09.04.2020 Views

atw International Journal for Nuclear Power | 04.2020

Title atw - International Journal for Nuclear Power | 04.2020 Description Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information. www.nucmag.com

Title

atw - International Journal for Nuclear Power | 04.2020


Description

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information.

www.nucmag.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

nucmag.com<br />

2020<br />

4<br />

ISSN · 1431-5254<br />

24.– €<br />

<strong>Nuclear</strong> Rockets<br />

<strong>for</strong> Interplanetary<br />

Space Missions<br />

Excursus to the World<br />

of <strong>Nuclear</strong> Medicine<br />

Radiation in Art and<br />

Cultural Heritage


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Atomrecht – Das Recht der radioaktiven Reststoffe und Abfälle RA Dr. Christian Raetzke 20.10.2020 Berlin<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chanchen und Regularien<br />

Atomrecht – Ihr Weg durch Genehmigungs- und<br />

Aufsichtsverfahren<br />

RA Kay Höft M.A. (BWL) 17.06.2020 Berlin<br />

RA Dr. Christian Raetzke 25.06.2020 Berlin<br />

Atomrecht – Was Sie wissen müssen<br />

3 Kommunikation und Politik<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

11.11.2020 Berlin<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Dr. Nikolai A. Behr 10.11. - 11.11.2020 Berlin<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

3 <strong>Nuclear</strong> English<br />

Das Strahlenschutzrecht und<br />

seine praktische Umsetzung<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Dr. Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

Dr. Stefan Kirsch<br />

RA Dr. Christian Raetzke<br />

16.06. - 17.06.2020<br />

29.10. - 30.10.2020<br />

Berlin<br />

23.09. - 24.09.2020 Berlin<br />

English <strong>for</strong> the <strong>Nuclear</strong> Industry Angela Lloyd 07.10. - 08.10.2020 Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Erfolgreicher Wissenstransfer in der Kerntechnik –<br />

Methoden und praktische Anwendung<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

05.10. - 06.10.2020 Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı Seminare@KernD.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

Space: Final Frontier – Always <strong>Nuclear</strong><br />

Dear reader, In these days, when our society is confronted globally with the challenges and the management of the<br />

Corona pandemic, the focus of this editorial should not be on controversial issues concerning the earth, but rather look<br />

beyond into the vastness of space.<br />

183<br />

If mankind embarks on a journey into space or sends<br />

satellites on their way into the cosmos, the question of a<br />

suitable energy supply arises – the ef<strong>for</strong>t to navigate and<br />

leave the Earth's gravitational field is left out of the equation<br />

– which makes a space mission possible. If astronauts are<br />

involved, sufficient heat, cooling and breathing air must be<br />

provided, among other things. If they are unmanned<br />

satellites, the only essential thing is to provide energy <strong>for</strong> the<br />

technical, i.e. electrical, systems.<br />

There are basically three <strong>for</strong>ms of nuclear energy<br />

available today <strong>for</strong> space missions:<br />

The first is indirect use. The nuclear fusion reactor, the<br />

sun, provides the radiation energy – light, which is converted<br />

into electrical energy in photovoltaic cells. The basic<br />

principles of photovoltaics have been known <strong>for</strong> a very long<br />

time. The basis, the photoelectric effect, was discovered in<br />

1839. However, the technical breakthrough came more than<br />

100 years later, when the U.S. satellite Vanguard I was<br />

equipped with photovoltaic cells in addition to a fuel cell in<br />

1958. Among other things, these made it possible to operate<br />

the satellite <strong>for</strong> almost six years.<br />

The second <strong>for</strong>m is the installation of a nuclear fission<br />

reactor:<br />

The first nuclear reactor <strong>for</strong> energy supply was launched<br />

into orbit on 4 April, 1965 by the U.S. Air Force with an Atlas<br />

launcher and the Snapshot technology satellite. The aim of<br />

the mission was, on the one hand, to test a nuclear reactor in<br />

a satellite and, on the other, to test the function of an ion<br />

engine. The reactor was derived from the SNAP – System<br />

<strong>for</strong> Auxiliary <strong>Power</strong> Program of the U.S. Atomic Energy<br />

Commission. The actual reactor core had a weight of 290 kg,<br />

a volume of about 16 l and gave off a thermal output of<br />

about 30 kW during operation. The chain reaction was<br />

controlled by four externally arranged, semi-cylindrical<br />

neutron reflectors made of beryllium. The heat was removed<br />

from the reactor by an alloy of sodium-potassium (NaK)<br />

and converted into electric current in thermocouples<br />

with a maximum output power of 0.5 kilowatts (kW). The<br />

temperature difference between the NaK coolant and the<br />

surrounding space was the driving <strong>for</strong>ce. Due to a malfunction<br />

in the satellite electronics, the mission was aborted after<br />

43 days and the reactor was shut down. While <strong>for</strong> the USA<br />

the energy supply with nuclear reactors in space did not play<br />

a role in later years, the Soviet Union had launched almost<br />

40 Radar Ocean Reconnaissance Satellites into orbit, which<br />

were equipped with uranium reactors of the designation<br />

BES-5 and Topas. The military satellites, also known as<br />

Cosmos, were able to monitor ship movements with active<br />

radar from low orbit and there<strong>for</strong>e had to be supplied with a<br />

powerful energy source, i.e. a nuclear reactor, due to their<br />

high energy requirements.<br />

In early March 2020, there was a surprising success story<br />

from space, from Mars. The Rover Curiosity, which has been<br />

active on our neighbouring planet <strong>for</strong> more than seven<br />

years, provided the largest panorama to date with a<br />

resolution of 1.8 gigapixels – current digital cameras provide<br />

single images with a range of around 25 megapixels. The<br />

image was assembled from more than 1000 single images<br />

and shows the surroundings on the slope of the mountain<br />

Aeolis Mons. The images were taken between November 24<br />

and December 1, 2019, when no further experiments or<br />

activities were scheduled <strong>for</strong> Curiosity. Curiosity had landed<br />

on Mars in 2012. The search <strong>for</strong> traces of earlier life and<br />

basic environmental conditions on Mars are among the<br />

mission's objectives. The energy supply <strong>for</strong> the rover is<br />

provided by radionuclide batteries which, unlike in previous<br />

missions, are independent of weather conditions and also<br />

ensure constant, stable thermal conditions <strong>for</strong> the rover's<br />

systems. Radionuclide batteries are the third option <strong>for</strong><br />

energy supply in space.<br />

The Curiosity mission is based on initial considerations in<br />

2003 and a National Academy document entitled “New<br />

Frontiers in the Solar System: An Integrated Exploration<br />

Strategy”. The mission was launched on 26 November 2011<br />

on board an Atlas V rocket. Nine months later, the rover<br />

landed on Mars in August 2012 and started its experiments.<br />

Another important aspect of the rover is its mobility. This<br />

means that it is not tied to its landing point <strong>for</strong> carrying out<br />

experiments, but can travel to points that seem particularly<br />

suitable <strong>for</strong> investigations. By the beginning of 2020,<br />

Curiosity was thus able to cover a distance of around 22 km<br />

and to convince with impressive photos of the surface of<br />

Mars in particular. The Curiosity mission is also a<br />

technological success. The mission was originally planned<br />

<strong>for</strong> two years, but was extended until today – seven and a<br />

half years on Mars – due to the reliability of the rover's<br />

technology, including the energy supply, and the scientific<br />

results.<br />

Radionuclide batteries, or RTGs (radioisotope thermoelectric<br />

generators) <strong>for</strong> short, are a very reliable and compact<br />

option <strong>for</strong> energy supply. The basis is the conversion of<br />

thermal energy from the decay of radio active isotopes in a<br />

thermoelectric element into electrical energy. Since the<br />

half-life period can be used to adjust the temporal availability<br />

of the heat source and RTGs do not need any moving<br />

parts, they are very reliable. Although the mass-to-power<br />

ratio is worse than that of nuclear reactors, their simple<br />

design is an advantage <strong>for</strong> missions without the possibility of<br />

on-site maintenance.<br />

The first known RTGs <strong>for</strong> space missions were tested<br />

under the NASA SNAP program in 1958. In 1961, SNAP-3<br />

was the first application in space. NASA has documented<br />

27 missions with RTGs, including one in the Apollo program,<br />

which used nuclear energy to power a measuring instrument<br />

on the moon. Furthermore the use in space missions<br />

of ESA, China and Russia or the <strong>for</strong>mer Soviet Union is<br />

known but not documented in detail.<br />

Two other missions, Voyager 1 and 2 probes, have also<br />

brought terrestrial nuclear energy technology outside the<br />

solar system. In 2012 and 2018, respectively, the spacecraft<br />

launched in 1977 left our closer space environment. These<br />

missions were originally planned <strong>for</strong> four years; the power<br />

supply was designed from the outset on the basis of RTGs, as<br />

the power of photovoltaic cells beyond the orbit of Mars is<br />

not sufficient and, in addition, they would degrade too<br />

quickly in the radiation belt that would then follow.<br />

It remains interesting with nuclear energy in space – let's<br />

observe this with common sense from Earth and stay health,<br />

Yours<br />

Christopher<br />

Weßelmann<br />

– Editor in Chief –<br />

EDITORIAL<br />

Editorial<br />

Space: Final Frontier – Always <strong>Nuclear</strong>


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

Der Weltraum: unendliche Weiten – und Kernenergie überall<br />

184<br />

Liebe Leserin, lieber Leser, in diesen Tagen, in denen unsere Gesellschaft global mit den Heraus<strong>for</strong>derungen und der<br />

Bewältigung der Corona-Pandemie konfrontiert wird, soll der Blick des Editorials nicht auf strittige irdische Themen fallen,<br />

sondern darüber hinaus in die Weiten des Weltalls blicken.<br />

EDITORIAL<br />

Christopher<br />

Weßelmann<br />

– Chefredakteur –<br />

Begibt sich der Mensch auf eine Reise in den Weltraum oder<br />

schickt er Raumsonden auf ihren Weg in den Kosmos, stellt<br />

sich auch hier die Frage nach einer geeigneten Energieversorgung<br />

– der Aufwand zum Antrieb und zum Verlassen des<br />

Erdgravitationsfeldes sei hier außen vor gelassen – , die eine<br />

Raummission erst möglich macht. Sind Raumfahrerinnen und<br />

Raumfahrer mit von der Partie, muss unter anderem für<br />

ausreichend Wärme, Kühlung und Atemluft gesorgt werden,<br />

sind es unbemannte Flugkörper, ist wesentlich nur für die<br />

Energieversorgung der technischen, also elektrischen, Systeme<br />

zu sorgen.<br />

Grundsätzlich bieten sich heute drei Formen der Kernenergie<br />

an:<br />

Als erstes die indirekte Nutzung. Der Kernfusionsreaktor<br />

Sonne liefert die Strahlungsenergie – Licht, die in Photovoltaikzellen<br />

in elektrische Energie umgewandelt wird. Die<br />

Grundlagen der Photovoltaik waren dabei schon sehr lange<br />

bekannt. Die Grundlage, der Photoelektrische Effekt wurde<br />

1839 entdeckt. Der technische Durchbruch gelangt allerdings<br />

erst mehr als 100 Jahre später, als 1958 der U.S. Satellit<br />

Vanguard I neben einer Brennstoffzelle mit Photovoltaikzellen<br />

ausgerüstet wurde. Unter anderem diese ermöglichten<br />

einen Betrieb des Satelliten für fast sechs Jahre.<br />

Als zweites der Einbau eines Kernreaktors:<br />

Der erste Kernreaktor zur Energieversorgung wurde am<br />

4. April 1965 von der U.S. Air Force mit einer Atlas Trägerrakete<br />

und dem Snapshot Technologiesatellit in eine<br />

Erdumlaufbahn gestartet. Ziel der Mission war einerseits die<br />

Erprobung eines Kernreaktors in einem Satelliten und zum<br />

anderen die Funktion eines Ionentriebwerks. Der Reaktor<br />

entstammte dem SNAP – System <strong>for</strong> Auxiliary <strong>Power</strong> Program<br />

der U.S. Atomic Energy Commission. Der eigentliche Reaktorkern<br />

hatte ein Gewicht von 290 kg, ein Volumen von etwa 16 l<br />

und gab im Betrieb eine thermische Leistung von ca. 30 kW<br />

ab. Die Regelung der Kettenreaktion erfolgte über vier außen<br />

angeordnete, halbzylinderförmige Neutronenreflektoren aus<br />

Beryllium. Die Wärme wurde von einer Legierung aus<br />

Natrium- Kalium (NaK) aus dem Reaktor abgeführt und in<br />

Thermoelementen mit einer maximalen Ausgangleistung von<br />

0,5 Kilowatt (kW) in elektrischen Strom umgewandelt. Die<br />

Temperaturdifferenz zwischen NaK-Kühlmittel und dem<br />

umgebenden Weltraum war dabei treibende Kraft. Aufgrund<br />

einer Fehlfunktion in der Satellitenelektronik wurde die<br />

Mission nach 43 Tagen abgebrochen und der Reaktor abgeschaltet.<br />

Während für die USA die Energieversorgung mit<br />

Kernreaktoren im Weltraum in späteren Jahren keine Rolle<br />

mehr spielte, hatte die Sowjetunion fast 40 Radar Ocean<br />

Reconnaissance Satellites in den Orbit geschossen, die mit<br />

Uran-Reaktoren der Bezeichnung BES-5 und Topas ausgerüstet<br />

waren. Die auch als Kosmos bekannten Militärsatteliten<br />

konnten Schiffsbewegungen mit aktivem Radar aus niedriger<br />

Umlaufbahn überwachen und mussten von daher aufgrund<br />

ihres hohen Energiebedarfs mit einer leistungsfähigen<br />

Energie quelle versorgt werden, also einem Kernreaktor.<br />

Anfang März 2020 gab es eine überraschende Erfolgsmeldung<br />

aus dem Weltraum, vom Mars. Der seit mehr als<br />

sieben Jahren auf unserm Nachbarplaneten aktive Rover<br />

Curiosity lieferte das bislang größte Panorama mit<br />

1,8 Gigapixel Auflösung – aktuelle Digitalkameras liefern Einzelbilder<br />

mit einer Auflösung von ca. 25 Megapixeln. Das Bild<br />

wurde aus mehr als 1000 Einzelbildern zusammengesetzt und<br />

zeigt die Umgebung am Hang des Bergs Aeolis Mons. Aufgenommen<br />

wurden diese zwischen dem 24. November und<br />

1. Dezember 2019, als weitere Experimente bzw. Aktivitäten<br />

für Curiosity nicht anstanden. Curiosity war 2012 auf dem<br />

Mars gelandet. Die Suche nach Spuren früheren Lebens und<br />

grundlegenden Umgebungsbedingungen auf dem Mars sind<br />

unter anderem Gegenstand der Mission. Die Energieversorgung<br />

des Rovers wird von Radionuklidbatterien sicher<br />

gestellt, die, anders als bei früheren Missionen, wetterunabhängig<br />

sind und zudem konstante, stabile thermische<br />

Bedingungen für die Systeme des Rovers gewährleisten.<br />

Radio nuklidbatterien sind die dritte Option zur Energieversorgung<br />

im Weltraum.<br />

Die Curiosity-Mission geht zurück auf erste Überlegungen<br />

im Jahr 2003 und ein Dokument der National Academie unter<br />

dem Titel „New Frontiers in the Solar System: An Integrated<br />

Exploration Strategy“. Am 26. November 2011 startete die<br />

Mission an Bord einer Atlas-V-Trägerrakete. Neun Monate<br />

später landete der Rover im August 2012 auf dem Mars und<br />

begann mit seinen Experimenten. Wichtig für den Rover ist<br />

auch seine Beweglichkeit. Das heißt, er ist für die Durchführung<br />

von Experimenten nicht an seinen Landepunkt<br />

gebunden, sondern kann zu Punkten fahren, die für Untersuchungen<br />

als besonders geeignet erscheinen. Bis Anfang<br />

2020 konnte Curiosity so rund 22 km zurück legen und<br />

insbesondere mit beeindrucken Fotos der Marsoberfläche<br />

begeistern. Die Curiosity- Mission ist zudem technologisch ein<br />

Erfolg. Denn ursprünglich war die Mission für zwei Jahre<br />

vorgesehen, wurde aber aufgrund der Verlässlichkeit der<br />

Technik des Rovers, inklusive Energieversorgung, sowie der<br />

wissenschaftlichen Ergebnisse bis heute verlängert – siebeneinhalb<br />

Jahre auf dem Mars.<br />

Radionuklidbatterien, kurz RTG (radioisotope thermoelectric<br />

generators) sind eine sehr zuverlässige und kompakte<br />

Option für die Energieversorgung. Grundlage ist die Umwandlung<br />

thermischer Energie aus dem Zerfall radioaktiver<br />

Isotope in einem thermoelektrischen Element in elektrische<br />

Energie. Da über die Halbwertzeit die zeitliche Verfügbarkeit<br />

der Wärmequelle eingestellt werden kann und RTGs keine<br />

beweglichen Teile benötigen, sind diese sehr zuverlässig. Das<br />

Masse-Leistungs-Verhältnis im Vergleich zu Kernreaktoren ist<br />

zwar schlechter, bei Missionen ohne die Möglichkeit eines<br />

Eingriffs Vor-Ort spricht dann aber ihr einfacher Aufbau für<br />

sie.<br />

Die ersten bekannten RTGs für Raumfahrtmissionen<br />

wurden im Rahmen des NASA SNAP-Programms 1958 getestet.<br />

1961 erfolgte mit SNAP-3 die erste Anwendung im Weltraum.<br />

Von der NASA sind 27 Missionen mit RTGs dokumentiert,<br />

davon auch eine im Rahmen des Apollo-Programms, die die<br />

Energieversorgung mit Kernenergie eines Messgerätes auf<br />

dem Mond sicher stellte. Weiterhin ist der Einsatz in<br />

Weltraummissionen der ESA, Chinas und Russlands bzw. der<br />

früheren Sowjetunion bekannt, aber nicht im Detail dokumentiert.<br />

Zwei weitere Missionen, die Voyager 1 und 2 Sonden<br />

haben zudem die terrestrische Kernenergietechnologie außerhalb<br />

des Sonnensystems gebracht. 2012 beziehungsweise<br />

2018 verließen die 1977 gestarteten Raumflugkörper unsere<br />

nähere Raumumgebung. Diese Missionen waren ursprünglich<br />

für vier Jahre projektiert; die Stromversorgung war von<br />

vornherein auf Basis von RTGs konzipiert, da die Leistung<br />

von Photovoltaikzellen jenseits der Umlaufbahn des Mars<br />

nicht mehr ausreicht und diese zudem im dann folgenden<br />

Strahlungs gürtel zu schnell degradieren würden.<br />

Es bleibt interessant mit der Kernenergie im Weltraum –<br />

beobachten wir dies mit Verstand von der Erde aus und<br />

bleiben Sie gesund, Ihr<br />

Editorial<br />

Space: Final Frontier – Always <strong>Nuclear</strong>


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

Did you know...?<br />

Wake Effect Constraints on the Build-up of Offshore Wind Capacity<br />

in the German North Sea<br />

The recent study “Making the Most of Offshore Wind – Re-Evaluating<br />

the Potential of Offshore Wind in the German North Sea” comissioned<br />

and published by the German think tank Agora Energiewende and<br />

issued by Technical University of Denmark, Department of Wind<br />

Energy DTU Wind Energy and Max Planck Institute <strong>for</strong> Biogeochemistry,<br />

