing climate change. Technologies<br />

are mandated based on the availability of local<br />

resources. Protectionism rather than free trade<br />

dominates the scene.<br />

Probabilities of occurrence are not assigned to the<br />

scenarios. On the contrary, it is conceivable that the actual<br />

development in the individual states and regions of the<br />

world does not follow the same scenario. In fact, different<br />

signals, which can be ascribed to one of the scenarios, are<br />

perceived in reality. If frameworks are set by increased<br />

regulation, the development follows the Unfinished<br />

Symphony scenario. A strong commitment to national<br />

unilateralism is attributable to the Hard Rock scenario. If a<br />

pioneering innovation from the private sector is the driver<br />

of change in a region, the development follows the Modern<br />

Jazz scenario. In addition, over time, the primary direction<br />

of development can change from one scenario to another<br />

scenario. Since 2016, signals from each of the three<br />

scenarios have been recorded in different regions of the<br />

world. And there has been a change in the perception of<br />

the Hard Rock scenario, which – unlike in the past – is no<br />

longer perceived as an outsider scenario.<br />

| Fig. 5.<br />

World Energy Scenarios.<br />

Feature<br />

The Future of <strong>Nuclear</strong>: The Role of <strong>Nuclear</strong> in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

3.2 Methodology <strong>for</strong> quantification<br />

Experts from all over the world participated in a scenario<br />

study group that basically developed the report under the<br />

guidance of the Council´s London office with the support<br />

of Accenture Strategy. The scenario storylines that resulted<br />

from this expert consultation process were quantified by<br />

the Paul Scherrer Institute (PSI) using its Global Multiregional<br />

MARKAL (GMM) model. The model is based on<br />

input assumptions reflecting the scenario storylines and<br />

determines the least-cost configurations of the global<br />

energy system from a social planner’s perspective with<br />

perfect <strong>for</strong>esight. The GMM model represents the global<br />

energy system disaggregated into 17 world regions<br />

including region-specific characteristics of energy supply<br />

and demand, as well as the corresponding CO 2 emissions.<br />

The evolution of key scenario drivers is expressed in<br />

coherent storylines of future economic and social developments.<br />

The iteration between the development of the<br />

narratives and their quantification provided the foundation<br />

<strong>for</strong> a powerful set of scenarios.<br />

The GMM model represents in detail the energy system of<br />

a region from resource extraction to energy end uses. GMM<br />

includes more than 400 energy conversion technologies<br />

with their technical, economic and environmental characteristics.<br />

Beyond conventional technologies, the model<br />

also includes zero-carbon technologies and even options to<br />

achieve net negative CO 2 emissions, such as bioenergy<br />

conversion with CO 2 capture and storage. Applying perfect<br />

<strong>for</strong>esight, GMM optimizes the total discounted energy<br />

system cost over the entire model horizon. Non-cost and<br />

behavioral assumptions are modeled as side-constraints.<br />

In all three scenarios, a slowing population growth is assumed,<br />

with an increase compared to today by one third to<br />

10 billion by 2060. GDP is assumed to develop differently<br />

across the scenarios with the highest average growth rate<br />

between 2015 and 2060 in the Modern Jazz scenario and<br />

the lowest growth in the Hard Rock scenario (Figure 6). In<br />

the scenarios, the different climate policy priorities are<br />

included via different levels of low-carbon technology<br />

support and different CO 2 pricing (Figure 7). The CO 2<br />

prices rise to 110 US$2010 by 2060 in the Unfinished Symphony<br />

scenario – compared to a range of 60-90 US$2010<br />

in Modern Jazz and only 19-45 US$2010 in Hard Rock.<br />

4 Results with the main focus<br />

on nuclear energy<br />

In addition to the study World Energy Scenarios 2019, the<br />

Council published a specific paper on The Future of<br />

<strong>Nuclear</strong>: Diverse Harmonies in the Energy Transition.<br />

(WEC 2019b). In this report, the World Energy Council,<br />

with contributions from the World <strong>Nuclear</strong> Association<br />

and the Paul Scherrer Institute, “has developed new<br />

insights into the future role of nuclear. These insights<br />

contributed to the development of the Council's new<br />

nuclear perspectives through the lens of its three global<br />

archetype scenarios – Modern Jazz, Unfinished Symphony<br />

and Hard Rock. A plausible role <strong>for</strong> nuclear to 2060 is<br />

described in the context of each scenario.” (WEC 2019b). It<br />

is clear that nuclear energy will feature in the global energy<br />

mix <strong>for</strong> decades to come. However, its share in the mix and<br />

its rate of growth will depend on a number of factors. “Some<br />

of these are largely determined by actions taken within<br />

the sector, e.g. speed of innovation in new nuclear technology<br />

and shaping policies on legacy waste management,<br />

whilst other factors such as energy policies, market design<br />

and financing structures are shaped and influenced by other<br />

stakeholders.” (WEC 2019b).<br />

| Fig. 6.<br />

Main assumptions of the three WEC scenarios. Source: Paul Scherrer Institut<br />

| Fig. 7.<br />

CO 2 prices assumptions by scenario in US$ (2010) per tCO 2 . Source: Paul Scherrer Institute<br />

4.1 Global results by scenario<br />

<strong>Nuclear</strong> energy will grow in all three scenarios. But the pathways<br />

are very different – depending on the scenario assumptions<br />

and the underlying storyline (Figure 8).<br />

In the consumer-empowered and market driven world<br />

of Modern Jazz, investors prefer smaller projects with low<br />

capital requirements and relatively quick returns compared<br />

to larger projects that require governmental intervention<br />

and support or the build-up of institutional capacity. New<br />

build is largely driven by China, India and Russia in the<br />

period 2020-2030, and developing economies in the<br />

| Fig. 8.<br />

Global power generation by energy sources in TWh. Source: World Energy Council, Paul Scherrer<br />

Institute, Accenture Strategy: World Energy Scenarios/2019, September 2019<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 133<br />

Feature<br />

The Future of <strong>Nuclear</strong>: The Role of <strong>Nuclear</strong> in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 134<br />

Middle East, like Iran, Turkey, Egypt, as well as Bangladesh<br />

and Indonesia in 2030-2040. These developments firmly<br />

place nuclear energy as a power source <strong>for</strong> emerging<br />

economies, in which the governmental backing <strong>for</strong> this<br />

technology can be expected also in the future. The rate of<br />

new nuclear construction in developed countries of Europe<br />

and North America slows down. Many markets do not<br />

value nuclear´s contribution as a dispatchable source in<br />

electricity rooted in large-scale smart grids, decentralized<br />

generation, variability, and effective energy storage.<br />

“Despite the fact that lifetime extension of existing<br />

reactors is one of the best power generation investments<br />

available in the market from a levelised cost of electricity<br />

point of view, a number of EU countries and the US provide<br />

only limited support to nuclear energy. In leading-edge<br />

countries, stability is so reliant on demand-side flexibility<br />

and supply-side optimization that ‘older world’ capacity<br />

reserves no longer seem necessary. Most older generation<br />

reactors in the US and Europe are scheduled <strong>for</strong> retirement<br />

and decommissioning, which reduces nuclear baseload<br />

available to the grid by 2040. Among the many countries<br />

that opt not to extend the lifetime of their reactor fleet, some<br />

struggle to meet pressing carbon targets.” (WEC<br />

2019b).<br />

Because of the competition from other low-carbon<br />

sources, nuclear´s share in electricity generation accounts<br />

<strong>for</strong> only 8.5 % by 2060, compared to 11 % in 2015. <strong>Nuclear</strong><br />

installed capacity increases by around 52 % from 407 GW<br />

in 2015 to 620 GW in 2060. “In the Modern Jazz scenario,<br />

the nuclear industry has the potential to reinvent itself,<br />

from selling units to providing services, and to remain an<br />

energy source of choice as some of the major existing<br />

nuclear countries and emerging economies expand their<br />

nuclear fleets.” (WEC 2019b).<br />

In Unfinished Symphony, governments support an<br />

acceleration of a net-zero carbon energy transition. Such a<br />

policy also favours nuclear energy and paves the way <strong>for</strong> a<br />

bright future <strong>for</strong> nuclear energy. Innovations such as Gen<br />

IV reactors and SMRs are accelerated. Due to high demand<br />

and availability of new investment instruments, these<br />

reactors are commercially introduced by 2035-2040 and<br />

by 2060 they make up 25-30 % of all new orders by<br />

capacity.<br />

“The major share of new nuclear capacity is rolled out<br />

using the fleet approach in China, India, Russia and the<br />

Middle East in 2020-2030. In Africa, major nuclear<br />

construction programmes are started by South Africa,<br />

Nigeria, Tanzania and others to meet rising energy<br />

demand from rapid urbanization. <strong>Power</strong> plants are<br />

built on time and budget, aided by the enhanced<br />

capability and capacity of the nuclear industry and<br />

facilitated by extensive use of digital technologies in<br />

design, planning, and construction stages. Digital twins<br />

support safe, reliable and efficient plant operations.”<br />

(WEC 2019b).<br />

In the European Union, better coordinated climate<br />

policies supported by new energy regulations and<br />

financing institutions are an encouragement to review the<br />

position on the role of nuclear in tackling climate change.<br />

Digitally enabled nuclear new build is on a roll across the<br />

EU, especially in the nuclear accustomed markets of<br />

Bulgaria, the Czech Republic, Finland, Hungary, Slovakia.<br />

The same is going to take place in the UK.<br />

“Lifetime extension remains high on the nuclear agenda<br />

2020-2030 both in the EU and in the US. Digital tools<br />

become significant <strong>for</strong> analysis and decision making.<br />

Most ‘old world’ reactors are put on lifetime extension<br />

programmes to keep them operational <strong>for</strong> another 20 years<br />

or more.” (WEC 2019b).<br />

In Japan, existing reactors are upgraded and restarted.<br />

“Japan also returns to the global nuclear technologies<br />

market as a strong nuclear exporter by 2035, building<br />

power plants in the EU, US, and the Middle East. South<br />

Korea's nuclear projects extend from the Middle East to the<br />

EU and Africa from 2040. There is growing global demand<br />

<strong>for</strong> nuclear power and competitive global supply chains<br />

from major reactor vendors in Russia, France, Japan,<br />

Korea, and China.” (WEC 2019b).<br />

In this scenario, nuclear accounts <strong>for</strong> 13.5 % of total<br />

global electricity generation by 2060, compared with 11 %<br />

in 2015. The installed nuclear capacity almost triples to<br />

1002 GW by 2060, compared to 2015. “In addition to<br />

new build and lifetime extension initiatives, new nuclear<br />

technologies – small modular reactor, floating units and<br />

Gen IV reactors – make a significant contribution to the<br />

global nuclear fleet.” (WEC 2019b).<br />

In Hard Rock, which is characterized by a fragmented<br />

world with low economic growth, increasing geopolitical<br />

tensions and low levels of cooperation between nations,<br />

national security, jobs, skills development and local<br />

environmental issues are top of national agendas.<br />

“<strong>Nuclear</strong> new capacity is driven mainly by the fleet<br />

approach in China, India, Russia between 2020 and 2030<br />

– countries that made a strategic bet on nuclear as a main<br />

source of energy and development. This is followed by new<br />

build programmes in 2030-2040 in the Middle East,<br />

including in Saudi Arabia, the United Arab Emirates, Iran,<br />

Turkey, Egypt and others. In these countries the core<br />

nuclear technology remains large-scale Gen III and Gen<br />

III+ reactors <strong>for</strong> centralized power systems. Incremental<br />

innovations and the use of digital technologies make Gen<br />

III+ a natural choice <strong>for</strong> all newcomers as it is a reliable,<br />

well-studied, serially built, and economically efficient<br />

nuclear solution.” (WEC 2019b).<br />

Russia and China remain the dominant players in the<br />

nuclear technology market. “In 2030, Russia and China<br />

successfully debut both commercial Gen IV and SMRs. By<br />

2045 Russian and Chinese Gen IV and SMRs have also<br />

been installed in a number of other locations around the<br />

world. Neither Gen IV nor SMR make any considerable<br />

impact on the overall energy system by 2060.” (WEC<br />

2019b).<br />

In the 2020s the EU and the US generally favour policies<br />

that allowed lifetime extension of existing reactors. The<br />

granted 20-year life extension will keep them operational<br />

beyond 2040-2050. However, between 2035 and 2040,<br />

lifetime extension is no longer an option <strong>for</strong> a large part of<br />

the existing fleets in the EU and the US. As a consequence,<br />

some countries drift gradually towards nuclear new build<br />

options, while a few others will decide to opt out of nuclear.<br />

As far as new build is concerned from 2020-2030, the US<br />

and most EU countries are reluctant to proceed in some<br />

cases due to low public acceptance and in others due<br />

to unclear economic viability. However, others go in the<br />

opposite direction. The Czech Republic, Hungary,<br />

Slovakia, and Bulgaria decide to extend their nuclear<br />

programmes <strong>for</strong> 2030-2040.<br />

In this scenario, nuclear´s share in global electricity generation<br />

reaches 12.5 % by 2060 compared with 11 % in<br />

2015. Installed nuclear capacity increases by 71 % from<br />

407 GW in 2015 to 696 GW in 2060. “The main focus areas<br />

are new construction in emerging markets and lifetime<br />

extension initiatives in developed economies.” (WEC<br />

2019b).<br />

Feature<br />

The Future of <strong>Nuclear</strong>: The Role of <strong>Nuclear</strong> in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

| Fig. 9.<br />

Global CO 2 emissions from fuel combustion by scenario in bn t.<br />

Source: World Energy Council, Paul Scherrer Institute, Accenture Strategy<br />

World Energy Scenarios/2019, September 2019; Kober et al (2018)<br />

* until 2100<br />

4.2 Global CO 2 emissions by scenario<br />

None of the scenarios shows a development, which leads<br />

to an achievement of the Paris Climate Agreement. In<br />

Unfinished Symphony, CO 2 emissions peak by 2020, in<br />

Modern Jazz by 2030 and in Hard Rock by 2040. The<br />

development indicated in the scenarios leads to an increase<br />

in the global temperature of 2 to 2.3 degrees Celsius in<br />

Unfinished Symphony, approximately 2.5 degrees in<br />

Modern Jazz and more than 3 degrees in Hard Rock<br />

( Figure 9).<br />

The Nationally Determined Contributions (NDCs) are<br />

the heart of the Paris Agreement and the achievement of<br />

these long-term goals. The Paris Agreement requires each<br />

country to outline and communicate their post-2020<br />

ambitions to limit the emissions of greenhouse gases. With<br />

the announced ef<strong>for</strong>ts by the countries, we are so far not<br />

on track to keep the global temperature increase below<br />

2 degrees Celsius. To achieve the even more ambitious<br />

1.5 degree target, the world had to be carbon-neutral by<br />

2060.<br />

The 25 th Conference of the Parties (COP 25) to the<br />

UNFCCC in Madrid in December 2019 ended with no<br />

major breakthrough. The conference agreed to ask<br />

countries to come up with more ambitious targets to cut<br />

greenhouse gas emissions by the time of the COP 26, which<br />

is expected to take place from 9-19 November 2020 in<br />

Glasgow, UK.<br />

4.3 Selected regional developments<br />

The Council´s scenario study provides not only global<br />

results but a breakdown by eight world regions is given as<br />

well (Figure 10).<br />

As far as nuclear energy is concerned, there is a clear<br />

shift in the use of nuclear energy to the Asian market<br />

within the upcoming decades. The highest capacity<br />

increases are going to take place in China, + 180 GW in<br />

Modern Jazz, + 320 GW in Unfinished Symphony and +<br />

200 GW in Hard Rock by 2060. The outcome <strong>for</strong> India in<br />

2060: + 50 GW in Modern Jazz, + 140 GW in Unfinished<br />

Symphony and + 70 GW in Hard Rock. Furthermore <strong>for</strong><br />

the region Middle East and North Africa significant nuclear<br />

capacity increases are indicated: + 17 GW in Modern Jazz,<br />

+ 37 GW in Unfinished Symphony and + 15 GW in Hard<br />

Rock (Figure 11).<br />

In 2015, 42 % of the world's nuclear power capacity was<br />

distributed to Europe including Russia, 30 % to North<br />

America, 26 % to Asia, 1 % to South America and 0.5 %<br />

each to the two regions of Sub-Saharan Africa and Middle<br />

East & North Africa. By 2060, the share of the three Asian<br />

regions will increase to 56 % in Modern Jazz and Hard<br />

Rock and even 61 % in Unfinished Symphony. The share of<br />

| Fig. 10.<br />

Regional breakdown <strong>for</strong> modelling.<br />

| Fig. 11.<br />

<strong>Nuclear</strong>: Installed Capacity in GW. Source: Paul Scherrer Institut<br />

| Fig. 12.<br />

Installed <strong>Nuclear</strong> Generation Capacity (GW) by Region. Source: World Energy Council, World Energy<br />

Scenarios 2019, The Future of <strong>Nuclear</strong>: Diverse Harmonies in the Energy Transition. London 2019<br />

North America and Europe combined decreases from 72 %<br />

in 2015 to 40 % in Modern Jazz and in Hard Rock. In<br />

Unfinished Symphony it will be 33 %. Installed capacity in<br />

the Sub-Saharan Africa, Middle East & North Africa and<br />

Latin America regions combined is going to account <strong>for</strong><br />

between 4 % (Modern Jazz and Hard Rock) and 6 %<br />

( Unfinished Symphony) of global nuclear capacity in 2060<br />

compared to 2 % in 2015 (Figure 12).<br />

5 Comparison of the WEC scenarios<br />

with the findings of other institutions<br />

“By benchmarking against peer studies and refreshing its<br />

global horizon scanning, the Council's comparative review<br />

has validated the continued relevance, plausibility, and<br />

challenges of its existing archetypal framework and the benefits<br />

of continuing to work with the plausibility-based,<br />

narrative-led methodology in maintaining openness to<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 135<br />

Feature<br />

The Future of <strong>Nuclear</strong>: The Role of <strong>Nuclear</strong> in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 136<br />

new developments. The comparison of different types of<br />

global energy scenarios has helped identify some important<br />

gaps in bridging the flexibility of the narrative-led,<br />

plausibility-based approach with the rigidity of long-term<br />

global energy system models.” (WEC 2019c).<br />

The following three most relevant global energy<br />

scenario studies, published in the second half of 2019, were<br />

selected <strong>for</strong> comparing the results:<br />

p WEC´s World Energy Scenarios 2019 (WEC 2019a)<br />

p EIA´s <strong>International</strong> Energy Outlook 2019 (EIA 2019)<br />

p IEA´s World Energy Outlook 2019 (IEA 2019)<br />

This paper concentrates on EIA´s Reference Case, two of<br />

the three scenarios of the IEA (Stated Policies Scenario<br />

and Sustainable Development) and the three WEC scenarios.<br />

In addition, IAEA's 2019 edition of the Energy, Electricity<br />

and <strong>Nuclear</strong> <strong>Power</strong> Estimates <strong>for</strong> the Period up to 2050<br />

is referred to in the comparison. The year 2040 is chosen<br />

<strong>for</strong> the comparison, as the time horizon of the IEA scenarios<br />

is to 2040 only.<br />

The Reference Case (RC) of the EIA reflects current<br />

trends and relationships among supply, demand, and<br />

prices in the future. The RC includes some anticipated<br />

changes over time, such as expected regional economic<br />

and demographic trends, planned changes to infrastructure<br />

and assumed incremental cost and per<strong>for</strong>mance<br />

improvements in known technologies based on historical<br />

trends. (EIA 2019).<br />

The Stated Policies Scenario of the IEA, which occupies<br />

a central position in the WEO analysis, reflects the impact<br />

of energy-related policies that governments have already<br />

implemented including an assessment of the likely effects<br />

of announced policies as expressed in official targets and<br />

plans. Furthermore, a dynamic evolution of the cost of<br />

energy technologies, reflecting gains from deployment and<br />

learning-by-doing is assumed in this scenario. (IEA 2019).<br />

The Sustainable Development Scenario of the IEA is an<br />

essential counterpart to the Stated Policies Scenario. It sets<br />

out the major changes that would be required to reach the<br />

key energy-related goals of the United Nations Sustainable<br />

Development Agenda simultaneously, such as a reduction<br />

in greenhouse gas emissions in line with the Paris Agreement,<br />

universal access to modern energy by 2030 and a<br />

dramatic reduction in energy-related air pollution. (IEA<br />

2019).<br />

The projections of the <strong>International</strong> Atomic Energy<br />

Agency (IAEA) “<strong>for</strong> nuclear electrical generating capacity<br />

are presented as low and high estimates, reflecting different<br />

driving factors that have an impact on the worldwide<br />

deployment of low carbon energy source.” (IAEA 2019).<br />

The main results of the comparison, as far as the expected<br />

development <strong>for</strong> the global nuclear capacity is concerned<br />

(Figure 13): EIA's Reference Case is very much in line with<br />

the Stated Policies Scenario of the IEA and WEC's Modern<br />

Jazz, while the other two WEC scenarios expect a stronger<br />

development <strong>for</strong> nuclear energy. The Sustainable Development<br />

Scenario of the IEA, a normative scenario, comes to<br />

slightly higher numbers <strong>for</strong> nuclear energy by 2040 compared<br />

to WEC's Hard Rock. The by far strongest upward pathway<br />

<strong>for</strong> nuclear energy is seen in WEC´s Unfinished Symphony.<br />

The numbers shown in Unfinished Symphony <strong>for</strong><br />

2040 even exceed the high case of IAEA's outlook. The IAEA<br />

has published a range <strong>for</strong> the global nuclear capacity between<br />

353 GW and 628 GW <strong>for</strong> 2040 and between 371 GW<br />

und 715 GW in 2050. (IAEA 2019).<br />

6 Conclusion<br />

A wide range of technologies is necessary to bring energy<br />

economic development closer to climate policy requirements.<br />

The focus should be on approaches that enable<br />

greenhouse gas emissions to be reduced at the lowest CO 2<br />

abatement costs. These include in particular:<br />

p Improved efficiency when converting and using energy.<br />

p Expansion of renewable energies – focused on technologies<br />

and locations that have comparatively<br />

favorable conditions.<br />

p Identification of new customer-centric growth opportunities<br />

in electrification, storage, power-to-X and the<br />

new hydrogen economy.<br />

p Expanded use of nuclear energy by extending the<br />

lifetime of existing plants, provided that their safety is<br />

fully guaranteed, and construction of new plants at<br />

locations where the economic and political conditions<br />

offer a solid basis <strong>for</strong> this.<br />

p Implementation of an energy infrastructure to prevent<br />

greenhouse gas emissions from the combustion of fossil<br />

fuels and production processes from entering the<br />

atmosphere (carbon capture and usage/storage), and<br />

technologies to generate negative CO 2 emissions.<br />

p Securing new opportunities <strong>for</strong> international trade not<br />

only with clean electrons but also with clean molecules<br />

(gaseous and liquid) including hydrogen.<br />

CO 2 pricing that is at a comparable level worldwide as<br />

far as possible, a technology-neutral political framework<br />

and increased international cooperation are crucial <strong>for</strong><br />

achieving the sustainability goals. Commitments agreed<br />

under the Paris Agreement and other initiatives have the<br />

potential to support nuclear energy development.<br />

References<br />

| BP (2019a) BP Statistical Review of World Energy June 2019, London (June 2019)<br />

| BP (2019b) BP Energy Outlook – 2019 edition, London (February 2019)<br />

| Energy In<strong>for</strong>mation Administration (2019) <strong>International</strong> Energy Outlook 2019, Washington, DC<br />

(September 2019)<br />

| Equinor (2019) Energy Perspectives 2019, Stavanger (June 2019)<br />

| ExxonMobil (2019) 2019 Outlook <strong>for</strong> Energy: A Perspective to 2040, Irving/Texas (August 2019)<br />

| <strong>International</strong> Atomic Energy Agency (2019) Energy Electricity and <strong>Nuclear</strong> <strong>Power</strong> Estimates <strong>for</strong> the<br />

Period up to 2050, 2019 edition, Vienna (September 2019)<br />

| <strong>International</strong> Energy Agency (2019) World Energy Outlook 2019, Paris (November 2019)<br />

| Shell <strong>International</strong> B.V. (2018) Shell Scenarios. Sky – Meeting the Goals of the Paris Agreement, The<br />

Hague (March 2018)<br />

| World Energy Council (2019a) World Energy Scenarios 2019 – Exploring Innovation Pathways to<br />

2040, in collaboration with Accenture Strategy and Paul Scherrer Institute, London (September<br />

2019)<br />

| World Energy Council (2019b) World Energy Scenarios 2019 – The Future of <strong>Nuclear</strong>: Diverse Harmonies<br />

in the Energy Transition, with contributions from the World <strong>Nuclear</strong> Association and the Paul<br />

Scherrer Institute, London (August 2019)<br />

| World Energy Council (2019c) Global Energy Comparison Review, World Energy Insights Brief 2019,<br />

London (April 2019)<br />

| Fig. 13.<br />

World <strong>Nuclear</strong> Capacityin GW.<br />

* SP = Stated Policies Scenario; SD = Sustainable Development Scenario<br />

Author<br />

Dr. Hans-Wilhelm Schiffer<br />

Member of the Studies Committee<br />

World Energy Council (London)<br />

Visiting Lecturer at the RWTH Aachen University<br />

Feature<br />

The Future of <strong>Nuclear</strong>: The Role of <strong>Nuclear</strong> in the Upcoming Global Energy Transition ı Hans-Wilhelm Schiffer


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

SMRs und regulatorische Fragestellungen<br />

Christian Raetzke<br />

137<br />

In der internationalen Kernenergieszene wird immer mehr über SMRs (Small Modular Reactors) diskutiert, also über<br />

relativ kleine Reaktoren (≤ 300 MW elektrisch), die eine Vielzahl von technischen Designs aufweisen, von<br />

„ verkleinerten“ Ausgaben marktreifer Designs für große Leichtwasserreaktoren bis hin zu innovativen Modellen, die<br />

etwa mit Salzschmelze oder Blei arbeiten. Tatsächlich gebaut und in Betrieb genommen wurde bislang nur wenig, aber<br />

die Zahl der angekündigten Projekte (in Europa zuletzt in Estland), der staatlichen Förderungen (z. B. in den USA),<br />

der Verfahren zumindest für Konzeptgenehmigungen (etwa in den USA und Kanada) und der Studien, die SMRs als<br />

attraktive Option einstufen, hat sich in den letzten zwei bis drei Jahren vervielfacht.<br />

Die Frage, ob SMRs tatsächlich ein wichtiges Zukunftselement<br />

der Kernenergie sind, wurde auch bei der letztjährigen<br />

Jahrestagung Kerntechnik auf einer vom Verfasser<br />

geleiteten Sitzung erörtert. 1 Immerhin scheinen sie, gerade<br />

in der gegenwärtigen weltweiten Debatte um die Rolle<br />

der Kernenergie als klimaneutrale Option der Stromerzeugung,<br />

Vorteile aufzuweisen, die herkömmliche<br />

Großkraftwerke nicht darbieten, insbesondere durch eine<br />

niedrigere Investitionsschwelle und durch flexiblere Einsatzmöglichkeiten<br />

in einem sich wandelnden Energiemix.<br />

Auch eine (noch) weiter verbesserte Sicherheit wird oft als<br />

Argument genannt.<br />

In genehmigungsrechtlicher Hinsicht sind SMRs jedenfalls<br />

definitiv ein spannendes Thema. Die bestehenden<br />

regulatorischen An<strong>for</strong>derungen und Strukturen passen<br />

in mancherlei Hinsicht nicht auf die neuen Konzepte;<br />

innovative Ansätze sind nötig.<br />

Dem Verfasser scheinen zwei Aspekte besonders<br />

wichtig zu sein.<br />

Zum einen müssen die nationalen Regelwerke und<br />

Genehmigungsverfahren der Länder, die SMRs bauen<br />

wollen, so gestaltet sein, dass sie die regulatorische<br />

Bewältigung von SMRs gestatten. Für SMRs, die – wie<br />

oben schon erwähnt – eine große Vielzahl von sehr<br />

unterschiedlichen Designs aufweisen, wird man von<br />

vornherein flexible, risiko- und per<strong>for</strong>mancebasierte<br />

An<strong>for</strong>derungen vorsehen müssen. Als Beispiel für einen<br />

eigens für SMRs gestalteten Katalog mit generischen<br />

Sicherheitskriterien sei auf eine Leitlinie der Canadian<br />

<strong>Nuclear</strong> Safety Commission (CNSC) verwiesen: „Design of<br />

Small Reactor Facilities (RD-367)“. 2<br />

Im Einzelnen werden viele bestehende Regelungen,<br />

die für Großkraftwerke gedacht sind, für SMRs angepasst<br />

werden müssen. So hat etwa die US-amerikanische<br />

<strong>Nuclear</strong> Regulatory Commission (NRC) den Entwurf einer<br />

Vorschrift veröffentlicht, die erstmals für SMRs eine<br />

abgestufte Festsetzung der (für die Standortbewertung in<br />

den USA sehr wichtigen) Notfallplanungszone rund um<br />

die Anlage erlaubt. 3 Hintergrund ist das im Vergleich zu<br />

herkömmlichen Anlagen deutlich geringere Kerninventar<br />

von SMRs sowie der Umstand, dass viele Designs angabegemäß<br />

mit passiven Systemen und inhärenter Sicherheit<br />

eine Freisetzung ausschließen sollen („walk-away safe“).<br />

Eine Modifizierung von An<strong>for</strong>derungen ist unter diesen<br />

Voraussetzungen kein Sicherheitsnachlass, sondern eine<br />

Anwendung des allgemein anerkannten „gestuften<br />

Ansatzes“ (graded approach) bei der Sicherheitsbewertung,<br />

wonach An<strong>for</strong>derungen nach dem Ausmaß<br />

des Risikos zu gestalten sind.<br />

Der zweite Gesichtspunkt lenkt den Blick vom<br />

Nationalen ins <strong>International</strong>e. Wie schon das „M“ für<br />

„ modular“ aussagt, beruhen die meisten SMR-Designs auf<br />

dem Grundgedanken, dass der Reaktor aus Modulen<br />

besteht, die in einer Fabrik vorgefertigt werden und vor<br />

Ort nur noch zusammengebaut oder aufgestellt werden<br />

müssen. Das ist geradezu ein springender Punkt, der das<br />

SMR-Konzept erst ausmacht und den gewünschten weitgefächerten<br />

Einsatz erst ermöglicht. Die standardisierte<br />

Serienfertigung ist auch für die Wirtschaftlichkeit ein<br />

entscheidendes Element, indem die bisher von großen<br />

Reaktoren verwirklichten „economies of scale“ durch<br />

„ economies of series“, also durch hohe Produktionszahlen,<br />

ersetzt werden sollen; auch wären Genehmigungsverfahren<br />

und Errichtung mit weniger Risiken behaftet<br />

und daher besser zu finanzieren als heute. Die Modularität<br />

und die damit einhergehende Standardisierung würden<br />

aber zunichte gemacht, wenn ein SMR jeweils an stark<br />

unterschiedliche nationale Regelwerke angepasst, also im<br />

Design vielfach geändert werden müsste.<br />

Deshalb ist es essentiell, dass die Länder, die SMRs<br />

einsetzen wollen, sich auf (weitgehend) vereinheitlichte<br />

Regeln einigen. In der bisherigen Historie der Kernenergie<br />

waren Sicherheitsan<strong>for</strong>derungen jedoch dezidiert eine<br />

nationale Sache. Seit ein bis zwei Jahrzehnten gibt es zwar<br />

verstärkte Bemühungen der Genehmigungsbehörden zur<br />

Entwicklung gemeinsamer Ansätze, schon damit sie nicht<br />

jedesmal „das Rad neu erfinden“ müssen und Ressourcen<br />

sparen können; für solche Bemühungen steht beispielhaft<br />

das Multinational Design Evaluation Programme MDEP. 4<br />

Solche Programme müssten für SMRs aber qualitativ auf<br />

eine neue Stufe gehoben werden; Ziel wäre idealerweise<br />

eine gemeinsam von den beteiligten Behörden getragene<br />

Konzeptfreigabe, die dann die Grundlage für die jeweilige<br />

nationale Genehmigung bildete. Wollte man besonders<br />

kühn sein, so könnte man sogar daran denken, dass die<br />

vom Herstellerland erteilte Genehmigung in den Einsatzländern<br />

in gewissem Umfang anerkannt wird.<br />

Länder, die SMRs einsetzen wollen, müssen diese<br />

Heraus<strong>for</strong>derungen angehen. Wieder einmal ist Finnland<br />

ein Vorbild. Die finnische Genehmigungs- und Aufsichtsbehörde<br />

STUK hat jüngst einen Bericht veröffentlicht 5 , der<br />

den Weg zu dem von der Behörde selbst gesetzten Ziel<br />

beschreibt, für die Genehmigung eines SMR bereit zu sein,<br />

wenn es soweit ist.<br />

Die große SMR-Welle steht vorläufig noch auf dem<br />

Papier. Dass sie tatsächlich ausgelöst wird, setzt die Überwindung<br />

vieler Hindernisse voraus, vor allem politischer<br />

und wirtschaftlicher Art. Wenn sie aber kommen sollte,<br />

dann müssen die geeigneten regulatorischen Instrumente<br />

bereitstehen – Instrumente, die SMRs gerecht werden und<br />

zugleich weltweit die er<strong>for</strong>derliche Sicherheit garantieren.<br />

Author<br />

Rechtsanwalt Dr. Christian Raetzke<br />

Beethovenstr. 19<br />

04107 Leipzig<br />

1) Sitzungsbericht:<br />

https://<br />

www.ktg.org/ktgwAssets/docs/<br />

AMNT/2019/<br />

Raetzke-AMNT-<br />

2019-Focus-Session--<br />

<strong>International</strong>-Innovation-SMRs.pdf<br />

2) https://<br />

nuclearsafety.gc.ca/<br />

pubs_catalogue/<br />

uploads/RD-367-<br />

Design-of-Small-<br />

Reactor-Facilities_<br />

e.pdf<br />

3) https://<br />

www.nrc.gov/<br />

reading-rm/doccollections/news/<br />

2019/19-063.pdf<br />

4) http://<br />

www.oecd-nea.org/<br />

mdep<br />

5) Zur Pressemitteilung:<br />

https://<br />

www.stuk.fi/web/<br />

en/-/stuk-prepares<strong>for</strong>-assessing-thesafety-of-novelnuclear-reactors.<br />

–<br />

Der Bericht selber<br />

ist auf Finnisch.<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Spotlight on <strong>Nuclear</strong> Law<br />

Regulatory Enquiries and About SMRs ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