Biospheric Theory and Modeling gives an anlysis of the<br />

wake effect on a regional scale with respect to the expansion of<br />

offshore wind energy in the German part of the north sea. Taking<br />

account of the capacity requirements of European and German<br />

decarbonization scenarios (see graphs below) the study concludes<br />

that the wake effect could have a significant impact on the capacity<br />

factor of wind turbines in the German Bight and needs to be considered<br />

<strong>for</strong> future planning.<br />

The wake effect is more important <strong>for</strong> wind energy offshore than<br />

onshore because the densiy of prospective installed capacity is much<br />

higher (10 MW/km² offshore vs below 0.5 MW/km² <strong>for</strong> German<br />

onshore in average) and because stronger air turbulence over land<br />

leads to a better recovery of energy in the air flow. In comparing the<br />

scenario of 28 GW installed capacity on 2.800 km² in the German<br />

Bight with 72 GW on 7.200 km² the study concludes that the capacity<br />

factor with 28 GW will remain about the same 41 per cent as<br />

today with 8 GW installed capacity, but that the expansion<br />

to 72 GW in the same region would reduce the over all capacity<br />

factor to some 35 per cent. The additional 44 GW capacity<br />

thus would add only 120 TWh to the 100 TWh produced by 28 GW<br />

installed capacity instead of some 160 TWh as would be expected<br />

with a constant capacity factor. The authors of the study then propose<br />

to extend the installation of additional capacity over a larger area<br />

in cooperation with Germany's neighbours. Furthermor they suggest<br />

to investigate the regional aspect of the wake effect <strong>for</strong> onshore<br />

wind turbine deployment too, as well as the possible effects of<br />

offshore expansion on the capacity factors of onshore wind turbines<br />

in general.<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

KernD<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

KernD.de<br />

www.KernD.de<br />

DID YOU EDITORIAL KNOW...? 185<br />

Offshore wind capacity assumed in EU climate target scenarios <strong>for</strong> 2050 in GW<br />

1,000<br />

800<br />

500<br />

p<br />

specifically dedicated<br />

to renewable hydrogen<br />

production<br />

600<br />

400<br />

396<br />

451<br />

510<br />

200<br />

0<br />

1.5LIFE<br />

1.5TECH<br />

Optimized Gas<br />

EC (2018c),<br />

Navigant (2019)<br />

Ranges of necessary wind power generation by 2050 in 95% decarbonization scenarios <strong>for</strong> Germany<br />

in TWh<br />

2019 2050<br />

700<br />

750<br />

600<br />

500<br />

400<br />

470<br />

520<br />

300<br />

200<br />

100<br />

0<br />

126<br />

Wind Onshore<br />

+ Offshore<br />

Wind Onshore<br />

+ Offshore<br />

220<br />

Onshore<br />

180<br />

280<br />

Offshore<br />

Acatech et al. (2017),<br />

Agora Energiewende<br />

(2020), BDI (2018),<br />

BMU (2015) MWV<br />

(2018); figures are<br />

rounded;<br />

Acatech et al. models<br />

a 90% GHG emission<br />

reduction by 2050<br />

Did you know...?


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

186<br />

Issue 4 | 2020<br />

April<br />

CONTENTS<br />

Contents<br />

Space: Final frontier – always nuclear E/G 183<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Generation IV | The Key Challenges in the Race<br />

<strong>for</strong> Commercialization 188<br />

Calendar 190<br />

Feature | Research and Innovation<br />

<strong>Nuclear</strong> Rockets <strong>for</strong> Interplanetary Space Missions 191<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Research in Support of European Radio isotope <strong>Power</strong><br />

System Development at the European Commission’s Joint<br />

Research Centre in Karlsruhe 198<br />

Spotlight on <strong>Nuclear</strong> Law<br />

The long path to final storage G 206<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities –<br />

A Legal Inventory G 207<br />

Environment and Safety<br />

Excursus to the World of <strong>Nuclear</strong> Medicine 217<br />

Research and Innovation<br />

Radiation in Art and Cultural Heritage 225<br />

Studies on the Interaction of Plant Cells with U(VI)<br />

and Eu(III) and on Stress- induced Metabolite Release 230<br />

KTG Inside 234<br />

Cover:<br />

Curiosity at Glen Etive<br />

Courtesy of NASA<br />

News 235<br />

<strong>Nuclear</strong> Today<br />

Cards Still Stacked Against <strong>Nuclear</strong> in Green Investment Deal 238<br />

G<br />

E/G<br />

= German<br />

= English/German<br />

Imprint 216<br />

Contents


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

187<br />

Feature<br />

Research and Innovation<br />

CONTENTS<br />

191 <strong>Nuclear</strong> Rockets<br />

<strong>for</strong> Interplanetary Space Missions<br />

Dr. William Emrich<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

198 Research in Support of European Radio isotope <strong>Power</strong> System<br />

Development at the European Commission’s Joint Research Centre<br />

in Karlsruhe<br />

Daniel Freis, Jean-François Vigier, Karin Popa, Rudy J.M. Konings<br />

Energy Policy, Economy and Law<br />

207 Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities –<br />

A Legal Inventory<br />

Die Entsorgung von Rückbaumassen aus kerntechnischen Anlagen –<br />

Eine rechtliche Bestandsaufnahme<br />

RA Dr. Christian Raetzke<br />

Environment and Safety<br />

217 Excursus to the World of <strong>Nuclear</strong> Medicine<br />

Andreas Schmidt, Klaus Tatsch, Beate Pfeiffer, Verena Störzbach and Maximilian Kauth<br />

Research and Innovation<br />

225 Radiation in Art and Cultural Heritage<br />

Frank Meissner and Andrea Denker<br />

230 Studies on the Interaction of Plant Cells with U(VI) and Eu(III)<br />

and on Stress- induced Metabolite Release<br />

Jenny Jessat, Susanne Sachs, Robin Steudtner and Thorsten Stumpf<br />

Contents


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

188<br />

Generation IV | The Key Challenges<br />

in the Race <strong>for</strong> Commercialization<br />

INSIDE NUCLEAR WITH NUCNET<br />

Designers of new nuclear reactors need to find the right funding model and bridge the gap<br />

between concept and prototype.<br />

The problem <strong>for</strong> developers of Generation IV nuclear<br />

power plants is that it is too early in the development<br />

process <strong>for</strong> investors and potential customers to bet<br />

significant money on the winners from an increasingly<br />

crowded field. A working prototype would give developers<br />

a reactor model they could sell to customers. As yet, no one<br />

has got that far.<br />

New patterns of investment could help. Public-private<br />

partnerships <strong>for</strong> reactor development, of the type <strong>for</strong>med<br />

by NuScale and the Bill Gates-backed Terra<strong>Power</strong> with the<br />

US Department of Energy, are creating opportunities <strong>for</strong><br />

entrepreneurial developers who can harness the knowhow<br />

and get access to funds.<br />

One revenue model that holds promise <strong>for</strong> developers<br />

of small modular reactors (defined by the <strong>International</strong><br />

Atomic Energy Agency as units with electrical power<br />

ratings of less than 300 MW) is to offer heat as the primary<br />

output of their plants. Heat can be used to generate<br />

electricity, but it can also be used <strong>for</strong> process heat <strong>for</strong><br />

industry, especially <strong>for</strong> manufacturing chemicals, the<br />

production of hydrogen, and desalinisation. The combination<br />

of revenues from these heat streams could<br />

expand the business case <strong>for</strong> advanced reactors.<br />

US think-tank Third Way says companies investing in<br />

Generation IV technologies are being built and funded<br />

because the innovators and investors see profit in creating<br />

an answer to the global energy paradox – there are<br />

1.3 billion people in the world without access to reliable<br />

electricity. “Advanced nuclear can provide that electricity<br />

while cutting global carbon emissions,” the think-tank<br />

said.<br />

Generation IV reactors offer the promise of improved<br />

safety, efficiency, and lower costs. A 2017 study by Energy<br />

Innovation Re<strong>for</strong>m Project put the average levelised cost of<br />

electricity (LCOE) at $ 60/MWh, or 39 % lower than the<br />

$ 99/MWh expected by the US Energy In<strong>for</strong>mation Agency<br />

<strong>for</strong> pressurised-water reactor nuclear plants entering<br />

service in the early 2020s. The LCOE is the long-term price<br />

at which the electricity produced by a nuclear plant will<br />

have to be sold at <strong>for</strong> the investor to cover all their costs<br />

including a profit.<br />

There are other advantages that could be unlocked<br />

by the development of Generation IV plants. Up-front<br />

capital is less than <strong>for</strong> conventional reactors and lead times<br />

are shorter. The proliferation risk is lower because used<br />

nuclear fuel can be used. Some models offer the possibility<br />

of burning actinides to further reduce waste and of being<br />

able to „breed more fuel“ than they consume. Many can<br />

be factory-manufactured and transported to isolated,<br />

energy-hungry areas on the back of vehicles.<br />

The problem remains that Generation IV plants still<br />

require substantial R&D ef<strong>for</strong>t, preventing their commercial<br />

adoption in the short term.<br />

In the US and Canada more than 50 companies<br />

representing more than $ 1 bn in investor money, are<br />

pursuing technical innovations in nuclear energy. They<br />

include big-name projects like Terra<strong>Power</strong> and small<br />

startups including Cali<strong>for</strong>nia-based Oklo, which recently<br />

received a site use permit to build a demonstration Aurora<br />

energy plant – comprising a small reactor with integrated<br />

solar panels – on the Idaho National Laboratory site.<br />

There are significant differences in the timelines and<br />

prospects <strong>for</strong> success between developers of SMRs,<br />

depending on the type of technology they are pursuing.<br />

Plants based on established light-water reactor technologies,<br />

which have been in use since the 1950s, are inevitably<br />

closer to fruition than plants based on fast neutron reactors<br />

that do not use water as a moderator or coolant.<br />

Potential new coolants <strong>for</strong> Generation IV plants include<br />

liquid metal, high temperature gases, and molten salt.<br />

Third Way says nuclear reactors using these coolants can<br />

be even safer than most light-water reactors. The higher<br />

operating temperatures of coolants like helium, liquid<br />

metals, and molten salts more readily lend themselves to<br />

industrial applications requiring high temperature process<br />

heat – exactly the kind of applications that would add<br />

value to the business model.<br />

Another major focus is developing thorium-based,<br />

molten- salt reactors – which scientists hope can be<br />

developed to help meet the world’s growing need <strong>for</strong><br />

energy without contributing to global warming.<br />

These reactors are powered by controlled fission<br />

reactions in the same way as conventional uranium<br />

reactors. However, the technology could prove to be<br />

cheaper and cleaner, while the use of thorium – which is<br />

less radioactive than uranium – may generate less waste.<br />

India has a three-stage programme to develop thorium<br />

fueled reactors. The country plans to use advanced<br />

heavy-water reactors fueled with U-233 obtained from the<br />

irradiation of thorium in PHWRs and fast reactors.<br />

Replacing water as a coolant with liquid molten salt<br />

could tap more of the energy available in radioactive<br />

materials and reduce the risk of a meltdown by slowing the<br />

nuclear reactions automatically if they get too hot.<br />

The South China Morning Post reported that Xu<br />

Hongjie, director of China’s molten-salt program, said<br />

China had mastered the technology in laboratories and<br />

planned to put it into commercial use by 2030 – be<strong>for</strong>e<br />

anyone else did so. The newspaper said China has invested<br />

about 2 billion yuan ($ 300 m) over the past few years in<br />

molten salt research and development, but building the<br />

plants will require tens of billions more.<br />

A first objective <strong>for</strong> China is reported to be the design<br />

and development of a first-of-a-kind 100 MW thorium<br />

molten salt reactor in 2020 in the city of Wuwei in Gansu<br />

province. Commercial development is targeted <strong>for</strong> the<br />

early 2030s.<br />

Another aspect of the R&D ef<strong>for</strong>t is that developers<br />

need places to test their technologies, develop materials,<br />

and new types of reactor fuel. Public-private partnerships<br />

with government agencies, labs, private companies, and<br />

non-profit R&D centres are vital.<br />

A number of public-private partnerships have made<br />

progress. NuScale’s cost-sharing agreement with the<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Generation IV | The Key Challenges in the Race <strong>for</strong> Commercialization


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

DOE covers design and licensing work <strong>for</strong> its 60-MW-SMR.<br />

Terra<strong>Power</strong> has a $ 60 m grant from the DOE <strong>for</strong> its work<br />

with Southern, a nuclear utility, and Oak Ridge National<br />

Laboratory on its molten chloride salt reactor. Southern<br />

and other partners, such as the Electric <strong>Power</strong> Research<br />

Institute, add their resources, including funds and<br />

expertise, to the ef<strong>for</strong>t.<br />

The most significant international endeavor to make<br />

progress with Generation IV technology is the Generation<br />

IV <strong>International</strong> Forum (GIF), a cooperative ef<strong>for</strong>t set up<br />

by nine founding-member countries (it now has 14<br />

member countries) in 2000 to carry out the R&D needed to<br />

establish the feasibility and per<strong>for</strong>mance capabilities of<br />

Generation IV nuclear energy systems. The <strong>for</strong>um aims to<br />

pool resources, allowing scientists to develop safer and<br />

cheaper next-generation systems. It wants to commercially<br />

deploy Generation IV systems by 2040.<br />

The six technologies undergoing R&D are the gascooled<br />

fast reactor, lead-cooled fast reactor, molten salt<br />

reactor (MSR), supercritical water-cooled reactor, sodiumcooled<br />

fast reactor (SCFR) and very high-temperature<br />

reactor (VHTR).<br />

Of the six, three have attracted most attention from<br />

entrepreneurial developers: the MSR, SCFR, VHTR<br />

designs. US national labs have rated these three designs as<br />

having the greatest likelihood of success in the next<br />

decade. Yet the challenges they face are enormous.<br />

No one has ever built a commercial scale unit <strong>for</strong> any of<br />

these designs and put the unit into revenue service <strong>for</strong> a<br />

nuclear utility. The capital and operational costs to build<br />

and operate a first-of-a-kind (FOAK) unit are still in a<br />

process of discovery. The <strong>for</strong>um itself has acknowledged<br />

that <strong>for</strong> real long-term progress to be made in Generation<br />

IV development, advanced research facilities need to be<br />

built, the industry must become more involved and the<br />

“work<strong>for</strong>ce of the future” should be developed.<br />

Regulation is another obstacle. Regulatory agencies<br />

have never assessed Generation IV reactors and the<br />

preparations <strong>for</strong> doing so are costly and time-consuming.<br />

Plans by the Canadian <strong>Nuclear</strong> Safety Commission and the<br />

US <strong>Nuclear</strong> Regulatory Commission to cooperate to speed<br />

up design reviews are a step in the right direction. Two<br />

companies – Terrestrial Energy, a developer of an MSR,<br />

and NuScale, which is developing an SMR based on LWR<br />

design principles – have so far signed up <strong>for</strong> the design<br />

review process.<br />

The two biggest challenges remain getting through the<br />

licensing process and convincing a nuclear utility, based on<br />

real experience with prototypes, that an advanced design<br />

can be built on time, within budget, and operated at a<br />

profit.<br />

For this to happen, a business model that includes heat<br />

output could be crucial.<br />

What next <strong>for</strong> Generation IV?<br />

The nuclear industry sees a number of key steps governments<br />

can take to speed up Generation IV deployment.<br />

Some governments – notably the US and China – are<br />

already making commitments of this sort.<br />

p Fund and support test environments <strong>for</strong> MSR, SCFR,<br />

VHTR;<br />

p Offer cost-sharing grants to cover design, testing and<br />

regulatory reviews.<br />

p Legislate to introduce power purchase agreements,<br />

which are a key instrument of project financing.<br />

p Offer loan guarantees <strong>for</strong> construction and tax credits<br />

<strong>for</strong> the first years of electricity production.<br />

p Streamline the licensing framework <strong>for</strong> design review<br />

and approval of construction.<br />

p Support R&D <strong>for</strong> advanced fuels and financial incentives<br />

to companies to start manufacturing them.<br />

Author<br />

NucNet<br />

The Independent Global <strong>Nuclear</strong> News Agency<br />

Editors responsible <strong>for</strong> this story:<br />

Dan Yurman & David Dalton<br />

Avenue des Arts 56 2/C<br />

1000 Bruxelles, Belgium<br />

www.nucnet.org<br />

INSIDE NUCLEAR WITH NUCNET 189<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Generation IV | The Key Challenges in the Race <strong>for</strong> Commercialization