138<br />

ENVIRONMENT AND SAFETY<br />

About EPRI <strong>Journal</strong><br />

EPRI <strong>Journal</strong> is the<br />

flagship publication of<br />

the Electric <strong>Power</strong><br />

Research Institute. It<br />

provides in-depth<br />

reporting on electricity<br />

sector R&D,<br />

industry and<br />

technology news,<br />

EPRI thought leadership,<br />

and guest<br />

perspectives from<br />

industry leaders. With<br />

features, brief articles,<br />

info-graphics, and other<br />

engaging digital<br />

<strong>for</strong>mats, readers gain<br />

insights through clear<br />

explanations about<br />

technology developments,<br />

utility field<br />

experiences, and realworld<br />

solutions. Subscriptions<br />

are free.<br />

Original URL<br />

<strong>for</strong> article:<br />

http://eprijournal.com/<br />

toward-a-new-riskin<strong>for</strong>med-approach-tocyber-security/<br />

Toward a New Risk-In<strong>for</strong>med Approach<br />

to Cyber Security<br />

EPRI Guidelines Equip Electric <strong>Power</strong> Industry<br />

to Address Growing Risks and Vulnerabilities<br />

Chris Warren<br />

A More Targeted Approach<br />

to Cyber Security<br />

EPRI has developed step-by-step<br />

guidance <strong>for</strong> utilities to assess cyber<br />

security measures at power plants,<br />

in<strong>for</strong>med by risk. The methodology<br />

enables users to allot more time and<br />

resources to protect the devices most<br />

critical to operations. “We made the<br />

business case <strong>for</strong> EPRI’s methodology<br />

with our senior management,” said<br />

Brad Yeates, Southern <strong>Nuclear</strong>’s<br />

manager of cyber security <strong>for</strong> Vogtle<br />

Units 3 and 4. “We concluded that this<br />

new approach was the most direct and<br />

cost-effective one.”<br />

In a power plant, robust cyber<br />

security depends on safeguarding<br />

control system components. One<br />

critical component is a plant’s engineering<br />

workstation.<br />

“It’s important to protect the engineering<br />

workstation because it’s<br />

connected to the programmable logic<br />

controllers in a power plant,” said<br />

EPRI Senior Technical Leader Jeremy<br />

Lawrence. “It’s a prime target. If<br />

attackers get into it and inject<br />

malware, they could potentially<br />

compromise critical plant control<br />

functions and shut down the plant.”<br />

The traditional “defense-in-depth”<br />

approach to protecting digital plant<br />

control components from attackers<br />

involves layering various security<br />

measures – a complex undertaking.<br />

It’s challenging to quickly determine<br />

the optimal types and number of<br />

layers.<br />

Bulk power system operators in<br />

North America must comply with the<br />

North American Electric Reliability<br />

Corporation’s (NERC) Critical Infrastructure<br />

Protection (CIP) Standards.<br />

The NERC standards, along with cyber<br />

security regulations from the National<br />

Institute of Standards and Technology<br />

and the U.S. <strong>Nuclear</strong> Regulatory<br />

Commission, are sometimes known<br />

as the committed catalog approach<br />

because they direct the implementation<br />

of a catalog of security measures<br />

<strong>for</strong> all components. While this<br />

approach provides a degree of security,<br />

power industry stakeholders are<br />

investigating the benefits of a more<br />

targeted approach – applying security<br />

measures to specific vulnerabilities in<br />

plant control systems.<br />

“Standards and regulations have<br />

played an essential role in establishing<br />

a baseline of cyber security protections<br />

<strong>for</strong> the electric power industry<br />

–and in bringing stakeholders to the<br />

table to discuss how to secure critical<br />

assets,” said Lawrence. “Yet, compliance<br />

with standards and regulations<br />

doesn’t equal security. <strong>Power</strong> plant<br />

operators are raising the bar on<br />

cyber security to implement more<br />

sophisticated measures above and<br />

beyond the regulatory requirements.”<br />

This is in line with growing<br />

cyber security risks. Last year, U.S.<br />

Department of Energy (DOE) Secretary<br />

Rick Perry told lawmakers that<br />

hundreds of thousands of cyber<br />

attacks on the American energy<br />

system take place each day. According<br />

to DOE’s Multiyear Plan <strong>for</strong> Energy<br />

Sector Cybersecurity, “The frequency,<br />

scale, and sophistication of cyber<br />

threats have increased, and attacks<br />

have become easier to launch. Nationstates,<br />

criminals, and terrorists<br />

regularly probe energy systems to<br />

exploit cyber vulnerabilities in order<br />

to compromise, disrupt, or destroy<br />

energy systems.”<br />

“The threat only goes up,” said<br />

William Vesely, a project specialist in<br />

control systems engineering at Con<br />

Edison, the utility that serves New<br />

York City and Westchester County,<br />

New York. “Critical infrastructure in<br />

the power industry is a prime target,<br />

and staying ahead of the game is<br />

challenging and requires vigilance.”<br />

Risk-In<strong>for</strong>med Cyber Security<br />

In collaboration with utilities, control<br />

system manufacturers, policymakers,<br />

and regulators, EPRI is developing<br />

new cyber security approaches to<br />

protect critical power plant assets.<br />

As part of this research, EPRI has<br />

developed an advanced risk-in<strong>for</strong>med<br />

methodology <strong>for</strong> utilities to assess<br />

cyber security measures. This step-bystep<br />

approach involves considering<br />

potential security breaches, their<br />

Environment and Safety<br />

Toward a New Risk-In<strong>for</strong>med Approach to Cyber Security ı Chris Warren


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

likelihood, and the consequences<br />

(such as radiological release, outages,<br />

and reputation damage) and then<br />

prioritizing mitigations.<br />

Security standards and tools typically<br />

focus on company-level risk and<br />

may apply the same controls to every<br />

component. EPRI’s risk-in<strong>for</strong>med<br />

guidance advances the state of the<br />

art through a systems engineering<br />

approach that enables users to assess<br />

specific cyber security risks at the<br />

component, system, and company<br />

levels.<br />

“Not all components are created<br />

equal or serve the same function,”<br />

said Lawrence. “A limitation of the<br />

typical approach is that it doesn’t<br />

always differentiate among components.<br />

With our methodology, power<br />

plant operators can assess specific<br />

vulnerabilities with individual components<br />

and identify the best controls<br />

to mitigate the threats. They can<br />

spend more time protecting the<br />

devices most critical to operations –<br />

and prioritize application of standards<br />

and regulations. Standards provide<br />

the ‘what,’ and EPRI’s methodology<br />

provides the ‘how.’”<br />

Risk-In<strong>for</strong>med Approach<br />

in Action<br />

The first step in EPRI’s methodology<br />

involves characterizing precisely the<br />

attack surface of each component in<br />

power plant control systems. An<br />

attack surface encompasses all the<br />

points at which a component can be<br />

attacked, including physical, network,<br />

and wireless access.<br />

The next step: Identify the possible<br />

goals of an attack (such as stealing data<br />

or altering configuration files) and the<br />

possible exploit sequences ( attack<br />

strategies), which vary depending on<br />

the goals and vulnerabilities.<br />

With a comprehensive understanding<br />

of where, why, and how<br />

an attacker might strike, the plant<br />

operator can plan the most effective<br />

defenses.<br />

The third step of the risk-in<strong>for</strong>med<br />

approach is to assess each security<br />

measure’s ability to protect against,<br />

detect, respond to, and recover from<br />

the most likely attacks.<br />

“There are lots of potential ways to<br />

mitigate each exploit sequence, and<br />

you want to apply the most effective<br />

combinations,” said Lawrence. “An<br />

engineering workstation may have<br />

anti-virus software already installed<br />

that can effectively detect malware<br />

and alert an operator of its presence.<br />

But it might not help much with<br />

response and recovery.”<br />

A cumulative score is calculated <strong>for</strong><br />

each security measure based on its<br />

effectiveness and ease of implementation.<br />

“The score tells you how well<br />

protected you are against each exploit<br />

sequence,” said Lawrence. “Whether<br />

that score is acceptable to a plant<br />

operator depends on the asset’s<br />

importance and the consequences of a<br />

successful attack. Staff at each plant<br />

must determine its acceptable risk<br />

threshold.”<br />

The risk-in<strong>for</strong>med approach provides<br />

a way to map security measures<br />

to regulatory requirements and to<br />

track compliance. While the path to<br />

achieving compliance varies depending<br />

on the regulatory body, regulators<br />

generally consider a risk-in<strong>for</strong>med<br />

approach acceptable if it can be<br />

demonstrated to satisfy the regulations’<br />

intent and objectives.<br />

“The risk-in<strong>for</strong>med approach can<br />

still meet regulatory requirements,”<br />

said Lawrence. “It’s a way to comply<br />

more efficiently and effectively.”<br />

Risk-In<strong>for</strong>med Cyber Security<br />

at Vogtle<br />

As part of the construction of its<br />

Plant Vogtle Units 3 and 4, Southern<br />

<strong>Nuclear</strong> adopted EPRI’s systems<br />

engineering approach to cyber<br />

security while complying with security<br />

regulations.<br />

“We made the business case <strong>for</strong><br />

EPRI’s methodology with our senior<br />

management,” said Brad Yeates,<br />

manager of cyber security <strong>for</strong> Vogtle<br />

Units 3 and 4. “We concluded that this<br />

new approach was the most direct and<br />

cost-effective one.”<br />

Vogtle collaborated with EPRI to<br />

develop a risk-in<strong>for</strong>med cyber security<br />

plan to help protect 16,000 digital<br />

plant components from attacks.<br />

“We’re the first utility in the world<br />

to make a commitment to this<br />

approach to cyber security assessment<br />

and mitigation,” said Yeates. “We’re<br />

carving out a path <strong>for</strong> others to follow.<br />

Everybody that follows us is going to<br />

have a much easier time.”<br />

Yeates worked with EPRI technical<br />

staff to develop the process to analyze<br />

the 16,000 digital assets, identifying<br />

approximately 400 distinct constituent<br />

components. “This is a manageable<br />

number of constituent elements that<br />

we can focus on during our initial<br />

technology assessment,” said Yeates.<br />

“Once these 400 are assessed, they<br />

become like a bag of LEGO® bricks<br />

that can be assembled into larger<br />

digital systems and subsystems, with<br />

appropriate tailoring to their operational<br />

configurations. The technology<br />

assessment includes analysis of 89<br />

critical systems.”<br />

In using EPRI’s risk-in<strong>for</strong>med<br />

methodology, Yeates is assessing each<br />

asset’s vulnerabilities, in<strong>for</strong>ming the<br />

selection of the best available protections.<br />

Yeates expects Units 3 and 4<br />

to finalize their cyber security program<br />

by early 2020 and their assessments<br />

by the end of 2020.<br />

“We must have the cyber program<br />

up and running in order to receive<br />

fuel,” he said. “Once we receive fuel,<br />

the units will go through a thorough<br />

testing phase be<strong>for</strong>e commercial<br />

operation.”<br />

In 2019, EPRI is collaborating with<br />

vendors, manufacturers, and utilities<br />

on studies that document the<br />

implementation of EPRI’s advanced<br />

risk- in<strong>for</strong>med approach and its<br />

benefits. Based on the results, these<br />

stake holders are expected to provide<br />

EPRI with feedback, in<strong>for</strong>ming improvements<br />

to the approach.<br />

Con Edison’s Vesely would like<br />

to see the electric power industry<br />

adopt this type of risk-in<strong>for</strong>med cyber<br />

security approach, viewing it as a<br />

significant improvement to current<br />

practices.<br />

The challenge <strong>for</strong> power companies<br />

is to balance the benefits<br />

of new digital technologies with<br />

security. “I think EPRI’s risk-in<strong>for</strong>med<br />

approach is going to be a milestone in<br />

that direction,” he said. “I expect<br />

international standards to draw<br />

heavily on the concepts underlying<br />

EPRI’s approach.”<br />

“EPRI has incorporated more<br />

engineering into the assessment of<br />

cyber risks in the electric power<br />

sector,” said EPRI’s Lawrence. “Our<br />

guidance equips power plant operators<br />

with the in- depth understanding<br />

of vulner abilities they need to pinpoint<br />

the best protections and keep<br />

their facilities secure.”<br />

Authors<br />

Chris Warren<br />

Key EPRI Technical Experts<br />

Jeremy Lawrence<br />

techexpert@eprijournal.com<br />

EPRI<br />

3420 Hillview Avenue<br />

Palo Alto, Cali<strong>for</strong>nia 94304<br />

United States of America<br />

About EPRI<br />

The Electric <strong>Power</strong><br />

Research Institute<br />

(EPRI) conducts<br />

research, development,<br />

and demonstra<br />

tion projects <strong>for</strong> the<br />

benefit of the public<br />

in the United States<br />

and internationally.<br />

As an independent,<br />

nonprofit organization<br />

<strong>for</strong> public interest<br />

energy and environmental<br />

research, we<br />

focus on electricity<br />

generation, delivery,<br />

and use in collaboration<br />

with the<br />

electricity sector, its<br />

stakeholders and<br />

others to enhance the<br />

quality of life by<br />

making electric power<br />

safe, reliable, af<strong>for</strong>dable,<br />

and environmentally<br />

responsible.<br />

ENVIRONMENT AND SAFETY 139<br />

Environment and Safety<br />

Toward a New Risk-In<strong>for</strong>med Approach to Cyber Security ı Chris Warren


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

140<br />

RESEARCH AND INNOVATION<br />

Improved Metrology of Thermophysical<br />

Properties at Very High Temperatures:<br />

The EMPIR Project Hi-TRACE<br />

Konstantinos Boboridis and Bruno Hay<br />

Introduction <strong>Power</strong> plants, aerospace and materials processing are prominent examples of technologies and<br />

industrial processes in which materials are exposed to (very) high temperatures. Refractory materials are employed not<br />

only to withstand these high temperatures, but also because of their favourable physical properties at these temperatures.<br />

Particularly nuclear reactors are known <strong>for</strong> the extreme conditions of temperature at which the fuel materials have to<br />

operate during several years, in combination with radiation from the fission process. The per<strong>for</strong>mance of the fuel, as<br />

well as the cladding, is key <strong>for</strong> the safety of the system and needs, thus, be understood in detail.<br />

Scientists and engineers striving to<br />

improve the safety margins of a<br />

particular technology, as well as its<br />

efficiency and competitiveness, often<br />

do that by developing new materials<br />

or by optimizing existing ones. For<br />

instance, in recent years there has<br />

been renewed interest in SiC-based<br />

composite materials and in so-called<br />

ultra-high-temperature ceramics. For<br />

example, they are investigated as<br />

cladding <strong>for</strong> enhanced accident<br />

tolerant fuel in nuclear power plants,<br />

or as components of gas turbine<br />

aerospace engines. In these cases<br />

design-base and beyond-design-base<br />

accident scenarios need to be<br />

simulated, during which materials<br />

would be exposed to exceedingly high<br />

temperatures.<br />

Reliable values of thermophysical<br />

properties of materials at very high<br />

temperatures, however, are typically<br />

scarce, increasingly uncertain with<br />

temperature, and sometimes contradictory.<br />

These measurements are<br />

indeed challenging. Moreover, when<br />

employing such data in analyses and<br />

simulations that are used <strong>for</strong> licensing<br />

of nuclear power plants and risk<br />

assessment in general, it is important<br />

to ensure their traceability to national<br />

or international standards and<br />

to establish credible measurement<br />

uncertainties. This requires appropriate<br />

standard reference materials<br />

and reference facilities that can be<br />

used to validate a measurement<br />

technique.<br />

Project description<br />

Hi-TRACE is a project aiming to close<br />

this gap by developing reference<br />

facilities and validating measurement<br />

methods, complete with measurement<br />

uncertainty budgets, <strong>for</strong> several technologically<br />

important thermophysical<br />

properties at temperatures up to<br />

3,000 °C. Its full title is ‘Industrial<br />

process optimisation through improved<br />

metrology of thermo physical properties’.<br />

It brings together eleven partners<br />

from five European countries: four<br />

National Metrology Institutes (NMIs)<br />

or Designated Institutes (DIs), three<br />

industrial partners, two universities,<br />

and two research centres (see Table 1).<br />

The project is receiving funding<br />

through EMPIR, the European Metrology<br />

Programme <strong>for</strong> Innovation and<br />

Research, which is co-financed by the<br />

Participating States and the European<br />

Union’s Horizon 2020 research and<br />

innovation programme. It was<br />

kicked-off in July 2018 and will run<br />

<strong>for</strong> three years with a budget of about<br />

1.6 million Euros.<br />

The project’s work packages<br />

address the measurement of thermal<br />

diffusivity, specific heat, emissivity<br />

and melting temperature up to<br />

3,000 °C, as well as the quantification<br />

of de-bonding between solid materials<br />

Full name<br />

Laboratoire national de métrologie et d’essais (LNE)<br />

NPL Management Limited (NPL)<br />

Physikalisch-Technische Bundesanstalt (PTB)<br />

Institut Za Nuklearne Nauke Vinča<br />

ArianeGroup SAS<br />

NETZSCH Gerätebau GmbH<br />

Commissariat à l’énergie atomique<br />

et aux énergies alternatives<br />

Hochschule für Angewandte Wissenschaften<br />

Würzburg-Schweinfurt (FHWS)<br />

Technische Universität Graz (TUG)<br />

Bayerisches Zentrum<br />

für Angewandte Energie<strong>for</strong>schung e.V. (ZAE Bayern)<br />

European Commission, Joint Research Centre (JRC)<br />

| Tab. 1.<br />

Project partners.<br />

| Fig. 1.<br />

Hi-Trace: Topics.<br />

and the resulting change in thermal<br />

contact resistance (see Table 2).<br />

These thermophysical properties are<br />

significant <strong>for</strong> their role in heat<br />

transfer and in thermal management/<br />

thermal protection systems. In<br />

addition, the knowledge of a material’s<br />

emissivity is essential <strong>for</strong> optical<br />

temperature measurements, including<br />

thermography, which is<br />

often the only viable option due<br />

Country<br />

France<br />

United Kingdom<br />

Germany<br />

Republic of Serbia<br />

France<br />

Germany<br />

France<br />

Germany<br />

Austria<br />

Germany<br />

European Commission<br />

Research and Innovation<br />

Improved Metrology of Thermophysical Properties at Very High Temperatures: The EMPIR Project Hi-TRACE ı Konstantinos Boboridis and Bruno Hay


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

WP N°<br />

WP1<br />

WP2<br />

WP3<br />

WP4<br />

WP5<br />

WP6<br />

| Tab. 2.<br />

Work packages.<br />

Work package title<br />

Establishment of traceability <strong>for</strong> thermal diffusivity measurements<br />

at temperatures up to 3000 °C<br />

Establishment of traceability <strong>for</strong> specific heat measurements<br />

at temperatures up to 3000 °C<br />

Establishment of traceability <strong>for</strong> emissivity measurements and improved<br />

metrology <strong>for</strong> temperature of fusion at temperatures up to 3000 °C<br />

Establishment of methods <strong>for</strong> quantifying de-bonding<br />

at high temperatures (above 1000 °C)<br />

Creating impact<br />

Management and coordination<br />

of good practice guides <strong>for</strong> calibration<br />

and measurement of these thermophysical<br />

properties. A workshop <strong>for</strong><br />

the end-user community will be<br />

organised and e-learning modules<br />

will be prepared. Finally, the datasets<br />

generated in the inter-laboratory<br />

comparisons will be made available<br />

through open repositories, as long as<br />

they are not covered by confidentiality<br />

agreements with the industrial<br />

partners.<br />

More in<strong>for</strong>mation, including<br />

contact in<strong>for</strong>mation, can be found<br />

on the project’s website (https://<br />

hi-trace.eu).<br />

Acknowledgement<br />

This project has received funding from<br />

the EMPIR programme co-financed by<br />

the Participating States and from the<br />

European Union’s Horizon 2020<br />

research and innovation programme.<br />

This article is written on behalf of all<br />

partners listed in Table 1.<br />

RESEARCH AND INNOVATION 141<br />

| Fig. 2.<br />

Emissivity and Temperature of Fusion.<br />

to the very high temperatures involved<br />

or other parameters such as<br />

limited access and fast response time.<br />

Reference facilities are currently<br />

being developed by the involved NMIs<br />

and DIs <strong>for</strong> thermal diffusivity, specific<br />

heat, and emissivity measurements<br />

at very high temperatures. These<br />

facilities will then undergo a metrological<br />

validation be<strong>for</strong>e being used<br />

to characterise refractory materials<br />

of technological significance at<br />

the highest temperatures possible.<br />

Existing setups and measurement<br />

techniques, already in use by the<br />

industrial and academic partners,<br />

will be validated against the newly<br />

| Fig. 3.<br />

Temperature rise distribution on the rear<br />

face half-way through the test. — NPL Matlab<br />

model.<br />

developed facilities. Techniques <strong>for</strong><br />

measuring the melting temperature of<br />

refractory materials will benefit from<br />

the emissivity data generated by the<br />

project. In addition, techniques are<br />

being developed to quantify the state<br />

of the mechanical adhesion of solid<br />

materials, in particular functional<br />

layers <strong>for</strong> thermal or corrosion protection<br />

above 1,000 °C, by knowledge<br />

of the thermal contact resistance.<br />

They will be validated in a second step<br />

using well-characterised multilayer<br />

artefacts suitable <strong>for</strong> high temperatures,<br />

which will also be developed in<br />

the frame of this project.<br />

The project is coordinated by the<br />

French National Metrology Institute<br />

(LNE). An advisory board has been<br />

set up to regularly review progress and<br />

provide guidance in terms of relevance<br />

<strong>for</strong> the end users. Particular importance<br />

is placed upon ensuring the<br />

widest possible dissemination of the<br />

knowledge generated within the<br />

project, including to standards bodies,<br />

as well as collecting feedback from<br />

end users, such as instrumentation<br />

manufacturers, actors in aerospace,<br />

nuclear energy, additive and conventional<br />

manufacturing involving<br />

very high temperatures. Inter-laboratory<br />

comparisons organised during<br />

the project will lead to the publication<br />

Authors<br />

Konstantinos Boboridis<br />

European Commission<br />

Joint Research Centre (JRC)<br />

Karlsruhe, Germany<br />

Bruno Hay<br />

Laboratoire national de métrologie<br />

et d’essais (LNE)<br />

Trappes, France<br />

Research and Innovation<br />

Improved Metrology of Thermophysical Properties at Very High Temperatures: The EMPIR Project Hi-TRACE ı Konstantinos Boboridis and Bruno Hay


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 142<br />

Neutronic Simulation of ALFRED Core<br />

Using MCNPX Code<br />

Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi<br />

Introduction Throughout history, energy has played a fundamental role in human’s progress living. To promote<br />

nuclear power to meet the future energy needs, ten countries including Argentina, South Africa, the United States, the<br />

United Kingdom, Brazil, Japan, Switzerland, France, Canada and Korea in a global ef<strong>for</strong>t (Generation IV <strong>International</strong><br />

Forum – GIF) have agreed to investigate the next generation of nuclear energy systems known as 4 th generation [1].<br />

These reactors are expected to enter the market after 2030. Fundamental changes in the configuration of the systems<br />

and the <strong>for</strong>ms of the old reactors have led to the production of new reactors, which require basic research and<br />

development, careful examination, and the construction of semi-industrial units. The capabilities of fourth-generation<br />

reactors are seawater desalination, and thermal applications in addition to the production of electricity. In 2000, the<br />

founding countries of GIF <strong>for</strong>med their first meeting to discuss the need <strong>for</strong> conduct research on the design of<br />

next-generation reactors. Subsequently, a strategy was put <strong>for</strong>ward to direct the activities, and the implementation<br />

responsibility was assigned to the US Department of Energy. In this research, we investigate the neutron behavior of the<br />

advanced reactor core with lead coolant ALFRED. The purpose of the neutron calculations of the core of a reactor is to<br />

calculate the distribution of neutron flux in the center and to calculate the effective reproduction coefficient. Given the<br />

necessity of per<strong>for</strong>ming lattice pitch neutron calculations, it is initially required to determine the real geometry of the<br />

core, as well as the order and fuel richness, the lattice pitch the grid, the radius and height of the fuel rods, the<br />

composition and location of the fuel absorbents, the types and locations of the control rods, the fuel complex<br />

arrangement, and radial and axial peaking factor. The MCNPX code is used to per<strong>for</strong>m neutron calculations.<br />

This calculation is done by the MCNPX<br />

code using the Monte Carlo statistical<br />

method. The following six reactors<br />

have been categorized as the 4 th<br />

generation reactors:<br />

1. Gas-Cooled Fast Reactor (GFR)<br />

2. Lead-Cooled Fast Reactor (LFR)<br />

3. Molten Salt Reactor (MSR)<br />

4. Sodium-Cooled Fast Reactor (SFR)<br />

5. Supercritical Water-Cooled Reactor<br />

(SCWR)<br />

6. Very High-Temperature Reactor<br />

(VHTR)<br />

LFR is one of the six advanced 4 th<br />

generation reactors. In recent years,<br />

this kind of reactor has attracted a lot<br />

of attention of the world, and specially<br />

recently countries such as Russia,<br />

America and Germany have always<br />

Parameter Unit Values<br />

Thermal power MW 300<br />

Active height cm 60<br />

Pellet hollow diameter mm 2<br />

Pellet radius mm 4.5<br />

Gap thickness mm 0.15<br />

Clad thickness mm 0.6<br />

Pin diameter mm 10.5<br />

Wrapper thickness mm 4<br />

Distance between 2 wrappers mm 5<br />

Coolant velocity m s -1 ~1.4<br />

Lattice pitch (hexagonal) mm 13.86<br />

Pins per FA - 127<br />

Inner vessel radius cm 165<br />

| Tab. 1.<br />

Main specifications of ALFRED reactor [3].<br />

| Fig. 1.<br />

View of the ALFRED reactor [3].<br />

been interested in this topic. LFR<br />

systems have excellent material<br />

handling capabilities due to the use of<br />

a fast neutron spectrum, and they use<br />

a closed fuel cycle to convert more<br />

efficiently the enriched uranium.<br />

It can also, as an actinide burner,<br />

consume the spent fuel of light water<br />

reactors (LWRs) or be used as an<br />

adiabatic reactor (able to burn off its<br />

produced actinide wastes).<br />

Method and material<br />

1 Technical description<br />

of ALFRED reactor<br />

As stated, the program of the ALFRED<br />

reactor is within the framework of<br />

the LEADER project. The purpose of<br />

the ALFRED project is to analyze<br />

the various aspects of lead cooling<br />

technology in fast reactors. This<br />

project has, there<strong>for</strong>e, a significant<br />

role as ETDR (European Technology<br />

Demonstrator Reactor) in the technology<br />

chain. The ALFRED reactor<br />

design includes a 125 MW electric<br />

power reactor with lead coolant.<br />

Figure 1 shows a schematic illustration<br />

of this reactor.<br />

Some geometric parameters of the<br />

ALFRED reactor are shown in Table 1.<br />

The core of this reactor has a hexagonal<br />

grid of 171 fuel assemblies (FA),<br />

12 control bars (CR), four safety bars<br />

(SR) and 108 empty bars. A schematic<br />

illustration of the core of this reactor is<br />

shown in Figure 2.<br />

Research and Innovation<br />

Neutronic Simulation of ALFRED Core Using MCNPX Code ı Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

| Fig. 2.<br />

Schematic illustration of the core of the ALFRED reactor [3].<br />

The reactor has eight steam<br />

generators that are symmetrically<br />

placed in the safe container of the<br />

reactor as the modular reactors. A<br />

schematic illustration of the steam<br />

generators of this reactor and its<br />

characteristics are shown in Figure 3.<br />

2 Reactor kinetic calculations<br />

Two important parameters in the neutron<br />

kinetic calculations of the reactor<br />

are the fraction of effective delayed<br />

neutrons (β eff ) and prompt neutron<br />

life (I p ). Delayed neutron fractions are<br />

calculated by taking the TOTNU card<br />

with the No input in the MCNPX code<br />

and using the following equation:<br />

the reactor core is simulated with 1<br />

million particles and 150 cycles using<br />

the KCODE command used <strong>for</strong> critical<br />

computing springs. The neutron parameters<br />

that have been calculated in<br />

this study are effective reproduction<br />

coefficient (k eff ), excess reactivity<br />

(ρ ex ), average neutron production<br />

time (∧), and distribution of radial<br />

and axial neutron flux.<br />

Results<br />

| Fig. 3.<br />

ALFRED reactor steam generator [3].<br />

Criticality and<br />

kinetic calculations<br />

The calculation of the criticality of the<br />

reactor by considering 10 %, 20 %,<br />

50 % of the control rods inside the<br />

core and the effective reproduction<br />

coefficient (k eff ) are shown in Table 2.<br />

The amount of reactor excess<br />

reactivity is calculated using the<br />

following equation:<br />

ρ ex = (k eff - 1) / k eff<br />

Conclusion<br />

The purpose of this study was to<br />

simulate and obtain neutron parameters<br />

and calculate the criticality<br />

and kinetic parameters of the reactor<br />

in the initial state, taking into account<br />

10 to 50 percent of the control rods in<br />

the reactor core and the Axial and<br />

radial distributions of the flux of the<br />

RESEARCH AND INNOVATION 143<br />

(1)<br />

In this <strong>for</strong>mula, K eff is the effective<br />

multiplication factor <strong>for</strong> the total<br />

delayed and prompt neutrons and k p is<br />

the effective multiplication factor <strong>for</strong><br />

prompt neutrons. The lifetime of the<br />

prompt neutrons (I p ) in MCNPX code<br />

2.6 can be obtained at the standard<br />

code output by calculating the effective<br />

multiplication factor <strong>for</strong> prompt<br />

neutrons.<br />

Parameter CR10 % CR20 % CR50 % CR ZR+HF<br />

K eff 1.08255 1.07483 1.04200 1.00583 1.08879<br />

ρ ex 0.07625 0.06962 0.04030 0.00579 0.08154<br />

Λ 0.9237 0.9303 0.9596 0.9942 0.9184<br />

| Tab. 2.<br />

ALFRED criticality and kinetic calculations.<br />

k p = 1.00279<br />

β eff = 1-(1.00279/1.00653)<br />

= 0.003716<br />

I p = 1.92 × 10 -6<br />

3 Simulation of the<br />

ALFRED reactor<br />

with MCNPX 2.6 code<br />

In this research, the ALFRED reactor is<br />

simulated using the in<strong>for</strong>mation<br />

contained in MCNPX 2.6. In this code,<br />

| Fig. 4.<br />

Axial flux Distribution of reactor core.<br />

Research and Innovation<br />

Neutronic Simulation of ALFRED Core Using MCNPX Code ı Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 144<br />

reactor core. The analysis of the<br />

results shows that the effective<br />

propagation coefficient is, at best,<br />

equal to 1. 00583 and its changes by<br />

inserting the control rods to approximately<br />

one. For more accurate estimation,<br />

it is recommended to carry<br />

out thermal hydraulics calculations<br />

considering the distribution of<br />

neutron flux, and the results should<br />

be compared with the estimates.<br />

References<br />

[1] SNETP (2013). Strategic Research and Innovation Agenda,<br />

Paris, France.<br />

[2] LEADER project, www.leader-FP7.eu.<br />

[3] Frogheri, M., Alemberti, A., Mansani, L. (2013). “The Lead<br />

Fast Reactor: Demonstrator (ALFRED) and ELFR Design”,<br />

<strong>International</strong> Conference on Fast Reactors and Related Fuel<br />

Cycles: Safe Technologies and Sustainable Scenarios (FR13),<br />

Paris, France.<br />

[4] Grasso, G., Petrovich, C., Mikityuk, K., Mattioli, D., Manni, F.,<br />

Gugiu, D. (2013). “Demonstrating the effectiveness of the<br />

European LFR concept: the ALFRED core design”, (FR13),<br />

Paris, France.<br />

[5] Artioli, C., Grasso, G., Petrovich, C. (2010). “A new paradigm<br />

<strong>for</strong> core design aimed at the sustainability of nuclear energy:<br />

The solution of the extended equilibrium state”, Ann. Nucl.<br />

En. 37(7):915-922.<br />

[6] Alemberti, A., Mansani, L., Grasso, G., Mattioli, D., Roelofs, F.,<br />

De Bruyn, D. (2013). “The European Lead Fast Reactor<br />

Strategy and the Roadmap <strong>for</strong> the Demonstrator ALFRED”,<br />

(FR13), Paris, France.<br />

[7] Bubelis, E., Schikorr, M., Frogheri, M., Mansani, L., Bandini,<br />

G., Burgazzi, L., Mikityuk, K., Zhang, Y., Lo Frano, R., Forgione,<br />

N. (2013). “LFR safety approach and main ELFR safety<br />

analysis results” (FR13), Paris, France.<br />

[8] Bubelis, E., Schikorr, M., Mansani, L., Bandini, G., Mikityuk,<br />

K., Zhang, Y., Geffraye, G. (2013). “Safety analysis results of<br />

the DBC transients per<strong>for</strong>med <strong>for</strong> the ALFRED reactor” (FR13),<br />

Paris<br />

[9] Bandini, G., Bubelis, E., Schikorr, M., Stempnievicz, M.H., Lázaro,<br />

A., Tucek, K. Kudinov, P., Kööp, K., Jeltsov, M., Mansani,<br />

L. (2013). “Safety Analysis Results of Representative DEC Accidental<br />

Transients <strong>for</strong> the ALFRED Reactor” (FR13), Paris,<br />

France.<br />

[10] ARCADIA project, http://arcadiaproject.eu.<br />

[11] Toshinsky, G.I., Grigoriev, O.G., Efimov, E.I., Leonchuk, M.P.,<br />

Novikova, N.N. (2002). “Safety Aspects of SVBR-75/100<br />

Reactor”, Advanced <strong>Nuclear</strong> Reactor Safety Issues and<br />

Research Needs, Proceedings of OECD/NEA Workshop, Paris,<br />

France.<br />

[12] Adamov, E.O. (2001). “White Book of <strong>Nuclear</strong> <strong>Power</strong>”,<br />

N.A. Dollezhal Research Development Institute of <strong>Power</strong><br />

Engineering, Moscow, Russia.<br />

[13] Novikova, N., Pashkin, Y., Chekunov, V. (1999). “Some<br />

Features of Sub-Critical Blankets Cooled with Lead-Bismuth”,<br />

Proceedings of ADTTA’99, Praha, Czech Republic.<br />

[14] Wider, H., Carlsson, J., Dietze, K., Konys, J. (2003). “Heavy-<br />

Metal Cooled Reactors – Pros and Cons”, Proceedings of GLO-<br />

BAL’03, New Orleans, USA.<br />

[15] Tucek, K., Wallenius, J., Gudowski, W. (2004). “Coolant Void<br />

Worth in Fast Breeder Reactors and Accelerator-driven<br />

Transuranium and Minor-Actinide Burners”, Annals of<br />

<strong>Nuclear</strong> Energy, Vol. 31, p. 1783.<br />

| Fig. 5.<br />

Radial flux distribution of reactor core.<br />

Authors<br />

Korosh Rahbari<br />

Darush Masti<br />

Department of <strong>Nuclear</strong><br />

Engineering<br />

Bushehr Branch<br />

Islamic Azad University<br />

Bushehr, Iran<br />

Kamran Serpanloo<br />

Ehsan Zarifi<br />

Reactor and <strong>Nuclear</strong> Safety School<br />

<strong>Nuclear</strong> Science and Technology<br />

Research Institute (NSTRI)<br />

Tehran, Iran<br />

| Fig. 5.<br />

Radial flux distribution of reactor core.<br />

Research and Innovation<br />

Neutronic Simulation of ALFRED Core Using MCNPX Code ı Korosh Rahbari, Darush Masti, Kamran Serpanloo and Ehsan Zarifi


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

The Dual Fluid Reactor – An Innovative<br />

Fast <strong>Nuclear</strong>-Reactor Concept<br />

with High Efficiency and Total Burnup<br />

Jan-Christian Lewitz, Armin Huke, Götz Ruprecht, Daniel Weißbach, Stephan Gottlieb, Ahmed Hussein<br />

and Konrad Czerski<br />

1 Introduction In the early decades of nuclear fission power technology development, most of the possible<br />

implementations were at least considered in studies and many were tested in experimental facilities as have been most<br />

of the types of the Generation IV canon. Uranium enrichment and fuel reprocessing with the wet chemical PUREX<br />

process <strong>for</strong> today’s reactors originated from the Manhattan project in order to gain weapons-grade fissile material.<br />