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

190<br />

Calendar<br />

2020<br />

This is not a full list.<br />

Dates are subject to change. Please check the listed websites <strong>for</strong> updates.<br />

CALENDAR<br />

18.06.2020<br />

NDA Group Supply Chain Event. Tel<strong>for</strong>d,<br />

Shropshire, Cvent, www.web-eur.cvent.com<br />

23.06. – 25.06.2020<br />

World <strong>Nuclear</strong> Exhibition 2020. Paris Nord<br />

Villepinte, France, Gifen,<br />

www.world-nuclear-exhibition.com<br />

28.09. – 02.10.2020<br />

Jahrestagung 2020 – Fachverband Strahlenschutz<br />

und Entsorgung. Aachen, Germany, Fachverband<br />

für Strahlenschutz, www.fs-ev.org<br />

30.09. – 03.10.2020<br />

<strong>Nuclear</strong> Energy: Challenges and Prospects. Sochi,<br />

Russia, Pocatom, www.nsconf2020.ru<br />

05.05. – 06.05.2020<br />

KERNTECHNIK 2020.<br />

Berlin, Germany, KernD and KTG,<br />

www.kerntechnik.com<br />

10.05. – 15.05.2020<br />

ICG-EAC Annual Meeting 2020. Helsinki, Finland,<br />

ICG-EAC, www.icg-eac.org<br />

11.05. – 15.05.2020<br />

<strong>International</strong> Conference on Operational Safety<br />

of <strong>Nuclear</strong> <strong>Power</strong> Plants. Beijing, China, IAEA,<br />

www.iaea.org<br />

11.05. – 15.05.2020<br />

Fusion Energy Conference Programme<br />

Committee Meeting. Vienna, Austria, IAEA,<br />

www.iaea.org<br />

18.05. – 22.05.2020<br />

SNA+MC2020 – Joint <strong>International</strong> Conference on<br />

Supercomputing in <strong>Nuclear</strong> Applications + Monte<br />

Carlo 2020, Makuhari Messe. Chiba, Japan, Atomic<br />

Energy Society of Japan, www.snamc2020.jpn.org<br />

20.05. – 22.05.2020<br />

<strong>Nuclear</strong> Energy Assembly. Washington, D.C., USA,<br />

NEI, www.nei.org<br />

31.05. – 03.06.2020<br />

13 th <strong>International</strong> Conference of the Croatian<br />

<strong>Nuclear</strong> Society. Zadar, Croatia, Croatian <strong>Nuclear</strong><br />

Society, www.nuclear-option.org<br />

08.06. – 12.06.2020<br />

20 th WCNDT – World Conference on<br />

Non-Destructive Testing. Seoul, Korea, EPRI,<br />

www.wcndt2020.com<br />

10.06. – 12.06.2020<br />

Innovation <strong>for</strong> the Future of <strong>Nuclear</strong> Energy –<br />

A Global Forum. Gyeongju, South Korea,<br />

www.globalnuclearinnovation.com<br />

14.06. – 17.06.2020<br />

The Society <strong>for</strong> Risk Analysis – European<br />

Conference. Espoo, Finland, Aalto University,<br />

www.blogs.aalto.fi<br />

15.06. – 19.06.2020<br />

<strong>International</strong> Conference on <strong>Nuclear</strong> Knowledge<br />

Management and Human Resources Development:<br />

Challenges and Opportunities. Moscow,<br />

Russian Federation, IAEA, www.iaea.org<br />

15.06. – 20.07.2020<br />

WNU Summer Institute 2020. Japan, World <strong>Nuclear</strong><br />

University, www.world-nuclear-university.org<br />

25.06. – 26.06.2020<br />

<strong>Nuclear</strong>Europe 2020 – <strong>Nuclear</strong> <strong>for</strong> a sustainable<br />

future. Paris, France, Foratom,<br />

www.events.<strong>for</strong>atom.org<br />

13.07. – 16.07.2020<br />

46 th NITSL Conference - Fusing <strong>Power</strong> & People.<br />

Baltimore, MD, USA, Aalto University, www.nitsl.org<br />

02.08. – 06.08.2020<br />

ICONE 28 – 28 th <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Engineering. Disneyland Hotel, Anaheim,<br />

CA, ASME, www.event.asme.org<br />

26.08.-04.09.2020<br />

The Frédéric Joliot/Otto Hahn Summer School<br />

on <strong>Nuclear</strong> Reactors “Physics, Fuels and Systems”.<br />

Aix-en-Provence, France, CEA & KIT, www.fjohss.eu<br />

01.09. – 04.09.2020<br />

IGORR – Standard Cooperation Event in the <strong>International</strong><br />

Group on Research Reactors Conference.<br />

Kazan, Russian Federation, IAEA, www.iaea.org<br />

07.09. – 10.09.2020<br />

<strong>International</strong> Forum on Enhancing a Sustainable<br />

<strong>Nuclear</strong> Supply Chain. Helsinki, Finland, Foratom,<br />

www.events.<strong>for</strong>atom.org<br />

09.09. – 10.09.2020<br />

VGB Congress 2020 – 100 Years VGB. Essen,<br />

Germany, VGB <strong>Power</strong>Tech e.V., www.vgb.org<br />

09.09. – 11.09.2020<br />

World <strong>Nuclear</strong> Association Symposium 2020.<br />

London, United Kingdom, WNA World <strong>Nuclear</strong><br />

Association, www.world-nuclear.org<br />

16.09. – 18.09.2020<br />

3 rd <strong>International</strong> Conference on Concrete<br />

Sustainability. Prague, Czech Republic, fib,<br />

www.fibiccs.org<br />

16.09. – 18.09.2020<br />

<strong>International</strong> <strong>Nuclear</strong> Reactor Materials<br />

Reliability Conference and Exhibition.<br />

New Orleans, Louisiana, USA, EPRI, www.snetp.eu<br />

21.09.-25.09.2020<br />

64 th IAEA General Conference. Vienna, Austria, <strong>International</strong><br />

Atomic Energy Agency IAEA,<br />

www.iaea.org<br />

28.09. – 01.10.2020<br />

NPC 2020 <strong>International</strong> Conference on <strong>Nuclear</strong><br />

Plant Chemistry. Antibes, France, SFEN Société<br />

Française d’Energie Nucléaire,<br />

www.sfen-npc2020.org<br />

postponed to 11.10. – 17.10.2020<br />

BEPU2020– Best Estimate Plus Uncertainty <strong>International</strong><br />

Conference, Giardini Naxos. Sicily, Italy,<br />

NINE, www.nineeng.com<br />

12.10. – 17.10.2020<br />

FEC 2020 – 28 th IAEA Fusion Energy Conference.<br />

Nice, France, IAEA, www.iaea.org<br />

19.10. – 23.10.2020<br />

<strong>International</strong> Conference on the Management<br />

of Naturally Occurring Radioactive Materials<br />

(NORM) in Industry. Vienna, Austria, IAEA,<br />

www.iaea.org<br />

26.10. – 30.10.2020<br />

NuMat 2020 – 6 th <strong>Nuclear</strong> Materials Conference.<br />

Gent, Belgium, IAEA, www.iaea.org<br />

27.10. – 29.10.2020<br />

enlit (<strong>for</strong>mer European Utility Week and<br />

POWERGEN Europe). Milano, Italy,<br />

www.powergeneurope.com<br />

02.11. – 06.11.2020<br />

<strong>International</strong> <strong>Nuclear</strong> Reactor Materials<br />

Reliability Conference and Exhibition.<br />

New Orleans, Louisiana, EPRI, www.custom.cvent.com<br />

09.11. – 13.11.2020<br />

<strong>International</strong> Conference on Radiation Safety:<br />

Improving Radiation Protection in Practice.<br />

Vienna, Austria, IAEA, www.iaea.org<br />

postponed to 18.11. – 19.11.2020<br />

INSC — <strong>International</strong> <strong>Nuclear</strong> Supply Chain<br />

Symposium. Munich, Germany, TÜV SÜD,<br />

www.tuev-sued.de<br />

24.11. – 26.11.2020<br />

ICOND 2020 – 9 th <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Decommissioning. Aachen, Germany,<br />

AiNT, www.icond.de<br />

07.12. – 10.12.2020<br />

SAMMI 2020 – Specialist Workshop on Advanced<br />

Measurement Method and Instrumentation<br />

<strong>for</strong> enhancing Severe Accident Management in<br />

an NPP addressing Emergency, Stabilization and<br />

Long-term Recovery Phases. Fukushima, Japan,<br />

NEA, www.sammi-2020.org<br />

17.12. – 18.12.2020<br />

ICNESPP 2020 – 14. <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Engineering Systems and <strong>Power</strong> Plants.<br />

Kuala Lumpur, Malaysia, WASET, www.waset.org<br />

Calendar


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

<strong>Nuclear</strong> Rockets<br />

<strong>for</strong> Interplanetary Space Missions<br />

Dr. William Emrich<br />

Introduction Future crewed space missions beyond low earth orbit will almost certainly require propulsion<br />

systems with per<strong>for</strong>mance levels exceeding that of today’s best chemical engines. A likely candidate <strong>for</strong> that propulsion<br />

system is the solid core <strong>Nuclear</strong> Thermal Rocket or NTR. Solid core NTR engines are expected to have per<strong>for</strong>mance levels<br />

that significantly exceed that achievable by any currently conceivable chemical engine.<br />

Rocket engines operate by expelling a high temperature<br />

gas through a nozzle to produce thrust. This thrust acts to<br />

accelerate a spacecraft in the direction opposite that of the<br />

expelled gas through the application of Newton’s Third<br />

Law of Motion. In chemical rocket engines, the hot gas is<br />

created in a combustion chamber where the propellants<br />

are ignited and burned. <strong>Nuclear</strong> thermal rocket engines,<br />

on the other hand, use nuclear reactors to supply the<br />

heat needed to raise the propellant to high temperatures.<br />

The high temperature gas exiting the rocket engines is<br />

introduced into nozzle assemblies where the thermal<br />

energy of the hot propellant gas is converted to kinetic<br />

energy in the <strong>for</strong>m of a directed high speed exhaust flow.<br />

Historical Background<br />

There have been several programs in the past that have<br />

sought to develop solid core nuclear rocket engines. In the<br />

late 1950’s, a NTR program was instituted called <strong>Nuclear</strong><br />

Engine <strong>for</strong> Rocket Vehicle Applications or NERVA [1]<br />

which resulted in the construction of a number of prototypical<br />

nuclear engines. The reactor development portion<br />

of the NERVA program in the United States (called ROVER)<br />

began at the Los Alamos National Laboratory in 1953 with<br />

the intent being to design light, high temperature reactors<br />

that could <strong>for</strong>m the basis of a nuclear powered rocket. This<br />

program was conceived as an alternative to the chemical<br />

rocket engines currently under development that were<br />

being designed to lift payloads into orbit. In 1961 the<br />

NERVA program began designing and building working<br />

nuclear rocket engines based upon the research previously<br />

done under the ROVER program.<br />

The NERVA program achieved the following milestones<br />

over the life of the project:<br />

p <strong>Nuclear</strong> rocket testing occurred between 1959 and<br />

1973<br />

p A total of 23 reactor tests were per<strong>for</strong>med<br />

p Highest power achieved was 4500 megawatts<br />

p Highest temperature achieved was 2750 K<br />

p Maximum thrust achieved was 1,100,000 Newtons<br />

p Maximum specific impulse achieved was 850 seconds<br />

p Maximum burn time in one test was 90 minutes<br />

Figure 1 illustrates the configuration of a NERVA rocket<br />

engine and shows one of the engines being test fired at<br />

<strong>Nuclear</strong> Rocket Development Station in Jackass Flats,<br />

Nevada in the United States.<br />

The US Air Force also briefly worked on an innovative<br />

NTR engine concept called a Particle Bed Reactor or PBR<br />

[2] in which the hydrogen in the nuclear fuel element<br />

flowed radially through a packed bed of fuel particles. This<br />

engine had a very high thrust to weight ratio and was to be<br />

used in a ballistic missile interceptor in a top-secret<br />

program called Timberwind. This program, however, was<br />

cancelled in the early 1990s after the fall of the <strong>for</strong>mer Soviet<br />

Union be<strong>for</strong>e any substantial testing could be<br />

accomplished.<br />

The <strong>for</strong>mer Soviet Union itself also sought to develop a<br />

nuclear rocket engine [3] as a response to the work being<br />

done in the United States on the NERVA program. This<br />

nuclear rocket program, which lasted from 1965 through<br />

the 1980s, eventually developed the RD-410 nuclear rocket<br />

engine that was fairly small as compared to the NERVA<br />

engines. The fuel elements in this engine, however, were<br />

191<br />

FEATURE | RESEARCH AND INNOVATION<br />

| Fig. 1.<br />

NERVA Description and Testing.<br />

Feature<br />

<strong>Nuclear</strong> Rockets <strong>for</strong> Interplanetary Space Missions ı Dr. William Emrich


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

FEATURE | RESEARCH AND INNOVATION 192<br />

made of a uranium/tungsten carbide material that allowed<br />

them to operate at temperatures somewhat higher than<br />

those achievable in NERVA. As a result, the RD-410 was<br />

slightly more efficient than the NERVA engines.<br />

<strong>Nuclear</strong> Rocket Engine Operational<br />

Characteristics<br />

In chemical rocket engines, a fuel (normally in conjunction<br />

with an oxidizer) combusts to <strong>for</strong>m the gaseous propellant<br />

which is expelled through a nozzle to generate the thrust.<br />

When speaking about chemical engines, there<strong>for</strong>e, the<br />

terms fuel and propellant are often used interchangeably<br />

since the fuel (that is, the substance that supplies the<br />

energy to heat the propellant) and the propellant are one<br />

and the same. In nuclear engines, however, the propellant<br />

is simply the working fluid heated by the nuclear reactor to<br />

produce the thrust. The fuel in this case is actually the<br />

fissioning uranium in the nuclear reactor. When speaking<br />

about nuclear engines, there<strong>for</strong>e, the term fuel is used to<br />

describe the fissioning uranium in the nuclear reactor<br />

and the term propellant is used to designate the working<br />

fluid being expelled through the nozzle. It is interesting to<br />

note that because of the extremely high energy density<br />

characteristic of nuclear fuels, an entire crewed Mars<br />

mission may be accomplished through the fissioning of less<br />

than 200 g of 235 U.<br />

The efficiency of rocket engines depends upon, among<br />

other things, the temperature of the engine propellant<br />

exhaust gases (e.g. the higher the temperature, the higher<br />

the rocket efficiency). In chemical engines, the temperature<br />

of the exhaust gases is limited by the amount of energy<br />

that may be extracted from the fuel and oxidizer as they<br />

react. Thus, chemical engines are said to be energy limited in<br />

their efficiency.<br />

An NTR engine, on the other hand, operates by<br />

using nuclear fission to heat the propellant to high<br />

temperatures. Because the energy released from the<br />

fissioning of nuclear fuel is extremely high as compared to<br />

that available from chemical combustion processes, the<br />

propellant in an NTR can potentially be heated to<br />

temperatures far in excess of that possible in chemical<br />

engines. The main limitation of these engines results from<br />

restrictions on the rate at which this heat energy can be<br />

extracted from the nuclear fuel and transferred to the<br />

propellant. This rate of energy transfer is limited by the<br />

maximum temperature the nuclear fuel can withstand. It is<br />

this temperature limitation that puts an upper limit on the<br />

maximum efficiency attainable by solid core nuclear<br />

thermal rocket engines. As such, NTR engines are said to be<br />

power density limited in their efficiency.<br />

To determine the efficiency of a rocket engine, be it<br />

chemical or nuclear, a characteristic value called Specific<br />

Impulse (or I sp ) is used which is analogous to liters per<br />

100 km <strong>for</strong> an automobile. Specific impulse is calculated by<br />

dividing the rocket thrust in Newtons by the propellant<br />

mass flow rate in kg/sec. It has units of seconds and<br />

physically represents the length of time a rocket engine<br />

can produce one newton of thrust from one kilogram of<br />

propellant. It is also proportional to the propellant exhaust<br />

velocity (υ e ).<br />

(1)<br />

Also note that:<br />

<br />

(2)<br />

Equation 2 simply illustrates that at a given power level<br />

specific impulse is inversely proportional to thrust. Specific<br />

impulse can be related to the temperature of the exhaust<br />

gas by per<strong>for</strong>ming a heat balance and using the First Law<br />

of Thermodynamics.<br />

(3)<br />

where: Q = Reactor power<br />

h = Enthalpy of propellant<br />

c p = Specific heat of propellant<br />

T = Temperature of propellant<br />

In the above equations, the subscript “c” stands <strong>for</strong> the<br />

conditions at the exit of the reactor and the subscript “e”<br />

stands <strong>for</strong> the conditions at the nozzle exit. Rearranging<br />

terms from Equation 3 then yields <strong>for</strong> the specific impulse.<br />

(4)<br />

Noting the following specific heat relationships <strong>for</strong> ideal<br />

gases:<br />

(5)<br />

where:<br />

γ = Specific heat ratio of propellant<br />

R u = Universal gas constant<br />

Also recalling that <strong>for</strong> isentropic flow temperature and<br />

pressure can be related by:<br />

(6)<br />

where:<br />

P = Pressure of propellant<br />

By substituting Equations 5 and 6 into Equation 4 <strong>for</strong> the<br />

specific impulse, it is found that:<br />

(7)<br />

Assuming that the nuclear engine is operating in space<br />

with an infinitely large nozzle, the pressure ratio goes to<br />

zero and we are left with an expression which represents<br />

the specific impulse only in terms of the chamber temperature<br />

and the propellant thermodynamic properties:<br />

(8)<br />

where:<br />

F = Thrusting <strong>for</strong>ce<br />

ṁ = Propellant mass flow rate<br />

g c = Gravitational acceleration constant<br />

Plotting Equation 8 <strong>for</strong> a chemical engine using liquid<br />

oxygen and liquid hydrogen as propellants and <strong>for</strong> a<br />

nuclear thermal rocket using only hydrogen as the<br />

propellant, it can be seen in Figure 2 that the nuclear<br />

Feature<br />

<strong>Nuclear</strong> Rockets <strong>for</strong> Interplanetary Space Missions ı Dr. William Emrich