The use of fuel elements in light water<br />

reactors originated from the propulsion<br />

systems of naval vessels like<br />

submarines and carriers.<br />

A sound measure <strong>for</strong> the overall<br />

efficiency and economy of a power<br />

plant is the EROI (Energy Return on<br />

Investment). The known problem of<br />

solid fuel elements in power reactors<br />

is fission product accumulation during<br />

operation requiring heavy safety<br />

measures to avoid a core meltdown.<br />

These measures reduce the EROI <strong>for</strong><br />

today’s Pressurized Water Reactors<br />

(PWRs) to values of about 75 (Sec. 9)<br />

which is only a factor of 2 higher than<br />

<strong>for</strong> fossil-fired power plants. This is<br />

in fact surprisingly low compared<br />

with the possible maximum EROI <strong>for</strong><br />

nuclear energy of 10,000 (Sec. 9).<br />

Un<strong>for</strong>tunately, most Generation IV<br />

reactor concepts except the Molten<br />

Salt Fast Reactor (MSFR, see below)<br />

are again based on solid fuel technology.<br />

For the probably most intensively<br />

developed breeder technology,<br />

the Sodium-Cooled Fast Reactor SFR<br />

(or the Traveling-wave variant, Terrapower’s<br />

TP-1), sodium has been chosen<br />

as the coolant. It has aggressive<br />

chemical reactivity with air, water and<br />

structural materials as well as a high<br />

neutron reaction cross section with<br />

the possibility of a temporary positive<br />

void coefficient. These properties<br />

require a reactor pressure vessel,<br />

double- walled piping, and an intermediary<br />

cooling cycle. In effect, all<br />

this sums up to expenses which double<br />

the electricity production costs of the<br />

SFR relative to a PWR as calculated <strong>for</strong><br />

the Superphénix class.<br />

Hence Generation III and most of<br />

Generation IV nuclear power plants<br />

are in danger of losing competition<br />

against fossil fired power plants,<br />

especially in the advent of the shale<br />

gas exploitation.<br />

The Dual Fluid Reactor (DFR)<br />

concept presented here is designed<br />

with respect to the EROI-measure and<br />

to passive safety standards according<br />

to the KISS (keep-it-simple-and-safe)<br />

principle and with attention to<br />

current- state technology in mechanical,<br />

plant and chemical engineering<br />

<strong>for</strong> a speedy implementation.<br />

There was a gap in the reactor<br />

concepts of the past with a high<br />

development potential <strong>for</strong> the present<br />

and the future. A DFR power plant<br />

could exploit the potential of nuclear<br />

fission power with an EROI two orders<br />

of magnitude higher than fossil fired<br />

power plants.<br />

2 Basic principle<br />

The Dual Fluid Reactor (DFR) is a<br />

heterogeneous fast reactor with a<br />

liquid fuel and a liquid coolant<br />

whereby both flow through the<br />

reactor core. Separation of cooling<br />

and fuel supply function is achieved<br />

by an interconnected array of fuel<br />

conduits immersed in the coolant<br />

liquid. Both cycles can now be optimized<br />

<strong>for</strong> their respective purpose.<br />

This has many advantages to a MSFR,<br />

where both functions must be satisfied<br />

by one liquid in a trade-off<br />

between high-temperature fuel, lowtemperature<br />

cooling, and an acceptable<br />

heat capacity.<br />

The coolant liquid should have the<br />

highest possible heat transportation<br />

capability and best neutronic properties.<br />

Pure molten Lead has low neutron<br />

capture cross-sections, a low moderation<br />

capability, and a very suitable<br />

liquid phase temperature range. For<br />

the fuel, it is possible to employ<br />

undiluted fissionable material as<br />

opposed to a MSFR that works with<br />

less than 20 % actinide fluoride, see<br />

Sec. 4 <strong>for</strong> details. Consequently, a DFR<br />

has increased power density, small<br />

core volume and very hard neutron<br />

spectrum that further improves the<br />

neutron economy. Additional benefits<br />

of liquid metal coolant comprise the<br />

application of magneto hydrodynamic<br />

techniques both <strong>for</strong> pumping and,<br />

possibly in the future, direct elec tricity<br />

generation because of the high concentration<br />

of charge carriers.<br />

Furthermore, the reactor core and<br />

primary coolant loop can operate at<br />

normal pressure which allows <strong>for</strong><br />

simple and cost regressive size- scaling.<br />

Figure 1 explains the synergetic<br />

effects. The Dual Fluid Principle opens<br />

the possibility of a liquid fuel with<br />

high actinide concentration in combination<br />

with a coolant with high<br />

heat transfer capability, which leads<br />

to a high-power density. Liquid fuel<br />

like in a MSR already reduces the<br />

consumption of structural materials<br />

compared with solid fuel reactors,<br />

| Fig. 1.<br />

The flow chart shows the advantages of the Dual Fluid principle partially depending on each other.<br />

It is essential <strong>for</strong> the understanding of the synergetic effects.<br />

RESEARCH AND INNOVATION 145<br />

Research and Innovation<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 146<br />

but the power density is limited.<br />

In the DFR, both positive properties<br />

can be combined which leads to a<br />

massive reduction of structural materials.<br />

At high operating temperatures<br />

(needed when using an undiluted salt,<br />

see Sec. 7), corrosion of core structural<br />

materials limits the choices of<br />

such materials. However, corrosion<br />

resistant materials at high temperatures<br />

do exist, but they are quite<br />

expensive. Using such materials in a<br />

DFR design has little effect on its<br />

economy due to its small size, low<br />

material inventory, and the absence of<br />

any parts that need be to replaced<br />

periodically.<br />

On the other hand, the use of such<br />

expensive corrosion resistant ma terials<br />

in a MSR has adverse economic effects<br />

due to its high inventory of structural<br />

material. Thus, the temperature of a<br />

MSR is limited and the MSR research<br />

was focused in the past on finding suitable<br />

eutectic salt mixtures, also complicating<br />

the production and reprocessing<br />

techniques. For the DFR, very simple<br />

state-of-art techniques can be applied,<br />

see Sec. 4.2.<br />

Another comparison can be made<br />

with the Generation IV concept of the<br />

Lead-cooled Fast Reactor, LFR. Again,<br />

due to economic reasons, the wall<br />

material of the exchangeable fuel rods<br />

must be cheap, which focused the research<br />

on finding suitable steel alloys.<br />

They yet have a higher lead corrosion<br />

susceptibility than the expensive<br />

materials intended <strong>for</strong> the DFR design,<br />

there<strong>for</strong>e also limiting the operating<br />

temperature. Due to these material<br />

restrictions, both, LFR and MSR,<br />

are not able to achieve operating<br />

tem peratures suitable <strong>for</strong> economic<br />

hydrogen production from water.<br />

These restrictions do not exist <strong>for</strong><br />

the DFR.<br />

Contrary to a MSFR, DFR’s liquid<br />

fuel is not limited to actinide salts,<br />

but it is the current reference design.<br />

However, an alternative could be a<br />

solder-like melt of a metal alloy made<br />

up of actinides and, if necessary, metals<br />

with low melting points in order to<br />

reduce the solidus temperature of the<br />

alloy and gain a pumpable fluid. The<br />

advantage would be an even higher<br />

power density due to better heat<br />

transportation capability, and a possible<br />

higher operating temperature due<br />

to the lower corrosive potential of the<br />

metal alloy. The basic design, then, allows<br />

<strong>for</strong> a high degree of possibilities<br />

which can be trimmed to a specific<br />

purpose. These concepts will be discussed<br />

briefly in Sec. 4.2.<br />

| Fig. 2.<br />

Possible power plant based on the DFR, with the nuclear part including the core, the pyro-processing<br />

unit (PPU), disposal and decay heat dump (left hand side) and the conventional part with the heat<br />

exchanger and turbines (right hand side). The compactness allows <strong>for</strong> a subterranean installation.<br />

| Fig. 3.<br />

DFR fuel and cooling loop. The fuel circulates between the PPU (which is also connected to the short-lived<br />

fission products storage) and the core whereas the coolant loop connects the fissile zone to the conventional<br />

part, also cooling the fission product storage. PPU, core and fission product storage are equipped<br />

with a fuse plug.<br />

As a result, a new concept not<br />

fitting into one of the Generation-IV<br />

reactor developments has been invented.<br />

It <strong>for</strong>esees a compact core with<br />

a very high power density, an operating<br />

temperature of about 1,000 °C, inherits<br />

MSFR’s passive safety features,<br />

and has hard neutron spectrum. The<br />

abundant neutron excess can be used<br />

<strong>for</strong> multiple transmutation purposes,<br />

like nuclear waste incineration, and<br />

breeding <strong>for</strong> 238 U and 232 Th cycles.<br />

All this produces a nuclear power<br />

plant with an outstanding economic<br />

competitiveness.<br />

3 System overview<br />

Figure 2 shows how a DFR reference<br />

power plant might look like. The<br />

reference design has a power output<br />

of 3 GW th and an electric output of<br />

1.5 GW e which is currently the typical<br />

nuclear power plant size <strong>for</strong> the<br />

electric grid of industrialized countries.<br />

But also, power-sizes even down<br />

to approx. 35 M GW e are possible,<br />

depending on markets demands. Due<br />

to its compact size, the nuclear part<br />

can reside in a sub terranean bunker<br />

that can withstand high magnitude<br />

earthquakes, direct aircraft impacts<br />

and non-concen trated conventional<br />

military attacks. The conventional<br />

part can utilize supercritical water or<br />

supercritical CO 2 (see Sec. 8.1) and is<br />

not <strong>for</strong>tified <strong>for</strong> economic reasons, but<br />

<strong>for</strong>tification to any desired degree can<br />

easily be achieved.<br />

3.1 Fuel and coolant loop<br />

Since the cooling function is sepa rated<br />

from the liquid fuel, the circulation<br />

of the fuel can be adjusted to nuclear<br />

purposes like maximum burn-up,<br />

transuranic incineration, isotope production,<br />

fertile material conversion<br />

Research and Innovation<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

| Fig. 4.<br />

DFR core details. The cubic core (without<br />

blanket here) includes a pipe system filled<br />

with fuel salt which is connected to the fuel<br />

loop (with fuse plugs) and immersed in<br />

flowing Lead (coolant loop).<br />

(breeding), specific deactivation of<br />

fission products, etc. Figure 3 depicts<br />

the reactor core as well as the fuel loop<br />

and the primary coolant loop. The<br />

liquid fuel enters the core vessel at the<br />

bottom, spreads over a system of vertical<br />

tubes where it becomes critical, and<br />

leaves the reactor on top towards the<br />

Pyrochemical Processing Unit (PPU).<br />

The Lead coolant supply pipes have<br />

a large cross section in order to reduce<br />

the circulation speed and there<strong>for</strong>e<br />

reducing the abrasion at the surface<br />

materials. It circulates with a rate of<br />

90 tons/s (10 m 3 /s). When it enters<br />

the core vessel from the bottom it<br />

takes the heat from the fuel duct by<br />

conduction and leaves the vessel on<br />

top towards the heat exchanger.<br />

Depending on the power needed,<br />

part of the Lead’s heat is taken <strong>for</strong><br />

electricity production or as process<br />

heat. The Lead leaves the exchanger at<br />

a lower temperature and is pumped<br />

back to the reactor vessel.<br />

This can be accomplished by an<br />

impeller pump which produces a<br />

steady stream without generating<br />

sonic shock oscillations in the liquid<br />

metal. For maintenance, the Lead<br />

coolant can also be drained at the<br />

bottom of the reactor vessel into a<br />

temporary coolant storage from<br />

where it can be pumped back into the<br />

reactor vessel.<br />

3.2. DFR core<br />

The reference plant uses a mixture<br />

of actinide-salts as fuel. It has a<br />

cylindrical core with diameter and<br />

height of about 3 m <strong>for</strong> the critical<br />

zone. It contains 10,000 vertical ducts<br />

(the number is reduced in Figure 4<br />

and Figure 5 <strong>for</strong> illustration reasons).<br />

Figure 4 is a simplified draft of<br />

the core depicting the principle. An<br />

actual core CAD model is depicted in<br />

Figure 5.<br />

| Fig. 5.<br />

Left: DFR core inlet region, cylindrical design. The reflector region is located directly below the lateral salt<br />

feed tubes, surrounded by the blanket region.<br />

Right: Schematics of the inlet. In the inlet region, the salt surrounds the Lead tubes and enters the salt<br />

tubes in the core. This ensures equal pressure on all salt tubes.<br />

The parallel arrangement of the<br />

fuel tubes guarantees a quick drainage<br />

of the fuel liquid within minutes while<br />

the high number of tubes provides<br />

sufficient surface <strong>for</strong> the heat transfer<br />

to the surrounding coolant. An equal<br />

flow velocity through all vertical rods<br />

is desirable and is achieved by a<br />

horizontal- flow inlet zone with baffle<br />

plates providing equal pressure<br />

differences at the vertical junctions.<br />

An additional outer volume filled<br />

with Lead serves as a neutron reflector<br />

reducing the loss of neutrons and<br />

contributing to the reactivity regulation.<br />

The separation walls have small<br />

vents at the top and bottom in order to<br />

correspond with the Lead loop. A<br />

further fertile blanket, with simple<br />

structure, can increase the conversion<br />

ratio remarkably.<br />

| Fig. 6.<br />

Heat transfer from inside of a single fuel pipe<br />

to the coolant. The temperature gradient is<br />

calculated in three zones: The turbulence layer<br />

of the fuel liquid (salt => inner pipe wall), the<br />

tube wall itself and the turbulence layer of the<br />

liquid Lead (outer pipe wall => Lead). Values<br />

are <strong>for</strong> high salt velocities and MHC pipes.<br />

Temperature gradient <strong>for</strong> SiC is about twice.<br />

While passing the core region<br />

through the conduit array more and<br />

more actinides are fissioned and<br />

transmuted and the fuel changes its<br />

chemical composition. The fuel<br />

volume of the reference plant is<br />

only a few cubic meters, which<br />

further simplifies its handling and<br />

processing.<br />

3.3 Heat transfer<br />

Figure 6 shows the heat transport.<br />

Inside the fuel tubes where the<br />

heat is generated the temperature<br />

has its maximum. In a region of only<br />

1 mm towards the tube wall the<br />

temperature drops by 270 °C, inside<br />

the wall by up to 85 °C, and up to<br />

0.5 mm outside the wall another<br />

50 °C, so the total radial temperature<br />

drop is roughly 400 °C. The Lead<br />

coolant moves from the bottom<br />

to the top which defines the Lead<br />

temperatures at those points to<br />

750 °C and 1,000 °C, respectively.<br />

Consequently, the temperature inside<br />

the fuel (tube center, not at the<br />

walls) is 1,150 °C at the bottom<br />

and 1,400 °C at the top which<br />

defines the highest absolute temperature<br />

in the reactor core. Since<br />

the bottom salt temperature at the<br />

tube inner wall is above the melting<br />

temperature in all operational states,<br />

the salt will not freeze out. At normal<br />

operating condition the tube inner<br />

wall temperatures are 840 °C and<br />

1,090 °C <strong>for</strong> the bottom and top<br />

region, respectively, compared to<br />

the salt melting point of about<br />

800 °C. The maximum allowed variation<br />

of the Lead temperature is<br />

+/- 30 K, still allowing <strong>for</strong> molten<br />

fuel in all cases. These tube wall<br />

salt temperatures are 840 °C and<br />

1,090 °C <strong>for</strong> the bottom and top<br />

region, respectively, compared to the<br />

salt melting point of about 800 °C.<br />

RESEARCH AND INNOVATION 147<br />

Research and Innovation<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 148<br />

| Fig. 7.<br />

Close-up of the DFR core region with part of the coolant cycle and the shortlived<br />

fission products storage inside the coolant conduit ahead of the core.<br />

3.4 Tank <strong>for</strong> short-lived fission<br />

products<br />

Highly radioactive and heat generating<br />

fission products with half-lives<br />

of weeks to months pose the main<br />

problem <strong>for</strong> reactors with solid fuel<br />

rods and cause core meltdown unless<br />

sufficiently cooled. In the DFR like the<br />

MSFR these fission products are<br />

regularly separated from the fuel<br />

liquid so that the core contains only<br />

few quantities of fission products and<br />

its handling in case of an emergency is<br />

unproblematic. However, the problem<br />

is then transferred to the storage of<br />

the fission products. In the DFR, this<br />

problem is solved by storing the shortlived<br />

fission product salts, roughly<br />

1 m 3 , in the pipes of a special coolant<br />

duct segment shown at the bottom<br />

part of Figure 7, just be<strong>for</strong>e the Lead<br />

reaches the core, where they are<br />

cooled by the liquid Lead stream<br />

during normal operation of the plant.<br />

The molten salts of the short-lived<br />

products slowly revolve through<br />

this tank as well as the PPU. In case of<br />

an emergency or maintenance shutdown,<br />

they will be drained through<br />

a melting fuse plug, similar to the<br />

fuse plug used <strong>for</strong> the reactor core, see<br />

next chapter.<br />

3.5 Melting fuse and<br />

subcritical heat storage<br />

Melting fuse plugs, already proven<br />

and tested in the Oak Ridge Molten<br />

Salt Reactor Experiment (MSRE), are<br />

used in the DFR <strong>for</strong> the short-lived<br />

fission products tank and <strong>for</strong> the<br />

reactor core (green plug below the<br />

core and the tank). It is essentially a<br />

pipe segment which is actively cooled<br />

with a constant heat transportation<br />

such that the fuel inside this segment<br />

just freezes out.<br />

The cooling power of the fuse is<br />

fixed, so that the plug does not yet<br />

melt at 1,000 °C. In case of an emergency,<br />

i.e. higher core temperatures or<br />

loss of power, or <strong>for</strong> an intended fuse<br />

plug cooling power-off in a regular<br />

shutdown, the fuel heat power will<br />

melt the plug open and the fuel is<br />

drained by gravity into the subcritical<br />

tanks.<br />

The subcritical tanks (see Figure<br />

2) are used <strong>for</strong> fuel inventory and the<br />

concentrated highly radioactive shortlived<br />

fission products from the storage<br />

in the main coolant loop. Each of the<br />

tanks has a capacity <strong>for</strong> a subcritical<br />

mass of the liquid fuel only. They<br />

are embedded in a volume filled with<br />

salt or metal (e.g. iron, assembled<br />

from ‘Lego’-like bricks, establishing<br />

full heat contact by temperature<br />

expansion) which transduces the<br />

quickly fading heat energy passively<br />

through the outer walls to the surrounding.<br />

The heat production lowers from<br />

200 MW (emitted from the core)<br />

immediately after shutdown to some<br />

5 MW (from the coolant duct segment)<br />

after 12 days. The salt remains<br />

liquid <strong>for</strong> several days and can be<br />

pumped up, entering the fuel loop<br />

again. After longer storage, a preheating<br />

system is to be used.<br />

3.6 Fission product treatment<br />

The PPU removes the fission products<br />

from the liquid fuel and replenishes<br />

it with fresh actinides that may come<br />

from natural/depleted uranium, used<br />

fuel elements, and thorium at a<br />

consumption rate of 1,200 kg/year.<br />

Fission products are sorted by<br />

chemical elements and the longer<br />

living (half- lives of years to decades)<br />

are cast into small globes which are<br />

packed and hermetically sealed in<br />

ripple tubes. The tubes are transferred<br />

to a decay storage bunker below by a<br />

remote transfer system (also indicated<br />

in Figure 2). The bunker can store all<br />

fission products, 500 kg/year, produced<br />

during whole life-time of the<br />

reactor. The sorted fission products<br />

can be removed according to their<br />

half-life.<br />

90 % of all fission products can be<br />

removed after 100 years, providing<br />

valuable and rare metals. The<br />

medium- lived fission products decay<br />

within 300 years and may remain in<br />

the storage <strong>for</strong> that time. The ripple<br />

tubes inside the storage are passively<br />

cooled by ambient air utilizing the<br />

stack effect.<br />

Long-lived fission products are<br />

sent back into the reactor core <strong>for</strong><br />

transmutation.<br />

4 Liquid fuel and<br />

its processing<br />

The employment of a liquid fuel<br />

eliminates the need <strong>for</strong> the costly fuel<br />

element infrastructure industry and<br />

replaces it with online processing of<br />

the fuel. In principal, it is possible<br />

to consider all chemical separation<br />

methods in the reprocessing of<br />

nuclear fuel, since the radioactivity is<br />

a subordinated problem. This, however,<br />

is not true <strong>for</strong> the presently<br />

applied PUREX process, as shown in<br />

the following.<br />

4.1 Present reprocessing<br />

technologies<br />

Originating from the weapon production,<br />

the usual aqueous organic<br />

reprocessing techniques like PUREX<br />

are per<strong>for</strong>med off-site. As the chemical<br />

processes proceed slowly at normal<br />

temperatures large volumes of consumed<br />

auxiliary chemicals with<br />

medium and low radioactivity are<br />

required and have to be dumped. In<br />

order to limit this additional nuclear<br />

waste, spent fuel elements need to be<br />

stored <strong>for</strong> at least 1 year, in practice<br />

rather 5–10 years, be<strong>for</strong>e starting the<br />

PUREX processing, otherwise the<br />

expensive organic solvents are<br />

destroyed by the intense radiolysis<br />

and there<strong>for</strong>e have to be replaced very<br />

often. Hence, the radioactivity of the<br />

fuel has an eminent relevance here.<br />

The class of aqueous organic reprocessing<br />

techniques is inappropriate <strong>for</strong><br />

online fuel processing. A real progress<br />

was made by implementation of the<br />

reprocessing inside the Integral Fast<br />

Reactor (IFR). It uses electro-refining,<br />

a long-known method in metallurgy,<br />

<strong>for</strong> the separation of the fission<br />

products: The metallic fuel is converted<br />

to a salt which in turn is used<br />

<strong>for</strong> the electrolysis wherein the<br />

actinides deposit at the electrode and<br />

the fission products mainly remain in<br />

the molten salt. This manageable<br />

reprocessing unit was used on-site of<br />

an IFR plant. After the IFR program<br />

was canceled its successor, the<br />

S-PRISM reactor, inherited the process,<br />

though in a central off-site<br />

processing facility.<br />

A possible online reprocessing<br />

technique was tested <strong>for</strong> the MSFR –<br />

a dry method with a vapor-phase<br />

fluoride- salt distillation system as the<br />

main component where the metal<br />

salts are separated by boiling points.<br />

However, many fluorides have very<br />

Research and Innovation<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

high boiling points so that additional<br />

fluorination is required and yet metal<br />

fluorides remain in a slurry needing<br />

further treatment steps. In a MSR, a<br />

real online fuel reprocessing conflicts<br />

with the cooling requirements, there<strong>for</strong>e<br />

the reactor must be shut down to<br />

branch the fuel into the reprocessing<br />

facility which needs a high capacity in<br />

order to keep the outage time of the<br />

reactor short. Nevertheless, such<br />

pyrochemical processing facilities are<br />

still small in comparison to PUREXlike<br />

methods.<br />

The distillation techniques, and in<br />

particular, the electro-refining techniques<br />

are subject to ongoing development<br />

activities <strong>for</strong> the Generation IV<br />

reactors as well as a substitute <strong>for</strong> the<br />

complex wet chemical PUREX reprocessing<br />

plants.<br />

However, online does not necessarily<br />

mean continuous. Batch techniques<br />

may be used as well, provided<br />

the continuously pumped fuel fluid is<br />

intermittently stored in a small buffer<br />

while the previous batch from the<br />

buffer is processed.<br />

None of the present reactor concepts<br />

of the Generation IV provides a<br />

real online fuel reprocessing. This<br />

means that none of these concepts has<br />

all the advantages of a liquid fuel<br />

that could be achieved with a true<br />

online fuel reprocessing like very<br />

low criticality reserves which are a<br />

control issue in solid-fueled reactors,<br />

especially ADS, or MSRs with long<br />

fuel processing periods.<br />

4.2 Fuel processing in the DFR<br />

As pointed out, <strong>for</strong> online fuel processing<br />

the employed technique must<br />

be congruously fast so only dry high<br />

temperature methods can be considered.<br />

Moreover, the fuel must be<br />

impervious to radiolysis within the<br />

process. The liquid fuel of the DFR <strong>for</strong><br />

the reference design is a molten salt,<br />

but could be also a metallic melt as a<br />

future option. There<strong>for</strong>e, the DFR concept<br />

is not an MSR variant, and the<br />

reprocessing techniques are different<br />

because of the very different salts.<br />

Due to the ionic nature of the bond in<br />

the case of the salt and the metallic<br />

bond in the case of the metallic melt,<br />

the liquid is impervious to radiolysis<br />

which makes it suitable <strong>for</strong> physicochemical<br />

separation methods at high<br />

temperatures. These methods will be<br />

used in the PPU of the DFR.<br />

For the possible future concept of a<br />

metallic fuel melt there are several<br />

options ranging from a more heterogeneous<br />

system with liquid plutonium<br />

over a solution of actinides in Pb/Bi/<br />

Sn to a dispersion of solid actinides<br />

and/or actinide compounds in Pb/Bi/<br />

Sn. The prospects of metallic fuels<br />

were already investigated in the<br />

1950s. More precisely, the last option<br />

would be made up of actinides which<br />

are suspended in a melt of metals with<br />

low melting points with a fraction of<br />

up to 75 atom-% which reduce the<br />

solidus temperature of the alloy below<br />

the operating temperature, because<br />

some of the involved actinides have<br />

too high melting points. Suitable metals<br />

with sufficient neutronic properties<br />

are lead, bismuth and tin. The accrued<br />

multi-component alloy does not<br />

necessarily need to be eutectic – even<br />

in the case the liquidus temperature is<br />

above the operating temperature the<br />

mixture is sufficiently pumpable in<br />

this pasty phase. The processing of the<br />

metallic melt can be per<strong>for</strong>med with a<br />

first fractionated distillation step<br />

where the metals with low boiling<br />

points compared with actinides like<br />

Lead, Bismuth and some of the fission<br />

products can be separated and the remaining<br />

slurry is converted to salts<br />

and then distilled as be<strong>for</strong>e. Then, the<br />

resulting salt fractions need to be converted<br />

to metals back again by electrolysis<br />

be<strong>for</strong>e re-insertion into the reactor<br />

fuel loop.<br />

For the reference concept, molten<br />

salts are used because of their lower<br />

melting points and wider range of experience.<br />

Unlike an MSR chlorides are<br />

adopted since fluoride salts have considerable<br />

moderating quality thus softening<br />

the neutron spectrum and deteriorating<br />

the neutron economy. This<br />

together with the high boiling points<br />

of many of the involved metal fluorides<br />

render fluorine inapplicable.<br />

Higher halogens are more practical<br />

with respect to both properties. For<br />

the metals in the fuel mixture chlorine<br />

salts have sufficiently low boiling<br />

points so that a separation by boiling<br />

points in a fractionated distillation facility<br />

alone becomes feasible.<br />

Hence, the fuel is a binary combination<br />

of only a fertile and a fissile<br />

actinide chloride which can be<br />

238 U/ 239 Pu or 232 Th/ 233 U. It should be<br />

clearly noticed that no carrier salt is<br />

needed or desired, as opposed to current<br />

MSR concepts – this is the advantage<br />

of the Dual Fluid principle. The<br />

fraction of the initial load of reactor-grade<br />

Pu or enriched U depends<br />

on the size of the reactor core because<br />

of neutron losses through the surface.<br />

For the reference plant, it is 23 %<br />

( reactor-grade Pu) or 19 % ( 235 U)<br />

mass fraction according to first static<br />

SERPENT calculations. The maximum<br />

239 Pu fraction required <strong>for</strong> the smallest<br />

useful set-up can be very high and<br />

is not limited by the reactivity coefficient<br />

of the Doppler- broadening effect<br />

of 238 U while larger cores can manage<br />

smaller fractions. The rest of the fuel<br />

is fertile material like 238 U or 232 Th.<br />

Here, the fuel salt would consist of the<br />

tri-chlorides of the actinides, i.e. UCl 3<br />

and PuCl 3 , which have a suitable<br />

temperature range of the liquid state.<br />

Purified 37 Cl is to be used in order to<br />

avoid neutron losses due to their<br />

capture by 35 Cl and production of the<br />

long-lived radioactive isotope- 36 Cl.<br />

Both previously developed and<br />

tested reprocessing methods of the<br />

Generation IV reactors, fractional distillation<br />

and electro-refining, can also<br />

be employed <strong>for</strong> the DFR. The capacity<br />

of the PPU can be designed even<br />

much smaller because of the low fuel<br />

volume. In a simple version, the<br />

electro- refining method can be used<br />

in order to purify the fuel salt by<br />

precipitation of a fission product<br />

mixture. For the purpose of specific<br />

transmutation, a more precise partitioning<br />

is required which can only be<br />

accomplished by fractionated distillation/rectification,<br />

which is beyond<br />

the MSFR principle.<br />

Basically, whenever liquid fuels<br />

are used certain preprocessing steps<br />

have to be accomplished in order to<br />

deal with volatile and ‘noble’ fission<br />

products. In the case of a fuel salt and<br />

the fission of plutonium, significant<br />

quantities of metals are produced<br />

which can hardly <strong>for</strong>m chloride<br />

compounds, notably Mo, Ru, and Rh.<br />

In the frame of the Molten Salt Reactor<br />

Experiment (MSRE) this issue was<br />

investigated in the view of the possible<br />

segregation problem of said fission<br />

products. It turned out that the<br />

segregation is not a progressive process<br />

but instead an equilibrium<br />

accrues between segregation and<br />

solvation. This equilibrium level can<br />

be controlled by the overall chemical<br />

potential of the molten salt which may<br />

be adjusted by the quantity of chlorine<br />

ions and possibly certain minor<br />

additives. The chemical potential also<br />

determines the corrosive properties of<br />

the salt. In preprocessing steps the<br />

noble metals in the fuel coming from<br />

the reactor can be precipitated by<br />

bubbling noble gas (He, Ar) through<br />

the fuel salt. The metals precipitate as<br />

platelets at the phase boundary<br />

between the gas bubble and the salt<br />

liquid where they can be subsequently<br />

retrieved by a rake. This makes it<br />

possible to easily separate 99 Mo,<br />

which decays to the important<br />

RESEARCH AND INNOVATION 149<br />

Research and Innovation<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 150<br />

medical isotope 99m TC, see also sec. 8.<br />

Concurrently to the gas bubbling the<br />

volatile fission products Kr, Xe, Cs and<br />

I 2 are expelled as well and can be<br />

removed easily.<br />

Volatile iodine as well as cesium<br />

can be removed from the fuel loop/<br />

PPU and bound chemically stable.<br />

Since a permanent reprocessing of the<br />

molten salt fuel is possible, only very<br />

few fission products accumulate<br />

so that their integration in the fuel<br />

salt is unproblematic. The low fission<br />

product concentration in the core also<br />

reduces corrosion.<br />

The salt has to remain in the<br />

liquid state during operation which is<br />

assured in the core by the criticality<br />

condition and in the PPU by the<br />

residual heat. A frozen salt would not<br />

damage the reactor but has to be<br />

preheated, e.g. by inductive heating.<br />

Small, possibly mobile, DFR systems<br />

could use a once through cycle,<br />

i.e. they are not connected to a PPU<br />

and use the fuel inventory once. It can<br />

then be exchanged by pumping and<br />

processed in a PPU at a different<br />

location. The fuel’s range can be<br />

extended with a centrifuge which precipitates<br />

some of the fission product<br />

compounds by density separation.<br />

5 Reactor operation and<br />

regulation<br />

5.1 Neutron absorption and<br />

negative temperature<br />

feedback<br />

The PPU fabricates a fuel mixture<br />

that is critical inside the reactor at<br />

the desired operating temperature of<br />

1,000 °C. There are three main effects<br />

which provide negative feedback to<br />

the fission reaction rate by depression<br />

of the neutron flux when the temperature<br />

rises:<br />

1. Doppler broadening of the<br />

resonances in the neutron capture<br />

cross sections increases the<br />

macroscopic neutron capture cross<br />

section.<br />

2. Density decrease of the molten salt<br />

fuel which reduces the fissile nuclei<br />

concentration, the far dominant<br />

effect with dk/dT >= 0.015 $/K<br />

assuming the density decrease of<br />

UCl 3 <strong>for</strong> the whole salt, where<br />

k is the effective neutron multiplication<br />

factor and T the fuel<br />

tem perature.<br />

3. Density decrease of the molten<br />

Lead reduces the concentration of<br />

the neutron reflecting lead nuclei.<br />

The change in reactivity due to a<br />

temperature induced density change<br />

in the liquid fuel is by far dominant<br />

and almost instantaneous because it is<br />

determined by the speed of sound.<br />

Lead has a high atomic mass and 4<br />

stable isotopes due to nuclear shell<br />

closure. There<strong>for</strong>e, it is an excellent<br />

neutron reflector with low moderation<br />

qualities and low isotope- weighted<br />

neutron capture cross section.<br />

These effects together with the<br />

density change cause a strong negative<br />

temperature coefficient in the fast<br />

neutron spectrum.<br />

This is in contrast to liquid Sodium<br />

as coolant which has a higher neutron<br />

capture cross section, higher neutron<br />

moderation and lower reflection<br />

quality which means an increase of<br />

the neutron flux with rising temperature,<br />

i.e. temporal positive temperature<br />

coefficient in several designs.<br />

Furthermore, since the most<br />

abundant Lead isotopes are each at<br />

the end of a decay chain, prolonged<br />

exposure to neutrons can only induce<br />

low radioactivity. The highest stable<br />

Lead isotope, 208 Pb, has the lowest<br />

neutron capture cross section, which<br />

leads back to stable Lead via 208 Pb<br />

(n,c) 209 Pb (b) 209 Bi (n,c) 210 Bi (b)<br />

210 Po (a) 206 Pb. The stable 209 Bi<br />

accumulates slowly, so that only 209 Pb<br />

contributes remarkably to some<br />

activity, decaying with a half-life of<br />

only 3 h and, in contrast to Sodium,<br />

free from gamma radiation. For the<br />

only longer living nuclide, 210 Po (halflife<br />

138 days), even 50 years of reactor<br />

operation and 209 Bi accumulation<br />

leads to an activity just comparable<br />

with natural Uranium. As a result, the<br />

low and gamma-free radioactivity<br />

makes an intermediary cooling loop<br />

obsolete, which further reduces the<br />

expenses, see Sec. 8.1.<br />

Due to its very strong overall<br />

negative temperature coefficient (five<br />

times that of a TRIGA reactor) and<br />

limited fuel heat capacity, the usage of<br />

control rods in a DFR type reactor is<br />

not necessary.<br />

5.2 Startup procedure<br />

To start up the reactor the system is<br />

pre-heated until the coolant and the<br />

fuel salt liquefy. Concurrently the<br />

cooling of the melting fuse plug is<br />

started. The fuel salt is pumped from<br />

the storage tanks to the reactor. At the<br />

tee connector, just below the reactor<br />

some of the fuel fluid branches to the<br />

fuse where it freezes out and plugs it.<br />

As soon as the salt, preheated to<br />

900 °C, slowly moves into the reactor<br />

core it becomes critical.<br />

Thanks to the very strong negative<br />

reactivity coefficient, dominated<br />

by the liquid fuel, an equilibrium<br />

tem perature will be reached very fast,<br />

and it cannot freeze out anymore<br />

(melting temperature at 800 °C).<br />

Now the reactor is regulated by<br />

the described loops (see sec. 3). At<br />

the beginning the fission rate and<br />

correspondingly the power production<br />

is minimal. Then the coolant<br />

pump starts to accelerate the circulation<br />

of the Lead. The discharge of<br />

heat to the heat exchanger causes a<br />

temperature decrease in the reactor<br />

(of course the heat exchanger must be<br />

able to dump the heat energy). The<br />

control loops render the reactor<br />

supercritical until the nominal temperature<br />

is regained and wellbalanced.<br />

This may continue until the<br />

nominal power output is reached.<br />

Conversely, if the Lead circulation<br />

speed is decelerated (also in case of a<br />

malfunction) the temperature in the<br />

reactor increases and it becomes<br />

subcritical until leveled off at the<br />

nominal temperature but with lower<br />

fission rate. In such a manner, the<br />

fission rate in the reactor follows the<br />

power extraction. This can be done actively<br />

by the Lead pumping speed, or<br />

passively by feedback from the<br />

turbine’s electricity generation. There<br />

is no need to control the fission rate<br />

directly in the reactor core (e.g. by<br />

control rods).<br />

The equilibrium (nominal) temperature<br />

is determined by the fraction<br />

of the fissile material in the fuel salt.<br />

The PPU provides the appropriate fuel<br />

salt mixture.<br />

5.3 Shutdown procedure<br />

For a regular shut down the coolant<br />

circulation and the fuse cooling is<br />

stopped and the fuel salt empties to<br />

the storage tanks. The same happens<br />

if the power to the entire plant fails.<br />

Any other reason like malfunction and<br />

sabotage increasing the fraction of the<br />

fissile material raises the equilibrium<br />

temperature. For these incidents,<br />

again the melting fuse plug kicks in.<br />

Consequently, the emergency shut<br />

down is the same as the regular shut<br />

down.<br />

6 Neutron economy<br />

With the U-Pu fuel cycle the fission of<br />

Pu produces a high neutron yield.<br />

Even after regeneration of the Pu fuel<br />

by conversion of fertile 238 U a large<br />

neutron surplus remains. Neutronics<br />

simulation calculations have been<br />

per<strong>for</strong>med (Serpent, OpenMC); preliminary<br />

results, though with no conversion<br />

ratio calculations, are to be<br />

published. If (besides fissile material)<br />

only 238 U is fed into the fuel this<br />

Research and Innovation<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

neutron surplus will end up as<br />

additional plutonium. In this case (or<br />

similar <strong>for</strong> 232 Th) the conversion rate<br />

is larger than one and the reactor<br />

works in the breeder mode.<br />

The neutron surplus can also be<br />

used <strong>for</strong> other transmutation purposes,<br />

e.g. when long-lived fission<br />

products are specifically mixed in the<br />

fuel salt by the PPU. There is still a<br />

considerable neutron surplus when<br />

the reactor transmutes its own longlived<br />

fission products which can be<br />

used to transmute fission products<br />

from waste fuel elements of other<br />

nuclear reactors. Only if this additional<br />

neutron surplus is consumed<br />

otherwise, but not <strong>for</strong> breeding, the<br />

reactor works as a self-burner, i.e.<br />

conversion rate equal one.<br />

Alternatively, the PPU can mix in<br />

Th or inert materials to even out the<br />

neutron surplus. The fission neutron<br />

yield of 233 U from the Th/U fuel cycle<br />

is considerably lower than <strong>for</strong> the<br />

plutonium fission. As other fast<br />

neutron breeders, the DFR also can be<br />

operated in the Th/U cycle with a<br />

conversion ratio slightly larger than 1.<br />

The transmutation of its own longlived<br />

fission products may be feasible.<br />

For that, the PPU needs to separate<br />

out and store the 233 Pa until it decays<br />

to 233 U. The PPU can handle the<br />

transition from the U/Pu to the Th/U<br />

fuel cycle continuously.<br />

The fissile material in the fuel<br />

salt may also contain transuranium<br />

elements from waste nuclear fuel<br />

elements. As in the case of fission<br />

product transmutation the PPU would<br />

process chlorine salts made of the fuel<br />

pellets of waste fuel elements separating<br />

the chemical elements by<br />

boiling points. Then the PPU mixes<br />

the fuel salt from the desired actinides<br />

so that the criticality condition in the<br />

core is maintained. In this way, the<br />

sources of fuel are natural uranium,<br />

depleted uranium, nuclear waste, and<br />

thorium. The reference plant can<br />

consume radiotoxic transuranium<br />

elements from burned LWR fuel up to<br />

1,200 kg per year.<br />

One DFR using the U/Pu cycle can<br />

provide the initial fissile charge <strong>for</strong><br />

another DFR, where the doubling<br />

time is comparable to the total construction<br />

time of a power plant and<br />

not the limiting factor <strong>for</strong> deployment.<br />

SFR’s (like the French Superphénix<br />

and the Russian BN) together<br />

with PUREX-reprocessing plants have<br />

doubling times of 30–40 years.<br />

Utilizing the Th/U cycle in water<br />

cooled reactors with fuel elements<br />

would exceed even these long<br />

doubling times. The thorium MSFR<br />

(also known as liquid fluoride thorium<br />

reactor – LFTR or “lifter”) would have<br />

a doubling time of about 25 years.<br />

7 Materials and<br />

fabrications<br />

As mentioned in Sec. 4.2, <strong>for</strong> a compact<br />

nuclear core a high actinide fraction<br />

is necessary to obtain sufficient<br />

fissioning and breeding capabilities.<br />

Thus, the fuel salt should be undiluted<br />

which renders eutectic compositions<br />

dispensable. This results in elevated<br />

melting points of about 800 °C and<br />

demands high operating temperatures<br />

above 1,000 °C. There<strong>for</strong>e, the<br />

materials of the nuclear part must<br />

withstand high-temperature corrosion,<br />

a high neutron flux, and must<br />

have a very good high-temperature<br />

stability and creep strength.<br />

These extremely resistant materials<br />

are known <strong>for</strong> many decades but<br />

could not be treated in the past. This<br />

includes in particular alloys from the<br />

extended group of refractory metals,<br />

molybdenum- and tungsten-based<br />

alloys, as well as high-per<strong>for</strong>mance<br />

industrial ceramics. Meanwhile, however,<br />

fabrication methods are far<br />

advanced, so that such materials<br />

find applications over a widespread<br />

range in the industry, especially<br />

in the chemical industry, mechanical<br />

engineering as well as in the aviation<br />

(nozzles, jet vanes, balance weights).<br />

Their demand is still low but their<br />

technical feasibility has been proven<br />

in the past decades. For this reason,<br />

they are expensive, and current<br />

material research <strong>for</strong> solid-fuel based<br />

reactors (LWRs, but also most of the<br />

Generation IV concepts) is focused on<br />

replacements like steel and Ni alloys.<br />

This is in contrast to the DFR where<br />

higher material costs play only a<br />

minor role since the material demand<br />

is several times lower than <strong>for</strong><br />

LWRs, as also pointed out in Sec. 2<br />

(Figure 1) and Sec. 9. The entire<br />

reactor needs only a few 100 tons of<br />

refractory materials, with only 20 to<br />

50 tons <strong>for</strong> the core, while the remaining<br />

80–90 percent are in a simple<br />

geometry. The durability and creep<br />

resistance is a central point: it requires<br />

but at the same time enables a core<br />

that needs not to be exchanged.<br />

This point is often not seen by<br />

critics implicitly assuming a dis posable<br />

material technique as equired by<br />

the solid fuel rod tech nology involving<br />

a very restricted view on the material<br />

variety.<br />

Tungsten and Tantalum show much<br />

less corrosion in NdCl 3 – NaCl- KCl or<br />

MgCl 2 – KCl salts compared to<br />

Hastelloy -X or Iron-/Chromium-based<br />

alloys. Molybdenum-based alloys<br />

show a high resistance against both<br />

molten fluorides and, also Niobium<br />

alloys, against Lead. Chloride salts<br />

are significantly less corrosive than<br />

fluorides.<br />

As a further option, new ceramics<br />

may be considered, as coating and in<br />

the <strong>for</strong>m of new fiber backed composite<br />

workpieces.<br />

Silicon carbide (SiC) is known <strong>for</strong><br />

its low neutron capture cross-section<br />

and is there<strong>for</strong>e in the focus of today’s<br />

nuclear material research. Especially<br />

CVD-like SiC, is very resistant against<br />

Lead corrosion at more than 1,000 °C,<br />

even when Lithium is added (Pb-<br />

17Li), where pure Li would dissolve<br />

SiC at 500 °C. Regarding molten salt<br />

corrosion, much less data is available<br />

<strong>for</strong> SiC. It was tested with NaCl which<br />

has a similar enthalpy like UCl 3 and<br />

showed a good resistance up to 900 °C<br />

even though it was a much less<br />

corrosion-resistant variant (reactionbonded<br />

SiC with Si excess). Compared<br />

to that, CVD-SiC showed a much<br />

higher corrosion resistance. Below<br />

1,200 °C, this material also shows a<br />

high irradiation resistance, whereas<br />

SiC/SiC fibre pieces are less resistant<br />

although the newest generation of<br />

these composites showed a higher<br />

resistance again. Micro crystalline<br />

damages caused by the high neutron<br />

flux as well as thermal stress will be<br />

automatically healed at those high<br />

temperatures (annealing in metals)<br />

and ceramics are more resistant at<br />

elevated temperatures. In the PPU,<br />

there are even less restrictions as<br />

neutron embrittlement and heat conduction<br />

do not play a dominant role<br />

anymore.<br />

Pieces from high-per<strong>for</strong>mance<br />

alloys, even from refractory ones, can<br />

be produced by new electron welding<br />

processes, high-pressure sintering and<br />

laser techniques. In particular, the<br />

laser treatment cares <strong>for</strong> a high-purity<br />

crystal structure (smooth melting) – a<br />

factor very important <strong>for</strong> the corrosion<br />

resistance. Generally, refractory<br />

compounds are processed with the<br />

methods of the powder metallurgy,<br />

particularly because of their high<br />

melting temperatures and durability.<br />

The sintering process limits the size<br />

and shape of work-parts but new laser<br />

sintering methods might relieve many<br />

restrictions. Even though the fraction<br />

of voids <strong>for</strong> today’s applications is<br />

still too high, sintering extruders are<br />

capable of producing monolithic pipes<br />

with smooth surfaces. The whole<br />

RESEARCH AND INNOVATION 151<br />

Research and Innovation<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 152<br />

array can be assembled with electron<br />

beam and/or laser welding in vacuum.<br />

For valves in molten-salt, contactsurface<br />

seals can be used since they<br />

will only by used hourly.<br />

The high operating temperatures<br />

are well above the brittle-ductile<br />

region of refractory metals hindering<br />

strongly an embrittlement, best seen<br />

on Mo-based alloys. Furthermore,<br />

highly-resistant coatings can be<br />

considered. Some refractory alloys<br />

are already ductile between 300 °C<br />

and 500 °C (or lower), e.g. MHC (1Hf-<br />

0.1C-Mo) or TZM (0.5Ti-0.08Zr-<br />

0.02CMo), maybe with some additions<br />

of Rhenium in the 1 %-region.<br />

All operating temperatures (inlet<br />

and outlet) are well between 850 °C<br />

and 1,100 °C, 1,400 °C occur only in the<br />

axial center of the fuel, not at the tube<br />

walls (see Sec. 3.3 and Figure 6). The<br />

thermal expansion coefficients of<br />

refractory alloys are similar to the ones<br />

of ceramics not causing significant<br />

stress or tension, as also can be seen in<br />

turbine parts or high-temperature<br />

furnaces.<br />

The entire core (total dead weight<br />

is a few ten tons) can be produced in a<br />

factory by the methods mentioned<br />

above and deployed on site exclusively<br />

by bolting and screwing or stacking/<br />

clamping in the case of SiC. Possibly<br />

the core must be segmented in order to<br />

ease the exchange of possibly damaged<br />

parts. For the coatings, corrosion resistant<br />

materials (SiC also as structural<br />

material, Si 3 N 4 , AlN in the core, possibly<br />

TiB 2 , B 4 C elsewhere) exist, having<br />

a heat con ductivity similar to Ni. For<br />

isolation, fan and fold sheets can be<br />

used but because of the high neutron<br />

flux the entire core has to be surrounded<br />

by a concrete shield anyway.<br />

8 Applications<br />

Figure 8 depicts possible application.<br />

The high temperature opens the<br />

hydrogen-based chemistry with<br />

synthetic fuels suitable <strong>for</strong> today’s<br />

vehicles. The low production costs<br />

make these applications competitive<br />

with fossil fuels like gasoline. Further<br />

applications are described in the<br />

following.<br />

8.1 Conventional part<br />

Due to the low and gamma-free radioactivity<br />

of liquid Lead (see Sec. 5.1)<br />

it is possible to extend the primary<br />

coolant loop directly into the conventional<br />

part of the plant. This translates<br />

into a considerable reduction of the<br />

reactor construction cost, as opposed<br />

to Sodium cooled reactors which<br />

require a secondary cooling circuit<br />

due to the high radioactive and<br />

gamma- emitting content of Sodium.<br />

In the conventional part the heat<br />

energy needs to be transduced<br />

from the liquid metal, a medium with<br />

very high heat transport capacity,<br />

to a working medium with considerable<br />

lower heat transport capacity<br />

suitable <strong>for</strong> turbines. Without further<br />

development, the most cost effective<br />

technique, nowadays, is supercritical<br />

water (scH 2 O) cycle. Albeit the newest<br />

coal fired plants work at 700 °C there<br />

is no principal problem to increase it<br />

to 1,000 °C. Generally, scH 2 O turbines<br />

have more in common with gas<br />

turbines than with steam turbines<br />

since there is no phase change<br />

throughout the whole cycle; so, operating<br />

parameters are quite similar.<br />

The reactivity of water with respect to<br />

its ability as oxidizer increases with<br />

temperature. However, modern gas<br />

turbines are made of very resilient<br />

materials and are capable to get along<br />

with sulphuric acid, dust particles,<br />

and hot steam at 1,400 °C.<br />

Another near future possibility is<br />

the usage of supercritical carbon<br />

dioxide (scCO 2 ) turbines, leading<br />

to more compact machine components<br />

with a slightly higher thermal<br />

effi ciency and significantly reduced<br />

corrosion rates and pressures compared<br />

to scH 2 O turbines. Although<br />

still in development, the experience<br />

and outlook is promising. The corrosion<br />

rates are monitored to be less<br />

than 1 mm per year at 1,000 °C using<br />

industrial INCONEL-MA-754 nickelbase<br />

alloy, decreasing with time. The<br />

alloys used in the DFR are signifi cantly<br />

more corrosion resistant so scCO 2<br />

should be a minor problem.<br />

8.2 Process heat and electricity<br />

If the DFR is employed <strong>for</strong> process<br />

heat generation the conventional part<br />

may be modified. For process heat<br />

generation only a heat transducer to a<br />

secondary liquid coolant cycle or a<br />

direct heating of a chemical reactor in<br />

close vicinity with the primary coolant<br />

may be used. If a mixed process heat<br />

and electricity generation is desired, a<br />

first indirect heat exchanger which<br />

decouples heat energy at the high<br />

operating temperature may be followed<br />

by a subsequent heat exchanger<br />

which heats at a lower temperature<br />

water in a steam or supercritical water<br />

cycle with a connected turbine.<br />

8.3 Future MHD option<br />

A further possibility is the utilization<br />

of an MHD generator connected to the<br />

Lead coolant loop. Liquid metals are<br />

particularly eligible <strong>for</strong> that because<br />

of their high concentration of free<br />

charge carriers. The efficiency of the<br />

MHD generator is chiefly limited by<br />

the nozzle which converts the internal<br />

energy of the fluid into directed<br />

stream energy which is then converted<br />

to electricity. The still considerable<br />

residual heat after the MHD generator<br />

may be used in a sub sequent<br />

heat exchanger with a water cycle<br />

as above. Such a system may be significantly<br />

less costly than multiple<br />

turbines.<br />

| Fig. 8.<br />

Possible applications <strong>for</strong> the DFR.<br />

8.4 Radiotomic chemical<br />

production<br />

The short-lived fission products<br />

storage may be designed in an alternative<br />

way in order to enable the<br />

utilization of the intensive radiation<br />

<strong>for</strong> radiotomic induction of chemical<br />

reactions requiring high doses<br />

(kGy/s). There is a constant power<br />

Research and Innovation<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

level of 30 MW of the short-lived<br />

fission products in the reference plant<br />

which may induce a γ-doserate of<br />

0.1–1 MGy/s into compressed gases.<br />

There is a small number of simple<br />

molecules that are the base <strong>for</strong> several<br />

process chains in industrial chemistry<br />

and result from strong endothermic<br />

reactions which are per<strong>for</strong>med with<br />

high expenses over several steps<br />

frequently employing costly catalyzers.<br />

Here a γ-quantum can directly<br />

provide the required energy by<br />

multiple excitation/ionization of the<br />

educts resulting in a considerable<br />

simplification of the required equipment<br />

and reduction of costs all the<br />

more the radiation source exists<br />

anyway. This possibility was already<br />

described in the past.<br />

Such basic compounds are nitrogen<br />

oxides NO 2 , ozone O 3 , hydrocyanic<br />

acid HCN, and carbon monoxide CO.<br />

Nitrogen oxide and ozone can be<br />

obtained by irradiation of compressed<br />

air. Hydrocyanic acid originates<br />

from methane and nitrogen. Carbon<br />

monoxide results from radiative<br />

dis sociation of carbon dioxide. The<br />

DFR reference plant may produce<br />

10 4-5 tons/year tons/year of these<br />

chemicals.<br />

8.5 Medical Isotope<br />

Production<br />

The radiotracer 99m Tc is a prime<br />

example of a medical application that<br />

would not be possible without a<br />

nuclear reactor.<br />

Seeking an alternative during<br />

the world-wide Molybdenum crisis<br />

2009/2010 failed due to the high<br />

neutron flux required <strong>for</strong> the production<br />

of the 99m Tc precursor 99 Mo. A<br />

cost-effective production in commercial<br />

reactors seems not to be possible<br />

<strong>for</strong> several reasons, so it is mainly produced<br />

in research reactors. An expensive<br />

separation process follows, and a<br />

sophisticated logistic chain to finally<br />

deliver the technetium generators to<br />

hospitals is required due to the short<br />

half-life of 99 Mo of only 3 days.<br />

The <strong>Nuclear</strong> Energy Agency (NEA)<br />

estimates the future 99 Mo world<br />

demand to be 4*10 16 6-days-Bq (10 6<br />

6-days-Ci) per year, corresponding to<br />

a demand of roughly 1 kg (assuming<br />

10 % separation efficiency) directly<br />

from the nuclear fission in LWRs<br />

providing 99 Mo. In contrast, one single<br />

DFR produces at least 30 kg 99 Mo per<br />

year but – more important – already<br />

provides it in a separated <strong>for</strong>m, see<br />

also Sec. 4.2. This strongly reduces<br />

the handling so that a complete<br />

on-site medical-clean production of<br />

the technetium generators are feasible<br />

which further simplifies the logistics<br />

of the delivery to the hospitals. This<br />

could lead to a cost implosion <strong>for</strong> the<br />

99m Tc radiotracer and there<strong>for</strong>e to an<br />

inflation of applications.<br />

9 EROI consideration<br />

Energy Return on Investment is<br />

probably the most important factor<br />

to characterize the economicalefficiency<br />

of an energy source. It is<br />

defined as the ratio of the total electricity<br />

output of a power plant during<br />

its lifetime to the expended exergy <strong>for</strong><br />

construction, fuel supply expense,<br />

maintenance, and decommissioning.<br />

This should not be confused with a<br />

return-on-investment assessment on a<br />

monetary basis.<br />

Unlike monetary measures, the<br />

EROI is time invariant and independent<br />

from the national economic<br />

context. It requires a full life cycle<br />

assessment (LCA) in order to determine<br />

the correct cumulative energy<br />

demand CED (the energy invested, i.e.<br />

Item<br />

Concrete containment <strong>for</strong> reactor, fission products<br />

and turbine building<br />

High per<strong>for</strong>mance refractory metals and ceramics<br />

(PPU and core)<br />

High temperature isolation material <strong>for</strong> PPU and<br />

core<br />

the denominator of the EROI). For a<br />

typical 1,400 MWe PWR, a major part<br />

of the CED is needed <strong>for</strong> the enrichment<br />

of uranium which in the first<br />

decades of nuclear power applications<br />

was dominated by the very ineffective<br />

diffusion enrichment.<br />

This reduced the EROI to 24 which<br />

is comparable to fossil fired power<br />

plants and is one explanation why the<br />

expansion of nuclear power came to a<br />

halt in the 1970s in the USA.<br />

A newly built PWR with mostly<br />

centrifuge enrichment has an EROI of<br />

75 to 105, with complete LASER<br />

enrichment up to 115. So the PWR<br />

technology can have an advantage<br />

in the EROI factor of 4 to fossil power<br />

but this defines also the limit of the<br />

PWRs and the Generation III(++)<br />

technology in general.<br />

Another costly contribution to the<br />

low EROI are the expenses <strong>for</strong> the fuel<br />

element infrastructure industry which<br />

is also conceptually based on the<br />

military logistic chain where as much<br />

as possible is displaced from the<br />

Units<br />

(or total amount<br />

in 1,000 kg)<br />

Energy<br />

inventory<br />

in TJ/(1,000 kg)<br />

| Tab. 1.<br />

Input energy amounts of the DFR; bold: the sum of all inputs and the total electricity output; the ratio leads to an EROI<br />

of almost 2,000 <strong>for</strong> the DFR, see text.<br />

Total<br />

inventory<br />

in TJ<br />

21,000 0.0014 30<br />

60<br />

100<br />

0.5 30<br />

0.1 10<br />

Initial load, isotopically purified 37 Cl + fuel 25+60 2.5/0.4 50+25<br />

Refractory metals and ceramics <strong>for</strong> the heat<br />

exchanger<br />

180 0.5 90<br />

Isolation and structural materials, heat exchanger 300 0.1 30<br />

Untreated, low-alloyed metal <strong>for</strong> fission product<br />

encapsulation<br />

3,000 0.033 100<br />

Structural materials (steel) <strong>for</strong> non-nuclear part 1,000 0.02 20<br />

Lead coolant 1,200 0.036 45<br />

Turbines with generators 3 40 120<br />

Mechanical engineering parts 150<br />

Cooling tower (special concrete) 20,000 0.003 60<br />

Refueling, 1,200 kg/a actinides over 50 years 60 0.4 25<br />

37 Cl loss compensation 2 2.5 5<br />

Maintenance, high-per<strong>for</strong>mance refractories +<br />

isolation <strong>for</strong> 1 new core<br />

Maintenance, 50% of other reactor parts,<br />

refractories + isolation<br />

Maintenance, 50% of mechanical engineering<br />

and turbines<br />

Maintenance electricity, 2MW over 20 days/a<br />

and heating, 50*0.2 TJ<br />

30+50 0.5/0.1 20<br />

90+175 0.5/0.1 62.5<br />

135<br />

182.5<br />

Sum 1,190<br />

Output over 50 year’s-lifetime, 1,500 MW net,<br />

8,300 full-load hours<br />

2,250,000<br />

RESEARCH AND INNOVATION 153<br />

Research and Innovation<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 154<br />

This document is<br />

based on Armin Huke<br />

et al., Annals of<br />

<strong>Nuclear</strong> Energy 80<br />

(2015) 225: „The Dual<br />

Fluid Reactor –<br />

A novel concept <strong>for</strong> a<br />

fast nuclear reactor of<br />

high efficiency“<br />

| Fig. 9.<br />

Energy Returned on Investment (EROI) at different electricity generating technologies.<br />

battlefield to factories in the back<br />

area. The utilization of fuel elements<br />

then again requires multiple-redundancy<br />

elaborated active and passive<br />

safety systems in order to counteract<br />

the risk of core meltdown, further<br />

reducing the EROI in effect.<br />

The large EROI gain of the DFR<br />

mainly results from two aspects: The<br />

loss of a costly external fuel pro cessing<br />

infrastructure (improvement of more<br />

than a factor of 3) and the much<br />

higher compactness and simplicity<br />

compared to a light water reactor<br />

( another factor of 6). Additional<br />

minor improvements arise from lower<br />

maintenance ef<strong>for</strong>ts and from much<br />

less fuel consumption as well as<br />

significantly lower disposal needs.<br />

The higher per-mass ef<strong>for</strong>ts <strong>for</strong><br />

the refractory parts are far outweighed<br />

by the extreme reduction<br />

of material amounts needed <strong>for</strong><br />

construction (several 1,000 metrictons<br />

nickel alloys and highly alloyed<br />

steels in a light water reactor<br />

compared to a few 100 metric-tons<br />

refractories in the DFR). Table 1<br />

describes the evaluation of the EROI<br />

<strong>for</strong> the DFR.<br />

Since some materials (especially<br />

refractory metals) must be investigated<br />

and modified <strong>for</strong> use in the<br />

DFR, their energy inventory must be<br />

estimated. Furthermore, the maintenance<br />

<strong>for</strong> the nuclear part is also<br />

unknown, causing the same uncertainties.<br />

The resulting EROI is there<strong>for</strong>e<br />

roughly 2,000 which is 25 times<br />

higher than that of today’s PWR<br />

technique. The very compact design<br />

lowers the construction energy<br />

demand down almost to the level of<br />

CCGT plants on a per-watt basis, and<br />

the fuel-related energy demands are<br />

tiny compared to light water reactors<br />

due to the efficient usage.<br />

A theoretical maximum EROI<br />

of 10,000 can be calculated as an<br />

extra polated limit, only taking into<br />

account the exploitation costs at<br />

3 ppm U- content in the earth crust,<br />

erection of power plant, service and<br />

maintenance, dismantling and disposal<br />

being neglected. Further optimization<br />

of the design and extraction of<br />

fuel at basic crust concentrations<br />

(10 ppm <strong>for</strong> Thorium) would lead to a<br />

domination of the fuel-related input<br />

and opening potential <strong>for</strong> a further<br />

increase of the EROI.<br />

This all together is showing that<br />

the DFR exhausts the potential of<br />

nuclear fission to a large extent. For<br />

illustration on the relevance of the<br />

EROI-definition, Figure 9 depicts the<br />

EROIs of different currently used<br />

electricity producing technologies<br />

with the EROI <strong>for</strong> a DFR.<br />

10 Final remarks<br />

The Dual Fluid principle of separating<br />

the cooling and fuel function in creases<br />

the complexity of the reactor core<br />

relative to the MSR but has large<br />

synergetic effects in the fuel reprocessing,<br />

the neutron economy, the<br />

cost efficiency as well as on the<br />

possible applications. This allows to<br />

combine the advantages of different<br />

Generation IV concepts (MSFR, LFR,<br />

SCWR, VHTR) in one reactor type<br />

while considerably undercutting the<br />

costs even of today’s LWRs.<br />

The good neutron economy and<br />

the hard neutron spectrum makes the<br />

DFR an effective waste incinerator<br />

and also an excellent thorium breeder,<br />

outbidding even MSRs like the LFTR<br />

while being more cost-effective. The<br />

high temperature combined with the<br />

high cost-efficiency allows the production<br />

of synthetic fuels in competition<br />

with todays refined oil and<br />

gasoline.<br />

The online separation of fission<br />

products provides presorted metals<br />

that can be used after decay as important<br />

raw materials <strong>for</strong> the industry.<br />

Other fission products, e.g. 99 Mo<br />

needed <strong>for</strong> medical diagnostics, can<br />

be quickly withdrawn in large<br />

amounts with no further processing.<br />

The liquid fuel provides the same passive<br />

safety features as already tested<br />

<strong>for</strong> the molten-salt reactor (melting<br />

fuse plug, deeply negative temperature<br />

reactivity coefficient) but the<br />

concentrated actinide fuel adds additional<br />

safety and controllability due<br />

to a higher delayed neutron fraction<br />

inside the fissile zone. The lower fissile<br />

zone salt inventory means lower heat<br />

capacity leading to a faster power<br />

reduction in the case of additional<br />

reactivity.<br />

Manufacturing the durable workpieces<br />

<strong>for</strong> the core is feasible by<br />

state-of-the-art technical processes<br />

and well-established industrial procedures.<br />

The complete absence of<br />

control rods, valves or any other<br />

mechanical parts as well as its compact<br />

size enables the use of expensive,<br />

corrosion-resistive materials and<br />

modern fabrication techniques like<br />

laser sintering.<br />

In essence the Dual Fluid principle<br />

resolves the contradiction of contemporary<br />

NPP concepts between a<br />

high power-density which is obligatory<br />

<strong>for</strong> the crucial economic edge to<br />

prevail in the energy market, and<br />

inherent passive safety necessary <strong>for</strong> a<br />

safe operation and eventually the<br />

public acceptance of nuclear power.<br />

Author<br />

Jan-Christian Lewitz (a,b)<br />

Armin Huke (b)<br />

Götz Ruprecht (b)<br />

Daniel Weißbach (b,c)<br />

Stephan Gottlieb (b)<br />

Ahmed Hussein (b,d)<br />

Konrad Czerski (b,c)<br />

(a) LTZ-Consulting GmbH,<br />

Tharandter Str. 12<br />

01159 Dresden, Germany<br />

(b) Institut für Festkörper-<br />

Kernphysik gGmbH, Leistikowstr. 2,<br />

14050 Berlin, Germany<br />

(c) Instytut Fizyki, Wydział<br />

Matematyczno-Fizyczny,<br />

Uniwersytet Szczeciński,<br />

ul. Wielkopolska 15<br />

70-451, Szczecin, Poland<br />

(d) Department of Physics,<br />

University of Northern British<br />

Columbia, 3333 University Way,<br />

Prince George, BC, Canada.<br />

V6P 3S6<br />

Research and Innovation<br />

The Dual Fluid Reactor – An Innovative Fast <strong>Nuclear</strong>-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

36C3 – Mehr offene Fragen als Antworten<br />

Stefan Loubichi<br />

155<br />

Die Einschläge kommen näher und wir kennen alle die Folgen Es dürfte (wahrscheinlich)<br />

niemand in der Energiebranche geben, der den am 17.6.2013 erschienenen Roman „BLACKOUT – Morgen ist es zu spät“<br />

nicht kennt.<br />

Weniger bekannt in der Energiebranche<br />

ist (leider) das bereits 2011<br />

im edition sigma Verlag erschienene<br />

Werk „Was bei einem Blackout geschieht<br />

– Folgen eines langandauernden<br />

großflächigen Stromausfalls“ des<br />

Büros für Technikfolge-Abschätzung<br />

beim Deutschen Bundestag.<br />

Für alle diejenigen, welche die beiden<br />

Bücher noch nicht gelesen haben,<br />

sei die Lektüre empfohlen.<br />

Übertragungs- sowie Verteilnetzbetreiber,<br />

bei der die durch Letztverbraucher<br />

und Weiterverteiler entnommene<br />

Jahresarbeit im Jahr den<br />

Schwellenwert 3.700 GWh überschreitet<br />

(siehe hierzu die BSI-Kritis-<br />

Verordnung) mussten sich alle bereits<br />

gemäß des im August 2015 in Kraft<br />

getretenen IT-Sicherheitskataloges<br />

gemäß § 11 Absatz 1a Energiewirtschaftsgesetz<br />

aufgrund dieser<br />

Grundlage durch einen akkreditierten<br />

Zertifizierer auditieren lassen, und<br />

zwar jährlich. In diesem Zusammenhang<br />

mussten die Netzgesellschaften<br />

ein In<strong>for</strong>mationssicherheitsmanagementsystem<br />

nach ISO/IEC 27001 in<br />

Verbindung mit ISO/IEC 27002 und<br />

ISO/IEC 27019 implementieren.<br />

Nach diesseitigem Kenntnisstand<br />

haben alle relevanten Netzbetreiber<br />

mittlerweile die Zertifizierung nach<br />

dem IT-Sicherheitskatalog gemäß § 11<br />

Abs. 1a EnWG bestanden. Integrativer<br />

(und von daher nachzuweisender) Bestandteil<br />

des Auditierungsprozesses<br />

sind:<br />

p Patchmanagement<br />

p Assetmanagement<br />

Als Leitender Auditor für In<strong>for</strong>mationssicherheitsmanagementsysteme<br />

musste der Autor dieses Aufsatzes<br />

aber leider oft feststellen, dass<br />

nirgendwo mehr Potemkin'sche<br />

Dörfer aufgebaut wurden wie hier.<br />

Aufgrund der Tatsache, dass ein<br />

Auditor nur eine Stichprobe zu einem<br />

Stichtag ziehen kann und er nur einen<br />

sehr beschränkten Zeitraum für die<br />

Prüfung hat, ist es nicht sehr schwer,<br />

einen Prüfer in diesen Schlüsselbereichen<br />

hinter das Licht zu führen,<br />

um das „begehrte“ Zertifikat zu<br />

erhalten.<br />

Das Zertifikat ist eine Sache,<br />

Sicher heit im System ist eine andere<br />

Sache. Cyber Terroristen interessiert<br />

es nicht, ob Netzbetreiber oder Kraftwerksbetreiber<br />

ein ISO/IEC 27001<br />

Zertifikat haben oder nicht.<br />

Ende 2019 wurde auf dem<br />

36. Chaos Computer Club Kongress<br />

vom 27.-30. Dezember 2019<br />

gezeigt, wie „einfach“ es für Profis ist,<br />

Zugang zur Leittechnik in Kraftwerken<br />

zu erhalten, wobei diese<br />

strukturellen Heraus<strong>for</strong>derungen<br />

gegeben wären für:<br />

p Siemens<br />

p ABB<br />

p Honeywell<br />

p Yokagawa<br />

p GE<br />

Die in Leipzig gehaltene Präsentation<br />

erfolgte durch Sicherheitsexperten<br />

einer russischen Firma hat vielen die<br />

Augen geöffnet.<br />

Am 15. Januar 2020, d.h. ganze<br />

zwei Wochen später wurde bekannt,<br />

dass die US-amerikanische National<br />

Security Agency (NSA), die sich<br />

eher durch Zurückhaltung in ihrer<br />

Kommunikation kennzeichnet, eine<br />

Sicherheitslücke in Windows 10 und<br />

verschiedenen Windows-Server-Versionen<br />

gemeldet hat. Zum Patchday<br />

hat Microsoft zwar die Lücke<br />

geschlossen. Gleichwohl ist die Lage<br />

sicherlich nicht unernst, wenn die<br />

NSA sich zu solchen Schritten veranlasst<br />

fühlt.<br />

Aber der Januar 2020 hatte bereits<br />

in seinen ersten drei Wochen noch ein<br />

weiteres Highlight:<br />

Viele Industrieunternehmen kennen<br />

und schätzen den Citrix ADC<br />

( Citrix ADC verbindet die Infrastruktur<br />

und die Anwendungen miteinander,<br />

indem diese Erkenntnisse<br />

dem Cisco Application Policy Infrastructure<br />

Controller (APIC) bereitgestellt<br />

werden). Citrix ADC integriert<br />

sich dabei vollständig in die Unified-<br />

Fabric-Anwendungen von Cisco.<br />

Allein auf der Internetseite von<br />

Heise fanden sich in der Zeit vom 3.1.<br />

bis 20.1.2020 folgende Meldungen:<br />

3.1.2020:<br />

Workaround verfügbar: Kritische<br />

Lücke in Citrix ADC:<br />

Angreifer könnten Systeme mit Citrix<br />

ADC und Schadcode ausführen.<br />

Patches sind bislang nicht erschienen.<br />

13.1.2020:<br />

Exploit-Code für kritische Citrix-<br />

Lücke gesichtet:<br />

Es könnten Angriffe auf Citrix CDC<br />

und Gateway bevorstehen. Bislang<br />

gibt es nur einen Workaround. Patches<br />

sollen folgen<br />

17.1.2020:<br />

Citrix-Lücke: Immer mehr Attacken,<br />

Workaround funktioniert nicht<br />

immer:<br />

Die Sicherheitslücke in Citrix Systemen<br />

zieht immer weitere Kreise.<br />

Neben steigenden Angriffszahlen sind<br />

immer mehr Systeme betroffen.<br />

20.1.2020:<br />

Erste Sicherheitsupdates für kritische<br />

Citrix-Lücke erschienen:<br />

Da Angreifer derzeit eine Lücke in<br />

Citrix CDC ausnutzen, sollten Admins<br />

die nun verfügbaren Patches umgehend<br />

installieren.<br />

17 Tage in der Welt der In<strong>for</strong>mationstechnologie<br />

sind eine<br />

Ewig keit und viele Angriffe wurden<br />

mittlerweile erfolgreich ausgeführt.<br />

Was macht also der gewissenhafte<br />

Leiter IT/OT, der zusammen mit<br />

seinem Chief In<strong>for</strong>mation Security<br />

Officer (CISO) oftmals gar nicht die<br />

Zeit hat, alle Warnmeldungen zeitnah<br />

zur Kenntnis zu nehmen? Er lässt<br />

nachschauen, ob gepatcht wurde und<br />

ist froh, wenn das System gepatcht<br />

wurde. Aufgrund der Arbeitsverdichtung<br />

wird dann in der Regel auch<br />

gar nicht nachgefragt, wer den Patch<br />

ausgeführt hat.<br />

Unglücklich ist es, wenn Hacker,<br />

die über die Lücke in das System eingedrungen<br />

sind, für das Kraftwerk<br />

den Patch durchführen, gleichwohl<br />

aber sicherstellen, dass diese immer<br />

noch durch eine Hintertür jederzeit in<br />

das System kommen können. Interessanterweise<br />

findet sich in Bezug auf<br />

die aktuelle Citrix-Thematik im Netz<br />

nur ein sehr guter Artikel zu dieser<br />

Thematik:<br />

https://securityaffairs.co/wordpress/<br />

96569/cyber-crime/hackers-patchcitrix-servers.html<br />

Diese Einführung mit drei konkreten<br />

immensen Heraus<strong>for</strong>derungen<br />

in drei Wochen soll aufzeigen,<br />

dass es 5 vor 12 ist, wenn Kaspersky<br />

und NSA nahezu zeitgleich an<br />

OPERATION AND NEW BUILD<br />

Operation and New Build<br />

36C3 – More Questions Than Answers ı Stefan Loubichi


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

OPERATION AND NEW BUILD 156<br />

| Abb. 1.<br />

SPPA T3000 Security Matrix<br />

Siemens Whitepaper SPPA-T3000 Cyber security <strong>for</strong> I&C Systems GPPG-T40003-00-7600, 19.12.2019.<br />