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

| Fig. 2.<br />

Specific Impulse Comparison between <strong>Nuclear</strong> and Chemical Rocket Engines.<br />

engine provides about twice the specific impulse at a given<br />

temperature as compared to a chemical engine. This<br />

variance is due almost entirely to the difference in<br />

molecular weight between the two exhaust gases.<br />

So how does this efficiency increase using nuclear<br />

thermal rocket engines translate into improved interplanetary<br />

mission profiles? First, noting that most interplanetary<br />

missions using high thrust propulsion systems<br />

such as what would available using nuclear thermal propulsion<br />

do not apply thrust <strong>for</strong> the entire flight, but rather<br />

execute a series of thrusting maneuvers near the departure<br />

and destinations planets with relatively long coast periods<br />

between the planets. Normally, at least four major propulsive<br />

maneuvers are required <strong>for</strong> round trip missions.<br />

These main propulsion system burns include: 1) a departure<br />

acceleration burn from home planet, 2) an arrival<br />

deceleration burn at the destination planet, 3) a departure<br />

acceleration burn from the destination planet and, 4) an<br />

arrival deceleration burn back at the home planet. Second,<br />

because the planetary alignments are continually changing,<br />

these propulsive maneuvers cannot be per<strong>for</strong>med<br />

anytime one wishes, but only during certain windows of<br />

time when the planetary alignments are favorable.<br />

The various thrusting maneuvers described above may<br />

be added together to yield what is called the total mission<br />

velocity that describes the total velocity increment that<br />

must be delivered to the spacecraft in order to complete<br />

the mission. This velocity increment is a function of the<br />

engine specific impulse and the vehicle mass fraction that<br />

is defined to be the ratio of the spacecraft unfueled mass to<br />

its fueled mass.<br />

Applying the principle of conservation of momentum,<br />

this high velocity propellant exhaust flow has the effect of<br />

<strong>for</strong>cing the spacecraft <strong>for</strong>ward as is illustrated in Figure 3.<br />

Thrust is defined to be the <strong>for</strong>ce produced by the rocket<br />

engine due to the time rate of change of momentum of the<br />

exhaust gas<br />

| Fig. 3.<br />

Rocket Thrusting and the Conservation of Momentum.<br />

Expanding the above equation and rearranging terms then<br />

yields:<br />

(10)<br />

Note that in the above equation U + V = υ e = g c I sp , there<strong>for</strong>e,<br />

taking the limit of the above equation as time goes<br />

toward zero and applying Newton’s Second Law of Motion<br />

along with the definition <strong>for</strong> specific impulse<br />

(11)<br />

By integrating the above equation, the total change in<br />

spacecraft velocity possible <strong>for</strong> a given vehicle mass<br />

fraction and specific impulse may be determined.<br />

(12)<br />

where:<br />

V f = Final velocity of the rocket<br />

(e.g. or total mission velocity)<br />

m 0 = Initial mass of rocket (fully fueled)<br />

m f = Final mass of rocket (fuel expended)<br />

f m = Vehicle mass fraction (ratio of to )<br />

The above equation is commonly known as the rocket<br />

equation and its solution yields the maximum velocity<br />

increment attainable by a space vehicle in terms of the<br />

vehicle mass fraction and the engine specific impulse. For<br />

example, if a spacecraft has a fairly doable mass fraction of<br />

0.15 along with a nuclear engine having a specific impulse<br />

of 900 sec., the total change in velocity that the vehicle is<br />

capable of achieving is about 16.8 km/sec.<br />

FEATURE | RESEARCH AND INNOVATION 193<br />

<br />

(9)<br />

where:<br />

F ext = External <strong>for</strong>ces acting on the rocket<br />

(normally assumed to be zero in space)<br />

p = momentum<br />

t = time<br />

m = mass<br />

U = velocity of exhaust propellant<br />

V = velocity of rocket<br />

| Fig. 4.<br />

Mars Mission Characteristics.<br />

Feature<br />

<strong>Nuclear</strong> Rockets <strong>for</strong> Interplanetary Space Missions ı Dr. William Emrich


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

FEATURE | RESEARCH AND INNOVATION 194<br />

So … how does the rocket equation translate into<br />

interplanetary mission characteristics? It turns out that<br />

complete closed <strong>for</strong>m solutions to the orbital mechanic<br />

equations <strong>for</strong> these missions are generally not possible;<br />

however, by using what are called patched conic approximations,<br />

the mission characteristics of the interplanetary<br />

voyage may be determined to a high degree of accuracy<br />

using only fairly simple geometric constructs. Using<br />

these patched conic equations in conjunction with<br />

the 16.8 km/sec total vehicle velocity change calculated<br />

above, the one way travel time between Earth and Mars<br />

can be accomplished in about 160 days as illustrated in<br />

Figure 4.<br />

The minimum velocity increment required to execute<br />

a Mars mission is through the use of a mission profile using<br />

what is called a Hohmann transfer trajectory. This<br />

minimum energy transfer trajectory requires a total<br />

mission velocity of 11.4 km/sec and necessitates a one way<br />

trip time of 259 days. If a chemical rocket engine having a<br />

specific impulse of 450 sec. were used to execute this<br />

mission, then a vehicle mass fraction of 0.075 would be<br />

required. This small a vehicle mass fraction is completely<br />

unrealistic and illustrates why nuclear rocket engines are<br />

almost mandatory <strong>for</strong> any kind of practical interplanetary<br />

travel.<br />

<strong>Nuclear</strong> Rocket Engine System Characteristics<br />

The fuel elements that comprise the reactor core in a<br />

nuclear rocket engine are generally fabricated in the shape<br />

of hexagonal prisms containing a number of axial holes<br />

through which flows the hydrogen propellant. For a rocket<br />

engine that produces approximately 100,000 N of thrust,<br />

a reactor core would be expected to contain perhaps a<br />

couple of hundred fuel of these fuel elements. In NERVA<br />

rocket engines, the fuel elements were held in place in the<br />

core by means of support elements containing moderator<br />

material. These support elements held the six adjacent<br />

fuel elements together in a grouping called a cluster. The<br />

reactor core itself is surrounded by a reflector region<br />

composed of beryllium to reflect back into the core<br />

neutrons emanating from the fuel that would normally<br />

escape the reactor. Control drums embedded in the<br />

reflector serve as a control mechanism by which the core<br />

reactivity can be adjusted. The drums are composed<br />

of beryllium cylinders with a sheet of material which<br />

strongly absorbs neutrons attached to one side. When the<br />

absorbing material (usually boron carbide) is close to the<br />

core, many neutrons which would be reflected back into<br />

the core are instead absorbed in the neutron absorbing<br />

sheet causing the core reactivity to decrease. When the<br />

absorbing material is turned away from the core, the<br />

| Fig. 5.<br />

NERVA Core and Fuel Segment Cluster Detail.<br />

| Fig. 6.<br />

Possible Radial Flow <strong>Nuclear</strong> Rocket Fuel Element Configurations.<br />

Feature<br />

<strong>Nuclear</strong> Rockets <strong>for</strong> Interplanetary Space Missions ı Dr. William Emrich


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

beryllium portion of the control drum reflects the escaping<br />

neutrons back into the core where their availability<br />

increases the core reactivity.<br />

Figure 5 below illustrates a NERVA fuel cluster and the<br />

manner in which it is integrated into the reactor with<br />

the reflector region and control drums.<br />

While current thinking is primarily directed toward<br />

core designs composed of these hexagonally shaped axial<br />

flow fuel elements, other designs are also being considered.<br />

These designs include the radial flow Grooved<br />

Ring Fuel Element (GRFE) and the Particle Bed Fuel<br />

Element (PBFE). These designs are illustrated in Figure 6.<br />

Radial flow designs such as these have the advantage over<br />

axial flow designs in that they can be made to have higher<br />

surface to volume ratios leading to more compact reactor<br />

configurations and are often amenable to using a wider variety<br />

of fuel materials. One particular advantage of the<br />

grooved ring fuel element configuration is that it can be<br />

designed in such a way that the temperature distribution<br />

across the entire fuel ring can be made to be nearly<br />

isothermal [4].<br />

<strong>Nuclear</strong> rockets operate using one of several types of<br />

thermodynamic cycles that vary in complexity and<br />

efficiency. For nuclear thermal rockets, these thermodynamic<br />

cycles are “open” in that during operation, the<br />

working fluid is discharged through the nozzle to produce<br />

thrust after circulating only once through the engine<br />

system. These engines typically use a turbopump to<br />

highly pressurize the propellant prior to being introduced<br />

into the reactor where the propellant is heated to high<br />

temperatures be<strong>for</strong>e being discharged through the nozzle.<br />

The pump is normally driven by an integrated turbine<br />

system which is powered by propellant that has been<br />

warmed somewhat using waste heat from the reactor.<br />

One of the more common rocket engine cycles is illustrated<br />

in Figure 7.<br />

This particular engine cycle is called the “Hot Bleed<br />

Cycle” and is commonly considered because of its<br />

relative simplicity and high efficiency. The hot bleed cycle<br />

characteristics are as follows:<br />

1-2 Liquid propellant from the tank is raised to the<br />

operating pressure after passing through the pump<br />

portion of the turbopump.<br />

2-3 After passing through the turbopump the propellant<br />

circulates through the nozzle, support elements,<br />

chamber walls, etc., gasifying the propellant.<br />

| Fig. 7.<br />

Hot Bleed <strong>Nuclear</strong> Rocket Engine Configuration.<br />

3-4 The gaseous propellant flow splits, with the majority<br />

of the flow being directed into the reactor core where<br />

it is heated to several thousand degrees be<strong>for</strong>e exiting<br />

the core into the engine exhaust plenum.<br />

3-5 The rest of the gaseous propellant flow mixes with hot<br />

propellant bled from the reactor exhaust plenum and<br />

enters into the turbine portion of the turbopump.<br />

5-6 The mixed propellant flow, which is now at a temperature<br />

consistent with the maximum acceptable<br />

turbine blade material limits, passes through the<br />

turbine portion of the turbopump where it gives up<br />

some of its energy to drive the pump portion of the<br />

turbopump. After passing through the turbopump,<br />

the propellant flow is discharged through a small<br />

nozzle.<br />

4-7 The remainder of the hot gaseous propellant in the<br />

engine exhaust plenum is directed through the main<br />

nozzle where the heat energy is changed to directed<br />

kinetic energy producing thrust.<br />

Advanced <strong>Nuclear</strong> Propulsion Concepts<br />

Due to the material limitations of nuclear thermal rockets<br />

having solid cores, the maximum practical specific impulse<br />

achievable by these engines is in the range of 900 seconds.<br />

To achieve significantly higher specific impulses, much<br />

higher propellant temperatures will be required, thus<br />

necessitating radically different nuclear core designs. One<br />

method that has been considered in the past to achieve<br />

these higher specific impulses is to use a nuclear pulse<br />

system. In the pulsed nuclear rocket concept, small nuclear<br />

bombs are ejected from the rear of a spacecraft and<br />

detonated after they have traveled a suitable distance<br />

FEATURE | RESEARCH AND INNOVATION 195<br />

| Fig. 8.<br />

Hot Bleed <strong>Nuclear</strong> Rocket Engine Thermodynamic Cycle.<br />

Feature<br />

<strong>Nuclear</strong> Rockets <strong>for</strong> Interplanetary Space Missions ı Dr. William Emrich


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

FEATURE | RESEARCH AND INNOVATION 196<br />

| Fig. 9.<br />

Orion <strong>Nuclear</strong> Pulse Rocket.<br />

| Fig. 10.<br />

Orion Flight Testing Using Putt Putts.<br />

away from the vehicle. The vehicle itself is designed such<br />

that a portion of the blast wave resulting from the nuclear<br />

detonation is intercepted by a specially designed “pusher<br />

plate” attached to the body of the spacecraft by giant shock<br />

absorbers. These shock absorbers act to moderate the<br />

spacecraft jerk (e.g. time rate of change of acceleration)<br />

resulting from the impinging blast wave such that the<br />

acceleration of the main body of the vehicle is reduced and<br />

smoothed to levels which can be tolerated by the crew. An<br />

illustration of a conceptual Orion nuclear pulse vehicle is<br />

presented in Figure 9.<br />

Such a pulsed nuclear propulsion program was actually<br />

initiated in the United States during the late 1950s and<br />

early 1960s under the project name Orion [5]. Several<br />

small scale proof of principle models called Putt-Putts or<br />

Hot Rods were actually built and flown. These proof of<br />

concept vehicles used chemical rather than nuclear<br />

explosives as the propulsive medium and after several<br />

failures, one of the vehicles finally achieved stable flight<br />

and flew to an altitude of about 30 meters as illustrated in<br />

Figure 10.<br />

Figure 11 illustrates what might be a typical pulsed<br />

nuclear rocket dynamic response resulting from a series of<br />

| Fig. 13.<br />

Closed Cycle <strong>Nuclear</strong> Rocket Engine “<strong>Nuclear</strong> Light Bulb”.<br />

| Fig. 11.<br />

Dynamic Response of a <strong>Nuclear</strong> Pulse Vehicle.<br />

| Fig. 12.<br />

Open Cycle Gas Core <strong>Nuclear</strong> Rocket Engine.<br />

nuclear acceleration pulses. Note that contrary to what<br />

might be expected, the accelerations experienced by the<br />

crew during the time period over which the detonations<br />

are occurring can be made survivable, although probably<br />

quite uncom<strong>for</strong>table. No doubt, the crew would happily<br />

accept being put into a state of suspended animation<br />

during the thrusting phase of the mission rather than<br />

experiencing such a stomach-churning ride!<br />

Another method of achieving higher specific impulses<br />

in to employ a gaseous fissioning core to eliminate the<br />

problem of fuel melting at extremely high temperatures.<br />

As might be expected, a number of significant design<br />

challenges exist with this concept primarily with regard to<br />

designing a feasible means of transferring heat from the<br />

gaseous fissioning core to the gaseous propellant. There<br />

are basically two different reactor configurations which<br />

may be employed to construct a gaseous core nuclear<br />

rocket engine. One concept may be described as the<br />

“open cycle” configuration. An illustration of the open<br />

cycles gas core nuclear rocket concept is presented below<br />

in Figure 12. In this configuration, a fissile material is<br />

injected into the core where it is subsequently vaporized<br />

due to the high temperatures present there. The hydrogen<br />

propellant is also injected into the core, but in such a<br />

way that a stabilizing rotation is induced in the gaseous<br />

fissioning core.<br />

Chief among the feasibility questions with this core<br />

configuration is the issue of keeping the gaseous fissioning<br />

core from escaping through the nozzle at an unacceptably<br />

high rate. To be practical, the gas core rocket must maintain<br />

its gaseous core in a stable critical state, while minimizing<br />

the loss rate of fissionable material through the<br />

nozzle while simultaneously maximizing the heat transfer<br />

rate to the hydrogen propellant and allowing it only to<br />

escape through the nozzle. Such stringent requirements<br />

Feature<br />

<strong>Nuclear</strong> Rockets <strong>for</strong> Interplanetary Space Missions ı Dr. William Emrich


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

| Fig. 14.<br />

“<strong>Nuclear</strong> Light Bulb” Simplified Flow Diagram.<br />

will be no doubt be difficult to achieve in practice. It is<br />

thought that specific impulses in the order of 2000 seconds<br />

may be possible if near 100 % uranium plasma containment<br />

is achieved.<br />

Another gaseous core concept may be described as the<br />

“closed cycle” or “nuclear light bulb” configuration. In the<br />

nuclear light bulb, the gaseous uranium is confined in<br />

closed transparent containers which allow radiant energy<br />

from the core to be transmitted through the container<br />

walls where the energy is absorbed in a seeded hydrogen<br />

propellant which flows on the outside of the container.<br />

This concept has the obvious advantage of containing<br />

100 % of the nuclear fuel; however, it also introduces an<br />

entirely new set of design challenges. Chief among these<br />

design challenges is the problem of maintaining the<br />

structural integrity of the transparent core containment<br />

vessel in the presence of an extremely harsh temperature<br />

environment while simultaneously allowing the transmission<br />

of vast amounts of radiant energy through its<br />

walls. These design challenges were addressed in a<br />

program at United Technologies [6] in the 1960s when the<br />

company had an active program underway to develop<br />

a nuclear light bulb rocket engine. A diagram of the<br />

engine concept developed by the company is illustrated<br />

in Figure 13.<br />

The radiation (primarily ultraviolet light) emitted from<br />

the high temperature fissioning uranium plasma, passes<br />

through the containment vessel’s transparent walls and is<br />

absorbed in seeded hydrogen propellant which flows along<br />

the outside of the containment vessel. This hot hydrogen<br />

propellant is subsequently exhausted through nozzles to<br />

produce thrust. The transparent walls of the containment<br />

vessel are of particular concern in the nuclear light bulb<br />

design. The material comprising the containment vessel<br />

walls, there<strong>for</strong>e, must not only be highly transparent, but<br />

must also be actively cooled to prevent overheating and<br />

eventual vessel failure. In this design, the extremely hot<br />

fissioning uranium plasma is prevented from touching the<br />

transparent containment vessel by a vortex flow of seeded<br />

neon gas which acts as a buffer between the containment<br />

walls and the uranium plasma. The neon gas (along with<br />

some entrained uranium) is continually extracted from the<br />

edge of the reactor core where it is separated from the<br />

uranium and cooled in a heat exchanger be<strong>for</strong>e being<br />

reinjected back into the containment vessel. The rejected<br />

heat from the neon is used to partially preheat the main<br />

hydrogen propellant stream. The separated uranium is<br />

also reinjected back into the containment vessel thus<br />

preventing any uranium loss from occurring in the system.<br />

A schematic diagram of the nuclear light bulb concept<br />

is illustrated in Figure 14. In the United Technologies<br />

experiments with the concept yielded equivalent specific<br />

impulses of over 1300 sec.<br />

Conclusions<br />

The application of nuclear energy to space propulsion<br />

systems has long been seen as a means to enable missions<br />

to outer space that are not achievable by any currently<br />

conceivable chemical based rocket propulsion system.<br />

While nuclear rocket engines are clearly superior to<br />

chemical rocket engine in that they deliver efficiencies that<br />

are over twice that of the best chemical rocket engines, no<br />

operational nuclear rocket engine has yet been developed.<br />

It is anticipated that these engines, while deceptively<br />

simple in concept, will no doubt require a daunting amount<br />

of detailed engineering to finally develop a practical<br />

engine system. These engineering details include not only<br />

the usual thermal, fluid, and mechanical aspects always<br />

present in chemical rocket engine development, but<br />

also nuclear interactions coupled with some unique<br />

materials restrictions. None of these engineering details<br />

are expected to be insurmountable, however. Hopefully,<br />

with the mounting desire within the United States and<br />

elsewhere to send human to Mars, it may be that renewed<br />

ef<strong>for</strong>ts will be made in the near future to once again initiate<br />

programs to finally develop an operational nuclear rocket<br />

engine.<br />

References<br />

[1] Finseth, J. L., “Overview of Rover Engine Tests - Final Report”, NASA George C. Marshall Space<br />