die Öffentlichkeit gehen, um Hinweise<br />

zu geben.<br />

Theoretisch kann man denken, wie<br />

dies ein aus Datenschutzgründen<br />

nicht genannter CIO Ende Dezember<br />

2019 anlässlich der 36C3 Präsentation<br />

mutig sinngemäß äußerte: „Wenn wir<br />

betroffen sind, dann gehen eben hier<br />

überall die Lichter aus. Das ist ein<br />

kalkulierbares Risiko und ich glaube<br />

nicht, dass so etwas bei uns passiert,<br />

denn dann gehen anderswo ja auch<br />

die Lichter aus.“<br />

Unter Hinweis darauf, dass –<br />

bereits die Kollegen des Hauses<br />

Kaspersky darauf verwiesen –, dass<br />

die Leittechnik-Schwachstellen nicht<br />

nur die T3000 betreffen, sondern dass<br />

letztlich alle betroffen sind, sei die<br />

36C3 Problematik nachstehend<br />

dezidiert vorgestellt und erläutert,<br />

wie man sich mit gezielten (zusammenhängenden)<br />

Investitionen in<br />

Asset- und Patchmanagement viele<br />

Sorgenfalten ersparen kann.<br />

36C3 oder habe ich einen<br />

Haustürschlüssel komme<br />

ich in das Haus<br />

Die Siemens SPPA T-3000 gehört<br />

unzweifelhaft zu den besten ICS<br />

Systemen, die für den Energiemarkt<br />

derzeit zur Verfügung stehen.<br />

Dabei darf man jedoch nicht vergessen,<br />

dass es sich hierbei um ein<br />

generisch entwickeltes Produkt<br />

handelt und dass man hier auf alte<br />

Erfahrungswerte aufgebaut hat und<br />

diese weiterentwickelt hat. Auch muss<br />

berücksichtigt werden, dass gerade<br />

die Entwicklung in den letzten Jahren<br />

rasant verlief. Web-basierte Applikationen<br />

im ICS-Umfeld waren vor<br />

Jahren nicht denkbar, sodass deren<br />

Risiken auch nicht betrachtet wurden<br />

bzw. werden konnten.<br />

Das Sicherheitskonzept von<br />

Siemens – welches letztlich auf der<br />

hervorragenden IEC 62443 basiertekonnte<br />

trotz Berücksichtigung der<br />

relevanten Standards nicht den GAU<br />

vom 30. Dezember 2019 verhindern.<br />

Es liegt somit eine strukturelle Heraus<strong>for</strong>derung<br />

vor, die wir uns näher<br />

betrachten sollten (Abbildung 1).<br />

Die vom Kaspersky Team entdeckten<br />

Schwachstellen lagen erst<br />

einmal beim Application Server und<br />

hier vor allem bei:<br />

1. Zugangsmanagement<br />

2. Java Umgebung<br />

Hier treffen wir auf ein struk turelles<br />

Problem, welches per se nicht originär<br />

die Hersteller der Leit technik, sondern<br />

die Welt der Programmierung trifft:<br />

Obfuskation, Deobfuskation sowie<br />

Dissection.<br />

Obfuskation bezieht sich auf die<br />

Trans<strong>for</strong>mation von Programmcode.<br />

Angestrebtes Ziel ist es, die Ermittlung<br />

der Semantik und der Funktionalität<br />

eines Programms zu erschweren,<br />

wobei dessen Funktionalität jedoch<br />

erhalten bleibt. Prinzipiell wird<br />

Obfuskation auf zwei Programmbestandteile<br />

angewandt:<br />

1. Kontrollfluss<br />

2. Datenstrukturen<br />

Die Art der Obfuskation hängt von der<br />

Art der Programmiersprache ab. Für<br />

uns sind in diesem Zusammenhang<br />

JAVA und .NET Programmierungen<br />

relevant.<br />

Verglichen mit kompilierten<br />

Sprachen sind Java und .NET Programme<br />

relativ einfach zu disassemblen<br />

bzw. Reverse Engineering<br />

von den ausführbaren (exe, dll, jar,<br />

class) Dateien ist einfach. Dies ist<br />

dadurch bedingt, da der Intermediate<br />

Bytecode alle ursprünglich verwendeten<br />

Bezeichner (Variablen- &<br />

Funktionsnamen) enthält, wodurch<br />

ein Decompiler nahezu den gesamten<br />

Source Code (mit Ausnahme der<br />

Kommentare) wiederherstellen kann.<br />

Der eingesetzte Java-Code wurde<br />

mit einem Obfuskator (hier: Zelix<br />

KlassMaster) verschleiert. Beliebte<br />

weitere Obfuskatoren sind:<br />

p DashO<br />

p JavaGuard<br />

p ProGuard<br />

p yGuard<br />

Zusätzlich zur Obfuskation im Bereich<br />

des Kontrollflusses sowie der Datenstrukturen<br />

werden gerne Runtime<br />

Packer genutzt oder es wird verschlüsselt.<br />

Generell versteht man unter einem<br />

Packer ein Programm mit der Software<br />

komprimiert und/oder verschlüsselt<br />

werden kann. Kompressionsverfahren<br />

wie ZIP, CAB und RAR,<br />

aber auch selbst geschriebene Verfahren<br />

kommen dabei zum Einsatz.<br />

Kennt man den verwendeten Algorithmus<br />

nicht, so kann man die Daten<br />

nicht wieder entpacken. Bei Runtime-<br />

Packern können die Programme direkt<br />

ausgeführt werden, ohne dass hierzu<br />

ein externes Tool genutzt werden<br />

muss. Der Grund hierfür liegt darin,<br />

dass diese Packer-Programme – nachdem<br />

diese ein Programm komprimiert<br />

haben – die Dekomprimierungsroutine<br />

direkt vorne in das Programm<br />

einfügen, wobei beim Programmstart<br />

diese Routine als erstes ausgeführt<br />

wird. Als Alternative oder zusätzlich<br />

zur Komprimierung kann auch eine<br />

Verschlüsselung realisiert werden, da<br />

das Schema das Gleiche ist.<br />

So genial sich dies alles anhört, so<br />

gibt es hier eine Schwachstelle:<br />

Selbst wenn ein Packer eine Software<br />

mit dem besten kryptographischen<br />

Algorithmus verschlüsselt,<br />

Operation and New Build<br />

36C3 – More Questions Than Answers ı Stefan Loubichi


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

so muss das komprimierte bzw. verschlüsselte<br />

Programm entpackt bzw.<br />

entschlüsselt werden, damit die CPU<br />

das Programm ausführen kann. Dies<br />

ist der Zeitpunkt, bei dem das Reverse<br />

Code Engineering normalerweise<br />

startet.<br />

Der Cyber-Kriminelle macht einen<br />

Speicher-Dump der dekomprimierten/<br />

entschlüsselten Anwendung und<br />

speichert selbigen. Hierdurch kann er<br />

die Originalsoftware analysieren und<br />

muss sich nicht mit den Schutzmechanismen<br />

befassen.<br />

Leider findet sich mittlerweile im<br />

Internet frei verfügbar zu jedem<br />

Obfuskator ein Deob-fuskator.<br />

Unter https://javadeobfuscator.<br />

com/ kann man nun zum Beispiel einen<br />

Deobfuskator (seit Jahren) downloaden,<br />

der die Verschleierung wieder<br />

rückgängig machen kann. Dieser Deobfuskator<br />

kann eingesetzt werden<br />

für die folgenden Obfuskatoren: Zelix<br />

KlassMaster, Stringer, Allatori, DashO,<br />

DexGuard, ClassGuard und Smoke.<br />

Auf oben genannter Homepage findet<br />

sich dann die Beschreibung, wie man<br />

erfolgreich agiert:<br />

Download the deobfuscator<br />

Create detect.yml with the following<br />

contents. Replace input.jar with the name<br />

of the input<br />

input: input.jar<br />

detect: true<br />

Create config.yml with the following<br />

contents. Replace input.jar with the name<br />

of the input ```yaml input: input.<br />

jar output: output.jar trans<strong>for</strong>mers:<br />

[fully-qualified-name-of-trans<strong>for</strong>mer]<br />

[fully-qualified-name-of-trans<strong>for</strong>mer]<br />

…etc´´´<br />

Run java -jar deobfuscator.jar<br />

Die Arbeit hält sich somit in Grenzen.<br />

Jetzt benötigt man noch einen Dissector,<br />

der aus dem Zeichensalat die<br />

entsprechenden strukturierten Felder<br />

heraussucht. Obgleich es hier einige<br />

im normalen Internet gibt, hat das<br />

Kaspersky Team einen Dissector gebaut,<br />

am 28.12.2019 veröffentlicht<br />

und auch noch die einfache Funktionsweise<br />

erläutert. Für alle Interessierten<br />

hier die Homepage: https://<br />

github.com/klsecservices/desert<br />

Auf einem zur SPPA T3000 gehörenden<br />

Java-Orion-Server ließen<br />

sich dann Verzeichnisse via https recht<br />

einfach auslesen und es fanden sich<br />

diverse Servlets, welche Anfragen von<br />

Clients entgegennahmen und beantworteten.<br />

Das größte Problem stellte<br />

hierbei ein BrowerServlet für Drittparteien<br />

dar.<br />

Des Weiteren fanden die Kollegen<br />

von Kaspersky relativ einfach diverse<br />

angebotene Java-Dienste inklusive<br />

einer Liste für „AdminService“ inklusive<br />

der Möglichkeit für Reverse Code<br />

Engineering. Da viele der Leser nicht<br />

originär aus dem IT-Berufsumfeld<br />

stammen, sei darauf verwiesen, dass<br />

man unter Reverse Code Engineering<br />

in diesem Zusammenhang die Rückgewinnung<br />

des Quellcodes oder einer<br />

vergleichbaren Beschreibung aus<br />

Maschinencode versteht. Natürlich ist<br />

Reverse Code Engineering strafbar.<br />

Dies interessiert jedoch Cyber-Kriminelle<br />

oder Cyber-Terroristen nicht.<br />

Kaspersky hat uns hier gelehrt:<br />

So gut die Sicherheitsarchitektur der<br />

Leittechnik auch sein mag, so existiert<br />

eine Schwachstelle: Komme ich an den<br />

Bytecode – was eher eine Fleißaufgabe<br />

für den geübten Cyber- Kriminellen /<br />

Cyber-Terroristen ist – so kann er mit<br />

einem frei im Internet erhältlichen<br />

Deobfuskator disassemblen und hat<br />

dann den lediglich um die Kommentarzeilen<br />

gekürzten Source Code.<br />

Das Problem ist somit die Obfuskation<br />

von Java. Eine Ad-hoc–Lösung<br />

gibt es hier derzeit nicht.<br />

Wie Kaspersky auf der 36C3 zur<br />

Entwarnung gegenüber den Leittechnikherstellern<br />

kommunizierte,<br />

betrifft diese Problematik vor allem<br />

das Innere des Kraftwerkes. Die Steuerungssysteme<br />

waren hiernach weitestgehend<br />

gegenüber einem Zugang von<br />

außen geschützt, sodass Cyber-<br />

Kriminelle erst in das Innere eines<br />

Kraftwerkes eindringen müssten.<br />

Es ist sicherlich zutreffend, dass<br />

Mitarbeitende von Kraftwerken in der<br />

Regel loyal zu ihrem Kraftwerk<br />

sind. Vergegenwärtigen wir uns an<br />

dieser Stelle aber die Statistik zur<br />

Täterherkunft der KPMG-Studie<br />

zur Wirtschaftskriminalität 2018<br />

( Abbildung 2).<br />

24 % der IT-relevanten Straftaten<br />

werden von Mitarbeitenden begangen.<br />

Somit ist der von Kaspersky ins<br />

Kalkül gezogene „Faktor Innentäter“<br />

gar nicht so irrelevant, wie wir das<br />

gerne glauben möchten.<br />

OPERATION AND NEW BUILD 157<br />

| Abb. 2.<br />

Täterherkunft Kriminalität in Unternehmen im Kalenderjahr 2018. Quelle: KPMG Wirtschaftskriminalität in Deutschland 2018<br />

Operation and New Build<br />

36C3 – More Questions Than Answers ı Stefan Loubichi


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

OPERATION AND NEW BUILD 158<br />

| Abb. 3.<br />

Beispiel eines repräsentativen nmap-Scans.<br />

Quelle: https://nmap.org/man/de/index.html<br />

OT-Assetmanagement oder<br />

Excel-Tabellen sind nicht<br />

ausreichend und IT-Assetmanagement<br />

ist anderes<br />

Ein auf dem 36C3 am Rande diskutiertes,<br />

aber immer wichtigeres<br />

Thema war in diesem Zusammenhang<br />

auch die Frage:<br />

Müssen im Bereich der OT wirklich<br />

alle Assets erfasst werden oder reicht<br />

es aus, eine frei zu wählende Klassifizierung<br />

durchzuführen?<br />

Wer sich noch an die Matrix-<br />

Trilogie erinnern kann, der erinnert<br />

sich sicherlich an den Hinweis auf das<br />

Programm nmap (Abbildung 3).<br />

nmap („Network Mapper“) ist ein<br />

Open-Source-Tool für:<br />

1. Netzwerkanalyse<br />

2. und Sicherheitsüberprüfung.<br />

Das Programm wurde entworfen, um<br />

große Netzwerke schnell zu scannen,<br />

auch wenn es bei einzelnen Hosts<br />

ebenfalls gut funktioniert.<br />

Dabei werden rohe IP-Pakete genutzt,<br />

um festzustellen,<br />

p welche Hosts im Netzwerk verfügbar<br />

sind,<br />

p welche Dienste (Anwendungsname<br />

und -version) diese Hosts<br />

bieten,<br />

p welche Betriebssysteme (und Versionen<br />

davon) darauf laufen,<br />

p welche Art von Paketfiltern/-Firewalls<br />

benutzt werden<br />

p sowie Dutzende anderer Eigenschaften.<br />

Darüber hinaus kann nmap – in der<br />

Regel in der IT-Welt – für folgende<br />

Aufgaben genutzt werden:<br />

p Netzwerkinventarisierung,<br />

p Verwaltung von Ablaufplänen für<br />

Dienstaktualisierungen,<br />

p Überwachung von Betriebszeiten<br />

von Hosts oder Diensten.<br />

Die Ausgabe von nmap ist eine Liste<br />

gescannter Ziele mit zusätzlicher<br />

In<strong>for</strong>mation zu jedem Ziel.<br />

Die wichtigsten In<strong>for</strong>mationen<br />

finden sich in der „Tabelle der interessanten<br />

Ports“, wo folgende In<strong>for</strong>mationen<br />

zu finden sind:<br />

die Portnummer<br />

das Protokoll<br />

der Dienstnamen<br />

der Dienstzustand (offen, gefiltert,<br />

geschlossen oder ungefiltert).<br />

Die Dienstzustände sind wie folgt<br />

definiert:<br />

Offen:<br />

Auf diesem Port des Zielrechners<br />

lauscht eine Anwendung auf eingehende<br />

Verbindungen/Pakete.<br />

Gefiltert:<br />

Eine Firewall, ein Filter oder ein<br />

anderes Netzwerkhindernis blockiert<br />

den Port, sodass nmap nicht wissen<br />

kann, ob er offen oder geschlossen ist.<br />

Geschlossen:<br />

Hier gibt es keine Anwendung, die auf<br />

den Ports lauscht, auch wenn diese<br />

jederzeit geöffnet werden könnten.<br />

Ungefiltert:<br />

Ports, die auf nmap-Testpakete antworten,<br />

wobei nmap aber man nicht<br />

feststellen kann, ob die Ports offen<br />

oder geschlossen sind.<br />

Gegebenenfalls kann die Port-<br />

Tabelle auch Details zur Softwareversion<br />

beinhalten und wenn ein<br />

IP-Protokoll-Scan verlangt wurde,<br />

bietet nmap auch In<strong>for</strong>mationen über<br />

die unterstützten IP-Protokolle statt<br />

über lauschende Ports.<br />

Darüber hinaus kann nmap weitere<br />

Angaben über Ziele bieten, darunter:<br />

p Reverse-DNS-Namen,<br />

p Mutmaßungen über das benutzte<br />

Betriebssystem,<br />

p Gerätearten<br />

p MAC-Adressen.<br />

Bekanntlicher Weise ist nmap ein<br />

typisches Dual-useTool, welches<br />

gegebenenfalls von Cyber-Kriminellen<br />

zur Vorbereitung von Straftaten nach<br />

§ 202a StGB genutzt werden könnte,<br />

wobei der Autor dieses Aufsatzes<br />

unter Bezug auf das Urteil des Bundesverfassungsgerichtes<br />

in den Sachen 2<br />

BvR 2233/07, 2 BvR 1151/08, 2 BvR<br />

1524/08 ausdrücklich darauf verweist,<br />

dass dieses Tool nur im eigenen<br />

Unternehmen mit ausdrücklicher<br />

Genehmigung der Geschäftsführung<br />

dazu benutzt werden darf, um eine<br />

Sicherheitsanalyse zur Behebung<br />

eigener Schwachstellen durchzuführen.<br />

Eine andere Nutzung ist<br />

strafbewährt!<br />

Neben dieser Sicherheitsanalyse<br />

befassen wir uns an dieser Stelle<br />

aber vor allem deshalb mit nmap<br />

um darzulegen, wie Administratoren<br />

auf einfache Art- und Weise eine<br />

voll umfängliche Asset-Liste im IT-Bereich<br />

erzeugen können, welche auch<br />

auf<br />

die OT-Welt in gewissen Zügen anwendbar<br />

ist.<br />

Kommen wir nun zu der Welt des<br />

OT-Assetmanagements und einer<br />

persönlichen Erfahrung des Autors<br />

dieses Werkes in seiner Funktion als<br />

leitender Auditor für In<strong>for</strong>mationssicherheitsmanagementsysteme<br />

in<br />

der Energiewirtschaft: In mehr als der<br />

Hälfte der Audits bei Netzbetreibern,<br />

die eine Zertifizierung nach IT-Sicherheitskatalog<br />

gemäß § 11 Abs. 1a<br />

EnWG durchführten, wurden dem<br />

leitenden Auditor EXCEL-Listen vorgelegt,<br />

wobei diese in der Regel<br />

deshalb schon Gegenstand von Auditfeststellungen<br />

waren, weil die In<strong>for</strong>mationen<br />

zu den Assets unvollständig<br />

waren und oftmals nicht verifizierbar<br />

war, ob ein aktueller Softwarestand<br />

vorhanden ist.<br />

Wenn man aber nicht weiß,<br />

welchen Stand das Asset in der OT<br />

hat, kann man im Krisenfall aber<br />

nicht wissen, ob hier ein Patch eingespielt<br />

werden muss oder nicht.<br />

Und im Audit fanden sich dann<br />

auch des Öfteren OT-Assets, die gar<br />

nicht in der Liste der Werte gelistet<br />

waren. Was aber in der Regel nicht<br />

in der Liste der Werte gelistet ist,<br />

kann aber auch nicht gepatcht<br />

werden, da man es nicht kennt!<br />

Es ist erst einmal zu begrüßen,<br />

dass immer mehr – aber immer noch<br />

vergleichsweise wenige – Unternehmen<br />

in kritischen Sektoren hingehen<br />

und ein automatisierten Scan<br />

ihrer OT-Landschaft durchführen.<br />

Die derzeit leider immer noch<br />

gebräuchlichste Variante ist der<br />

„ Passive Scan“.<br />

Der Begriff des passiven Scannens<br />

ist technisch gesehen falsch, da<br />

kein Netzwerkscan stattfindet. Beim<br />

passiven Scan spioniert eine Netzwerkanwendung<br />

den gesamten<br />

Netzwerkverkehr aus und analysiert<br />

ihn nach Daten, die zum Identifizieren<br />

von Endpunkten und Datenverkehrsmustern<br />

verwendet werden können.<br />

In diesem Zusammenhang muss<br />

darauf verwiesen werden, dass Metadaten,<br />

die für die Ressourcenermittlung<br />

er<strong>for</strong>derlich sind, tief im<br />

Drahtverkehr verborgen sind. Die<br />

Suche nach In<strong>for</strong>mationen, welche<br />

verwendet werden könnten, um<br />

Geräteherstellung und Modell, Firmware-Version<br />

usw. zu identifizieren,<br />

stellt sich als eine ebenso schwierige<br />

Aufgabe dar wie die Suche nach einer<br />

Nadel in einem Heuhaufen. Es ist aus<br />

diesem Grunde verständlich, dass<br />

Operation and New Build<br />

36C3 – More Questions Than Answers ı Stefan Loubichi


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

der passive Scan nicht immer die<br />

genauesten Ergebnisse liefern kann.<br />

Auch hat das passive Scannen in<br />

der Regel einige technische Einschränkungen:<br />

1. „Stille Geräte“ werden nicht<br />

erkannt.<br />

2. Sicherheitspatches werden oftmals<br />

nicht mit hinreichender Genauigkeit<br />

erkannt.<br />

3. Es kann vorkommen, dass die<br />

Netztopologie in den Ebenen eins<br />

und zwei verborgen ist.<br />

Sicherlich ist der passive Scan ein<br />

grundlegender Meilenstein gegenüber<br />

der händischen Erfassung der<br />

OT-Assets im EXCEL-Format, aber aus<br />

heutiger Gefährdungslagensicht nicht<br />

mehr ausreichend ist.<br />

Eine Alternative mit in der Regel<br />

besseren Ergebnissen ist aus Sicht des<br />

Autors das selektive Abfragen.<br />

Hier werden die Geräteerkennungsfunktionen<br />

der Protokolle<br />

genutzt, welche die Automatisierungstechnik<br />

in der Regel sowieso<br />

spricht, z.B. Profinet, SNMP, WMI.<br />

Hierdurch liefert die selektive Abfrage<br />

in der Regel vollständige Daten, unter<br />

anderem zur Netzwerktopologie,<br />

Firmwareversionen, Softwareanwendungen,<br />

installierten sowie nicht installierten<br />

Sicherheitspatches, Seriennummern<br />

und vieles mehr.<br />

Die Erfahrungen haben viele<br />

Unternehmen der Energiewirtschaft<br />

gelehrt, dass man im Bereich des Asset<br />

Managements auch mit einer Sammlung<br />

an EXCEL Listen das begehrte<br />

ISO/IEC 27001 Zertifikat erhalten<br />

kann. Aber mit dem ISO/IEC 27001<br />

erlangt man nicht die Sicherheit, die<br />

man letztlich wirklich als KRITIS-<br />

Energieerzeuger benötigt. Ein Scan<br />

der OT-Assets nach Stand der Technik<br />

ist zweifelsfrei eine nicht unerhebliche<br />

Investition, aber eine Investition,<br />

welche für die Cyber- Sicherheit/IT-<br />

Sicherheit relevant ist.<br />

Warum funktioniert das Patchmanagement<br />

nicht?<br />

Kommen wir hier nochmals zum<br />

36. Chaos Computer Club Kongress<br />

vom 27.-30. Dezember 2019 und die<br />

Präsentation des Kaspersky Teams in<br />

Sachen Siemens SPPA T3000. Als<br />

erstes Ergebnis verbleibt zu vermerken,<br />

dass nach der Präsentation<br />

erst einmal Betroffenheit herrschte<br />

und dass einige hiernach erklärten,<br />

sich schnellstmöglich mit Siemens in<br />

Verbindung setzen zu müssen.<br />

Zur Rettung der Siemens Kolleg-<br />

*innen in Karlsruhe / Erlangen muss<br />

jedoch erklärt werden, dass nachweislich<br />

zum 10. Dezember 2019 von<br />

Siemens eine Sicherheitswarnung<br />

herausgegeben wurde und auch mit<br />

dem Servicepack R8.2 SP1 ein umfangreiches<br />

Sicherheitsupdate herausgebracht<br />

wurde (siehe hierzu:<br />

https://cert-portal. siemens.com/<br />

productcert/pdf/ssa-451445. pdf).<br />

Das Cyber+Infrastructure Department<br />

des US Homeland Security<br />

Ministeriums verwies am 17.12.2019<br />

medienwirksam auf Sicherheitswarnung<br />

und -update (Abbildung 4).<br />

Auch wurden direkt von der US-<br />

Sicherheitsbehörde eine E-Mail-<br />

Adresse und eine Telefonnummer<br />

angegeben, an die sich betroffene US-<br />

Firmen wenden konnten.<br />

Zwischen der Sicherheitswarnung<br />

und der Bereitstellung des Sicherheitsupdates<br />

auf der einen Seite und<br />

der Präsentation der Sicherheitslücken<br />

auf 36C3 lagen 19 (in Worten:<br />

neunzehn) Tage.<br />

Energieunternehmen – gleich ob<br />

Netzbetreiber oder Energieerzeuger –<br />

welche eine Warnmeldung des Herstellers<br />

ihrer Leittechnik erhalten,<br />

dann 19 Tage nichts tun und erst nach<br />

entsprechenden Meldungen in der<br />

Tagesschau nach 21 Tagen besorgt<br />

nachfragen, ob denn überhaupt die<br />

Sicherheitslücke gepatcht wurde,<br />

haben mehr als eine große Heraus<strong>for</strong>derung<br />

in ihrer IT-/OT-Sicherheit.<br />

Nun könnte man natürlich argumentieren,<br />

dass die in diesem Artikel<br />

dezidiert beschriebene Thematik<br />

Java- Umfeld ja nur die innere Kraftwerkssicherheit<br />

beträfe, aber es waren<br />

auch diverse andere sicherheitsrelevante<br />

Aspekte betroffen, auf die<br />

hier nicht weiter eingegangen wird.<br />

Wenn bei der Leittechnik trotz<br />

Warnmeldung nicht gepatcht wird, so<br />

stellt sich die Frage, wie es denn dann<br />

bei Assets ist, die aus Sicht der Verantwortlichen<br />

noch weniger relevant<br />

sind. Das, was hier in Teilen geschieht,<br />

muss aus juristischer Sicht mit grober<br />

Fahrlässigkeit umschrieben werden.<br />

Bzgl. der sonstigen Warnmeldungen<br />

muss jedoch zugegeben<br />

werden, dass die Vielzahl der CVE-<br />

Warnmeldungen für viele Unternehmen<br />

einfach unüberschaubar<br />

geworden ist.<br />

Common Vulnerabilities and<br />

Exposures (nachfolgendend nur noch<br />

CVE genannt), ist eine Liste mit<br />

öffentlichen Sicherheitsschwachstellen<br />

in Systemen der In<strong>for</strong>mationstechnologie.<br />

Unter CVE versteht man<br />

in der Regel die CVE-Nummer, die<br />

einer bestimmten Schwachstelle<br />

zugewiesen ist. Die CVE hilft IT-Fachkräften<br />

derartige Schwachstellen<br />

leichter zu priorisieren und zu<br />

beheben, um die Systeme sicherer zu<br />

machen.<br />

CVE wird überwacht von der<br />

MITRE Corporation und von der<br />

Cybersecurity and Infrastructure<br />

Security Agency finanziert, welche<br />

beide zum U.S. Department of<br />

Homeland Security gehört.<br />

CVE-Einträge sind vergleichsweise<br />

kurz und enthalten keinerlei hinreichenden<br />

technischen Daten oder<br />

Infos zu Risiken, Auswirkungen<br />

und Fixes. Diese Details werden in<br />

anderen Datenbanken angezeigt, so<br />

zum Beispiel:<br />

1. U.S. National Vulnerability Database:<br />

https://nvd.nist.gov/<br />

2. CERT/CC Vulnerability Notes<br />

Database: https://www.kb.cert.<br />

org/vuls/<br />

3. diverse andere.<br />

Inmitten dieser verschiedenen Systeme<br />

sorgen die CVE-Nummern dafür,<br />

dass der Benutzer Sicherheitsschwachstellen<br />

eindeutig voneinander<br />

unterscheiden kann.<br />

Oben genannte CVE-Nummern<br />

werden von einer CVE Numbering<br />

Authority (CNA) zugewiesen. Hiervon<br />

gibt es derzeit circa 100. Es sind<br />

dies wichtige (und kooperative) IT-<br />

Anbieter, Sicherheitsfirmen und<br />

Forschungseinrichtungen. Mitre weist<br />

den CNAs CVE-Nummernblöcke zu.<br />

Bei Bedarf können hieraus dann die<br />

CVE-Meldungen systemisch und<br />

nachvollziehbar generiert werden.<br />

CVE-Meldungen können im Übrigen<br />

aus unterschiedlichen Quellen<br />

stammen, d.h.: Anbieter, Wissenschaftler<br />

oder fachkundige Benutzerhelfen<br />

helfen hier bei der Verbesserung<br />

von Schwachstellen.<br />

Um die Eigenschaft eines CVE's<br />

zu bekommen, müssen folgende<br />

Kriterien erfüllt sein:<br />

1. Unabhängige Behebbarkeit<br />

2. Bestätigung durch den betroffenen<br />

Anbieter<br />

3. Auswirkungen auf eine Codebase<br />

| Abb. 4.<br />

ICSA-19-351-02. https://www.us-cert.gov/ics/advisories/icsa-19-351-02<br />

OPERATION AND NEW BUILD 159<br />

Operation and New Build<br />

36C3 – More Questions Than Answers ı Stefan Loubichi


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

OPERATION AND NEW BUILD 160<br />

Der Schweregrad einer Schwachstelle<br />

lässt sich durch verschiedene Modi<br />

ermitteln. Eine weit verbreitete<br />

Option ist das Common Vulnerability<br />

Scoring System, welches aus mehreren<br />

offenen Standards besteht, mit<br />

denen eine Zahl zur Festlegung eines<br />

Schweregrads zugewiesen wird. Die<br />

Skala reicht von 0,0 bis 10,0, wobei<br />

der Schweregrad mit der Zahl zunimmt.<br />

Vergegenwärtigen wir uns an<br />

dieser Stelle nur einmal an einer<br />

kleinen Auswahl von möglichen im<br />

Energiebereich (häufig) genutzten<br />

Entitäten, wo es im Jahr 2019<br />

entsprechende Sicherheitswarnmeldungen<br />

gab:<br />

Suchanfrage Siemens SPPA T3000<br />

53 Einträge für das Jahr 2019<br />

Quelle:<br />

https://cve.mitre.org/cgi-bin/<br />

cvekey.cgi? keyword=Siemens+<br />

SPPA+T3000<br />

Suchanfrage ABB 800xa<br />

15 Einträge für das Jahr 2019<br />

https://cve.mitre.org/cgi-bin/<br />

cvekey.cgi? keyword=ABB+800xa<br />

Suchanfrage Cisco Router<br />

25 Einträge für das Jahr 2019<br />

https://cve.mitre.org/cgi-bin/<br />

cvekey.cgi?keyword=Cisco+Router<br />

Suchanfrage SAP AIN<br />

117 Einträge für das Jahr 2019<br />

https://cve.mitre.org/cgi-bin/<br />

cvekey.cgi?keyword=SAP+AIN<br />

(SAP AIN = SAP Asset Intelligence<br />

Network)<br />

Suchanfrage Java<br />

29 Einträge für das Jahr 2019<br />

https://cve.mitre.org/cgi-bin/<br />

cvekey.cgi?keyword=Java<br />

Suchanfrage Windows 10<br />

38 Einträge für das Jahr 2019<br />

https://cve.mitre.org/cgi-bin/<br />

cvekey.cgi?keyword=Windows+10<br />

Suchanfrage Linux<br />

368 Einträge für das Jahr 2019<br />

https://cve.mitre.org/cgi-bin/<br />

cvekey.cgi?keyword=Linux<br />

Allein nur in dieser begrenzten<br />

Auswahl an Entitäten gab es 645<br />

Sicherheitswarnmeldungen im Jahr<br />

2019.<br />

Es ist aus mangelnden zeitlichen<br />

Ressourcen für den CISO eines<br />

klein bis mittelgroßen Energieerzeugers<br />

unmöglich, sich auch nur<br />

annähernd in hinreichender Qualität<br />

und Quantität mit diesen CVE's<br />

zu beschäftigen. Diese Unternehmen<br />

können in der Regel nur<br />

hoffen, dass sie von Cyber-Kriminellen<br />

bzw. Cyber-Terroristen als zu<br />

uninteressant angesehen werden.<br />

Interessanterweise haben (große)<br />

europäische Energieerzeuger (mit<br />

Ausnahme zweier EU-Länder) in<br />

der Regel keinen „Chief Analyst<br />

IT- Security/Cyber-Security“, welcher<br />

sich alleine oder mit einem (kleinen)<br />

schlagkräftigen Team um die Beantwortung<br />

der nachfolgenden Fragen<br />

kümmert:<br />

1. Sind diese Sicherheitswarn meldungen<br />

für unsere Organisation<br />

relevant, d.h. sind diese Assets für<br />

die Organisation überhaupt relevant?<br />

2. Kann gepatcht werden, ohne dass<br />

die auf diesen Assets laufenden<br />

Programme nach dem Patch nicht<br />

mehr „laufen“?<br />

3. Welche Auswirkung hat es bzw.<br />

könnte es haben, wenn wir den<br />

Patch nicht realisieren?<br />

In Japan und Südkorea sind derartige<br />

Funktionen als „Chief Analyst IT-<br />

Security/OT-Security“ neben den<br />

CISOs und Ansprechpartnern IT-/<br />

Cybersecurity oftmals implementiert.<br />

Dies könnte auch der Grund sein,<br />

warum KRITIS-Betreiber in diesen<br />

Ländern sorgenfreier in die Zukunft<br />

blicken.<br />

Welche adhoc-Lösungen<br />

könnten aus 36C3 gezogen<br />

werden/Fazit?<br />

Obwohl die Energiewirtschaft nur ein<br />

Nischendasein auf dem 2019er Chaos<br />

Computer Club hatte, so muss festgehalten<br />

werden, dass die „Kaspersky-<br />

Präsentation“ und die anschließenden<br />

Diskussionen einiges bewegt haben.<br />

Weitgehende Einigkeit besteht bei<br />

vielen darüber, dass die Nachweise<br />

in Sachen Assetmanagement bzw.<br />

Patchmanagement aufgrund des Zeitdruckes<br />

vieler Auditoren eine Zertifizierung<br />

nach ISO/IEC 27001 erlauben<br />

könnten. Das derzeitige Asset- und<br />

Patchmanagement wird aber nach<br />

derzeitiger Sicht nicht ausreichen,<br />

um sich erfolgreich gegen eine professionelle<br />

Attacke von Cyber-<br />

Terroristen bzw. Cyber-Kriminellen<br />

erfolgreich zur Wehr zu setzen.<br />

Ein dynamisches IT-/OT-Assetmanagement<br />

muss zur Gefahrenabwehr<br />

umgehend realisiert werden,<br />

wobei passives Scannen nicht ausreichen<br />

wird. Um die derzeit teilweise<br />

katastrophalen Zustände des unzureichenden<br />

Patchmanagements zu<br />

verbessern, müssen entweder für<br />

kleinere bis mittlere Energieunternehmen<br />

entsprechende intelligente<br />

Wissensdatenbanken (mit Querverweis<br />

zu Assetmanagement-Datenbanken)<br />

eingeführt werden oder für<br />

größere Energieunternehmen die<br />

Stabsstelle eines „Chief Analyst IT-/<br />

OT- Security“ geschaffen werden, die<br />

unabhängig von den Funktionsträgern<br />

CISO bzw. Ansprechpartner<br />

IT-Sicherheit die aktuelle Gefährdungslage<br />

bewerten. Zugegebener<br />

Maßen kostet so etwas viel Geld,<br />

jedoch immer noch weniger Geld als<br />

der Ausfall der Energieerzeugung<br />

bzw. den Imageschaden.<br />

Referenzen<br />

| Marc Elsberg, Blackout – Morgen ist es zu spät, blanvalet,<br />

ISBN 9783442380299<br />

| Thomas Petermann, Harald Bradke, Arne Lüllmann, Maik<br />

Poetzsch, Ulrich Riehm,Folgen eines langandauernden großräumigen<br />

Stromausfalls, edition sigma, ISBN 978386081337<br />

| Verordnung zur Bestimmung Kritischer Infrastrukturen nach dem<br />

BSI-Gesetz, BGBl. I S. 1903<br />

| Bundesnetzagentur, IT-Sicherheits-katalog gemäß § 11 Abs. 1a<br />

EnWG, htps://www.bundesnetzagen tur.de/ Sharedocs/<br />

Downloads/DE/Sach gebiete/Energie/Unternehmen_<br />

Institutionen/Versorgungssicher heit/IT_Sicher heit/IT_<br />

Sicherheitskatalog_08-2015.pdf? __blob=publicationFile&v=1<br />

| https://www.heise.de/suche/<br />

?q=Citrix&rm=search&sort_by=date<br />

| https://securityaffairs.co/wordpress/96569/cyber-crime/<br />

hackers-patch-citrix-servers.html<br />

| https://assets.new.siemens.com/siemens/assets/api/<br />

uuid:fd8546a5-17c0-476b-86fe-cc5b5187dd16/<br />

version:1576355 096/wp-ics-security-v8-0-en-2019-12-10.pdf<br />

| R. Abrams, „WeLiveSecurity (Packers),“ 27 October 2008.<br />

[Online]. available: http://www.welivesecurity.com/2008/<br />

10/27/an-introduction-to-packers/<br />

| KPMG Wirtschaftskriminalität in Deutschland 2018<br />

| Urteil des Bundesverfassungsgerichtes in den Sachen 2 BvR<br />

2233/07, 2 BvR 1151/08, 2 BvR 1524/08<br />

| https://cert-portal. siemens.com/product cert/pdf/<br />

ssa-451445.pdf<br />

| https://www.us-cert.gov/ics/advisories/ icsa-19-351-02<br />

| https://nvd.nist.gov/<br />

| https://www.kb.cert.org/vuls/<br />

Author<br />

Prof. h.c. PhDr. Dipl.-Kfm./<br />

Dipl.-Vw. Stefan Loubichi<br />

<strong>International</strong> experienced lead<br />

auditor <strong>for</strong> management systems<br />

(ISO 27001, ISO 14001, ISO 9001,<br />

ISO 45001, ISO 26000), auditor<br />

according to § 8 BSI-Law and<br />

IT-security catalogue, more than<br />

ten years of international<br />

experience in implementing ITand<br />

cyber security<br />

Essen, Deutschland<br />

Operation and New Build<br />

36C3 – More Questions Than Answers ı Stefan Loubichi


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

<strong>Nuclear</strong> <strong>Power</strong> World Report 2018<br />

Editorial office<br />

At the end of the year 2018, there were 450 nuclear power plant units in 31 countries in operation* worldwide.<br />

This means that the number of units increased by 1 unit to the key date of the previous year (31 December 2017: 449,<br />

+1 unit, -0.25 %) (compare Figure 1) due to the commissioning (= first criticality) of 8 new plants, and the final<br />

decommissioning of 7 plants. In the following are the values given on 31 December 2018 and change compared to the<br />

previous year as a percentage in brackets. There were 53 (58, -5.0 %) nuclear power plant units under construction in<br />

17 (16) countries, in other words, 1 less than on the previous year’s key date. The available total gross capacity 1) of the<br />

nuclear plants operating amounted to 424,074 MWe (420,383 MWe, +1.0 %) and the total net capacity to 401,416 MWe<br />

(397,009 MWe, +0.9 %). This equates to an increase of 3,691 MWe gross and 4,407 MWe net. The additional capacity<br />

results mainly from newly defined nominal capacities of operating plants (compare Table 1 and Figures 1 to 3). As of<br />

the year 2017 the base <strong>for</strong> all capacities, in particular <strong>for</strong> the U.S. nuclear power plant units, are the nameplate data. Due<br />

to cooling water conditions (higher or lower cooling water temperatures with respect to design capacity) actual gross<br />

and net capacities may vary by plus or minus 3 % of the nameplate (design) capacity. In some countries the lower<br />

capacity value is used <strong>for</strong> capacity data due to its relevance <strong>for</strong> system services.<br />

In the year 2018, the nuclear power plant units Haiyang 1<br />

(1250 MW, PWR), Sanmen 1 (1251 MW, PWR), Sanmen 2<br />

(1251 MW, PWR), Taishan 1 (1750 MW, PWR), Tianwan 4<br />

(1060 MW, PWR), and Yangjiang 5 (1086 MW, PWR) in<br />

China, and Leningrad 2-1 (1187 MW, PWR) in Russia reached<br />

first criticality, were connected to the grid<br />

<strong>for</strong> the first time and put into commercial operation.<br />

Additionally Haiyang 2 (1250 MW, PWR) in China reached<br />

first criticality and was connected to the grid <strong>for</strong> the first<br />

time. The commissioning program followed. Commercial<br />

takeover by the operator was planned in the first half of<br />

2019. Tianwan 3 (1060 MW, PWR, in 2019) in China and<br />

Rostov 4 (1030 MW, PWR) in Russia were connected to<br />

the grid <strong>for</strong> the first time and put into commercial<br />

operation; date of first criticality was 29 September 2017<br />

and 29 December 2017.<br />

In 2018 four additional nuclear power plant units<br />

resumed operations after long-term shutdown. In Japan<br />

the units Genkai 3 (1180 MW, PWR), Genkai 4 (1180 MW,<br />

PWR), Ohi 3 (1180 MW, PWR), and Ohi 4 (1180 MW,<br />

PWR) were restarted after about 7 years of lay-up<br />

operations respectively after the Tohoku earthquake and<br />

tsunami in 2011. In 2018 in total nine NPP‘s have been<br />

restarted since 2011, when all 51 nuclear power plants in<br />

operation in Japan have been shut down <strong>for</strong> lay-upoperation<br />

and safety checks. E.g. in Canada in total 6 units<br />

were restarted after more than 10 years of lay-up<br />

operations respectively. In the course of the liberalisation<br />

of the Canadian electricity market in the mid-1990s, the<br />

operator at the time Ontario Hydro ascertained insufficient<br />

competitive capacity in the market environment <strong>for</strong> 4 units<br />

at the site Bruce with around 3,100 MW as well as <strong>for</strong> 4<br />

others at the site Pickering with approximately 1,850 MW.<br />

That is the reason why the 8 CANDU units Bruce A1 to<br />

Bruce A4 and Pickering 1 to Pickering 4 were disconnected<br />

from the grid and removed from commercial operations<br />

between 1995 and 1997. Pickering 1 and Pickering 4 were<br />

re-commissioned in 2003 and 2005 by the new operator<br />

Ontario <strong>Power</strong> Generation due to changes in the market<br />

and after a retrofitting program. Bruce 3 and Bruce 4 were<br />

re-commissioned at the end of 2003/beginning of 2004.<br />

With the re-commissioning of both units Bruce A-1 and<br />

Bruce A-2 in 2012, the operator of the site Bruce<strong>Power</strong> has<br />

completed his investment program successfully. The site is<br />

intended to secure the power supply in the region in the<br />

long-term during the coming decades. With a gross capacity<br />

of approximately von 6,740 MWe Bruce is also the nuclear<br />

power site with highest output worldwide.<br />

Worldwide 7 nuclear power units were definitively<br />

taken out of operation in 2018: Japan the Ikata 2<br />

(566 MW, PWR, first criticality 1981), Ohi 1 (1175 MW,<br />

PWR, first criticality 1977), Ohi 2 (1175 MW, PWR, first<br />

criticality 1978), and Onagawa 1 (524 MW, BWR, first<br />

criticality 1983), in Russia the Leningrad 1 (1000 MW,<br />

LWGR, first criticality 1973), in Taiwan, China, the Chin<br />

Shan 1 (636 MW, BWR, first criticality 1977), and in the<br />

USA Oyster Creek (595 MW, BWR, first criticality 1969).<br />

There were 53 (55, -2 %) plants with 57,883 MWe gross<br />

and 54,773 MWe net capacity under construction<br />

worldwide at the end of the year 2018. That means that in<br />

comparison to the figure of the previous year, there were<br />

2 nuclear power units less under construction worldwide,<br />

since 5 projects have been newly started and 7 plants have<br />

attained first criticality. No project was suspended in 2018.<br />

Work started <strong>for</strong> the unit Rooppur 2 (PWR VVER V-491,<br />

1,194 MWe gross and 1,109 MWe net capacity) in Bangladesh<br />

by the supplier Atomstroyexport. In the Republic of Korea<br />

construction of the Shin-Kori 6 unit (PWR ACPR-1000,<br />

1,087 MWe gross and 1,000 MWe net capacity) started. In<br />

Russia construction started of the Kursk 2-1 unit (PWR<br />

VVER V-510K, 1,255 MWe gross and 1,175 MWe net capacity)<br />

by the supplier Rosatom. In Turkey construction<br />

started of the first nuclear power plant of the country,<br />

Akkuyu 1 unit (PWR VVER V-509, 1,200 MWe gross and<br />

1,114 MWe net capacity) by the supplier Atomstroyexport.<br />

Mexico 2<br />

Canada 19<br />

USA 98 |2<br />

Slovak Republic 4|2<br />

Czech Republic 6 Hungary 4<br />

Finland 4|1<br />

Slovenia 1<br />

Sweden 8<br />

Belarus -|2<br />

Netherlands 1<br />

United Kingdom 15|1<br />

Russia 36|6<br />

Switzerland 5<br />

France 58|1<br />

Spain 7<br />

Turkey |1<br />

Iran 1<br />

Bulgaria 2 Ukraine 15<br />

Romania 2 UAE -|4<br />

Brazil 2|1<br />

Argentina 3|1<br />

Belgium 7<br />

Germany 7<br />

South Africa 2<br />

Armenia 1<br />

Pakistan 5|2<br />

India 22|7<br />

China 46|11<br />

Bangladesh |2<br />

<strong>Nuclear</strong> power plant units in operation: 450, location with units ( first number)<br />

<strong>Nuclear</strong> power plant units under construction: 53, location with units ( second number)<br />

Rep. Korea 24|5<br />

Japan 38|2<br />

Taiwan, China 5|2<br />

| Fig. 1.<br />

World map nuclear power plants in operation and under construction at the end of 2018.<br />

* The <strong>atw</strong> lists nuclear<br />

power plants as<br />

“operating” as the<br />

time when first<br />

criticality was<br />

attained as a<br />

“nuclear” criterion.<br />

Other sources refer<br />

to the 1 st power generation<br />

or the start<br />

of commercial operation.<br />

<strong>Nuclear</strong><br />

power plants are no<br />

longer listed as<br />

“ operating” when a<br />

long-term cessation,<br />

i.e. over several years,<br />

has been<br />

decided. Should the<br />

operator possess a<br />

valid framework<br />

operating approval<br />

or no application<br />

<strong>for</strong> the definitive<br />

cessation of the<br />

operating plant has<br />

been submitted,<br />

then the operating<br />

status is listed as<br />

“lay-up”. (cf. Spain<br />

and Japan).<br />

1) The data <strong>for</strong> gross<br />

and net capacities<br />

have been revised<br />

with reference to<br />

“nameplate” data<br />

as from 2018 (in<br />

particular data <strong>for</strong><br />

U.S: nuclear power<br />

plant units, source:<br />

U.S. EIA)<br />

As of: 31.12.2018<br />

<strong>atw</strong> , 01/2020<br />

161<br />

WORLD REPORT<br />

World Report<br />

<strong>Nuclear</strong> <strong>Power</strong> World Report 2018


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

162<br />

WORLD REPORT<br />

Two units are planned to be build at the site. In the United<br />

Kingdom the construction of the first of two EPR at the Hinkley<br />

Point site started. Each reactor, Hinkley Point C-1 and<br />

Hinkley Point C-2 is planned with a gross capacity of 1,720<br />

MW and a net capacity of 1,630 MW.<br />

Active construction projects (numbers in brackets)<br />

listed are: Argentina (1), Bangladesh (2), Belarus (2),<br />

Brazil (1), China (11), Finland (1), France (1), India (7),<br />

Japan (2), Republic of Korea (5), Pakistan (2), Russia (6),<br />

Slovak Republic (2), Taiwan, China (2), Turkey (1), the<br />

USA (2), the United Arab Emirates (4) and the United<br />

Kingdom (1).<br />

Worldwide there were about 200 projects in the concrete<br />

planning or application phase at the turn of the year<br />

2018/2019. In addition, there are a further approx.<br />

100 declarations of intent by companies or government<br />

offices in other countries. Looking at the structural impact<br />

of the incidents in Japan and Fukushima on 11 March<br />

2011, it can be ascertained that, in the meantime, they do<br />

not have an effect on the number of new construction project<br />

and plans worldwide, with the exception of political<br />

reactions in Germany, Italy and Switzerland.<br />

<strong>Nuclear</strong> power plant units in operation [-]<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1956 1960 1970 1980 1990 2000<br />

2010 2015<br />

Year<br />

<strong>atw</strong> 12/2020<br />

| Fig. 2.<br />

Development of the number of nuclear power plants in operations from<br />

1956 to 2018.<br />

The development of the number of the commercially<br />

operated nuclear power plants worldwide, in addition to<br />

the available gross nuclear power plant capacity is depicted<br />

in Figure 2 and Figure 3 <strong>for</strong> the years 1956 to 2018<br />

(1956: year of commissioning the first commercial nuclear<br />

power plant, Calder Hall 1, in Great Britain. The first<br />

Country In operation Under construction Net nuclear<br />

electricity production<br />

Capacity<br />

Capacity<br />

Number<br />

gross<br />

[MWe]<br />

net<br />

[MWe]<br />

Number<br />

gross<br />

[MWe]<br />

| Tab. 1.<br />

<strong>Nuclear</strong> power plant units worldwide in operation and under construction (set date: 31 December 2018),<br />

nuclear electricity production and share of nuclear power of total electricity production in 2018 [Source: plant operators, IAEO, <strong>atw</strong>].<br />

<strong>Nuclear</strong><br />

share<br />

total<br />

net<br />

[MWe] [TWh] [%]<br />

Argentina 3 1,750 1,627 1 29 25 6.45 5.00<br />

Armenia 1 408 376 0 0 0 1.90 26.00<br />

Bangladesh - 0 0 2 2.400 2,160 0.00 0.00<br />

Belarus - 0 0 2 2,388 2,218 0.00 0.00<br />

Belgium 7 6,220 5,937 0 0 0 27.30 39.00<br />

Brazil 2 1,990 1,884 1 1,300 1,245 15.70 3.00<br />

Bulgaria 2 2,000 1,906 0 0 0 15.40 33.00<br />

Canada 19 14,385 13,517 0 0 0 95.00 15.00<br />

China 46 45,328 42,294 11 11,757 10,860 281.00 4.00<br />

Czech Republic 6 4,133 3,925 0 0 0 28.30 35.00<br />

Finland 4 2,860 2,752 1 1,720 1,600 21.90 33.00<br />

France 58 65,880 63,130 1 1,720 1,630 393.20 72.00<br />

Germany 7 10,013 9,515 0 0 0 71.90 11.00<br />

Hungary 4 2,000 1,889 0 0 0 14.90 51.00<br />

India 22 6,780 6,219 7 5,300 4,824 35.40 3.00<br />

Iran, Islamic Republic of 1 1,000 915 0 0 0 6.30 2.00<br />

Japan 38 38,242 36,728 2 2,760 2,650 49.30 6.00<br />

Korea, Republic of 24 23,495 22,474 5 7,000 6,700 127.10 24.00<br />

Mexico 2 1,640 1,560 0 0 0 13.20 5.00<br />

Netherlands, The 1 515 482 0 0 0 3.30 3.00<br />

Pakistan 5 1,467 1,355 2 2,200 2,028 9.50 6.00<br />

Romania 2 1,412 1,305 0 0 0 10.50 17.00<br />

Russia 36 29,089 27,217 6 4,875 4,525 172.20 18.00<br />

Slovak Republic 4 1,950 1,816 2 942 880 13.70 55.00<br />

Slovenia 1 727 696 0 0 0 5.50 36.00<br />

South Africa 2 1,940 1,860 0 0 0 10.60 5.00<br />

Spain 7 7,398 7,121 0 0 0 53.40 20.00<br />

Sweden 8 8,706 8,350 0 0 0 63.90 40.00<br />

Switzerland 5 3,485 3,333 0 0 0 24.30 38.00<br />

Taiwan, China 5 5,213 5,028 2 2,712 2,630 26.60 11.00<br />

Turkey - - - 1 1,200 1,114<br />

Ukraine 15 13,818 13,090 0 0 0 78.50 52.00<br />

United Arab Emirates - 0 0 4 5,600 5,380 0.00 0.00<br />

United Kingdom 15 10,366 9,361 0 0 0 59.10 18.00<br />

United States of America 98 109,864 103,686 2 2,500 2,230 808.30 20.00<br />

Total 450 424,074 401,416 53 58,123 54,329 2543.65 11.60<br />

World Report<br />

<strong>Nuclear</strong> <strong>Power</strong> World Report 2018


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

450<br />

Installed nuclear power plant capacity worldwide [gross, GW = 10 3 MW]<br />

Electricity production in nuclear power plants [TWh = 10 9 kWh/a]<br />

3,000<br />

Unit capability factor [%]<br />

100<br />

400<br />

2,500<br />

80<br />

163<br />

300<br />

2,000<br />

60<br />

200<br />

100<br />

0<br />

1956 1960 1970 1980 1990 2000<br />

2010 2015<br />

Year<br />

<strong>atw</strong> 12/2020<br />

| Fig. 3.<br />

Development of the gross nuclear power plant capacity in operation from<br />

1956 to 2018.<br />

1,500<br />

1,000<br />

500<br />

0<br />

1956 2000<br />

1960 1970 1980 1990 2010 2015<br />

Year<br />

| Fig. 4.<br />

Development of the nuclear electricity production and plant availability<br />

from 1956 to 2018.<br />

40<br />

20<br />

0<br />

<strong>atw</strong> 12/2020<br />

WORLD REPORT<br />

nuclear- generated electricity occurred on 20 December<br />

1951 in the US-American Experimental Breeder Reactor<br />

EBR-1.) Also worth noting is the continued capacity<br />

increase (Figure 3) in the 1980s, as the nuclear power<br />

plants, ordered due the impact of the first oil crisis at the<br />

beginning and end of the 1970s, started operations with<br />

high capacities per plant averaging 1,000 MWe. Worldwide<br />

and in Germany, the commissioning of the nuclear power<br />

unit Biblis A in 1974 with 1,225 MWe gross represented an<br />

important milestone in the development of high-capacity<br />

plants, which were from the beginning designed also<br />

technically <strong>for</strong> a longer operating period of several decades<br />

– previously, the pilot plants were also built with the focus<br />

on technical feasibility and practicability. Since about 1993,<br />

a developmental stagnation can be observed with the number<br />

of nuclear power plants and capacity and this is due, on<br />

the one hand to the de-commissioning of older, prototypical<br />

and no longer profitable plants in the USA, Europe<br />

and the GUS states and, on the other, the compensatory<br />

expansion of capacities in the Asian region and capacity<br />

increases of operating plants. Since the mid-1990s,<br />

remarkable increases in capacity have been achieved. With<br />

further optimised turbines alone, an increase in capacity of<br />

around 5 % can be gained without increasing the reactor<br />

capacity. If a construction measure also makes increasing<br />

the thermal reactor capa city possible, then the generating<br />

capacity in countries such as Mexico, Sweden, the Slovak<br />

Republic, the USA and Hungary that are already approved<br />

and realised would increase by around 20 %. Until the end<br />

of the 2010s, a cumulated capacity increase totalling<br />

7,750 MW is estimated. This equates to the new construction<br />

of about 4 large nuclear power units. In the USA alone,<br />

capacity increases totalling approx. 10,000 MWe net have<br />

been realised or approved, a further 500 MWe currently to<br />

be realised until 2020 have been applied <strong>for</strong>. In Sweden,<br />

the operators estimate a capacity increase program<br />

totalling 1,050 MWe net. In Mexico the nuclear power plant<br />

units Laguna Verde 1 and Laguna Verde 2 have been<br />

upgraded from 700 MWe gross to 840 MWe gross each; this<br />

is an capacity increase of about 20 %.<br />

With the 450 operating plants at the end of 2018, the<br />

number was equal to the hitherto record year 2016 with<br />

also 450 nuclear power plants in operation.<br />

The nuclear power plants worldwide have achieved<br />

an approx. 1 % higher result in 2018 compared to the<br />

previous year 2017 in the net electricity generation<br />

with approx. 2,544 billion (10 9 ) kWh (2,477.2 billion kWh,<br />

provision details and calculations, cf. Table 1 and<br />

Figure 4). In Japan, with the exception of five reactor<br />

units, all other 37 plants were not connected to the grid<br />

<strong>for</strong> the whole year. The previous best result of nuclear<br />

electricity production accounted <strong>for</strong> 2,658 billion kWh in<br />

2006. Good operating results were reported from the power<br />

plants in Belgium, China, Finland, Germany, Russia,<br />

Switzerland and the USA.<br />

The overall operational reliability of the plants is<br />

underlined by the average mean availability <strong>for</strong> work of all<br />

nuclear power plants worldwide (cf. Figure 4). Their<br />

average had increased since the mid 1990s. The strong<br />

decrease in availability at the beginning of the 1990s is due<br />

to the large drop in the availability of plants in the East<br />

European states and the GUS states, whose operating data<br />

were included consistently in the statistics <strong>for</strong> the first time.<br />

The long-term cessation of individual profitable<br />

nuclear power plant, and the quasi whole nuclear power<br />

park of Japan as of 2011, also influence the lower average<br />

availability in the years 2006 to 2009. Since 2011 the<br />

availability is slightly increasing with the commissioning<br />

of nuclear power plants in lay-up operation.<br />

The Top Ten nuclear power plants in power generation<br />

(MW gross and billion kWh ) 2018 are: (1) Chooz B-2, FR,<br />

PWR, 1560 MW, 12.388 billion kWh; (2) Isar 2, DE, PWR,<br />

1485 MW, 12.127 billion kWh; (3) Palo Verde-1, USA, PWR<br />

1528 MW, 11.850 billion kWh; (4) Emsland, DE, PWR,<br />

1406 MW, 11.495 billion kWh; (5) Susqehanna-2, USA,<br />

BWR, 1374 MW, 11.470 billion kWh; (6) Millstone-3, PWR,<br />

1308 MW, 11.168 billion kWh; (7) Peach Bottom-3, USA,<br />

BWR, 1412 MW, 11.151 billion kWh, (8) Callaway-1, USA;<br />

PWR, 1316 MW, 11.130 billion kWh; Oskarshamn-3, SE,<br />

BWR, 1450 MW, 11.129 billion kWh; Comanche Peak-1,<br />

USA, PWR, 1283 MW, 11.118 billion kWh.<br />

Worldwide around 81,329 billion (10 9 ) kWh net<br />

electricity have cumulatively been produced in nuclear<br />

power plants since electricity was first generated from<br />

nuclear power. The experience in the nuclear power plant<br />

operations amount to approx. 17,300 reactor years.<br />

Regarding climate protection, nuclear power plants<br />

have avoided about 2.40 billion (10 9 ) t carbon dioxide<br />

emisisons 2)<br />

in 2018. The emissions avoided through<br />

nuclear energy correspond to some 6 % of the current<br />

annual emissions worldwide of CO 2 , in the meanwhile<br />

over, approx. 36 billion tons. The emissions avoided each<br />

year through nuclear power are distinctly higher than the<br />

worldwide reduction targets contained in the existing<br />

international protocols and agreements on climate<br />

protection (Kyoto Protocol) <strong>for</strong> the period 2008 to 2012!<br />

2) The CO 2 reduction<br />

factor is based on<br />

the average worldwide<br />

CO 2 emissions<br />

of fossile-fired<br />

power plants in<br />

countries with NPPS<br />

in operation.<br />

World Report<br />

<strong>Nuclear</strong> <strong>Power</strong> World Report 2018


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

164<br />

Preliminary Programme<br />

KERNTECHNIK 2020<br />

PRELIMINARY PROGRAMME<br />

Tuesday, 5. May 2020<br />

Plenary Day<br />

9:00-13:00<br />

Convention Hall I/A<br />

N.N.<br />

F.A.Z.,<br />

will lead through the Plenary Day.<br />

Plenary Session<br />

9:00 D/E<br />

Begrüßung und<br />

Eröffnungsansprache<br />

Welcome and Opening Address<br />

Dr. Joachim Ohnemus<br />

Vorsitzender des Vorstands, KernD<br />

Policy<br />

9:15 D/E<br />

Kernenergiepolitik in der Schweiz –<br />

Wie geht es weiter?<br />

<strong>Nuclear</strong> Energy Policy in Switzerland<br />

– What's Next?<br />

Hans-Ulrich Bigler<br />

Präsident, Nuklear<strong>for</strong>um Schweiz<br />

9:35 D/E<br />

Wirtschaftsstandort Deutschland –<br />

Welchen Beitrag kann die kerntechnische<br />

Industrie leisten?<br />

Business Location Germany – What<br />

Contribution Can Be Made by the<br />

<strong>Nuclear</strong> Industry?<br />

Karlheinz Busen, MdB<br />

Stellvertretendes Mitglied im Ausschuss<br />

für Umwelt, Naturschutz und nukleare Sicherheit,<br />

Deutscher Bundestag<br />

Economy<br />

9:55 D/E<br />

Restbetrieb und Rückbau in Nordund<br />

Süddeutschland<br />

Dismantling and Last Years of<br />

Operation in Northern and Southern<br />

Germany<br />

Dr. Guido Knott<br />

CEO, PreussenElektra GmbH<br />

Competence<br />

10:25 D/E<br />

Kerntechnische Ausbildung –<br />

Ein Grund zur Sorge?<br />

<strong>Nuclear</strong> Education – A Cause<br />

of Concern?<br />

Prof. Dr. Jörg Starflinger<br />

Geschäftsführender Direktor,<br />

Institut für Kern energetik und Energiesysteme<br />

(IKE), Universität Stuttgart<br />

10:45 Coffee Break<br />

11:15 D/E<br />

System-Know how – der Schlüssel<br />

für die Zukunft der nuklearen<br />

Kompetenz<br />

System-Oriented Know-How –<br />

The Key to the Future of <strong>Nuclear</strong><br />

Competence<br />

Wolfgang Däuwel<br />

Framatome GmbH, Germany<br />

Waste Management<br />

11:15 E/D<br />

Creating Public Acceptance<br />

<strong>for</strong> a Final Repository<br />

Jussi Heinonen<br />

Director of the <strong>Nuclear</strong> Waste and Material<br />

Regulation Department, STUK – Radiation and<br />

<strong>Nuclear</strong> Safety Authority, Finland<br />

11:35 D /EN<br />

Ansprache<br />

Karsten Möring, MdB<br />

Ordentliches Mitglied im Ausschuss<br />

für Umwelt, Naturschutz und nukleare Sicherheit,<br />

Deutscher Bundestag<br />

11:55 E/D<br />

N. N.<br />

N. N.<br />

12:10 D/E<br />

Die Standortauswahl –<br />

Entwicklungen und Einblicke<br />

Site Selection – Developments<br />

and Insights<br />

Steffen Kanitz<br />

Managing Director, Bundesgesellschaft<br />

für Endlagerung mbH (BGE), Germany<br />

12:30<br />

Verleihung der Ehrenmitgliedschaft<br />

der KTG | Award of the Honorary<br />

Membership of KTG<br />

Präsentiert von Frank Apel<br />

Vorsitzender der KTG<br />

13:00 End of Plenary Session<br />

13:00 - 14:30 Lunch Break<br />

19:00 - 23:00<br />

KernD-Reception and<br />

Social Evening<br />

in the Exhibition Area<br />

Änderungen vorbehalten / Subject to change<br />

KERNTECHNIK 2020<br />

Preliminary Programme


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

165<br />

Tuesday, 5. May 2020<br />

Themenblock<br />

Kompetenz & Innovation<br />

CFD Simulations <strong>for</strong> Reactor<br />

Safety Relevant Objectives<br />

Raum III, EG<br />

Koordinator<br />

Dr. Andreas Schaffrath<br />

Gesellschaft für Anlagen- und Reaktorsicherheit<br />

(GRS) gGmbH, Germany<br />

14:00<br />

Advances in CFD Applications<br />

to <strong>Nuclear</strong> Safety<br />

Dominique Bestion<br />

currently Commissariat à l’énergie atomique et aux<br />

énergies alternatives (CEA), Grenoble<br />

14:30<br />

Progress in the EPFL-Supported<br />

IAEA Project <strong>for</strong> an Open-Source<br />

Plat<strong>for</strong>m <strong>for</strong> Reactor Analysis<br />

Dr. Carlo Fiorina<br />

Ecole Polytechnique Fédérale de Lausanne (EPFL)<br />

15:00<br />

Water Hammer Simulation in Pipe<br />

Systems with the Open Source Code<br />

OpenFOAM<br />

Paul Fuchs<br />

Prof. Dr. Marco K. Koch<br />

Ruhr-Universität Bochum,<br />

Plant Simulation and Safety<br />

15:30 Coffee Break<br />

Themenblock<br />

Sicherheit und Betrieb<br />

Raum V, 2.OG<br />

Koordinatoren<br />

Dr. Tatiana Salnikova<br />

Framatome GmbH, Germany<br />

Erik Baumann<br />

Framatome GmbH, Germany<br />

Dr. Angelika Bohnstedt<br />

Karlsruhe Institute of Technology, Germany<br />

14:00<br />

N. N.<br />

N. N.<br />

16:00 Coffee Break<br />

16:30<br />

N. N.<br />

N. N.<br />

17:00 End of Session<br />

Subject to change.<br />

Themenblock<br />

Rückbau & Abfallbehandlung<br />

Praktische Erfahrungen aus<br />

ersten Demontageprojekten<br />

Raum I, 1. OG<br />

Koordinator<br />

Dr. Erich Gerhards<br />

PreussenElektra GmbH, Germany<br />

16:00<br />

Freigabe 4.0<br />

Dr. Tim Thomas<br />

Safetec Entsorgungs- und Sicherheitstechnik GmbH<br />

16:30<br />

Errichtung des Zwischenlagers LUnA<br />

im Kernkraftwerk Unterweser<br />

Ingo Fehrenbach<br />

LUDWIG FREYTAG GmbH & Co. Kommanditgesellschaft<br />

18:00 End of Session<br />

This Session will be held in German<br />

with simultaneous English Translation.<br />

Themenblock<br />

Zwischen- und Endlagerung<br />

Raum II, EG<br />

Koordinator<br />

Dr. Ron Dagan<br />

Karlsruher Institut für Technologie (KIT), Germany<br />

14:00<br />

Welcome and Keynote<br />

Begrüßung und Ansprache<br />

N. N.<br />

N. N.<br />

14:30 - 15:30<br />

N. N.<br />

N. N.<br />

15:30 Coffee Break<br />

KERNTECHNIK 2020<br />

16:00<br />

Application of CFD Codes<br />

in <strong>Nuclear</strong> Licensing and<br />

Supervisory Procedures<br />

Frank Blömeling<br />

TÜV NORD EnSys GmbH & Co. KG<br />

14:00<br />

Robotergestützte Zerlegung<br />

der RDB-Einbauten im Kernkraftwerk<br />

Brunsbüttel<br />

Thomas Eichhorn<br />

Geschäftsführer Orano GmbH , Germany<br />

16:00<br />

Introducing Burnup Credit Rendit <strong>for</strong><br />

Expansion Stage 2 of the External<br />

Spent Fuel Pool at Gösgen NPP<br />

Dr. Axel Hoefer<br />

Framatome GmbH<br />

16:30<br />

Coupling of OpenFOAM<br />

to System Codes<br />

Joachim Herb<br />

Gesellschaft für Anlagen und Reaktorsicherheit<br />

(GRS) gGmbH<br />

17:00<br />

Multiphysics Calculations – Future<br />

Vision and next Steps<br />

Prof. Dr. Horst-Michael Prasser<br />

ETH Zürich, Department Maschinenbau und<br />

Verfahrenstechnik<br />

17:30 End of Session<br />

14:30<br />

Feedback from Large Integrated D&D<br />

Projects<br />

Joseph Boucau<br />

Westinghouse Electric Germany GmbH<br />

15:00<br />

Projektmanagement<br />

im Dufo Projekt KWL<br />

Christian Bolles<br />

UNIPER-Anlagenservice GmbH<br />

15:30 Coffee Break<br />

16:15<br />

Casks and Casks stacks<br />

in Interim Storage Facilities<br />

Under Earthquake Loads<br />

Dr. Nina Wieczorek<br />

TÜV NORD EnSys GmbH & Co. KG<br />

Änderungen vorbehalten / Subject to change<br />

KERNTECHNIK 2020<br />

Preliminary Programme


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

166<br />

Wednesday, 6. May 2020<br />

KERNTECHNIK 2020<br />

16:30<br />

Aktuelles Vorgehen bei der Ermittlung<br />

von Freisetzungsparametern<br />

bei einem Flugzeugabsturz auf eine<br />

kerntechnische Anlage im Rahmen<br />

von Störfallanalysen<br />

Dr. Steffen Böhlke<br />

Steag Energy Services GmbH<br />

16:45<br />

Radiologische Bewertung von auslegungsüberschreitenden<br />

Ereignissen<br />

im Rahmen der Genehmigungsverfahren<br />

zur Lagerung von radioaktiven<br />

Abfällen in Deutschland<br />

Dr. Vera Derya<br />

WTI Wissenschaftlich-Technische Ingenieurberatung<br />

GmbH<br />

Young Scientist's Workshop<br />

Part I<br />

Raum Paris<br />

Koordinator<br />

Prof. Dr.-Ing. Jörg Starflinger<br />

University of Stuttgart, Germany<br />

The Jury<br />

Prof. Dr. Marco K. Koch<br />

Ruhr-Universität Bochum, Germany<br />

Prof. Dr.-Ing. Jörg Starflinger<br />

University of Stuttgart, Germany<br />

Dr. Katharina Stummeyer<br />

Gesellschaft für Anlagen- und Reaktorsicherheit<br />

(GRS) gGmbH, Germany<br />

Dr. Hannes Wimmer<br />

GNS Gesellschaft für Nuklear-Service mbH,<br />

Germany<br />

Sponsors of the<br />

Young Scientist's Workshop-<br />

Competence Award:<br />

GNS Gesellschaft<br />

für Nuklear-Service mbH<br />

Kraftanlagen Heidelberg GmbH<br />

14:00-14:05<br />

Welcome and Introduction<br />

Prof. Dr.-Ing. Jörg Starflinger<br />

University of Stuttgart, Germany<br />

14:05-17:50<br />

N. N.<br />

N. N.<br />

17:50 End of Session<br />

Themenblock<br />

Kompetenz & Innovation<br />

Reactor Physics, Thermo<br />

and Fluid Dynamics<br />

Raum III, EG<br />

Chair<br />

Dr. Andreas Wielenberg<br />

Gesellschaft für Anlagen- und Reaktorsicherheit<br />

(GRS) gGmbH, Germany<br />

9:00 - 10:00<br />

Keynotes<br />

N. N.<br />

N. N.<br />

10:00 Coffee Break<br />

10:30<br />

Keynotes<br />

N. N.<br />

N. N.<br />

11:00<br />

Framatome’s Thermohydraulik<br />

Plat<strong>for</strong>m: Experimentelle Sicherheits<strong>for</strong>schung<br />