Flight Center, Contract NAS 8-37814, File No. 313-002-91-059, (Feb. 1991).<br />

[2] Haslett, R. A., “Space <strong>Nuclear</strong> Thermal Propulsion Final Report”, Phillips Laboratory,<br />

PL-TR-95-1064, (May 1995).<br />

[3] Harvey, B., “Russian Planetary Exploration History, Development, Legacy, and Prospects”,<br />

Springer-Praxis Books in Space Exploration, ISBN 10: 0-387-46343-7, (2007).<br />

[4] Emrich, W., “Principles of <strong>Nuclear</strong> Rocket Propulsion”, Elsevier Inc., ISBN 978-0-12-804474-2,<br />

(2016).<br />

[5] “General Atomic Division of General Dynamics, \”<strong>Nuclear</strong> Pulse Space Vehicle Study\”,<br />

GA-5009, Vol. I thru IV, NASA/MSFC Contract NAS 8-11053, (1964).”<br />

[6] Mcl.afferty, G. H., “Investigation of Gaseous <strong>Nuclear</strong> Rocket Technology – Summary Technical<br />

Report”, United Aircraft Research Laboratories, Report H-910093-46, prepared under Contract<br />

NASw-847, (November 1969).<br />

Author<br />

Dr. William Emrich<br />

Senior Engineer<br />

NASA – Marshall Space Flight Center<br />

Huntsville, Alabama USA<br />

FEATURE | RESEARCH AND INNOVATION 197<br />

Feature<br />

<strong>Nuclear</strong> Rockets <strong>for</strong> Interplanetary Space Missions ı Dr. William Emrich


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 198<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Research in Support of European Radioisotope<br />

<strong>Power</strong> System Development<br />

at the European Commission’s Joint<br />

Research Centre in Karlsruhe<br />

Daniel Freis, Jean-François Vigier, Karin Popa and Rudy J.M. Konings<br />

1 Introduction The urge to discover the unknown, to explore the unexplored and to broaden our knowledge<br />

beyond the limits of the present is inherent to human nature. One of the most interesting and fascinating fields of<br />

science is the exploration of the cosmos, either from Earth using telescopes or by sending automated probes to other<br />

planets and into the vastness of space.<br />

| Fig. 1.<br />

Apollo astronaut photo of a SNAP-27 RTG on the Moon. Photo: NASA.<br />

A basic requirement to operate automated<br />

spacecraft successfully over the<br />

course of an exploratory mission, is<br />

the reliable supply of long-lasting<br />

power. If independence of solar radiation<br />

is required, e.g. when travelling<br />

into deep space or to the dark side of<br />

planetary bodies, nuclear energy<br />

becomes advantageous compared to<br />

other potential sources of energy. The<br />

utilisation of nuclear power <strong>for</strong> applications<br />

in space had been considered<br />

since the early beginnings of space<br />

flight in the late 1940s, and the first<br />

Radioisotope <strong>Power</strong> System (RPS) in<br />

space was already launched by the<br />

U.S. Navy in 1961, onboard the Transit<br />

4A navigational satellite [1,2]. Since<br />

then RPS have enabled some of the<br />

most spectacular missions in the<br />

history of space exploration [1-7],<br />

mostly per<strong>for</strong>med by the USA but also<br />

by the <strong>for</strong>mer Soviet Union, China and<br />

Europe (via cooperation with the<br />

USA). RPS were used on satellites <strong>for</strong><br />

navigation, meteorology and communication<br />

[8], they have powered<br />

scientific instruments on the Moon<br />

(Figure 1), and they were used <strong>for</strong><br />

many of the most famous and exiting<br />

exploratory endeavours, such as<br />

the Pioneer missions to Saturn and<br />

Jupiter [9,10], the Viking missions to<br />

Mars [11], and the Voyager 1 & 2<br />

spacecraft, which travelled beyond<br />

the boundaries of our solar system<br />

and are still delivering scientific<br />

results from the interstellar medium,<br />

more than 40 years after their launch<br />

[12,13]. More recently, the radioisotope-<br />

powered missions Galileo,<br />

Ulysses and Cassini-Huygens were<br />

exploring Jupiter, the Sun and<br />

Saturn/Titan, respectively. These<br />

more recent missions were per<strong>for</strong>med<br />

in collaboration between the National<br />

Aeronautics and Space Administration<br />

(NASA) and the European Space<br />

Agency (ESA) [14]. Historically, this<br />

was the only way <strong>for</strong> Europe to gain<br />

access to space nuclear power systems.<br />

In 2005 a European Working Group<br />

on <strong>Nuclear</strong> <strong>Power</strong> Sources <strong>for</strong> Space<br />

identified RPS as a “key enabling<br />

technology <strong>for</strong> future European activities<br />

in space” [15], and suggested the<br />

establishment of an European safety<br />

framework <strong>for</strong> space nuclear power<br />

sources and the development of<br />

the technical capabilities to per<strong>for</strong>m<br />

nuclear powered missions indendently<br />

[16,17]. As a consequence, a research<br />

and development programme was<br />

launched by ESA <strong>for</strong> the production of<br />

European RPS to satisfy thermal<br />

management and electrical power<br />

needs <strong>for</strong> spacecraft [16,17,18,19].<br />

In the past, most RPS <strong>for</strong> space<br />

missions were based on the plutonium<br />

isotope Pu-238 [1-5], a radionuclide<br />

which is superior to other isotopes,<br />

because of its high specific power of<br />

0.567 W/g, low radiation, compatibility<br />

with cladding materials and<br />

chemical stability as oxide. Pu-238<br />

has a half-life of 87.7 years which<br />

enables long-lasting missions [20].<br />

Un<strong>for</strong>tunately, there is a global<br />

shortage of this isotope, the ef<strong>for</strong>ts<br />

associated with its production are<br />

high [21] and there are currently no<br />

facilities <strong>for</strong> its synthesis in Europe.<br />

An alternative is the americium<br />

isotope Am-241, which is more easily<br />

available, since it is produced through<br />

decay from Pu-241 and can be<br />

extracted isotopically pure from<br />

existing stocks of civil plutonium in<br />

France or the United Kingdom via<br />

chemical extraction [22]. There<strong>for</strong>e,<br />

ESA has decided to study the use of<br />

Am-241 <strong>for</strong> its RPS development<br />

[5,16,17]. However, Am-241 has some<br />

disadvantages compared to Pu-238,<br />

such as a lower power density of<br />

0.114 W/g and slightly higher radiation<br />

levels. In addition, the oxide<br />

shows chemical instability at high<br />

temperatures, the experience with<br />

Am241 is limited and additional<br />

research and safety assessment is<br />

needed be<strong>for</strong>e it can be used <strong>for</strong> space<br />

applications.<br />

Within the ESA research programme,<br />

the UK’s National <strong>Nuclear</strong><br />

Laboratory (NNL) is exploring the<br />

cost effective production of Am-241<br />

and the University of Leicester (UoL)<br />

is developing a European Radioisotope<br />

Heater Unit (RHU) and Radioisotope<br />

Thermoelectric Generator<br />

(RTG) [16,23,24]. To support these<br />

ef<strong>for</strong>ts, the European Commission’s<br />

Joint Research Centre (JRC) in Karlsruhe<br />

is investigating methods to<br />

stabilize americium in the oxide<br />

<strong>for</strong>m and to establish a safe and<br />

reliable pelletizing process [20,25].<br />

In collaboration with UoL, safety<br />

relevant properties and behaviour of<br />

Americium oxide are assessed under<br />

representative conditions <strong>for</strong> storage<br />

on Earth, operations in space as<br />

well as hypothetical accident and<br />

post-accident environments [16,26],<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Research in Support of European Radio isotope <strong>Power</strong> System Development at the European Commission’s Joint Research Centre in Karlsruhe ı Daniel Freis, Jean-François Vigier, Karin Popa and Rudy J.M. Konings


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

and the compatibility with the cladding<br />

material is tested. Complementary<br />

work is per<strong>for</strong>med to develop a<br />

qualified welding methodology of the<br />

safety encapsulation.<br />

2 Energy Supply in Space<br />

In order to operate spacecraft, a<br />

reliable source of power in the <strong>for</strong>m of<br />

electricity and heat is required.<br />

Electricity is needed to power onboard<br />

electronic systems such as navigation<br />

and manoeuvring systems, onboard<br />

computers, lighting, robotics, scientific<br />

instruments and communication<br />

systems. In some cases, spacecraft are<br />

equipped with electric propulsion<br />

systems, and electricity <strong>for</strong> life support<br />

is needed if the mission is manned.<br />

Heat is needed in cold environments<br />

to keep sensitive spacecraft components<br />

at minimum operational or<br />

survival temperature, e.g. during<br />

lunar nights.<br />

Primary energy sources can be<br />

chemical, solar or nuclear. Some of<br />

these are limited with respect to their<br />

power or energy density, and the<br />

profile of each individual mission<br />

determines which energy sources can<br />

be utilized. Table 1 shows typical<br />

energy densities <strong>for</strong> different energy<br />

sources.<br />

Chemical energy sources in the<br />

<strong>for</strong>m of solid or liquid fuels can release<br />

a large quantity of energy in a very<br />

short time, but they are limited with<br />

respect to total energy density. For instance,<br />

chemical fuels <strong>for</strong> propulsion<br />

can be used whenever high thrust is<br />

needed <strong>for</strong> a short time, e.g. as rocket<br />

fuel to overcome the gravity field of<br />

earth, but they have shortcomings if<br />

long-lasting power or long acceleration<br />

times are needed, e.g. to reach<br />

the high velocities necessary <strong>for</strong> interplanetary<br />

or even interstellar travel.<br />

Chemical energy in the <strong>for</strong>m of<br />

batteries or fuel <strong>for</strong> fuel cells can be<br />

used when onboard power is needed<br />

<strong>for</strong> no more than a few weeks, or as<br />

rechargeable energy buffer to supply<br />

peak loads or to bridge periods without<br />

sunlight. For missions, which<br />

require continuous power supply <strong>for</strong><br />

an extended time, only solar or<br />

nuclear energy sources are feasible,<br />

since the payload associated with<br />

chemical fuels or batteries would<br />

simply become too high.<br />

Solar energy is principally unlimited,<br />

as long as the solar cells, used<br />

to convert the radiation energy into<br />

electricity, are not degrading, and as<br />

long as they can be adjusted in the<br />

direction of the sunlight and the<br />

spacecraft is not in the shadow of<br />

planetary bodies or too far away from<br />

the sun. However, their effective area,<br />

the conversion efficiency and the<br />

intensity of the solar radiation determine<br />

the power density of solar cells.<br />

This intensity decreases inversely with<br />

the square of the distance from the<br />

sun, as shown in Figure 2, and if the<br />

distance becomes too large solar<br />

energy becomes unpractical. For<br />

example, while the solar constant is<br />

1.367 kW/m 2 at the semi-major axis of<br />

Earth, at one Astronomical Unit (AU)<br />

distance to the sun, it decreases<br />

to only 51 W/m 2 or 3.7 % at the semimajor<br />

axis of Jupiter (5.2 AU). There<strong>for</strong>e,<br />

solar arrays are not an option <strong>for</strong><br />

all research missions to the outer solar<br />

system, but also not if a system is to be<br />

operated during long periods of darkness,<br />

<strong>for</strong> example during the lunar<br />

nights, which last 14 days.<br />

<strong>Nuclear</strong> energy has the highest<br />

power densities of all possible onboard<br />

energy sources, and can deliver<br />

reliable power over very long time<br />

periods. Most importantly, it is independent<br />

of sunlight. There are two<br />

types of space nuclear power systems;<br />

Reactor power systems (small nuclear<br />

reactors), which generate power by<br />

Energy source<br />

2 H 2 + O 2 13.33<br />

N 2 H 4 * + O 2 9.75<br />

2 Li + O 2 12.2<br />

Li-ion battery 0.9<br />

Fission of U-235** 8.2 · 10 6<br />

Decay of Pu-238*** 3.3 · 10 5<br />

Decay of Am-241*** 7.1 · 10 4<br />

controlled fission of fissile isotopes,<br />

such as U235 or Pu-239, and Radioisotope<br />

<strong>Power</strong> Sources or Systems<br />

(RPS), which obtain their energy from<br />

the spontaneous decay of radioactive<br />

isotopes. Both types can generate<br />

heat <strong>for</strong> temperature control and/or<br />

electricity via additional energy<br />

conversion systems.<br />

While nuclear reactors are<br />

generally suited <strong>for</strong> applications,<br />

which need significant power levels<br />

above 10 kW, RPS are employed<br />

whenever a limited amount of solarindependent<br />

power, up to 5 kW, is<br />

needed <strong>for</strong> a longer time period. RPS<br />

are compact, long-lived, reliable,<br />

robust, radiation resistant, solarindependent,<br />

maintenance-free, and<br />

they have energy densities, which are<br />

several orders of magnitude above<br />

chemical power sources (Table 1)<br />

[1,2,3]. Figure 3 shows qualitatively<br />

the different regimes of power levels<br />

and durations, where different energy<br />

sources are applicable.<br />

Space power systems, which are<br />

based on the decay heat of radioisotopes,<br />

can be distinguished into<br />

systems which make direct use of<br />

the thermal energy, and systems<br />

which convert heat into electricity<br />

(Figure 4). In both cases the employed<br />

radioisotope is the power<br />

Energy density, MJ/kg<br />

| Tab. 1.<br />

Energy densities of typical energy sources.<br />

*Hydrazine, **total fission, ***over 20 years mission time<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 199<br />

| Fig. 2.<br />

Intensity of solar radiation.<br />

| Fig. 3.<br />

Application of different energy sources (reproduced from references 1 and 3).<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Research in Support of European Radio isotope <strong>Power</strong> System Development at the European Commission’s Joint Research Centre in Karlsruhe ı Daniel Freis, Jean-François Vigier, Karin Popa and Rudy J.M. Konings


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 200<br />

| Fig. 4.<br />

Elements of radioisotope power systems.<br />

source while the heat sink is provided<br />

by space. Systems which make direct<br />

use of the thermal energy are called<br />

Radioisotope Heater Units (RHU).<br />

They provide heat to the space craft<br />

to keep sensitive electronics warm<br />

without using heavy and complicated<br />

heat distribution systems, and without<br />

creating electromagnetic interference.<br />

Heat-to-electricity conversion systems<br />

can be classified into dynamic<br />

and static systems. The dynamic<br />

systems employ moving parts and use<br />

a thermodynamic cycle to convert<br />

heat into electricity, e.g. a Stirling<br />

engine [27], and show principally the<br />

highest conversion efficiencies. The<br />

earliest ef<strong>for</strong>ts were focussed on the<br />

development of dynamic conversion<br />

systems, and the first RPS SNAP-1<br />

(SNAP stands <strong>for</strong> Systems <strong>for</strong> <strong>Nuclear</strong><br />