und Innovationen<br />

Dr. Thomas Mull<br />

Framatome GmbH<br />

11:15<br />

Geplante Experimente und Analysen<br />

zur Modellierung der Zinkfreisetzung<br />

und thermo hydraulischer Aus wirkungen<br />

von Zinkborat ablagerungen<br />

im DWR-Kern<br />

Dr. André Seeliger<br />

Hochschule Zittau / Görlitz, Germany<br />

11:30<br />

Laboruntersuchungen zu Zinkfreisetzungen<br />

im DWR-Containment<br />

sowie zum Kristallisations- und<br />

Ablagerungs verhalten von Zinkboraten<br />

im DWR-Kern als Basis für die<br />

Modellierung unterschiedlicher KMV<br />

Szenarien<br />

Dr. Ulrich Harm<br />

Technische Universität Dresden, Germany<br />

12:00 Lunch<br />

13:00<br />

Water Hammer Simulation<br />

in Pipe Systems with Open Source<br />

Code OpenFOAM<br />

Paul Fuchs<br />

Ruhr-Universität Bochum, Germany<br />

13:15<br />

Numerische Simulation des unterkühlten<br />

Strömungssiedens für<br />

reaktortechnische Anwendungen<br />

mit OpenFOAM<br />

Zhi Yang<br />

Gesellschaft für Anlagen- und Reaktorsicherheit<br />

(GRS) gGmbH, Germany<br />

13:30<br />

Simulation der DEBRIS-Testanlage mit<br />

dem Störfallanalysecode ASTEC V2.1<br />

Jan Peschel<br />

Ruhr-Universität Bochum, Germany<br />

13:45<br />

Analyse des Schmelzeverhaltens<br />

im unteren Plenum des Reaktors<br />

der TMI-2 Anlage mit dem Systemcode<br />

AC² – ATHLET-CD<br />

Florian Krist<br />

Ruhr-Universität Bochum, Germany<br />

14:00<br />

Verification of Azimuthal Melt<br />

Relocation Modelling<br />

Christophe D'Alessandro<br />

Gesellschaft für Anlagen- und Reaktorsicherheit<br />

(GRS) gGmbH, Germany<br />

14:15<br />

Simulation ausgewählter<br />

BETA-Versuche<br />

Maximilian Hoffmann<br />

Ruhr-Universität Bochum, Germany<br />

14:30<br />

Generalized Interpretation of MCCI-<br />

Experiments with the AC2/COCOSYS<br />

Code and Application to Core Catcher<br />

Simulation<br />

Claus Spengler<br />

Gesellschaft für Anlagen- und Reaktorsicherheit<br />

(GRS) gGmbH, Germany<br />

14:45<br />

N. N.<br />

N. N.<br />

15:00 End of Session<br />

Änderungen vorbehalten / Subject to change<br />

KERNTECHNIK 2020<br />

Preliminary Programme


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

Wednesday, 6. May 2020<br />

167<br />

Know-how, New Build<br />

and Innovations<br />

Raum V, 2. OG<br />

Chair<br />

Dr. Matthias Lamm<br />

Framatome GmbH<br />

13:00<br />

Es ist eine Illusion, zu glauben,<br />

Deutschland könne gleichzeitig<br />

aus der Kernkraft und aus der Kohle<br />

aussteigen.<br />

em. Prof. Dr. Manfred Mach<br />

Emeritus Technische Universität Berlin<br />

13:15<br />

Bürgerinitiative pro Kernenergie<br />

Hauke Rathjen<br />

Bürgerinitiative MitKernenergie<br />

11:00<br />

Evolution of Core Design and Operational<br />

Requirements in German PWRs<br />

from a Technical Expert Organization's<br />

Point of View<br />

SebastianSchoop<br />

TÜV NORD EnSys GmbH & Co. KG<br />

11:15<br />

Reactor Core Control Based on Artificial<br />

Intelligence<br />

Dr. Victor Morokhovskyi<br />

Framatome GmbH<br />

11:30<br />

The EMPIRE Irradiation Test: Lower-<br />

Enriched Fuel <strong>for</strong> High-Per<strong>for</strong>mance<br />

Research Reactors<br />

Bruno Baumeister<br />

Technische Universität München<br />

Themenblock<br />

Rückbau & Abfallbehandlung<br />

Decommissioning<br />

of <strong>Nuclear</strong> Installations<br />

Raum I, 1. OG<br />

Chair<br />

Dr. Martin Brandauer<br />

Karlsruhe Institute of Technology (KIT)<br />

9:00 - 10:00<br />

N. N.<br />

N. N.<br />

10:00 Break<br />

10:30 - 12:00<br />

N. N.<br />

N. N.<br />

KERNTECHNIK 2020<br />

13:30<br />

BioKernSprit – die Lösung<br />

für ein Energieproblem<br />

Jochen Michels<br />

Consulting Company<br />

11:45<br />

Nachweis der Integrität des Zentralkanals<br />

im FRM II mit ZfP Methoden<br />

Dr. Heiko Gerstenberg<br />

Technische Universität München ZWE FRM II<br />

12:00 Lunch<br />

This Session will be held in German/English<br />

with simultaneous translation.<br />

13:45 End of Session<br />

Themenblock<br />

Sicherheit und Betrieb<br />

Operation and Safety<br />

of <strong>Nuclear</strong> Installations, Fuel<br />

Raum IV, 2.OG<br />

Chair<br />

Dr.-Ing. Thorsten Hollands<br />

Gesellschaft für Anlagen- und Reaktorsicherheit<br />

(GRS) gGmbH, Germany<br />

9:00<br />

Keynote<br />

Taking Responsibility – The Scientific<br />

Backing of the German Quiver Project<br />

Dr. Wolfgang Faber<br />

PreussenElektra GmbH, Hannover<br />

9:30<br />

Keynote<br />

Lifetime Extension of I&C-Modules<br />

Dr. Lothar Mensching<br />

PreussenElektra GmbH, Hannover<br />

10:00 Coffee Break<br />

10:30<br />

Keynote<br />

Quo vadis Netzstabilität –<br />

Zunehmende Heraus<strong>for</strong>derungen im<br />

Wandel des Erzeugungsportfolios‘<br />

Dr. Kai Kosowski<br />

PreussenElektra GmbH, Hannover<br />

12:00 Lunch<br />

13:00<br />

Novel Challenges <strong>for</strong> Anomaly<br />

Detection in I&C Networks:<br />

Strategic Preparation <strong>for</strong> the Advent<br />

of In<strong>for</strong>mation Hiding based Attacks<br />

Kevin Lamshöft<br />

Otto-von-Guericke-Universität Magdeburg<br />

13:15<br />

Perspektive der Energiewende<br />

ohne Kernenergie und ohne Kohlekraftwerke<br />

Dr. Helmut Alt<br />

FH Aachen<br />

13:30<br />

N. N.<br />

N. N.<br />

14:00 End of Session<br />

Themenblock<br />

Zwischen- und Endlagerung<br />

Radioactive Waste Management,<br />

Storage and Disposal<br />

Raum II, EG<br />

Chair<br />

Dr. Ron Dagan<br />

Karlsruhe Institute of Technology (KIT), Germany<br />

9:00<br />

Keynote<br />

Marcus Seidel<br />

9:30<br />

Activity Ratio of Short-Lived<br />

Radio nuclides in MTR Fuel Assemblies<br />

Under Irregular Irradiation Regime<br />

Dr. Erez Gilad<br />

Ben-Gurion University of the Negev<br />

10:00 Break<br />

10:30<br />

Keynote<br />

Ander Sjölan<br />

11:00<br />

A Geopolymer Waste Form<br />

<strong>for</strong> Technetium, Iodine and<br />

Hazardous Metals<br />

Prof. Dr. Werner Lutze<br />

The Catholic University of America<br />

Änderungen vorbehalten / Subject to change<br />

KERNTECHNIK 2020<br />

Preliminary Programme


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

168<br />

Wednesday, 6. May 2020<br />

KERNTECHNIK 2020<br />

11:15<br />

Mobility of Radionuclides in SNF in<br />

View of Extended Dry Interim Storage<br />

Dr. Michael Herm<br />

Karlsruhe Institute of Technology<br />

11:30<br />

Experimentelle Untersuchung des<br />

geplanten Probenentnahmesystems<br />

im Fortluftkanal Kamin des Endlagers<br />

Konrad<br />

Herr Dr. Steffen Wildgrube<br />

VPC GmbH<br />

12:00 Lunch<br />

13:00<br />

IP-2 Beladungen „planbar“ machen<br />

– Beladetools zur Abschätzung der<br />

Transportfähigkeit von IP-2 Behältern<br />

und ihre Verwendung im Rückbau<br />

deutscher Kernkraftwerke<br />

Dr. Luc Schlömer<br />

WTI Wissenschaftlich Technische Ingenieurberatung<br />

GmbH<br />

13:15<br />

Overcoming Design and Licensing<br />

Challenges – The Type B(U)F Flask<br />

TGC 27<br />

Dr. Simon Orilski<br />

AGC c/o GNS mbH<br />

14:30<br />

Impact of Neutron Slowing Down<br />

on Radiation Fields <strong>for</strong> High-Level<br />

<strong>Nuclear</strong> Fuel Waste Storage<br />

He Wu<br />

KIT-Institute <strong>for</strong> <strong>Nuclear</strong> Waste Disposal<br />

15:00 Coffee Break<br />

15:30<br />

Keynote<br />

N. N.<br />

N. N.<br />

16:00 End of Session<br />

This Session will be held in German/Englisch<br />

with simultaneous translation.<br />

Young Scientist's Workshop<br />

Part II<br />

09:00-12:00<br />

N. N.<br />

N. N.<br />

15:10<br />

Prize Ceremony in the Exhibition Area<br />

12:45<br />

Besuch der Stationen II<br />

13:45 Coffee Break<br />

14:00<br />

Auflösung des Handyexperiments<br />

14:10<br />

Besuch der Stationen III<br />

15:10<br />

Schlussworte<br />

15:20 End of Campus<br />

Jetzt anmelden:<br />

kerntechnik2020.com<br />

13:30<br />

Erfahrungen aus der Entsorgung<br />

von Sonderbrennstäben mit Köchern<br />

in deutschen Kernkraftwerken<br />

Wolfgang Reuter<br />

GNS Gesellschaft für Nuklear Service mbH, Germany<br />

CAMPUS <strong>Nuclear</strong> Technology<br />

Foyer 3<br />

Koordinatoren<br />

Dr. Florian Gremme<br />

Natalija Cobanov<br />

Young Generation Network, KTG e. V., Germany<br />

13:45<br />

Quality Assurance and Data Analysis<br />

in Automated Radiological Characterization<br />

of Large Soil Volumes<br />

Dr. Christoph Klein<br />

NUKEM Technologies Engineering Services GmbH<br />

14:00<br />

Development of an Automated<br />

Decontamination Cabin with<br />

Documentation Based on Industry 4.0<br />

Features<br />

Dr. Maarten Becker<br />

iUS Institut für Umwelttechnologien und<br />

Strahlenschutz GmbH<br />

14:15<br />

APG 02 durch Betonierung –<br />

das Abfall/Matrix-Verhältnis<br />

Martina Kößler<br />

GNS Gesellschaft für Nuklear Service mbH, Germany<br />

9:00<br />

Willkommen & Vorstellung der KTG JG<br />

Dr. Florian Gremme<br />

Junge Generation der KTG<br />

9:20<br />

Radioaktivität & Strahlenschutz<br />

, Handyexperiment<br />

Sven Jansen<br />

VKTA – Strahlenschutz, Analytik & Entsorgung<br />

Rossendorf e. V.<br />

9:50<br />

Arbeiten in einem Kernkraftwerk<br />

Sebastian Hahn<br />

KTG, Deutschland<br />

10:10 Coffee Break<br />

10:25<br />

Besuch der Stationen I<br />

11:25<br />

Energie im Zeichen des Klimawandels<br />

Andrea Kozlowski<br />

FH Aachen<br />

12:00 Lunch<br />

Änderungen vorbehalten / Subject to change<br />

KERNTECHNIK 2020<br />

Preliminary Programme


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

Inside<br />

Liebe LeserInnen der “Jungen Generation”,<br />

liebe LeserInnen, die nicht mehr zu dieser<br />

Altersgruppe zählen!<br />

Kennen Sie die Bücher „Mama, erzähl<br />

mal!“ oder „Papa, erzähl mal!“?<br />

Das sind Ausfüllbücher, die Kinder oder Enkel ver schenken<br />

(auch ich habe ein solches Buch bekommen), um<br />

Antworten auf viele ihrer Fragen zu bekommen:<br />

Was passierte gerade in der Welt, als du geboren<br />

wurdest? Was für ein Kind warst du, als du klein warst?<br />

Was ist die nachhaltigste Erinnerung an Deine Kindheit?<br />

Was für ein Kind war ich in deinen Augen, als ich noch<br />

klein war? Wann ist mir der erste Zahn gewachsen?<br />

Fragen über Fragen. Beim Beantworten habe ich mich<br />

häufig geärgert, dass ich nichts dokumentiert hatte;<br />

manchmal halfen Fotos.<br />

Damit ich auch später noch Fragen zur deutschen<br />

Kerntechnik beantworten kann, schreibe ich mir jetzt<br />

meine Antworten auf. Zudem sind diese Antworten auch<br />

gedacht als einerseits Rückblick zu den allgemeinen<br />

Entwicklungen der Kernenergie seit Fukushima sowie als<br />

Momentaufnahme zur derzeitigen Klimaschutzdiskussion.<br />

Andererseits sollen meine Ausführungen die LeserInnen<br />

dieser Zeilen zum weiteren Nachdenken anregen.<br />

Was ist im März 2011 in Japan passiert?<br />

Am 11. März 2011 erschütterte ein Erdbeben mit einer<br />

Stärke von 9 die Ostküste Japans. Das Beben erzeugte<br />

einen gewaltigen Tsunami. Bis zu 40 Meter hohe Wellen<br />

rasten auf die Küste zu. Mehr als 18.000 Menschen starben.<br />

Ganze Städte wurden verwüstet. Im Kernkraftwerk<br />

Fukushima- Daiichi fiel der Strom aus. Noch am Abend des<br />

11. März erklärte die japanische Regierung den nuklearen<br />

Notfall. In den Wochen nach der Havarie bestätigte sich<br />

der Verdacht einer Kernschmelze. Nach mehreren<br />

Sammelklagen stellte ein japanisches Gericht Ende 2017<br />

die Mitschuld des Staates und des Betreiberkonzerns<br />

Tepco an der Katastrophe fest. Obwohl viele Gebiete um<br />

das KKW Fukushima seit Ende März 2017 wieder<br />

bewohnbar sind, herrscht noch bei vielen Menschen<br />

Verunsicherung…<br />

Wichtig ist meines Erachtens der psychisch-rationale<br />

Umgang mit derartigen Ereignissen. Nach der wahlkampftechnischen<br />

Schnellabschaltung der deutschen Kernkraftwerke<br />

nach dem Reaktorunfall hat die Bundesregierung<br />

2011 unter Führung von Kanzlerin und Doktorin der<br />

Naturwissenschaften Angela Merkel beschlossen, die<br />

Atomkraftwerke gestaffelt abzuschalten. Der Bundestag<br />

hat dem zugestimmt – mit den Stimmen von CDU/CSU,<br />

FDP, SPD und Grünen.<br />

Warum hacken die Kinder im Kindergarten<br />

auf mir rum, nur weil meine Eltern für die<br />

Kerntechnik arbeiten?<br />

Das war die Frage unseres Jüngsten nachdem der Pfarrer<br />

mit den Kleinen über Fukushima und die böse Atomkraft<br />

gesprochen hat. (Ich muss an dieser Stelle betonen, dass<br />

unser Kindergarten mit einem kirchlichen Träger immer<br />

super toll war und dies die einzige zweifelhafte „ Verirrung“<br />

war.)<br />

Warum wollen Sie, Herr Bundestags abgeordneter,<br />

dass meine Eltern arbeitslos werden?<br />

Diese Frage haben unsere Kinder dem MdB unseres Wahlkreises<br />

auf der Kirchweih in unserem Ort gestellt, kurz<br />

nachdem die namentliche Abstimmung zum Atomausstieg<br />

im Bundestag gelaufen war. Vielleicht war es der falsche<br />

Ort, es gab keine direkte Antwort. Aber nach mehreren<br />

Wochen dann doch: er hat auch eine Familie, die er<br />

ernähren muss.<br />

Wer ist Greta Thunberg?<br />

Greta Tintin Eleonora Ernman Thunberg ist eine<br />

schwedische Klimaaktivistin, die im Kern eine Forderung<br />

hat: Klimapolitik muss sich konsequent an den Erkenntnissen<br />

der Wissenschaft orientieren.<br />

Ich habe viele Jahre in Thunbergs Heimat gelebt und<br />

gearbeitet. Schweden setzt neben Wasser, Biomasse und<br />

Wind weiter auf Kernkraft. Zwischen 1973 und 2012 ist<br />

der Anteil fossiler Energieträger von 71 auf 28 Prozent<br />

gesunken, gleichzeitig wuchs der Anteil der Kernenergie<br />

bis heute von einem auf rund 40 Prozent. Seit Beginn der<br />

1990er-Jahre hat Schweden seinen CO 2 -Ausstoß um<br />

26 Prozent reduziert – trotz eines erheblichen wirtschaftlichen<br />

Aufschwungs.<br />

„Greta“ hat eine Meinung zur Kernenergie. Sie schrieb:<br />

Atomenergie könne „ein kleiner Teil einer sehr großen<br />

neuen kohlenstofffreien Energielösung“ sein. Dies ist eine<br />

Position, die ein beträchtlicher Teil der Experten aus<br />

Wirtschaft und Energiesektor seit Jahren vertritt, die bei<br />

einer Mehrheit der Umweltaktivisten allerdings nicht<br />

willkommen ist. Nach 4 Tagen hat „Greta“ den Text<br />

korrigiert: „Persönlich bin ich gegen Atomkraft. Aber laut<br />

dem IPCC kann sie ein kleiner Teil einer sehr großen neuen<br />

kohlenstofffreien Energielösung sein.“ Was war passiert?<br />

Thunberg erklärte in einem Kommentar, sie habe die<br />

„ kleine Änderung gemacht, weil einige Leute meine Worte<br />

immer auf die Goldwaage legen…“<br />

Vor knapp einem Jahr war Greta Thunberg zu Gast bei<br />

„Anne Will“. Im Originalinterview hörte sich das so an:<br />

Anne Will: Let me follow up. If one wants to stop the emissions<br />

– and that is what you want: not to lower them but to stop the<br />

emissions – is it then possible to avoid nuclear energy in your<br />

understanding?<br />

Greta Thunberg: Ask scientists. That is something I can’t<br />

speak out on because I don’t have that scientific education.<br />

That is such a big decision that we need to have scientific<br />

evidence and scientific based recommendations on what we<br />

should do. So, I can’t say what we should do.<br />

Wer sind die Wissenschaftler, die nach „Greta‘s“<br />

Meinung die Empfehlungen für die zukünftige Energiepolitik<br />

erarbeiten sollen? Ich denke, in den Reihen der<br />

KTG gibt es viele, die einen wirtschaftlich sinnvollen<br />

Energiemix beschreiben und begründen können.<br />

Wo „Fridays <strong>for</strong> Future“ drauf steht, soll auch „Fridays<br />

<strong>for</strong> Future“ drin sein. Der Name solle vor Missbrauch<br />

geschützt werden - deshalb hat Greta Thunberg jetzt den<br />

Schutz ihres Namens und den ihrer Klima-Bewegungen<br />

„Fridays For Future“ oder „Skolstrejk för klimatet“ als<br />

Marken beantragt. Beide würden ständig und ohne<br />

Zustimmung für kommerzielle Zwecke genutzt, erklärte<br />

die 17-jährige Schwedin…<br />

Und Greta Thunberg ist nach 2019 auch in 2020 als<br />

Kandidatin für den Friedensnobelpreis nominiert.<br />

169<br />

KTG INSIDE<br />

KTG Inside


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

170<br />

KTG INSIDE<br />

Wenn wir jetzt bis 2038 in Deutschland auch<br />

noch aus der Kohle aussteigen, sollten wir<br />

dann nicht aus Überlegungen der Versorgungssicherheit<br />

zumindest die Konvoi-Anlagen ein<br />

paar Jahre länger am Netz lassen?<br />

Wir betreiben in Deutschland mit viel Fachexpertise die<br />

sichersten Kraftwerke der Welt. Die Verfügbarkeiten sind<br />

spitze und wir sind mehrfacher Weltmeister in der Stromproduktion.<br />

In 2019 hatte eine konservative Gruppierung von CDU<br />

und CSU, die WerteUnion, Laufzeitverlängerungen<br />

ge<strong>for</strong>dert. Dadurch könne der Kohleausstieg vorgezogen<br />

werden, hieß es. Es sei höchste Zeit, den Fehler des übereilten<br />

Atomausstiegs von 2011 zu korrigieren und „die<br />

Laufzeit der sichersten Atomkraftwerke der Welt zu<br />

verlängern“. Die Debatte um eine Laufzeitverlängerungen<br />

war zuletzt allerdings auch in der Wirtschaft aufgeflammt.<br />

Hochrangige Vertreter wie Linde-Aufsichtsratschef<br />

Wolfgang Reitzle und jüngst VW-Vorstandschef Herbert<br />

Diess hatten den Atomausstieg infrage gestellt. Diess sagte,<br />

„wenn uns der Klimaschutz wichtig ist, sollten die<br />

Kernkraftwerke länger laufen“.<br />

Die deutschen Stromkonzerne sind sich einig, dass<br />

gesellschaftlich und damit letztlich auch langfristig unternehmerisch,<br />

eine erneute Änderung der hiesigen Kernenergiepolitik<br />

ein hochriskantes, konfrontatives Spiel mit<br />

unsicherem Ausgang wäre. Längst haben sie sich zudem<br />

strategisch neu orientiert. Theoretisch könnte ein Dritter<br />

im Auftrag der Bundesnetzagentur die Kernkraftwerke<br />

betreiben, aber ein derartiges Szenarium ist zurzeit nicht<br />

darstellbar und auch neue Brennelemente hat niemand<br />

bestellt.<br />

Politische Mehrheiten für einen Weiterbetrieb sind<br />

nicht erkennbar und so hat auch die Bundesregierung<br />

Spekulationen über eine Abkehr vom Atomausstieg aus<br />

Klimaschutzgründen eine klare Absage erteilt. „Der<br />

Ausstieg wird wie geplant vollzogen“, sagte Regierungssprecher<br />

Steffen Seibert. Die Haltung der Bundes regierung<br />

zur Atomkraft gelte unverändert.<br />

In welchem gesellschaftlichen Umfeld betreiben<br />

unsere Nachbarn ihre Kernkraftwerke und warum<br />

will Polen sogar neu einsteigen und bis 2033 das<br />

erste Kernkraftwerk am Netz haben?<br />

Schauen wir nach Frankreich: 72 % des Stroms kommt aus<br />

Kernkraftwerken und dies seit vielen Jahren. Der Termin,<br />

zu dem der Anteil der Kernenergie im französischen<br />

Energiemix nur noch 50 Prozent betragen soll, wurde von<br />

2025 auf 2035 verschoben. Mit einem signifikanten<br />

Investprogramm der EdF – dem sogenannten Grand<br />

Carénage – werden derzeit die französischen Kernkraftwerke<br />

fit gemacht für längere Laufzeiten. Auch in<br />

Frankreich gibt es Klimaaktivisten und die Bevölkerung ist<br />

bezüglich der Nutzung der Kernenergie gespalten.<br />

Dennoch sind über 54 % der unlängst in einer Umfrage<br />

Befragten der Meinung, dass der Anteil der Kernenergie im<br />

französischen Energiemix in der Zukunft stabil bleibt oder<br />

zunehmen wird. Nur 26 % wollen einen Komplettumstieg<br />

auf die Erneuerbaren. Die Umfrage hat auch einige Überraschungen<br />

zutage gebracht: 69 % der Befragten denken,<br />

dass Kernkraftwerke eine Menge Treibhausgase produzieren<br />

und damit ein Klimakiller sind und 67 % der<br />

Franzosen glauben, dass der französische Strompreis<br />

höher als in den Nachbarländern ist.<br />

Imprint<br />

| Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Dr. Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Christian Jurianz<br />

Dr. Anton Kastenmüller<br />

Prof. Dr. Marco K. Koch<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christan Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Joachim Ohnemus<br />

Olaf Oldiges<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

| Editorial Office<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

Nicole Koch (Editor)<br />

c/o INFORUM, Berlin, Germany<br />

Phone: +49 176 84184604<br />

E-mail: nicole.koch@nucmag.com<br />

| Official <strong>Journal</strong> of Kerntechnische Gesellschaft e. V. (KTG)<br />

| Publisher<br />

INFORUM Verlags- und Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| General Manager<br />

Dr. Thomas Behringer<br />

| CvD<br />

Nicolas Wendler<br />

| Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

E-mail: petra.dinter@nucmag.com<br />

| Layout<br />

zi.zero Kommunikation<br />

Antje Zimmermann<br />

Berlin, Germany<br />

| Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Buschstraße 81, 53113 Bonn, Germany<br />

| Price List <strong>for</strong> Advertisement<br />

Valid as of 1 January 2019<br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 187.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 187.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 174.77 €<br />

| Copyright<br />

The journal and all papers and photos contained in it are protected by<br />

copyright. Any use made thereof outside the Copyright Act without the<br />

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions, translations,<br />

micro filming and the input and incorporation into electronic systems.<br />

The individual author is held responsible <strong>for</strong> the contents of the<br />

respective paper. Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the association´s staff.<br />

We do not assume any responsibility <strong>for</strong> unrequested contributions.<br />

Signed articles do not necessarily represent the views of the editorial.<br />

ISSN 1431-5254<br />

KTG Inside


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

Polen bezieht 77 Prozent seiner Elektrizität aus Kohle.<br />

Um die Klimaneutralität der EU im Jahre 2050 zu<br />

erreichen, kann „Kernenegie ein (kleiner) Teil einer sehr<br />

großen neuen kohlenstofffreien Energielösung sein“. Für<br />

viele europäische Staaten nicht nachvollziehbar, ist im<br />

Green Deal der EU die klimaneutrale Kernenergie nicht als<br />

saubere Energiequelle akzeptiert wurden.<br />

Wie ist das mit den Verbraucherpreisen<br />

für Strom?<br />

Strom hat heute einen stolzen Preis: 31,37 Cent kostet eine<br />

Kilowattstunde im Januar 2020 im Schnitt, wenn ein<br />

Haushalt 3.500 Kilowattstunden im Jahr bezieht. Im Jahr<br />

2000 waren es noch rund 14 Cent.<br />

Seit Beginn des neuen Jahrtausends führte der Gesetzgeber<br />

ein neues Förderinstrument in der Stromversorgung<br />

ein: Umlagen. Sie sollen die Energiewende vorantreiben.<br />

Der Stromverbraucher bezahlt sie über den Strompreis.<br />

Insgesamt fünf Umlagen gibt es auf den Strompreis – und<br />

sie haben ihn in die Höhe getrieben. Angestiegen sind auch<br />

die Entgelte für die Stromnetze. Je stärker die einzelnen<br />

Posten wachsen, desto mehr Mehrwertsteuer fällt am<br />

Ende an. Das ist schön für den Haushalt der Bundesrepublik,<br />

aber weniger schön für uns Verbraucher.<br />

Die Strompreise an der Börse sind gesunken – wegen<br />

subventionierter erneuerbarer Energien zu Lasten<br />

der Konventionellen. Nach 2011 verringerten sich die<br />

Beschaffungskosten um bis zu 3 Cent pro Kilowattstunde.<br />

Diesen Vorteil haben aber die gestiegenen Umlagen – allen<br />

voran die sogenannte EEG-Umlage zur Vergütung von<br />

Ökostrom – und die entsprechend höheren Mehrwertsteuerkosten<br />

mehr als aufgefressen. Bei uns Verbrauchern<br />

kam von den niedrigeren Großhandelspreisen gar nichts an.<br />

Und im Vergleich zu Frankreich zahlen wir Verbraucher<br />

in Deutschland schon seit vielen Jahren das 1,5 fache.<br />

Können sich Industrie und private Haushalte diese<br />

hohen Strompreise leisten? Die meisten schon. Noch!<br />

Müssen wir eben am Urlaub sparen. Fliegen sollen wir ja<br />

auch nicht mehr, wegen der Flugscham…<br />

Frank Apel<br />

Vorstandsvorsitzender Kerntechnische Gesellschaft e. V. (KTG)<br />

171<br />

KTG INSIDE<br />

Bericht zur Veranstaltung<br />

„Kernenergie – der Weg aus der Klimakrise“<br />

Die im Februar seitens der Sektion Nord organisierte<br />

Veranstaltung in Hamburg zum Thema Kernenergie und<br />

Klimakrise wurde von 23 interessierten Teilnehmern<br />

besucht.<br />

Redner Rainer Klute, Vorsitzender der Nuklearia e.V.,<br />

stieg in seinen Vortrag ein, indem er den Interessenten<br />

erläutert, wie sich der deutsche Strommix zusammensetzt<br />

und wo die Probleme der Energiewende bestehen. Er<br />

führt aus, warum Solar- und Windenergie alleine nicht<br />

genügen, um Deutschland mit CO 2 -freiem Strom zu versorgen.<br />

Über einen Live-Vergleich mittels des Portals<br />

www.electricitymap.org zeigte er eingänglich, dass Länder<br />

mit hohem Kernenergieanteil – wie Frankreich – signifikant<br />

geringere CO 2 -Emissionen haben als z.B. Deutschland.<br />

Anhand von Tagesganglinien der Stromproduktion und<br />

des Bedarfs zeigte er auf, dass erneuerbare Energien<br />

alleine niemals die Energieversorgung Deutschlands<br />

werden sichern können. Ergo müsse Kernenergie zwingend<br />

ein Teil der Lösung im Kampf gegen den Klimawandel sein.<br />

Klute stellte dar, dass mittlerweile Befürworter der Kernenergie<br />

weltweit auch aus den Lagern der traditio nellen<br />

Gegner stammen. Weltweit sei die Kernenergie im<br />

Aufwind, sogar in Deutschland nehme die Befassung mit<br />

dem Thema Kernenergie wieder zu. Er zeigte dazu aktuelle<br />

Beispiele von Stellungnahmen deutscher Parteien und<br />

Leitmedien und leitete daraus die Frage ab: Ist der Ausstieg<br />

aus dem Ausstieg denkbar? Als Beispiel internationaler<br />

Entwicklung zeigte er neben neuartigen sogenannten SMR<br />

(Small Modular Reactor), kleinen und modularen<br />

Reaktoren, auch das Beispiel des russischen BN-800 auf.<br />

Der BN-800 ist ein schneller Brutreaktor, der im<br />

kommerziellen Betrieb Strom aus abgebrannten Brennelementen<br />

(“Atommüll”) produziert.<br />

“Kernenergie kann nicht nur Strom” – so bot Klute<br />

zahlreiche weitere aktuelle Beispiele für die Vielfalt<br />

möglicher Einsatzgebiete von Kernenergie: Fernheizwärme,<br />

Wasserentsalzung, Wasserstoffproduktion und<br />

vieles mehr.<br />

Zum Abschluss räumte er mit den klassischen<br />

Argu menten der Kernkraftgegner ebenso auf, wie mit den<br />

jüngsten. In jedem Fall sei es besser, heute Kernkraft neu<br />

zu bauen und zu fördern, als nie.<br />

Im Anschluss an den Vortrag konnten sich die Teilnehmer<br />

bei einem Imbiss austauschen.<br />

Helge Gottschling<br />

KTG Inside


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

172<br />

NEWS<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

Herzlichen Glückwunsch!<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

April 2020<br />

65 Jahre | 1955<br />

02. Helmut Gradic, Stadland<br />

24. Klaus-Dieter Brandt, Berlin<br />

15. Thomas Grahnert, Dresden<br />

70 Jahre | 1950<br />

28. Dr. Wolfgang Wiesenack, Halden<br />

78 Jahre | 1942<br />

09. Prof. Dr. Hans-Christoph Mehner,<br />

Dresden<br />

80 Jahre | 1940<br />

18. Dipl.-Ing. Norbert Granner,<br />

Bergisch Gladbach<br />

82 Jahre | 1938<br />

04. Prof. Dr.-Ing. Klaus Kühn,<br />

Clausthal-Zellerfeld<br />

05. Dr. Hans Fuchs, Gelterkinden<br />

09. Dr. Carl Alexander Duckwitz,<br />

Alzenau-Kälberau<br />

28. Prof. Dr. Georg-Friedrich Schultheiss,<br />

Lüneburg<br />

83 Jahre | 1937<br />

13. Dr. Martin Peehs, Bubenreuth<br />

85 Jahre | 1935<br />

05. Prof. Dr. Hans-Henning Hennies,<br />

Karlsruhe-Bergwald<br />

89 Jahre | 1931<br />

09. Dr. Klaus Penndorf, Geesthacht<br />

<br />

6. Januar 2019 ı<br />

Dr. Helmut Hübel<br />

Bensberg<br />

Die KTG verliert in ihm ein langjähriges<br />

aktives Mitglied, dem sie ein<br />

ehrendes Andenken bewahren wird.<br />

Seiner Familie gilt unsere Anteilnahme.<br />

89 Jahre | 1931<br />

28. Dipl.-Ing. Rudolf Eberhart, Burgdorf<br />

Top<br />

BlackRock and $35 trillion<br />

investor group want to go<br />

carbon-free, tech innovators<br />

look to nuclear<br />

(nei) BlackRock Inc. – a global<br />

investment firm that manages nearly<br />

$ 7 trillion dollars in assets – joined an<br />

investment pact focused on reducing<br />

carbon emissions, Climate Action<br />

100+. With BlackRock’s commitment,<br />

Climate Action 100+ represents more<br />

than $ 41 trillion dollars in investments.<br />

That’s a lot of capital and<br />

another influential name committed<br />

to protecting the climate.<br />

While every investor wants to<br />

make money, the climate pact represents<br />

an increasing number of people<br />

who also want their investments to<br />

make a positive change in the world,<br />

especially <strong>for</strong> issues like climate.<br />

Melanie Nakagawa, head of climate<br />

initiative at investment firm Princeville<br />

Capital, said – in a recent episode<br />

of “Off the Menu” – that this type of<br />

“impact investing” is becoming the<br />

norm as climate concerns are viewed<br />

by the financial world as an untenable<br />

risk.<br />

“[Climate] awareness is rapidly<br />

changing, and I believe we are on the<br />

edge of a fundamental reshaping of<br />

finance,” said BlackRock Chairman<br />

and Chief Executive Officer Larry Fink<br />

in a letter to clients. “In the near future<br />

– and sooner than most anticipate –<br />

there will be a significant reallocation<br />

of capital.”<br />

While reducing carbon emissions<br />

and transitioning to a low-carbon<br />

economy will involve more than the<br />

electricity sector, it still makes up<br />

28 % of emissions. When you consider<br />

that going carbon-free in other sectors<br />

like transportation or industry will<br />

require more electricity, generating<br />

power as cleanly as possible becomes<br />

even more important. For this reason,<br />

nuclear energy – which provides<br />

more than 55 percent of our current<br />

carbon-free electricity – plays a major<br />

role in holding down carbon emissions.<br />

Additionally, advanced reactors<br />

expand the future of nuclear and clean<br />

energy. In fact, leading tech<br />

entrepreneur Bill Gates sees great<br />

opportunities in advanced nuclear and<br />

even helped launch Terra<strong>Power</strong> LLC<br />

to design a next-generation reactor.<br />

He’s not alone. Dozens of new<br />

companies are working on advanced<br />

reactors that represent the cuttingedge<br />

in nuclear technology. Advanced<br />

reactors promise an af<strong>for</strong>dable and<br />

reliable source of clean electricity,<br />

plus the ability to produce clean transportation<br />

fuels and building materials<br />

and to desalinate drinking water,<br />

while offering inherent safety features<br />

and even the ability to recycle used<br />

fuel and reduce waste.<br />

As more investors push <strong>for</strong> clean<br />

energy solutions, nuclear energy leads<br />

the way in carbon-free electricity<br />

today and is innovating <strong>for</strong> the<br />

reactors and grid of tomorrow.<br />

| (20491542) www.nei.org<br />

World<br />

IAEA Ministerial Conference<br />

commits to strengthening<br />

nuclear security amid concerns<br />

about global threats<br />

(iaea) Government ministers and<br />

other high-level representatives from<br />

more than 140 countries adopted a<br />

declaration at a major <strong>International</strong><br />

Atomic Energy Agency (IAEA) conference<br />

today to enhance global nuclear<br />

security and counter the threat of<br />

nuclear terrorism and other malicious<br />

acts.<br />

From a possible cyber attack on<br />

a nuclear power plant to the illicit<br />

trafficking of radioactive materials,<br />

nuclear security is a growing international<br />

concern. The IAEA and its<br />

Member States have in recent years<br />

intensified their ef<strong>for</strong>ts to strengthen<br />

nuclear security but agree that more<br />

action is needed.<br />

“<strong>Nuclear</strong> and radioactive material<br />

is a magnet <strong>for</strong> groups with malicious<br />

intent that see in this material a<br />

possibility to create panic and bring<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