Auxiliary <strong>Power</strong>) in 1959 was based<br />

on a Ce-144 powered mercury<br />

Rankine cycle [1]. But despite their<br />

high conversion efficiency, dynamic<br />

conversion systems have not yet<br />

reached the reliability required <strong>for</strong> the<br />

operation of a space probe, which<br />

might be on a mission <strong>for</strong> several<br />

decades without the possibility <strong>for</strong><br />

maintenance or repair, and no<br />

dynamic conversion system was ever<br />

used in space.<br />

The static heat-to-electricity conversion<br />

systems are called Radioisotope<br />

Thermal Generators (RTG).<br />

RTG have no moving parts and use the<br />

thermo electric principle, also known<br />

as the Seebeck effect, to generate<br />

electricity. This phenomenon was<br />

discovered in 1794 by the Italian<br />

scientist Alessandro Volta and, independently,<br />

in 1821 by the German<br />

physicist Thomas Johann Seebeck.<br />

If two dissimilar materials are connected<br />

in a closed circuit and a<br />

temperature difference is applied over<br />

the two junctions, a voltage can be<br />

measured and electricity is generated<br />

(Figure 5). Such a device is called a<br />

| Fig. 5.<br />

Thermoelectric circuit.<br />

thermo electric couple or thermocouple.<br />

In addition, static heat conversion<br />

is also possible by thermionic<br />

conversion, where a flow of electrons<br />

is induced from a hot to a cool surface<br />

via thermionic emission.<br />

Thermoelectric conversion is not<br />

very efficient and practical RTG<br />

systems using SiGe or PbTe/TAGS<br />

thermocouples show typical power<br />

conversion efficiencies of 6 % to 7 %<br />

[5]. To improve efficiency, development<br />

of high temperature thermoelectric<br />

materials including skutterudites<br />

and Zintl-based systems is<br />

ongoing [28,29]. However, if operated<br />

at low temperatures or under a protective<br />

gas cover, existing RTG are very<br />

reliable, show low degradation and<br />

can provide power over many decades.<br />

Because of the importance of reliable<br />

and maintenance-free systems <strong>for</strong><br />

automated space probes, relatively<br />

low conversion efficiencies are usually<br />

accepted.<br />

The most important design<br />

criterion <strong>for</strong> any space nuclear power<br />

system, including all <strong>for</strong>ms of RPS, is<br />

safety. If an RPS shall be employed on<br />

a space application, it must comply<br />

with resolution 47/68 of the United<br />

Nations General Assembly on the<br />

Principles Relevant to the Use of<br />

<strong>Nuclear</strong> <strong>Power</strong> Sources in Outer<br />

Space. The resolution defines that the<br />

use of RPS shall be restricted to those<br />

space missions, which cannot be<br />

per<strong>for</strong>med by non-nuclear energy<br />

sources in a reasonable way. It also<br />

states that the design and use of the<br />

RPS shall ensure that the hazards<br />

during operation and <strong>for</strong>eseeable<br />

accidents are kept below acceptance<br />

levels and that radioactive material<br />

does not cause a significant contamination<br />

of the biosphere and outer<br />

space [30].<br />

In order to comply with these<br />

requirements, RPS are designed to the<br />

meet highest safety standards. The<br />

fuel is encapsulated in a cladding of a<br />

| Fig. 6.<br />

Radioisotope power source.<br />

highly refractory noble metal like<br />

iridium or platinum-rhodium alloys<br />

(Figure 6), which can withstand the<br />

most extreme conditions (e.g. launch<br />

pad explosion, Earth re-entry accidents).<br />

The cladding is surrounded by<br />

thermal insulation, usually made of<br />

pyrolytic graphite, which shall protect<br />

the cladding from reaching peak<br />

temperatures during aerodynamic<br />

heating. Finally, the thermal insulation<br />

is surrounded by an aeroshell<br />

made of carbon-carbon composite<br />

(fine-weaved pierced fabrice), which<br />

provides additional protection from<br />

postulated launch vehicle explosions<br />

or against impacts on hard surfaces at<br />

terminal velocity [1,5,14].<br />

3 Radioisotopes <strong>for</strong> RPS<br />

The selection of suitable radioisotopes<br />

<strong>for</strong> application in space RPS is based<br />

on a number of criteria; among them<br />

are a long half-life, high isotopic power<br />

and a low level of penetrating radiation.<br />

In addition, a chemically stable<br />

compound with high density should<br />

exist, which can serve as stable host <strong>for</strong><br />

the decay products and is compatible<br />

to the encapsulation materials and the<br />

potential operating or post-accident<br />

environments. Furthermore, the compound<br />

should resist high temperatures<br />

and should not disperse into inhalable<br />

small particles, in case of an accident.<br />

A low solubility in the environment<br />

(water) and the human body are also<br />

advantageous [4,5].<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Research in Support of European Radio isotope <strong>Power</strong> System Development at the European Commission’s Joint Research Centre in Karlsruhe ı Daniel Freis, Jean-François Vigier, Karin Popa and Rudy J.M. Konings


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

Isotope Half-life (y) Isotopic power (W/g) Principal decay mechanism Comment Shielding (typically)<br />

Am-241 432.8 0.114 alpha Soft gamma radiation 2 mm lead equivalent<br />

Cs-137 30.04 0.417 beta Gamma emitter Heavy<br />

Ce-144 285 2.08 beta Gamma emitter Heavy<br />

Cm-242 0.45 122 alpha Strong neutron emitter Heavy<br />

Cm-244 18 2.84 alpha Strong neutron emitter Heavy<br />

Po-208 2.93 18.1 alpha Short half-life None<br />

Po-210 0.38 144 alpha Short half-life None<br />

Pu-238 87.7 0.567 alpha Very soft gamma radiation None<br />

Sr-90 28.79 0.907 beta Bremsstrahlung Significant<br />

| Tab. 2.<br />

Radioisotopes <strong>for</strong> space applications [31,32].<br />

Since the specific power correlates<br />

inversely to the half-life, a compromise<br />

has to be found between specific<br />

weight and volume of the heat source<br />

on one side, and a long-lasting stable<br />

power output during the required mission<br />

time on the other side. There<strong>for</strong>e,<br />

the selection of a suitable radioisotope<br />

always depends on the concrete<br />

application. Alpha emitters tend to be<br />

better suited than beta emitters are,<br />

because the alpha decay energy is<br />

typically in the range between 5 MeV<br />

and 6 MeV per decay event, <strong>for</strong><br />

example compared to 0.546 MeV <strong>for</strong><br />

the beta decay of Sr-90, and the alpha<br />

particles do not generate Bremsstrahlung<br />

when stopped in the surrounding<br />

matter.<br />

Other important criteria are the<br />

availability of the selected isotope, as<br />

well as the production costs and<br />

necessary infrastructure and ef<strong>for</strong>t<br />

to process the radioactive material.<br />

Table 2 gives an overview over the<br />

most common radioisotopes <strong>for</strong> space<br />

RPS, of which Pu-238 is by far the<br />

most significant. If not mentioned<br />

otherwise, all nuclear data were taken<br />

from the JEFF-3.1 nuclear data library<br />

[31] via Nucleonica.com [32].<br />

4 Properties of Plutonium-<br />

238 & Americium-241<br />

The development of European RPS is<br />

based on the strategic decision of ESA<br />

to utilize Am-241 and to take advantage<br />

of the existing nuclear infrastructure<br />

related to the civil reprocessing of<br />

spent nuclear fuel in Europe, rather<br />

than to establish an expensive production<br />

capability <strong>for</strong> Pu-238 [16,17].<br />

In order to understand the impact of<br />

this choice on the RPS design characteristics<br />

and the production process, a<br />

comparison of both isotopes has to be<br />

made. Table 3 summarizes the most<br />

important properties of Am-241 compared<br />

to Pu-238.<br />

Pu-238 is an isotope of the chemical<br />

element plutonium, an actinide<br />

which is artificially created in nuclear<br />

reactors. It was the first isotope of<br />

plutonium, which was discovered by<br />

Glenn T. Seaborg in 1940 [33], and it<br />

is the most important and most widely<br />

adopted radioisotope <strong>for</strong> space power<br />

applications, due to its high power<br />

density, long half-life, chemical stability<br />

as oxide, and its low neutron and<br />

soft gamma emissions. So far, Pu-238<br />

is the only radioisotope used <strong>for</strong> RPS<br />

in space by the USA and China, while<br />

the <strong>for</strong>mer Soviet Union also utilized<br />

Po-210.<br />

Pu-238 has a half-life of 87.7 years<br />

and an isotopic power of 0.567 W/g.<br />

The isotope decays primarily via alpha<br />

decay to U-234, with a decay energy<br />

of 5.59 MeV. The main radiation emissions<br />

of Pu-238 are alpha particles<br />

with an average energy of 5.49 MeV.<br />

In addition, the isotope emits soft<br />

gamma radiation (main energies:<br />

43.5 keV & 99.85 keV) with low emission<br />

probability, and Auger electrons,<br />

which in turn generate X-rays at<br />

17.11 keV and 13.61 keV (main lines),<br />

also with relatively low emission<br />

probabilities. For a sintered and encapsulated<br />

pellet, the self-shielding<br />

effect and encapsulation are more<br />

than sufficient to shield these radiations.<br />

Spontaneous fission occurs with<br />

a negligible probability of 1.86E-09,<br />

and the spontaneous fission reaction<br />

creates a neutron yield of circa<br />

2300 n/(s g) (oxide). However, alphaneutron<br />

(α-n) reactions in natural<br />

oxygen cause an additional neutron<br />

yield of circa 13 400 n/(s g) in plutonium<br />

oxide [34]. The (α-n) reactions<br />

can only occur in the low abundancy<br />

isotopes O-17 and O-18, while the<br />

threshold energy of O-16 is too high<br />

(15.2 MeV) [34]. The neutron yield in<br />

pure Pu-238 oxide can be reduced to<br />

circa 2700 n/s-g [5] if the oxygen is<br />

depleted in O-17 and O-18 by 98 %<br />

[21].<br />

Metallic plutonium has a density<br />

of 19.77 g/cm 3 (Pu-238, α-phase at<br />

room temperature and atmospheric<br />

pressure), which is the highest density<br />

<strong>for</strong>m and would allow a volumetric<br />

power density of up to 11.21 W/cm 3 .<br />

However, the metal shows six different<br />

structural mo difications at ambient<br />

pressure in the temperature range<br />

from 0 K (-273.15 °C) to 640 °C (melting<br />

point), and the phase transitions<br />

cause significant dimensional changes<br />

as well as alterations of the mechanical<br />

and thermal properties (Figure 7).<br />

In addition, plutonium metal is burnable,<br />

and the powder is extremely<br />

pyrophoric. The first RTGs in the<br />

1960s were still fuelled with metallic<br />

Pu-238, and designed to burn-up into<br />

fine particles below 30 nm and disperse<br />

into the atmosphere in case of<br />

an re-entry accident 1 . This safety<br />

philosophy had to prove itself, when<br />

the Transit satellite 5BN-3 failed<br />

to achieve orbit in 1964, and the<br />

SNAP-9A RTG re-entered the atmosphere,<br />

carrying about 1 kg Pu-238<br />

metal. As predicted, the metallic<br />

fuel completely burned-up and was<br />

Pu-Metal PuO 2 Am-Metal AmO 2<br />

Half-life: 87.7 y 432.8 y<br />

Density: 19.85 g/cm 3 11.46 g/cm 3 13.67 g/cm 3 11.68 g/cm 3<br />

<strong>Power</strong> density:<br />

0.567 W/g<br />

0.500 W/g<br />

(0.418 W/g)*<br />

0.114 W/g<br />

0.101 W/g<br />

(0.088 W/g)**<br />

Thermal conductivity: 6 – 16 W/m K 35 3 – 10 W/m K 37 10 W/m K ~ 2.0 W/m K 38 ***<br />

Melting point: 640 °C 2744 °C 36 1176 °C 35 2113 °C 42<br />

| Tab. 3.<br />

Properties of Pu-238 and Am-241 (Metal and Oxide). *Typical isotopic composition, **Stabilized with 12 % U, ***Sub-stoichiometric<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 201<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Research in Support of European Radio isotope <strong>Power</strong> System Development at the European Commission’s Joint Research Centre in Karlsruhe ı Daniel Freis, Jean-François Vigier, Karin Popa and Rudy J.M. Konings


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 202<br />

| Fig. 7.<br />

Thermal conductivity of metallic plutonium structural modifications [35].<br />

| Fig. 8.<br />

Production of Am-241 by neutron capture and<br />

β-decay.<br />

dispersed into the atmosphere where<br />

it was diluted to low concentrations<br />

and did not cause any unacceptable<br />

health hazard [1,8,14].<br />

After the Transit 5BN-3 accident<br />

and with the upcoming of larger RPS<br />

with higher radioactive inventory the<br />

dispersion approach was no longer<br />

accepted and a new fuel <strong>for</strong>m, which<br />

would stay intact at re-entry was<br />

needed. Since then, the preferred<br />

chemical <strong>for</strong>m of Pu-238 <strong>for</strong> RPS is<br />

plutonium dioxide (PuO 2 ), safely<br />

encapsulated in a cladding of high<br />

refractory material which can safely<br />

contain the radioactivity under all<br />

credible circumstances [8]. PuO 2 is a<br />

ceramic material with a high melting<br />

point of 2744 °C [36], which can be<br />

sintered into stable pellets. The compound<br />

crystallizes in the face centred<br />

cubic (fcc) structure (space group<br />

Fm3¯m) [37], has a high chemical<br />

stability, a low solubility in water<br />

and does not react with the typical<br />

cladding materials, such as iridium or<br />

platinum alloys (e.g. Pt20Rh or<br />

Pt30Rh). In addition, it serves as a<br />

good host <strong>for</strong> U-234, the decay product<br />

of Pu-238, which is also crystallizing<br />

in the fcc structure.<br />

Am-241 is an isotope of the radioactive<br />

element americium. It belongs<br />

also to the actinides and has the<br />

atomic number 95. Like plutonium,<br />

americium is an artificial element and<br />

was discovered by the group of Glenn<br />

T. Seaborg in 1944. Americium is<br />

usually created in nuclear reactors<br />

by neutron capture and radioactive<br />

decay (Figure 8). However, during<br />

irradiation not only Am-241 but also<br />

other americium isotopes are created,<br />

which are unwanted in RPS. Isotopically<br />

pure Am-241 is produced continuously<br />

in the stocks of civil plutonium<br />

through beta decay of Pu-241<br />

(t 1/2 =14.33 y), from where it can be<br />

separated using chemical methods.<br />

A cost efficient separation and purification<br />

process (AMPEX) was developed<br />

and demonstrated by the UK’s<br />

National <strong>Nuclear</strong> Laboratory (NNL)<br />

to separate ingrown Am-241 from<br />

plutonium [22,39].<br />

Am-241 has a half-life of 432.8<br />

years and an isotopic power of<br />

0.114 W/g. The isotope decays<br />

primarily via alpha decay to Np-237.<br />

In a final repository Am-241 is one of<br />

the most important drivers <strong>for</strong> the<br />

medium- term heat load, and there<strong>for</strong>e<br />

the required gallery space, and<br />

Np-237 (t 1/2 =2.14∙10 6 y) is one of the<br />

significant isotopes driving long-term<br />

radiotoxicity [40,41]. The main radiation<br />

of Am-241 are alpha particles<br />

with an average energy of 5.47 MeV.<br />

Unlike Pu-238, Am-241 emits significant<br />

gamma radiation at 59.54 keV<br />

(main line) with a probability of 36 %<br />

and also Auger electrons, which cause<br />

X-rays at 14.44 keV (probability<br />

33 %). Even though the radiation is<br />

still relatively soft, shielding and<br />

remote handling tools are required if<br />

larger amounts are to be processed,<br />

and especially when the material is in<br />

solution and self-shielding is not effective.<br />

Once the pellets have been<br />

sintered and encapsulated the radiation<br />

decreases. However, it remains<br />

still significant and adequate radiation<br />

protection measures <strong>for</strong> workers<br />

need to be in place. A dose rate of<br />

circa 150 µSv/h in 10 cm distance is<br />

estimated <strong>for</strong> a typical full scale RHU<br />

containing 26 g AmO 2 encapsulated in<br />

1.8 mm Pt30Rh.<br />

Am-241 has a very low probability<br />

<strong>for</strong> spontaneous fission of 4.3E-12,<br />

and the spontaneous fission reaction<br />

creates a negligible neutron yield of<br />

circa 1.2 n/s-g (oxide). However, as in<br />

the case of Pu-238, Am-241 oxide<br />

emits additional neutrons from the<br />

alpha-neutron (α-n) reaction in natural<br />

oxygen. This reaction causes an<br />

additional neutron yield of circa<br />

2700 n/(s g) 34 . While this is significantly<br />

lower compared to Pu-238 by a<br />

factor of six, it has to be considered<br />

that <strong>for</strong> the same thermal power about<br />

five times more Am-241 is needed.<br />

There<strong>for</strong>e, also in the case of Am-241<br />

oxide O-17 and O-18 depletion is<br />

needed to reduce the neutron yield to<br />

acceptable levels [5].<br />

Metallic americium has similar<br />

disadvantages as metallic plutonium<br />

<strong>for</strong> the use in RPS. In addition, its<br />

density is relatively low compared to<br />

the oxide (13.67 g/cm 3 α-phase at<br />

room temperature). Elemental americium<br />

is a soft metal, which oxidises<br />

quickly in the atmosphere <strong>for</strong>ming<br />

a protective oxide layer. At room<br />

temperature americium <strong>for</strong>ms a<br />

stable hexagonal α-phase (space<br />

group P6 3 /mmc) [35], at 769 °C it<br />

changes into the cubic β-phase (space<br />

group Fm3¯m), and at 1077 °C it<br />

converts to the γ-phase showing a<br />

body- centered cubic structure [35].<br />

The phase transitions cause dimensional<br />

changes, however not as significant<br />

as in the case of plutonium. The<br />

melting point of metallic americium is<br />

at 1176 °C. Americium metal powder<br />

is also very pyrophoric and metallic<br />

americium would definitively burn-up<br />

in case of an uncontained re-entry<br />

accident.<br />

The preferred <strong>for</strong>m of Am-241 <strong>for</strong><br />

space applications is americium oxide,<br />

a ceramic material with a density of<br />

11.68 g/cm 3 which can be sintered<br />

into pellets [6,16,20,25]. However,<br />

there are two major compounds which<br />

are relevant <strong>for</strong> applications in space,<br />

the cubic dioxide (AmO 2 ) (α-phase,<br />

space group Fm3¯m) and the<br />

sesquioxide (Am 2 O 3 ), which exists in<br />

the hexagonal <strong>for</strong>m (Aphase, space<br />

group P3¯m1) and the cubic <strong>for</strong>m<br />

(C-phase, space group Ia3¯). Un<strong>for</strong>tunately,<br />

the americium-oxygen system<br />

shows a complex behaviour. The<br />

melting point of AmO 2 is at 2113 °C<br />

[42], but at high temperatures and<br />

in the vacuum of space americium<br />

dioxide loses oxygen. Due to this<br />

process, it trans<strong>for</strong>ms into substoichiometric<br />

AmO 2-x , thereby slowly<br />

increasing its volume, until it finally<br />

converts into the hexagonal sesquioxide<br />

[37,43,44]. This process causes<br />

significant dimensional changes and<br />

can lead to decompo sition of the pellets<br />

[25,45]. In addition, the release of<br />

oxygen can cause pressure build-up<br />

and potentially corrode surrounding<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Research in Support of European Radio isotope <strong>Power</strong> System Development at the European Commission’s Joint Research Centre in Karlsruhe ı Daniel Freis, Jean-François Vigier, Karin Popa and Rudy J.M. Konings