distress and pain to our societies,”<br />

IAEA Director General Rafael Mariano<br />

Grossi said at the opening of the weeklong<br />

conference at IAEA head quarters,<br />

shortly be<strong>for</strong>e the declaration was<br />

adopted by the participants, including<br />

more than 55 ministerial-level<br />

representatives.<br />

<strong>Nuclear</strong> technology and science<br />

help improve the lives of millions of<br />

people around the world in areas<br />

ranging from clean energy and cancer<br />

care to food security and pest control.<br />

But the nuclear and radioactive<br />

materials used to produce those<br />

benefits must be secured at all times<br />

to prevent them from falling into<br />

the wrong hands. <strong>Nuclear</strong> security<br />

involves preventing, detecting and<br />

responding to malicious acts with<br />

nuclear material, radioactive substances<br />

or their associated facilities.<br />

In the declaration, IAEA Member<br />

States reaffirmed the common goals<br />

of nuclear non-proliferation, nuclear<br />

disarmament and the peaceful uses of<br />

nuclear energy and recognized that<br />

nuclear security contributes to international<br />

peace and security.<br />

“We remain concerned about<br />

existing and emerging nuclear<br />

security threats and committed<br />

to addressing such threats,” the<br />

ministerial declaration said. “We<br />

encourage Member States to implement<br />

threat mitigation and risk<br />

reduction measures that contribute to<br />

improving nuclear security, including,<br />

but not limited to, ensuring the<br />

protection of nuclear and other radioactive<br />

materials and facilities.”<br />

<strong>Nuclear</strong> security is a national<br />

responsibility, but the central role of<br />

the IAEA in facilitating and coordinating<br />

international cooperation in<br />

this area was also highlighted at the<br />

conference and in the declaration.<br />

“The adoption of a Declaration at<br />

ministerial level is indicative of the<br />

continuous commitment to nuclear<br />

security of IAEA Member States. It<br />

is a concise, politically driven and<br />

<strong>for</strong>ward- looking document, adding<br />

value to the ef<strong>for</strong>ts of strengthening<br />

nuclear security worldwide,” said<br />

Bogdan Aurescu, Minister of Foreign<br />

Affairs of Romania and Co-President<br />

of the conference.<br />

“In the coming years, global stocks<br />

of nuclear material are expected to<br />

continue growing, especially as we<br />

look into emerging nuclear technologies<br />

and their role in mitigating the<br />

consequences of climate change,” said<br />

Federico Alfaro, Vice-Minister of<br />

Foreign Affairs of Panama and Co-<br />

President of the conference. “We<br />

cannot allow <strong>for</strong> such material to fall<br />

into the wrong hands.”<br />

| (20491539) www.iaea.org<br />

Reactors<br />

Excellent production year<br />

<strong>for</strong> PreussenElektra's<br />

nuclear power plants<br />

(pe) The three PreussenElektra<br />

nuclear power plants Brokdorf,<br />

Grohnde and Isar 2 had another<br />

successful year of operation: The<br />

three power plants generated a total<br />

of almost 33 billion kilowatt hours<br />

(kWh) of electricity in 2019. This<br />

amount alone from these three plants<br />

is sufficient to supply around<br />

13 million electric cars with low-CO 2<br />

electricity [1].<br />

With an availability of almost 90 %,<br />

the power plants were available<br />

almost without restriction. The continuing<br />

drought and the high ambient<br />

and cooling water temperatures of<br />

last summer 2019 had no significant<br />

impact on the plants.<br />

With 12 billion kilowatt hours<br />

(gross), the Isar 2 nuclear power plant<br />

(Bavaria) in Germany generated the<br />

largest amount of electricity of all<br />

German nuclear power plants and<br />

there<strong>for</strong>e has a good chance of once<br />

again finishing among the world-wide<br />

top three. Around 10.7 billion kilowatt<br />

hours (gross) were supplied by the<br />

Grohnde nuclear power plant in<br />

Lower Saxony and a good 10 billion<br />

kilowatt hours (gross) came from<br />

the Brokdorf nuclear power plant<br />

in Schleswig-Holstein. The Grohnde<br />

nuclear power plant celebrated its<br />

35 th anniversary of grid synchronisation:<br />

With its approximately<br />

386 billion kilowatt hours of electricity<br />

generated since commissioning,<br />

the power plant continues to be<br />

the undisputed world leader: No plant<br />

in the world has ever generated so<br />

much electricity. Preussen Elektra<br />

invested around 50 million Euros in<br />

the power plants as part of the power<br />

plant overhauls.<br />

“I would like to thank my<br />

colleagues in the power plants and the<br />

company headquarters as well as the<br />

employees of our contractors, whose<br />

commitment has ensured reliable<br />

and safe operation,” said Dr. Erwin<br />

Fischer, the Managing Director<br />

responsible <strong>for</strong> technology and operations.<br />

“We are doing everything we<br />

can to make our contribution to a<br />

climate-friendly and reliable electricity<br />

supply in Germany in the few<br />

remaining years of production.<br />

However, the occasional question addressed<br />

to us regarding the possible<br />

continued operation of our three<br />

plants is clearly rejected: All the points<br />

have been set <strong>for</strong> dismantling, and<br />

further operation is ruled out. We<br />

submitted the applications <strong>for</strong><br />

decommissioning and dismantling at<br />

an early stage and the approval<br />

procedures are in full swing.”<br />

With their grid-supporting services,<br />

the three nuclear power plants ensure<br />

that the electricity grid is stabilised.<br />

Almost daily, the power plants flexibly<br />

reduce and increase their output<br />

according to the requirements of the<br />

market and the grid operator. By<br />

generating electricity with low CO 2<br />

emissions, they also save the environment<br />

around 29 million tonnes of CO 2<br />

annually.<br />

| (20491507)<br />

www.preussenelektra.de<br />

Company News<br />

PreussenElektra GmbH orders<br />

62 CASTOR® casks<br />

(gns) GNS supplies 62 spent fuel casks<br />

of the type CASTOR® V/19 <strong>for</strong> the<br />

spent fuel elements from the nuclear<br />

power plants Grohnde (KWG) and<br />

Brokdorf (KBR) of PreussenElektra<br />

GmbH.<br />

GNS Gesellschaft für Nuklear-<br />

Service mbH has received an order <strong>for</strong><br />

the delivery of a total of 62 transport<br />

and storage casks of the type CASTOR®<br />

V/19. The casks – Brokdorf receives<br />

39, Grohnde 23 – will be used <strong>for</strong><br />

the spent fuel elements of the<br />

two pressurized water reactor nuclear<br />

power plants of PreussenElektra<br />

GmbH which will be in operation until<br />

the end of 2021. The order has a total<br />

volume of well over EUR 100 million.<br />

“With this large order, we are<br />

securing the largest share of the<br />

CASTOR® casks required <strong>for</strong> the<br />

disposal of irradiated fuel elements<br />

from our nuclear power plants in<br />

Brokdorf and Grohnde”, explains<br />

Lothar Mertens, Head of Fuel Cycle<br />

and Interim Storage at Preussen-<br />

Elektra GmbH. “This gives us planning<br />

security at both sites and allows<br />

us to secure disposal at an early stage<br />

until the two plants are completely<br />

free from fuel”.<br />

The casks are to be delivered from<br />

the GNS plant in Mülheim an der<br />

Ruhr/Germany to the two power<br />

plants from mid 2022. After loading<br />

in the reactor building, the casks<br />

173<br />

NEWS<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

174<br />

NEWS<br />

the heat created in the reactor core.<br />

This steam drives the turbines that<br />

generate electricity.<br />

TVA’s Browns Ferry <strong>Nuclear</strong> Plant<br />

is home to three boiling water<br />

reactors. Both the Sequoyah and<br />

Watts Bar nuclear plants have two<br />

pressurized water reactors. Collectively,<br />

these plants generate enough<br />

electricity to power more than<br />

4.5 million homes and businesses.<br />

| (20491335) www.framatome.com<br />

| PreussenElektra GmbH orders 62 CASTOR® casks. View of a CASTOR® V/19 casks with shock absorbers.<br />

will be transferred to the local on-site<br />

interim storage facilities operated<br />

by the federally owned BGZ Gesellschaft<br />

für Zwischenlagerung mbH.<br />

A total of 33 (Brokdorf ISF) and 34<br />

(Grohnde ISF) loaded casks of this<br />

type are already in store in the local<br />

on-site interim storage facilities.<br />

| (20491220) www.gns.de<br />

Framatome signs multimillion-dollar<br />

contracts with<br />

Tennessee Valley Authority<br />

(framatome) Tennessee Valley Authority<br />

(TVA) awarded Framatome<br />

several multimillion-dollar contracts<br />

<strong>for</strong> work across the company’s reactor<br />

fleet. This includes fuel <strong>for</strong> the Browns<br />

Ferry <strong>Nuclear</strong> Plant, fuel handling<br />

equipment upgrades across the fleet<br />

and steam generator replacements at<br />

the Watts Bar <strong>Nuclear</strong> Plant.<br />

“Framatome’s long-standing relationship<br />

with TVA is the result of our<br />

U.S. and global teams’ expertise and<br />

commitment to delivering excellence<br />

in everything they do,” said Bernard<br />

Fontana, CEO of Framatome. “We<br />

are pleased to expand our cooperation<br />

with TVA and support them in providing<br />

efficient, reliable and low-carbon<br />

electricity to residents and businesses<br />

across the Tennessee Valley.”<br />

Framatome will provide its stateof-<br />

the-art ATRIUM 11 fuel <strong>for</strong> the<br />

three boiling water reactors at Browns<br />

Ferry with the first use planned <strong>for</strong><br />

2023. This contract makes TVA the<br />

third U.S. utility to switch to the<br />

ATRIUM 11 fuel design.<br />

ATRIUM 11 helps utilities to save<br />

money by using the uranium in nuclear<br />

fuel more efficiently. The fuel also<br />

allows operators to run their plants<br />

with more flexibility as demand fluctuates<br />

and other generation sources<br />

provide power to the electric grid.<br />

Framatome’s fuel fabrication facility,<br />

which recently celebrated its 50 th<br />

anniversary, in Richland, Washington,<br />

will manufacture the fuel.<br />

Framatome will also upgrade the<br />

fuel handling equipment at the<br />

Browns Ferry, Sequoyah and Watts<br />

Bar nuclear plants on an accelerated<br />

schedule, saving the plants both time<br />

and money.<br />

This work includes upgrading the<br />

refuel bridges at Browns Ferry, the<br />

manipulator cranes at both Sequoyah<br />

units and Watts Bar Unit 1, and the<br />

fuel transfer systems at Watts Bar.<br />

Framatome previously upgraded the<br />

fuel transfer systems at Sequoyah. The<br />

company will also replace the spent<br />

fuel bridges at Sequoyah and Watts<br />

Bar.<br />

Additionally, SGT, a joint venture<br />

between Framatome and AECOM,<br />

will replace four steam generators at<br />

Watts Bar Unit 2. In a nuclear energy<br />

plant, the steam generator has an<br />

essential role in producing electricity.<br />

It converts water into steam using<br />

| Watts Bar nuclear power plant (Tennessee Valley, United-States) – © TVA<br />

Westinghouse expands nuclear<br />

services & capabilities with<br />

acquisition of Rolls-Royce civil<br />

nuclear systems and services<br />

(west) Westinghouse Electric Company<br />

will complete the acquisition<br />

of Rolls-Royce’s Civil <strong>Nuclear</strong> Systems<br />

and Services business in North<br />

America and in select sites in Europe.<br />

The acquisition represents a strategic<br />

investment in expanding the company’s<br />

nuclear products and services<br />

offerings. This acquisition supports<br />

Westinghouse’s global customer base<br />

through enhanced operating plant<br />

services, capabilities and technologies.<br />

It also strengthens the company’s<br />

digital innovation ef<strong>for</strong>ts.<br />

“Expanding our geographic footprint<br />

and strengthening our portfolio<br />

of systems and services is a key focus<br />

to better serve our clients and deploy<br />

innovative and leading solutions to<br />

the installed base of nuclear plants,”<br />

said Westinghouse President and Chief<br />

Executive Officer Patrick Fragman.<br />

“Both Westinghouse and Rolls-Royce<br />

Civil <strong>Nuclear</strong> customers will gain<br />

an expanded presence and benefit<br />

from synergies between our companies.<br />

With this strategic investment,<br />

we are enhancing our customer offerings<br />

in order to support their longterm<br />

operating goals to produce<br />

carbon- free, cost-effective and reliable<br />

energy.”<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

Through the transaction, Westinghouse<br />

will acquire the Rolls-Royce<br />

Civil <strong>Nuclear</strong> Systems and Services’ 11<br />

locations in Canada, France, the<br />

United Kingdom and the United<br />

States. These sites support plant<br />

automation and monitoring systems,<br />

field services, manufacturing and<br />

engineering services as well as digital<br />

engineering services. These are key<br />

areas in supporting Westinghouse’s<br />

ef<strong>for</strong>ts to optimize customer planning<br />

and maintenance, and provide innovative<br />

systems and services to maximize<br />

per<strong>for</strong>mance, cost effectiveness<br />

and support life extension of the<br />

nuclear plants worldwide.<br />

All closing conditions have been<br />

met <strong>for</strong> Westinghouse to complete the<br />

acquisition.<br />

| (20491515)<br />

www.westinghousenuclear.com<br />

Operating Results November 2019<br />

The first serial batch of MOX<br />

fuel loaded into BN-800 fast<br />

reactor at Beloyarsk NPP<br />

(tvel) BN-800, the world’s most<br />

powerful operational fast neutron<br />

reactor at Unit 4 of Beloyarsk NPP in<br />

Russia, has been loaded with the first<br />

serial batch of MOX fuel made of<br />

depleted uranium and plutonium<br />

oxides. After an overhaul, the power<br />

unit has successfully resumed<br />

operation.<br />

Distinct from traditional nuclear<br />

fuel with enriched uranium, MOX fuel<br />

pellets are based on the mix of nuclear<br />

fuel cycle derivatives, such as oxide of<br />

plutonium bred in commercial reactors,<br />

and oxide of depleted uranium<br />

which is derived by defluorination of<br />

depleted uranium hexafluoride (UF6),<br />

the so-called secondary tailings of<br />

uranium enrichment facilities.<br />

The power plant engineers have<br />

loaded eighteen MOX fuel assemblies<br />

at the BN-800 reactor core, while in<br />

2020, Rosenergoatom and TVEL (i.e.<br />

power generation and nuclear fuel<br />

divisions of ROSATOM) are planning<br />

to load another batch of 180 fuel<br />

assemblies. By the end of 2021,<br />

ROSATOM is committed to replace all<br />

remaining uranium-based fuel<br />

assemblies in the core with MOX fuel.<br />

Thus, <strong>for</strong> the first time in Russian<br />

history, a fast neutron reactor would<br />

start operations with a full load of<br />

MOX fuel only.<br />

“ROSATOM strategy is aimed at<br />

the dual-component nuclear power<br />

system with both thermal neutron<br />

and fast neutron reactors, and closing<br />

nuclear fuel cycle, which would solve<br />

a number of highly important tasks.<br />

First, this would exponentially boost<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-outoperation<br />

5)<br />

Stretch-inoperation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

175<br />

NEWS<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 720 667 236 7 120 756 268 775 964 100.00 97.25 99.98 96.48 100.73 96.56<br />

OL2 Olkiluoto BWR FI 910 880 720 664 455 6 777 931 258 674 474 100.00 92.55 99.70 92.08 100.31 91.91<br />

KCB Borssele PWR NL 512 484 720 366 867 5 879 653 167 601 341 99.56 86.65 99.56 86.58 99.72 83.77<br />

KKB 1 Beznau 7) PWR CH 380 365 720 276 758 2 688 017 130 022 127 100.00 88.80 100.00 88.64 101.20 88.16<br />

KKB 2 Beznau 7) PWR CH 380 365 720 275 241 2 661 444 137 011 851 100.00 87.90 100.00 87.74 100.67 87.27<br />

KKG Gösgen 7) PWR CH 1060 1010 720 766 212 7 446 898 321 322 426 100.00 88.46 99.99 87.98 100.40 87.64<br />

KKM Mühleberg BWR CH 390 373 720 269 130 3 048 020 130 452 335 100.00 100.00 100.00 99.78 95.84 97.50<br />

CNT-I Trillo PWR ES 1066 1003 720 760 270 7 696 038 254 987 706 100.00 91.12 100.00 90.78 98.62 89.48<br />

Dukovany B1 1) PWR CZ 500 473 720 358 378 3 282 064 115 511 557 100.00 83.92 99.97 83.44 99.55 81.89<br />

Dukovany B2 PWR CZ 500 473 720 355 601 2 438 815 110 672 986 100.00 62.46 100.00 61.91 98.78 60.85<br />

Dukovany B3 PWR CZ 500 473 720 354 008 3 383 385 109 881 425 100.00 86.84 100.00 86.51 98.34 84.42<br />

Dukovany B4 PWR CZ 500 473 720 362 785 3 980 533 110 423 802 100.00 99.86 100.00 99.72 100.77 99.31<br />

Temelin B1 PWR CZ 1080 1030 681 722 495 7 024 500 121 385 542 100.00 82.41 99.98 82.19 92.91 81.00<br />

Temelin B2 PWR CZ 1080 1030 720 788 191 7 395 583 116 668 100 100.00 84.96 99.98 84.74 101.17 85.27<br />

Doel 1 2) PWR BE 454 433 0 0 2 291 598 137 736 060 0 61.99 0 61.65 0 61.57<br />

Doel 2 2) PWR BE 454 433 0 0 2 533 531 136 335 470 0 70.54 0 69.35 0 69.30<br />

Doel 3 PWR BE 1056 1006 720 775 232 7 172 489 262 304 974 100.00 84.44 100.00 83.89 101.69 84.26<br />

Doel 4 PWR BE 1084 1033 720 790 278 8 452 548 268 825 958 100.00 100.00 99.96 96.90 99.62 95.70<br />

Tihange 1 PWR BE 1009 962 720 730 179 8 023 972 306 854 830 100.00 100.00 99.98 99.98 100.64 99.31<br />

Tihange 2 3) PWR BE 1055 1008 348 335 969 2 622 307 257 274 237 48.31 32.84 44.32 31.92 44.53 31.23<br />

Tihange 3 PWR BE 1089 1038 720 781 451 8 527 900 279 755 173 100.00 99.97 100.00 99.38 100.31 98.20<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability Energy utilisation<br />

[%] *) [%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf 3) DWR 1480 1410 603 821 025 9 199 396 359 767 206 83.69 86.55 78.38 81.23 76.88 77.25<br />

KKE Emsland DWR 1406 1335 720 1 015 679 9 761 898 356 580 867 100.00 88.20 100.00 88.11 100.45 86.62<br />

KWG Grohnde DWR 1430 1360 720 1 010 989 9 696 598 387 270 812 100.00 89.13 100.00 88.88 97.76 84.06<br />

KRB C Gundremmingen SWR 1344 1288 720 973 994 9 393 954 340 335 709 100.00 88.14 100.00 87.63 100.37 86.76<br />

KKI-2 Isar DWR 1485 1410 720 1 010 500 9 386 510 339 213 344 100.00 93.48 99.97 85.99 100.57 83.78<br />

GKN-II Neckarwestheim DWR 1400 1310 720 1 062 321 10 967 231 364 693 044 100.00 95.57 100.00 95.27 99.10 91.77<br />

KKP-2 Philippsburg 4) DWR 1468 1402 720 922 869 9 766 080 375 927 235 100.00 88.73 100.00 88.52 85.66 81.68<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

Organisations<br />

People<br />

176<br />

NEWS<br />

| The first serial batch of MOX fuel loaded into BN-800 fast reactor<br />

at Beloyarsk NPP. View of the site.<br />

the feedstock <strong>for</strong> nuclear power<br />

plants. Second, this would enable to<br />

recycle spent nuclear fuel instead of<br />

storage. And third, we once again involve<br />

into nuclear fuel cycle and<br />

utilize the accumulated ground stocks<br />

of depleted uranium hexafluoride<br />

and plutonium”, commented Vitaly<br />

Khadeev, Vice-President <strong>for</strong> Development<br />

of Closed <strong>Nuclear</strong> Fuel Cycle<br />

Technologies and Industrial Facilities<br />

at TVEL JSC.<br />

Director of Beloyarsk NPP Ivan<br />

Sidorov emphasized: “At power unit<br />

No. 4, we have carried out the first<br />

general overhaul in four years of its<br />

operation. This power unit has two<br />

tasks, not only to produce electricity,<br />

but also to master a promising technology<br />

that is important <strong>for</strong> the future<br />

of nuclear power. The works per<strong>for</strong>med<br />

during the overhaul are aimed<br />

to ensure the long-term safe operation<br />

of the whole power unit and the<br />

reliability of equipment.”<br />

Serial batch-production of MOX<br />

fuel started in late 2018, at the site<br />

of Mining and Chemical Combine in<br />

Zheleznogorsk, Krasnoyarsk region<br />

(Russia’s East Siberia). The launch of<br />

this unique highly automatized<br />

fabrication shop-floor had been<br />

provided due to the broad cooperation<br />

of Russian nuclear industry<br />

enterprises with the coordination role<br />

of TVEL Fuel Company, which is also<br />

the official supplier of the MOX fuel to<br />

Beloyarsk NPP.<br />

The BN-800 reactor was initially<br />

launched with a hybrid core containing<br />

both uranium and MOX fuels.<br />

But as the uranium BN-800 fuel<br />

assemblies were produced by<br />

Elemash, TVEL’s major fabrication<br />

facility in Elekrostal, Moscow region,<br />

the MOX fuel assemblies were experimental<br />

ones, assembled at the<br />

Research Institute of Atomic Reactors<br />

in Dimitrovgrad, Ulyanovsk Region.<br />

| (20500850) www.tvel.ru<br />

www.rosatom.ru<br />

NEA launches new initiatives<br />

in nuclear innovation<br />

(oecd-nea) NEA is organising two<br />

workshops focused on the need to<br />

bring more innovation into the<br />

nuclear energy sector. The first event<br />

is the NEA Workshop on Innovative<br />

Financing: Towards Sustainable<br />

<strong>Nuclear</strong> Financing, which will be held<br />

on 6 to 7 April 2020 in Warsaw,<br />

Poland, hosted by the Polish Ministry<br />

of Energy and organised in collaboration<br />

with the Cambridge <strong>Nuclear</strong><br />

Energy Centre and the <strong>International</strong><br />

Framework <strong>for</strong> <strong>Nuclear</strong> Energy<br />

Cooperation (IFNEC). This first- of‐itskind<br />

workshop will bring together<br />

experts from the nuclear energy<br />

and financing sectors to discuss<br />

approaches <strong>for</strong> financing sustainable,<br />

large infrastructure projects with a<br />

focus on nuclear new build.<br />

The second event is the KAERI/<br />

NEA <strong>International</strong> Workshop on<br />

Disruptive Technologies <strong>for</strong> <strong>Nuclear</strong><br />

Safety Applications, which will take<br />

place on 19 to 20 May 2020 in Jeju<br />

Island, Korea. This workshop will<br />

gather experts from within and outside<br />

the nuclear sector to exchange<br />

insights on the potential <strong>for</strong> disruptive<br />

technologies to have a positive impact<br />

on the construction and operation of<br />

nuclear power plants.<br />

These ef<strong>for</strong>ts will culminate in<br />

the 2020 Global Forum on Innovation<br />

<strong>for</strong> the Future of <strong>Nuclear</strong> Energy on 4<br />

to 7 October 2020 in London, United<br />

Kingdom. Organised in partnership<br />

between the UK National <strong>Nuclear</strong><br />

Laboratory (NNL), EDF Energy, the<br />

Electric <strong>Power</strong> Research Institute<br />

(EPRI), the <strong>International</strong> Atomic<br />

Energy Agency (IAEA) and the NEA,<br />

this event will build on the outcomes<br />

of the workshops highlighted above<br />

and the 2019 Global Forum. The<br />

report summarising the 2019 Global<br />

Forum, which took place in June 2019<br />

in Gyeongju, South Korea, is available<br />

on the NEA website.<br />

| (20491528) www.oecd-nea.org<br />

German association AEK<br />

re-established: Invitation to<br />

members meeting<br />

(aek) The “Aktionsgemeinschaft<br />

Energiesicherung und Kerntechnik –<br />

AEK e.V.” (founded 1981) invites all<br />

members and interested persons to its<br />

re-establishing meeting on 28. March<br />

2020, Hotel Kaiserhof, Münster,<br />

Germany.<br />

| (20491534) Contact:<br />

mitglieder@energiesicherung.org<br />

FORATOM selects new<br />

President Esa Hyvärinen<br />

(<strong>for</strong>atom) FORATOM announced that<br />

Esa Hyvärinen has been appointed by<br />

the association’s General Assembly as<br />

FORATOM President <strong>for</strong> a two-year<br />

period starting on 1 January 2020.<br />

“I feel deeply honoured to be<br />

appointed as the new president of<br />

FORATOM and I look <strong>for</strong>ward to the<br />

next two years working with the<br />

General Assembly, Executive Board,<br />

FORATOM Members and the<br />

Secretariat as well as all external<br />

stakeholders involved in the European<br />

decision-making process” – states<br />

Mr. Hyvärinen. “Even though the<br />

European Commission and the European<br />

Parliament have recently recognised<br />

nuclear energy as an important<br />

element of Europe’s decarbonised future,<br />

the European nuclear industry<br />

will face many challenges in the<br />

upcoming months and years in<br />

order to maintain and improve its<br />

current role in the energy mix.<br />

That is why we will do our best<br />

to convince decision makers that<br />

low-carbon, cost-effective and reliable<br />

nuclear energy can help the EU<br />

achieve its climate and energy<br />

objectives”.<br />

Mr. Hyvärinen is currently Head of<br />

the CEO Office at Fortum Corporation.<br />

In the past, he was Senior Vice<br />

President <strong>for</strong> Public Affairs at Fortum,<br />

Head of Recycling and Environmental<br />

units at the Confederation of<br />

European paper industries in Brussels,<br />

and Senior Advisor at the Finnish<br />

Ministry of Trade and Industry. He<br />

has been member of the FORATOM<br />

Executive Board since 2016.<br />

Esa Hyvärinen replaces Dr Teodor<br />

Chirica, Senior Adviser to the CEO of<br />

<strong>Nuclear</strong>Electrica, who has reached<br />

the end of his mandate as FORATOM<br />

President.<br />

| (20491525) www.<strong>for</strong>atom.org<br />

Market data<br />

(All in<strong>for</strong>mation is supplied without<br />

guarantee.)<br />

<strong>Nuclear</strong> Fuel Supply<br />

Market Data<br />

In<strong>for</strong>mation in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data <strong>for</strong> the <strong>for</strong>merly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

Uranium<br />

Prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />

140.00<br />

) 1<br />

Uranium prize range: Spot market [USD*/lb(US) U 3 O 8 ]<br />

140.00<br />

120.00<br />

120.00<br />

177<br />

100.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

1980<br />

Yearly average prices in real USD, base: US prices (1982 to1984) *<br />

1985<br />

1990<br />

1995<br />

2000<br />

2005<br />

2010<br />

2015<br />

2019<br />

Year<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2020<br />

* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2020<br />

| Uranium spot market prices from 1980 to 2019 and from 2008 to 2019. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

Separative work: Spot market price range [USD*/kg UTA]<br />

Conversion: Spot conversion price range [USD*/kgU]<br />

180.00<br />

) 1 23.00<br />

160.00<br />

140.00<br />

120.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Jan. 2008<br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2013<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

NEWS<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Jan. 2008<br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2013<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2020<br />

) 1 Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2020<br />

22.00<br />

20.00<br />

18.00<br />

16.00<br />

) 1<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

Jan. 2008<br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2013<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

| Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation <strong>for</strong> spot market prices. The change results in virtual price leaps.<br />

* Actual nominal USD prices, not real prices referring to a base year<br />

Sources: Energy Intelligence, Nukem; Bilder/Figures: <strong>atw</strong> 2020<br />

0.385 kg U]. Conversion prices<br />

[US-$/kg U], Separative work<br />

[US-$/SWU (Separative work unit)].<br />

2017<br />

p Uranium: 19.25–26.50<br />

p Conversion: 4.50–6.75<br />

p Separative work: 39.00–50.00<br />

2018<br />

p Uranium: 21.75–29.20<br />

p Conversion: 6.00–14.50<br />

p Separative work: 34.00–42.00<br />

2019<br />

January 2019<br />

p Uranium: 28.70–29.10<br />

p Conversion: 13.50–14.50<br />

p Separative work: 41.00–44.00<br />

February 2019<br />

p Uranium: 27.50–29.25<br />

p Conversion: 13.50–14.50<br />

p Separative work: 42.00–45.00<br />

March 2019<br />

p Uranium: 24.85–28.25<br />

p Conversion: 13.50–14.50<br />

p Separative work: 43.00–46.00<br />

April 2019<br />

p Uranium: 25.50–25.88<br />

p Conversion: 15.00–17.00<br />

p Separative work: 44.00–46.00<br />

May 2019<br />

p Uranium: 23.90–25.25<br />

p Conversion: 17.00–18.00<br />

p Separative work: 46.00–48.00<br />

June 2019<br />

p Uranium: 24.30–25.00<br />

p Conversion: 17.00–18.00<br />

p Separative work: 47.00–49.00<br />

July 2019<br />

p Uranium: 24.50–25.60<br />

p Conversion: 18.00–19.00<br />

p Separative work: 47.00–49.00<br />

August 2019<br />

p Uranium: 24.90–25.60<br />

p Conversion: 19.00–20.00<br />

p Separative work: 47.00–49.00<br />

September 2019<br />

p Uranium: 24.80–26.00<br />

p Conversion: 20.00–21.00<br />

p Separative work: 47.00–50.00<br />

October 2019<br />

p Uranium: 23.75–25.50<br />

p Conversion: 21.00–22.00<br />

p Separative work: 47.00–50.00<br />

November 2019<br />

p Uranium: 23.95–26.25<br />

p Conversion: 22.00–23.00<br />

p Separative work: 48.00–50.00<br />

December 2019<br />

p Uranium: 24.85–26.00<br />

p Conversion: 22.00–23.00<br />

p Separative work: 48.00–52.00<br />

| Source: Energy Intelligence<br />

www.energyintel.com<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 3 ı March<br />

178<br />

NUCLEAR TODAY<br />

John Shepherd is a<br />

freelance journalist<br />

and communications<br />

consultant.<br />

Sources:<br />

Grossi’s remarks in US<br />

https://bit.ly/<br />

2SdY2OZ<br />

NPT review<br />

conference<br />

https://bit.ly/<br />

2OHdot4<br />

Agora Energiewende/<br />

Sandbag report<br />

https://bit.ly/2vo5y0s<br />

IAEA Chief’s Zeal <strong>for</strong> Change Signals<br />

Era of <strong>Nuclear</strong> Renewal<br />

This year marks the 50th anniversary of the Treaty on the Non-Proliferation of <strong>Nuclear</strong> Weapons, which has been a key<br />

component in spurring the worldwide spread of peaceful nuclear technology <strong>for</strong> development.<br />

The Non-proliferation Treaty (NPT), as it is commonly<br />

known, entered into <strong>for</strong>ce in 1970, was extended<br />

indefinitely in 1995 and has become nearly universal. The<br />

anniversary will be marked at a review conference at the<br />

United Nations headquarters in New York in April – and<br />

the event comes at a crucial time.<br />

Newly-elected director-general of the <strong>International</strong><br />

Atomic Energy Agency (IAEA), Rafael Mariano Grossi, had<br />

been due to be president of the conference until his<br />

elevation to head of the global nuclear watchdog following<br />

the death of Yukiya Amano.<br />

Now Grossi has the task of not only shepherding the<br />

agency through this latest five-yearly review of the NPT,<br />

but to steering the IAEA beyond, into a new decade at a<br />

time when the agency’s role and responsibilities are under<br />

the utmost scrutiny and when funding constraints and<br />

geopolitical pressures threaten to undermine the role of<br />

the watchdog itself.<br />

Ongoing tensions between North Korea and the<br />

international community and the recent flare-up of<br />

political hostilities between Iran, the US and others has<br />

increased the strain the IAEA is under as the world’s<br />

‘ honest broker’ in maintaining, through the NPT, a strong<br />

non-proliferation regime.<br />

But the director-general also, rightly, sees an expanded<br />

role <strong>for</strong> the IAEA in tackling climate change in cooperation<br />

with partner agencies. He said climate change would be an<br />

increasing theme <strong>for</strong> the agency. “Many countries are<br />

interested in making more use of nuclear technology to<br />

mitigate and adapt to the impact of climate change.”<br />

On nuclear security, Grossi said member states had<br />

agreed the IAEA should be “the global focal point <strong>for</strong> nuclear<br />

security”. “Demands <strong>for</strong> our assistance are constantly<br />

increasing,” he said. “But I believe more could be done to<br />

make us a real focal point in practice and not just in name.”<br />

Grossi’s belief is that the “great majority of countries”<br />

that join the IAEA do so “because they are interested in<br />

using nuclear technology to improve the day-to-day lives of<br />

their people”.<br />

In terms of health and welfare, Grossi has highlighted<br />

cancer control as a priority, “as one of the most important<br />

areas in which we make that technology available”. He<br />

went as far as to say that deaths in developing countries<br />

from cancer, which he said were treatable in richer countries<br />

were “quite simply, a scandal”.<br />

Meanwhile, as Grossi confirmed to staff at the start of<br />

this year, there needs to be “tight control” of costs as the<br />

agency navigates a period of “zero real budget growth”.<br />

The IAEA, <strong>for</strong> all its vital work on behalf of us all (nuclearenergy<br />

using nations and those that do not include nuclear<br />

in the electricity-generating mix) has never been awash<br />

with funds.<br />

However, Grossi should be applauded <strong>for</strong> setting out a<br />

bold vision <strong>for</strong> the IAEA in the years ahead rather than<br />

allowing cash constraints to limit his breadth of scope and<br />

ambition.<br />

In 2018, the IAEA’s regular budget was about<br />

€370.5 million. The US is the single largest contributor to<br />

the agency’s regular budget and provides significant<br />

extra- budgetary funding. The IAEA said this, together with<br />

support also from other member states, has enabled it to<br />

step up its assistance in areas benefiting millions of people<br />

around the world, such as food security, cancer care,<br />

nutrition, animal health, water management, energy<br />

planning and others.<br />

Following recent talks with Trump administration<br />

officials in the US; Grossi acknowledged it would be<br />

difficult to secure a “significant increase” in the IAEA’s<br />

budget in the years ahead. He said the agency had to find<br />

new ways to fund its activities.<br />

Instead of simply pleading <strong>for</strong> more from the agency’s<br />

member states, Grossi plans to use his role to entice<br />

investment from non-traditional quarters. He confirmed<br />

he has been “reaching out to new partners such as the<br />

World Bank and the Islamic Development Bank”.<br />

The director-general has told his officials “I am not<br />

interested in departmental achievements… I am interested<br />

in agency achievements and especially in successes<br />

achieved by member states thanks to the support of the<br />

IAEA”.<br />

Grossi said he was elected “on a plat<strong>for</strong>m of change”<br />

and his goal is to “recalibrate our approach where<br />

necessary”.<br />

The path ahead to ensure the IAEA’s continued viability<br />

as a credible, valuable and trusted institution, to safeguard<br />

the interests of the global nuclear community, will not be<br />

an easy one. But the new director-general is to be<br />

congratulated <strong>for</strong> his declared zeal and determination in<br />

his early days of office.<br />

There is still a blind spot <strong>for</strong> many in understanding<br />

that nuclear energy goes hand in hand with environmental<br />

protection, tackling climate change, supporting food<br />

production, pest control and treating the sick – to name<br />

just a few.<br />

An increased role <strong>for</strong> the IAEA would be welcome – and<br />

on climate change in particular, nuclear is pushing at an<br />

open door, according to the latest findings of a study of<br />

current electricity data carried out by Germany’s Agora<br />

Energiewende and UK climate think-tank Sandbag.<br />

The findings showed that in 2019, the European Union<br />

electricity sector emitted 12 % less CO 2 than in the previous<br />

year. At the same time, the share of renewables in<br />

electricity production rose EU-wide to 35 %, a new record.<br />

Electricity from nuclear power plants <strong>for</strong> the period<br />

declined by only 1 %, the study said. The slight fall in<br />

nuclear per<strong>for</strong>mance was put down to drought in some<br />

areas, particularly in July, which hampered supplies of<br />

cooling water from rivers.<br />

If Grossi is successful in “recalibrating” the IAEA, his<br />

leadership can be of particular benefit to nuclear power<br />

producing nations and the myriad of industries supporting<br />

the development of future nuclear technologies.<br />

<strong>Nuclear</strong> Today<br />

IAEA Chief’s Zeal <strong>for</strong> Change Signals Era of <strong>Nuclear</strong> Renewal ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

Strahlenschutz – Aktuell<br />

In Kooperation mit<br />

TÜV SÜD Energietechnik GmbH<br />

Baden-Württemberg<br />

Seminar:<br />

Das Strahlenschutzrecht<br />

und seine praktische Umsetzung<br />

Seminarinhalte<br />

1. Einführung: Grundlagen des Strahlenschutzes und des Strahlenschutzrechts<br />

2. Das neue Strahlenschutzrecht von 2017/18<br />

3. Genehmigungen, Anzeigen, Pflichten bei strahlenschutzrelevanten Aktivitäten<br />

a. Geplante Expositionssituationen (Tätigkeiten)<br />

b. Bestehende Expositionssituationen<br />

c. Notfallexpositionssituationen (Schutz der Einsatzkräfte)<br />

4. Umsetzung des Strahlenschutzes<br />

a. Dosisgrenzwerte, Dosisrichtwerte<br />

b. Betriebliche Organisation des Strahlenschutzes<br />

c. Fachkunde<br />

d. Strahlenschutzregister<br />

5. Aufsicht<br />

6. Notfallschutz und Notfallvorsorge<br />

7. Strahlenschutz im Back End<br />

a. Radioaktive Abfälle<br />

b. Freigabe, Herausgabe<br />

Zielgruppe<br />

Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, an Projekt- und Abteilungsleiter und<br />

Experten aus den Bereichen Betrieb, Abfälle, Genehmigung, Strategie und Unternehmens kommunikation<br />

sowie an Juristen.<br />

Referenten<br />

Dr. Maria Poetsch<br />

Dr. Christian Raetzke<br />

ı Strahlenschutzexpertin bei der TÜV SÜD Energietechnik GmbH<br />

Baden-Württemberg<br />

ı Rechtsanwalt, Leipzig<br />

Wir freuen uns auf Ihre Teilnahme!<br />

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.<br />

Termine<br />

2 Tage<br />

17. bis 18. März 2020<br />

16. bis 17. Juni 2020<br />

29. bis 30. Oktober 2020<br />

Tag 1: 10:30 bis 17:30 Uhr<br />

Tag 2: 09:00 bis 16:30 Uhr<br />

Berlin<br />

Teilnahmegebühr<br />

1.598,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

Seminare@KernD.de


#51KT<br />

www.kerntechnik.com<br />

Medienpartner<br />

51. KERNTECHNIK<br />

2020<br />

Jetzt anmelden!<br />

www.kerntechnik.com/kerntechnik/registration/<br />

5. – 6. Mai 2020<br />

Estrel Convention Center<br />

Berlin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!