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

structures. On the other higher,<br />

americium sesquioxide is prone to<br />

oxidation at lower tem peratures and<br />

will slowly convert into the di oxide in<br />

air, again undergoing significant<br />

structural modifications. After several<br />

weeks of storage, even under low<br />

oxygen partial pressures, this effect,<br />

in combination with self- irradiation<br />

from α-decay, will cause Am 2 O 3<br />

pellets to disintegrate into black<br />

dioxide powder. Both pheno mena, the<br />

reduction of AmO 2 at elevated temperatures<br />

and the oxidation of Am 2 O 3<br />

at low temperatures, are problematic<br />

with respect to the integrity of the fuel<br />

pellets and can cause increased dispersion<br />

of radio active material in case<br />

of certain accident scenarios [25].<br />

5 The Minor Actinide Laboratory<br />

at the Joint Research<br />

Centre Karlsruhe<br />

The Joint Research Centre is the<br />

European Commission’s science and<br />

knowledge service. Its mission is to<br />

support EU policies with independent<br />

evidence throughout the whole policy<br />

cycle. Its work has a direct impact on<br />

the lives of citizens by contributing<br />

with its research outcomes to a<br />

healthy and safe environment, secure<br />

energy supplies, sustainable mobility<br />

and consumer health and safety. The<br />

JRC hosts specialist laboratories and<br />

unique research facilities and is home<br />

to thousands of scientists working to<br />

support EU policy (https://ec.europa.<br />

eu/jrc/en).<br />

The JRC in Karlsruhe belongs to<br />

the Directorate <strong>for</strong> <strong>Nuclear</strong> Safety and<br />

Security (Directorate G), where JRC’s<br />

nuclear work programme, funded by<br />

the EURATOM Research and Training<br />

Programme, is carried out. The<br />

Directorate contributes to the scientific<br />

foundation <strong>for</strong> the protection of<br />

the European citizen against risks<br />

associated with the handling and<br />

storage of highly radioactive material,<br />

and scientific and technical support<br />

<strong>for</strong> the conception, development,<br />

implementation and monitoring of<br />

community policies related to nuclear<br />

energy. Research and policy support<br />

activities of Directorate G contribute<br />

towards achieving effective safety and<br />

safeguards systems <strong>for</strong> the nuclear<br />

fuel cycle, to enhance nuclear security<br />

then contributing to achieving the<br />

goal of low carbon energy production.<br />

The JRC supports the ESA<br />

research programme on developing a<br />

Euro pean Radioisotope Heater Unit<br />

(RHU) and Radioisotope Thermoelectric<br />

Generator (RTG). These activities<br />

are focussed on investigating<br />

methods to stabilize americium in the<br />

oxide <strong>for</strong>m and to establish a safe and<br />

reliable pelletizing process [20,25].<br />

In colla boration with UoL, safety<br />

relevant properties and behaviour<br />

of americium oxide are assessed<br />

[16,26].<br />

Am-241 emits a significant amount<br />

of gamma radiation, and working<br />

with Am-241 can result in high dose<br />

rates <strong>for</strong> the operating personnel.<br />

Remote operated and shielded<br />

equipment is advantageous or even<br />

necessary in order to prepare<br />

americium- based pellets <strong>for</strong> RPS. The<br />

JRC in Karlsruhe has a unique infrastructure<br />

<strong>for</strong> handling of highly<br />

radiative actinide materials, the socalled<br />

Minor Actinide Laboratory<br />

(MA-Lab) [46]. It is of high relevance<br />

<strong>for</strong> safety research on fuels <strong>for</strong> transmutation<br />

in Europe, as it is one of the<br />

only dedicated facilities <strong>for</strong> the<br />

synthesis of minor actinide containing<br />

materials, either <strong>for</strong> property<br />

measurements or <strong>for</strong> the preparation<br />

of irradiation experiments.<br />

The MA-lab consists of seven<br />

glove-boxes with protection walls<br />

<strong>for</strong>ming two separate chains. A<br />

schematic lay-out of the Ma-Lab is<br />

shown in Figure 9. The glove boxes<br />

are shielded by 50 cm neutron<br />

shielding and 5 cm of lead. Based on<br />

the thickness of the water and lead<br />

wall, the mass limits have been<br />

calculated to 150 g of Am-241 or 5 g of<br />

Cm-244. The glove boxes can be<br />

accessed manually from the back if<br />

radiation levels are low enough to<br />

per<strong>for</strong>m experiment pre paration or<br />

maintenance. In addition, tele-manipulators<br />

and remote operated automated<br />

equipment can be used <strong>for</strong><br />

operation at high dose rates.<br />

The glove boxes of the minor<br />

actinide laboratory are configured as<br />

complete preparation chain <strong>for</strong> minor<br />

| Fig. 9.<br />

Minor Actinide Laboratory at JRC-Karlsruhe [46].<br />

actinide containing samples from the<br />

base material to the fully encapsulated<br />

sample, and the MA-Lab represents<br />

an ideal infrastructure <strong>for</strong> preparation<br />

of highly radiating americium<br />

pellets and fully qualified fuel pins.<br />

The synthesis of the base material<br />

(powder) is per<strong>for</strong>med in the glove<br />

box named “infiltration”. The process<br />

is dust-free, based on the so-called gel<br />

supported precipitation [47] and the<br />

porous bead infiltration technique<br />

[48]. This process is highly flexible<br />

and easily adapted to the requirements<br />

and specifications of new<br />

sample compositions. The next glove<br />

box contains a calcination furnace and<br />

other equipment <strong>for</strong> powder preparation.<br />

The prepared powders are dust<br />

free, the individual beads typically<br />

show heterogeneous size distributions<br />

between 30 µm to 120 µm and are<br />

ideal <strong>for</strong> pressing pellets. The ready to<br />

press powder can be transferred via<br />

an automated channel to the next<br />

glove box, where it can be pressed to<br />

pellets. After sintering in reducing<br />

or oxi dizing atmosphere (glove box<br />

“ Sintering”) the pellets are fully<br />

characterized and inserted into a<br />

cladding. Finally, pin welding and<br />

non- destructive weld examination are<br />

per<strong>for</strong>med in the two last, alpha free<br />

glove boxes.<br />

6 Stabilisation of<br />

Americium Oxide &<br />

RHU-Size Prototype Pellet<br />

Production<br />

Unlike plutonium oxide, which is<br />

stable in a broad range of temperatures<br />

and oxygen potentials,<br />

americium oxide is prone to phase<br />

changes and disintegration in changing<br />

environments [25]. If americium<br />

oxide is sintered under oxidizing<br />

conditions into AmO 2 , it releases<br />

oxygen at elevated temperatures in<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 203<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Research in Support of European Radio isotope <strong>Power</strong> System Development at the European Commission’s Joint Research Centre in Karlsruhe ı Daniel Freis, Jean-François Vigier, Karin Popa and Rudy J.M. Konings


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 204<br />

| Fig. 10.<br />

Small (left side) and large (right side) scale prototype pellet.<br />

the vacuum of space and changes into<br />

sesquioxide (Am 2 O 3 ), thereby undergoing<br />

strong structural reorganization,<br />

density changes and disintegration.<br />

If americium oxide is<br />

sintered under reductive conditions<br />

into Am 2 O 3 , it will trans<strong>for</strong>m into the<br />

dioxide under accident conditions,<br />

but also under the influence of selfirradiation<br />

even at low oxygen potentials,<br />

which leads to its total disintegration.<br />

JRC has investigated possibilities<br />

to stabilize americium dioxide in its<br />

cubic <strong>for</strong>m under a broad range of<br />

temperatures, in oxidizing as well as<br />

| Fig. 12.<br />

Small scale prototype Pt30Rh encapsulation.<br />

| Fig. 11.<br />

Crystallographic swelling of (Am 0.80 U 0.12 Np 0.06 Pu 0.02 )O 1.8 mixed oxide under alpha self-irradiation.<br />

Values <strong>for</strong> PuO 2 and AmO 2 swelling are reported <strong>for</strong> comparison [25].<br />

reducing atmospheres. A solution was<br />

found by inserting 12 % of uranium<br />

into the americium oxide (in addition<br />

to 6 % Np and 2 % Pu already present).<br />

Thereby, it was possible to stabilize<br />

the cubic phase and to sinter a number<br />

of discs and pellets, including a<br />

prototype pellet in the dimensions of<br />

the US LWRHU [49] under moisturized<br />

Ar/H 2 atmosphere and a<br />

larger disc representative <strong>for</strong> a future<br />

European RHU [16] (Figure 10).<br />

Due to the absence of phase<br />

changes, the stabilized material<br />

showed a good sintering behaviour<br />

and it was possible to sinter a number<br />

of discs and pellets with good quality<br />

and without cracking. After sintering<br />

oxidation testing was per<strong>for</strong>med and<br />

the material proved stable up to<br />

1000 °C. This result represents a<br />

significant improvement with respect<br />

to safety of the material against radioactive<br />

material dispersion in case of<br />

accidental conditions. In addition, the<br />

macroscopic and crystallographic<br />

swelling was assessed on the small<br />

scale protype pellet (Figure 10) over<br />

time. While no macroscopic swelling<br />

was observed, only low crystallographic<br />

swelling occurred due to<br />

self-irradiation, which saturated after<br />

circa 60 days. Overall the pellet<br />

showed good long-term structural<br />

and dimensional stability under selfirradiation<br />

conditions (Figure 11)<br />

[25].<br />

7 Development of Welding<br />

Methodology<br />

In order to be able to meet the launch<br />

safety requirements and safely ship<br />

RPS sealed sources to sites, where they<br />

can be assembled into RHUs or RTGs<br />

and subsequently be installed onto a<br />

spacecraft, it is necessary to develop<br />

containment technologies that meet<br />

these requirements. The first layer of<br />

containment immediately surrounding<br />

the fuel pellets is the cladding, which<br />

must ensure the enclosure of radioactivity<br />

during storage, normal operation<br />

and accident scenarios. The<br />

encapsulation has to be per<strong>for</strong>med in a<br />

nuclear installation, ideally the manufacturing<br />

site, and it has to be ensured<br />

that the fueled clads are free of external<br />

contamination.<br />

In order to test the feasibility of<br />

our welding equipment and to gain<br />

experience in the welding of Pt30Rh<br />

capsules, two types of Pt30Rh-encapsulation<br />

were constructed and<br />

welding tests were per<strong>for</strong>med. The<br />

first capsule design had similar<br />

dimensions as the US LWRHU (Figure<br />

12) and the second capsule design<br />

was made according to input by UoL<br />

to host (Am,U)O 2 pellets of 15 mm<br />

diameter and 20 mm height.<br />

The capsules were welded using<br />

established Tungsten Inert Gas<br />

welding equipment, which is also<br />

used in the frame of qualified welding<br />

of fuel rodlets <strong>for</strong> irradiation experiments<br />

[41]. Non-destructive as well as<br />

destructive weld examinations were<br />

per<strong>for</strong>med and showed that good<br />

welding results were achieved;<br />

indicating that future welding quality<br />

criteria can be met (Figure 13).<br />

8 Conclusions<br />

Radioisotope power sources are a key<br />

enabling technology <strong>for</strong> exploratory<br />

missions into deep space or to the dark<br />

side of planetary bodies, and the<br />

European Space Agency is sponsoring<br />

the development of Am-241 based<br />

radioisotope power systems. The<br />

development of a new RPS based on<br />

americium is a challenging task. The<br />

optimization of the fuel is a key issue,<br />

as the oxide of americium has significantly<br />

different properties compared<br />

to that of Pu-238, both in terms of<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Research in Support of European Radio isotope <strong>Power</strong> System Development at the European Commission’s Joint Research Centre in Karlsruhe ı Daniel Freis, Jean-François Vigier, Karin Popa and Rudy J.M. Konings


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

| Fig. 13.<br />

Large scale prototype Pt30Rh encapsulation (left side) and dye penetrant test of weld (right side).<br />

material engineering and handling.<br />

JRC supports the development of a<br />

European radioisotope heater unit<br />

and radioisotope thermoelectric generator.<br />

These activities are focussed<br />

on investigating methods to stabilize<br />

americium in the oxide <strong>for</strong>m and<br />

to establish a safe and reliable pelletizing<br />

process. Safety relevant properties<br />

and behaviour of americium<br />

oxide, as well as the compatibility to<br />

the cladding material, are assessed in<br />

collaboration with the University of<br />

Leicester. Prototype pellets of stabilized<br />

americium oxide were synthesized<br />

in the Minor Actinide Lab of<br />

JRC Karlsruhe, and their stability<br />

under a broad range of conditions<br />

was shown. A welding methodology<br />

<strong>for</strong> the safety encapsulation was<br />

developed and demonstrated.<br />

References<br />

[1] Schmidt, G., Dudzinski, L. and Sutliff, T. (Schmidt, et al.,<br />

2011), 2011. Radioisotope power: A key technology <strong>for</strong> deep<br />

space exploration. In Radioisotopes-Applications in Physical<br />

Sciences. IntechOpen.<br />

[2] Lange, R.G. and Carroll, W.P., 2008. Review of recent<br />

advances of radioisotope power systems. Energy Conversion<br />

and Management, 49(3), pp.393-401.<br />

[3] Loeb, H., 1970. <strong>Nuclear</strong> engineering <strong>for</strong> satellites and<br />

rockets.<br />

[4] Cataldo, R.L. and Bennett, G.L., 2011. US space radioisotope<br />

power systems and applications: past, present and future. In<br />

Radioisotopes-Applications in Physical Sciences. IntechOpen.<br />

[5] O’Brien, R.C., 2010. Radioisotope and nuclear technologies<br />

<strong>for</strong> space exploration (Doctoral dissertation, University of<br />

Leicester).<br />

[6] O’Brien, R.C., Ambrosi, R.M., Bannister, N.P., Howe, S.D.<br />

and Atkinson, H.V., 2008. Safe radioisotope thermoelectric<br />

generators and heat sources <strong>for</strong> space applications. <strong>Journal</strong><br />

of <strong>Nuclear</strong> Materials, 377(3), pp.506-521.<br />

[7] Stanculescu, A., et al., 2005. The role of nuclear power and<br />

nuclear propulsion in the peaceful exploration of space<br />

(Vol. 1197). Intl Atomic Energy Agency.<br />

[8] Engler, R., 1987, “Atomic <strong>Power</strong> in Space: A History,” DOE/<br />

NE/32117-H1, U.S. Department of Energy, March 1987.<br />

[9] Opp, Albert G. Pioneer 10 mission: Summary of scientific<br />

results from the encounter with Jupiter. National Aeronautics<br />

and Space Administration, Washington, DC, 1974.<br />

[10] Opp, Albert G. “Scientific results from the Pioneer 11 mission<br />

to Jupiter.” (1975).<br />

[11] Klein, Harold P., et al. “The Viking Mission search <strong>for</strong> life on<br />

Mars.” Nature 262.5563 (1976): 24-27.<br />

[12] “Voyager - Mission Status”. Jet Propulsion Laboratory.<br />

National Aeronautics and Space Administration.<br />

https://voyager.jpl.nasa.gov/mission/status/<br />

[13] Strauss, R. Du Toit. “Voyager 2 enters interstellar space.”<br />

Nature Astronomy 3.11 (2019): 963-964.<br />

[14] Hula, Greg, Atomic <strong>Power</strong> in Space II: A History of Space<br />

<strong>Nuclear</strong> <strong>Power</strong> and Propulsion in the United States,<br />

INL/EXT-15-34409, INL <strong>for</strong> DOE, September 2015<br />

[15] European Working Group on <strong>Nuclear</strong> <strong>Power</strong> Sources <strong>for</strong><br />

Space, Report, March 2005<br />

[16] Ambrosi, Richard M., et al. “European Radioisotope Thermoelectric<br />

Generators (RTGs) and Radioisotope Heater Units<br />

(RHUs) <strong>for</strong> Space Science and Exploration.” Space Science<br />

Reviews 215.8 (2019): 55.<br />

[17] Summerer, L. and Stephenson, K., 2011. <strong>Nuclear</strong> power<br />

sources: a key enabling technology <strong>for</strong> planetary exploration.<br />

Proceedings of the Institution of Mechanical Engineers, Part<br />

G: <strong>Journal</strong> of Aerospace Engineering, 225(2), pp.129-143<br />

[18] Williams, H. R.; Ambrosi, R. M.; et al.; A conceptual spacecraft<br />

radioisotope thermoelectric and heating unit (RTHU).<br />

Int. J. Energy Res. 2012, 36, 1192−1200.<br />

[19] Watkinson, E.J., 2017. Space <strong>Nuclear</strong> <strong>Power</strong> Systems:<br />

Enabling Innovative Space Science and Exploration Missions<br />

(Doctoral dissertation, Department of Physics and<br />

Astronomy)<br />

[20] Freis, D., et al. “Exploratory Research on Radioisotope<br />

Thermo electric Generators <strong>for</strong> Deep Space Missions.”<br />

E3S Web of Conferences. Vol. 16. EDP Sciences, 2017<br />

[21] Rankin, D.T., et al., 2000. Production of pu-238 oxide fuel <strong>for</strong><br />

space exploration. Prepared <strong>for</strong> the US Department of Energy<br />

Under Contract No. DE-ACO9-96SR18500 Westinghouse<br />

Savannah River Company Savannah River Site, Aiken, SC<br />

29808, p.179<br />

[22] Sarsfield, M.J., et al., C.J., 2017. The Separation of 241Am<br />

from Aged Plutonium Dioxide <strong>for</strong> use in Radioisotope <strong>Power</strong><br />

Systems. In E3S Web of Conferences (Vol. 16, p. 05003).<br />

EDP Sciences.<br />

[23] Watkinson, E. J., Ambrosi, et al., 2017. Cerium neodymium<br />

oxide solid solution synthesis as a potential analogue <strong>for</strong><br />

substoichiometric AmO 2 <strong>for</strong> radioisotope power systems,<br />

JNM, 486, pp. 308-322.<br />

[24] Watkinson, E.J., Ambrosi, et al., 2017. Sintering trials of<br />

analogues of americium oxides <strong>for</strong> radioisotope power<br />

systems, J. Nuc. Mater., 491, pp. 18-30<br />

[25] Vigier, J. F., Freis, D., Pöml, P., Prieur, D., Lajarge, P., Gardeur,<br />

S., ... & Konings, R. J. (2018). Optimization of Uranium-Doped<br />

Americium Oxide Synthesis <strong>for</strong> Space Application. Inorganic<br />

chemistry, 57(8), 4317-4327<br />

[26] E.J. Watkinson, R. Ambrosi, D. Freis et al., in Proceedings IEEE<br />

Aerospace Conference (2019). https://doi.org/10.1109/<br />

AERO.2019.8741815<br />

[27] G. Gilley, M. Crook, T. Bradshaw et al., in <strong>International</strong><br />

Cryocooler Conference Proceedings (2018).<br />

https://cryocooler.org/resources/Documents/C20/387.pdf,<br />

accessed 11 November 2019<br />

[28] T. Caillat et al., in Presented at Direct Thermal-to-Electrical<br />

Energy Conversion Conference, San Diego (2006).<br />

https://trs.jpl.nasa.gov/bitstream/handle/2014/40238/<br />

06-2720.pdf?sequence=1, accessed 30 August 2019<br />

[29] T.C. Holgate et al., J. Electron. Mater. (2014).<br />

https://doi.org/10.1007/s11664-014-3564-9<br />

[30] United Nations, Resolution 47/68, Principles Relevant to the<br />

Use of <strong>Nuclear</strong> <strong>Power</strong> Sources in Outer Space, 1992,<br />

http://www.unoosa.org/pdf/gares/ARES_47_68E.pdf<br />

[31] Koning, Arjan, et al. The jeff-3.1 nuclear data library-jeff<br />

report 21. No. NEA--6190. Organisation <strong>for</strong> Economic<br />

Co-operation and Development, 2006.<br />

[32] Magill, J., and N. F. Magill. “Nucleonica: a plat<strong>for</strong>m <strong>for</strong><br />

organisational knowledge management in the nuclear<br />

domain.” (2010).<br />

[33] Seaborg, Glenn T. “The plutonium story.” Actinides in<br />

Perspective. Pergamon, 1982. 1-22.<br />

[34] Reilly, Doug, et al. Passive nondestructive assay of nuclear<br />

materials. No. NUREG/CR--5550. <strong>Nuclear</strong> Regulatory<br />

Commission, 1991.<br />

[35] R. J. M. Konings, O. Benes, and J.-C. Griveau, “The Actinides<br />

Elements: Properties and Characteristics”, Chapter 2.01 in<br />

“Comprehensive nuclear materials”. Elsevier, 2011: 1-20<br />

[36] De Bruycker, F., et al. “The melting behaviour of plutonium<br />

dioxide: A laser-heating study.” <strong>Journal</strong> of <strong>Nuclear</strong> Materials<br />

416.1-2 (2011): 166-172<br />

[37] Guéneau, C., A. Chartier, and L. Van Brutzel. “Thermodynamic<br />

and thermosphysical properties of the actinide oxides.”,<br />

Chapter 2.02 in “Comprehensive nuclear materials”. Elsevier,<br />

2011: 21-59.<br />

[38] Nishi, Tsuyoshi, et al. “Thermal conductivity of AmO2− x.”<br />

<strong>Journal</strong> of nuclear materials 373.1-3 (2008): 295-298.<br />

[39] Brown, Jamie, et al. “Americium and Plutonium Purification<br />

by Extraction (the AMPPEX process): Development of a new<br />

method to separate 241Am from aged plutonium dioxide <strong>for</strong><br />

use in space power systems.” Progress in <strong>Nuclear</strong> Energy 106<br />

(2018): 396-416.<br />

[40] von Lensa, W., R. Nabbi, and M. Rossbach. “Red-Impact.”<br />

Impact of Partitioning, Transmutation and Waste Reduction<br />

Technologies on the Final <strong>Nuclear</strong> Waste Disposal (2008).<br />

[41] d’Agata, E., et al. “The MARINE experiment: Irradiation of<br />

sphere-pac fuel and pellets of UO 2 −x <strong>for</strong> americium breading<br />

blanket concept.” <strong>Nuclear</strong> Engineering and Design 311<br />

(2017): 131-141<br />

[42] McHenry, R. E. “Melting points of curium and Americium<br />

oxides.” Transactions of the American <strong>Nuclear</strong> Society (US) 8<br />

(1965).<br />

[43] Sari, C.; Zamorani, E. An investigation in the americium oxide<br />

system. J. Nucl. Mater. 1970, 37, 324−330.<br />

[44] Vauchy, R.; Joly, A.; Valot, C. Lattice thermal expansion<br />

of Pu1‐yAmyO2‐x plutonium-americium mixed oxides.<br />

J. Appl. Crystallogr. 2017, 50, 1782−1790.<br />

[45] Epifano, E.; Guéneau, C.; Belin, R. C.; Vauchy, R.; Lebreton, F.;<br />

Richaud, J.-C.; Joly, A.; Valot, C.; Martin, P. M. Insight into the<br />

Am−O Phase Equilibria: A Thermodynamic Study Coupling<br />

High-Temperature XRD and CALPHAD Modeling. Inorg.<br />

Chem. 2017, 56, 7416−7432.<br />

[46] Fernandez, A., J. McGinley, and J. Somers (2008). “Minor<br />

Actinide Laboratory at JRC-ITU: Fuel Fabrication Facility.”<br />

Proceedings of the Atalante 2008 Conference “<strong>Nuclear</strong> Fuel<br />

Cycles <strong>for</strong> a Sustainable Future”, Nimes<br />

[47] J. Somers, A. Fernandez, (2005).<br />

J. Amer. Ceram. Soc., 88, 827<br />

[48] A. Fernandez, D. Haas, R. Konings, J. Somers,<br />

J. Amer. Ceram. Soc., 85, 694 (2002)<br />

[49] The Light Weight Radioisotope Heater Unit (LWRHU):<br />

A Technical Description of the Reference Design, R. E. Tate,<br />

LANL Report n° LA-9078-MS, January 1982<br />

Authors<br />

Daniel Freis,<br />

Jean-François Vigier,<br />

Karin Popa,<br />

Rudy J.M. Konings<br />

European Commission,<br />

Joint Research Centre – JRC,<br />

Directorate G – <strong>Nuclear</strong> Safety &<br />

Security<br />

PO Box 2340,<br />

76125 Karlsruhe, Germany<br />

SERIAL | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 205<br />

Serial | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Research in Support of European Radio isotope <strong>Power</strong> System Development at the European Commission’s Joint Research Centre in Karlsruhe ı Daniel Freis, Jean-François Vigier, Karin Popa and Rudy J.M. Konings


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

206<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Der lange Weg zum Endlager<br />

Tobias Leidinger<br />

Nach der Novelle des Standortauswahlgesetzes (StandAG) 2017 hat die Bundesgesellschaft für Endlagerung (BGE) den<br />

Auftrag, bis 2031 einen Standort zu finden, der für eine Million Jahre Sicherheit für den Einschluss hochradioaktiver Abfälle<br />

bietet. Aktuell befindet sich die Suche in der ersten von drei Phasen, die nach dem StandAG zu durchlaufen sind. Bereits jetzt<br />

zeigt sich, dass der Such- und Auswahlprozess alte und neue Widerstände auslöst.<br />

Die Suche auf der „weißen Landkarte“ – Phase 1<br />

Die BGE hat seit 2017 für das gesamte Bundesgebiet geowissenschaftliche<br />

Daten bei den zuständigen Bundes- und<br />

Landesbehörden abgefragt, um sie für den Suchprozess auszuwerten.<br />

Dieser Vorgang erwies sich als deutlich komplexer als<br />

ursprünglich erwartet. Denn die Datenbasis in den einzelnen<br />

Bundesländern ist durchaus unterschiedlich, Vorgaben für<br />

eine einheitliche Bereitstellung und Aufbereitung der Daten<br />

fehlten. Das Ziel der Endlagersuche ist es bis 2031 einen<br />

Standort zu finden, der Sicherheit für eine Million Jahre bietet.<br />

Bis 2050 soll das Endlager in Betrieb gehen. Dann sollen die<br />

ca. 10.500 Tonnen hoch radioaktiver Abfälle (abgebrannte<br />

Brennelemente, verglaste Abfälle aus der Wiederaufarbeitung<br />

in Sellafield und La Hague) nach und nach eingelagert werden.<br />

Derzeit lagern diese Abfälle in CASTOR®-Behältern in<br />

Zwischenlagern.<br />

In der zurzeit laufenden ersten Phase werden ungeeignete<br />

Gebiete ausgeschlossen. Wird eines der sechs Ausschlusskriterien<br />

im StandAG erfüllt, kommt eine Region oder ein Ort<br />

als Endlager nicht mehr in Frage. Nicht geeignet für die Endlagerung<br />

sind u.a. Gebiete, in denen zukünftig Erdbeben zu<br />

erwarten sind oder in denen es aktive geologische Störungen<br />

im Untergrund gibt. Positiv müssen sämtliche Mindestan<strong>for</strong>derungen<br />

erfüllt sein, um eine prinzipielle Eignung des<br />

geologischen Untergrundes festzustellen. Konkret bedeutet<br />

dies, dass das zukünftige Endlager mindestens 300 Meter<br />

Gestein von der Erdoberfläche trennen müssen, damit eine<br />

dauerhafte Barriere gegeben ist. Eine mindestens 100 Meter<br />

starke Schicht aus Kristallin-, Salz- oder Tongestein muss vorliegen.<br />

Im Anschluss werden die geowissenschaftlichen<br />

Abwägungskriterien angewandt, um besonders günstige Teilgebiete<br />

gegenüber weniger günstigen Teilgebieten bewerten<br />

zu können.<br />

Im Herbst 2020, also am Ende der Phase 1, steht die<br />

Veröffentlichung des Zwischenberichts Teilgebiete durch die<br />

BGE an, der die Auswertung der ersten Untersuchungsphase,<br />

d.h. eine erste Einschätzung zur weiteren Untersuchungswürdigkeit<br />

einzelner Teilgebiete enthält. Bislang werden alle<br />

Regionen gleich behandelt: Es gilt das Prinzip der „weißen<br />

Landkarte“. Der Zwischenbericht Teilgebiete wird dem<br />

Bundes amt für die Sicherheit der nuklearen Entsorgung<br />

( BASE) übermittelt, das im Anschluss zu Teilgebietskonferenzen<br />

einlädt, auf denen die BGE ihre Arbeitsergebnisse<br />

präsentiert. Dort kann die Öffentlichkeit erstmals Stellungnahmen<br />

abgeben. Anschließend löst sich die Fachkonferenz<br />

wieder auf. Die Beratungsergebnisse der Fachkonferenzen<br />

fließen in den Vorschlag der BGE für die übertägig zu<br />

erkundenden Standortregionen ein.<br />

Übertägige Erkundung – Phase 2<br />

Nach Prüfung des Vorschlags der BGE für die Gebiete zur übertägigen<br />

Erkundung durch das BASE übermittelt es dem BMU<br />

den Vorschlag. Die Bundesregierung hat den Deutschen Bundestag<br />

und den Bundesrat über die Standortregionen, die<br />

übertägig erkundet werden sollen, zu unterrichten. Die<br />

übertägig zu erkundenden Standortregionen bestimmt<br />

abschließend der Bundestag durch Bundesgesetz. Auf dieser<br />

Grundlage erkundet die BGE die Standortregionen übertägig<br />

nach den standortbezogenen Erkundungsprogrammen.<br />

Die BGE stellt vorläufige Sicherheitsuntersuchungen nach<br />

Maßgabe definierter An<strong>for</strong>derungen und Kriterien an.<br />

Dazu gehört auch die Erstellung von sozioökonomischen<br />

Potentialanalysen für die Standortregionen. Zum Schluss<br />

unterbreitet die BGE begründete Vorschläge zu den untertägig<br />

zu erkundenden Standorten, die vom BASE geprüft werden.<br />

Anschließend werden vom BASE Erkundungsprogramme und<br />

Prüfkriterien festgelegt. Wiederum obliegt es der Ent scheidung<br />

von Bundestag und Bundesrat, welche Standorte letztlich<br />

untertägig auf welche Weise erkundet werden.<br />

Untertägige Erkundung – Phase 3<br />

Schließlich obliegt auch die untertägige Erkundung der BGE,<br />

wozu sie umfassende vorläufige Sicherheitsuntersuchungen<br />

erarbeitet. Auch in dieser Phase werden die An<strong>for</strong>derungen<br />

und Kriterien gemäß Standortauswahlgesetz angewendet.<br />

Ihrer Ergebnisse werden an das BASE übermittelt, woran sich<br />

die Umweltverträglichkeitsprüfung anschließt. Das BASE<br />

schlägt anschließend den Standort für das Endlager vor. Die<br />

verbindliche Entscheidung wird wiederum durch Gesetz von<br />

Bundestag und Bundesrat getroffen.<br />

Widerstände <strong>for</strong>mieren sich<br />

Wenn bereits in 11 Jahren eine finale Entscheidung durch den<br />

Gesetzgeber zum Endlagerstandort vorliegen soll, muss das<br />

bis dahin zu absolvierende, 3-stufige Erkundungs- und Öffentlichkeitsbeteiligungsverfahren<br />

reibungslos „durchlaufen“.<br />

Fakt ist indes, dass sich bereits heute, noch vor Abschluss der<br />

ersten Phase, alte und neue Widerstände <strong>for</strong>mieren. In<br />

Gorleben hat die Bürgerinitiative Umweltschutz Lüchow-<br />

Dannenberg ihr eigenes „Gorleben Kapitel“ konzipiert. Auf<br />

20 Seiten wird dargelegt, warum Gorleben im Herbst 2020<br />

aus dem Suchverfahren endgültig ausscheiden muss. Auch in<br />

anderen Regionen im Norden und Süden der Republik, deren<br />

geologische Eignung als nicht offensichtlich ausgeschlossen<br />

erscheint, <strong>for</strong>mieren sich bereits Bürgerinitiativen. Ziel ist<br />

es, frühzeitig Widerstand zu mobilisieren. Es besteht die<br />

Befürchtung, dass das offizielle Beteiligungsverfahren zu spät<br />

kommt, Vorentscheidungen bis dahin längst getroffen und<br />

inhaltlicher Einfluss dann kaum noch möglich ist.<br />

Man darf gespannt sein, ob und in welcher Weise die mit<br />

sehr hohem Aufwand betriebene Öffentlichkeitsarbeit von<br />

offizieller Seite einen substantiellen Beitrag zur Aufklärung<br />

und Befriedung im Endlagersuchverfahren nach StandAG<br />

leistet. Tatsache ist, dass das StandAG zwar detaillierte Vorgaben<br />

für die <strong>for</strong>melle Beteiligung der Öffentlichkeit vorsieht,<br />

das Thema „Ausgleich“ oder „Kompensation“ für die final<br />

betroffene Region dort allerdings weder vorgesehen noch<br />

geregelt ist. Es ist – wie bei anderen Großprojekten auch –<br />

zweifelhaft, ob Akzeptanz allein durch In<strong>for</strong>mation und<br />

Beteiligung zu erreichen ist. Viel hilft nicht automatisch viel.<br />

Dazu bedarf es weitergehender qualitativer Instrumente und<br />

Maßnahmen. Der Verlauf der Teilgebietskonferenzen am<br />

Ende der Phase 1 wird ein erster Indikator dafür sein, ob das<br />

Konzept des StandAG trägt und wie realistisch das ehrgeizige<br />

Ziel ist, die Festlegung des Endlagerstandorts bis zum Jahr<br />

2031 tatsächlich zu erreichen.<br />

Author<br />

Prof. Dr. Tobias Leidinger<br />

Rechtsanwalt und Fachanwalt für Verwaltungsrecht<br />

Luther Rechtsanwaltsgesellschaft<br />

Graf-Adolf-Platz 15<br />

40213 Düsseldorf<br />

Spotlight on <strong>Nuclear</strong> Law<br />

The long path to final storage ı Tobias Leidinger


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

Die Entsorgung von Rückbaumassen<br />

aus kerntechnischen Anlagen –<br />

eine rechtliche Bestandsaufnahme<br />

Christian Raetzke<br />

I Einführung Aufgrund des gesetzlich angeordneten Kernenergieausstiegs sind die meisten deutschen<br />

Kernkraftwerke endgültig abgeschaltet worden; die sechs noch laufenden Anlagen sollen bis Ende 2022 folgen. Durch<br />

den Abbau dieser Anlagen – der gem. § 7 Abs. 3 S. 4 Atomgesetz (AtG) „unverzüglich“ zu erfolgen hat, was aber einen<br />

Zeitraum von ca. zwei Jahrzehnten umfasst – fallen erhebliche Rückbaumassen an. Nur ein kleiner Teil davon muss<br />

als radioaktiver Abfall entsorgt werden; die ganz überwiegende Menge kann einer Entsorgung (Verwertung oder<br />

Beseitigung) im Rahmen des Kreislaufwirtschaftsrechts zugeführt werden.<br />

Die Entlassung dieser Reststoffe aus<br />

dem Atom- und Strahlen schutzrecht<br />

mittels der Instrumente „Heraus gabe“<br />

und „Freigabe“ ist rechtlich in einer<br />

Weise geregelt, die die An<strong>for</strong>derungen<br />

des Strahlenschutzes gewährleistet.<br />

Besonders die Freigaberegelungen,<br />

die mit der neuen Strahlenschutzverordnung<br />

(StrlSchV) vom 29.11.2018<br />

im Wesentlichen von der Vorgängerverordnung<br />

über nommen, aber teils<br />

auch ergänzt und abgewandelt<br />

wurden, sind stark ausdifferenziert<br />

und tragen verschie denen Reststoffund<br />

Entsorgungskategorien Rechnung.<br />

Interessante Fragen ergeben<br />

sich vor allem an der Schnittstelle<br />

zum Kreislaufwirtschaftsrecht, dem<br />

die Reststoffe nach der Freigabe<br />

unterfallen.<br />

Die Entsorgung der Rückbaumassen<br />

erweist sich allerdings auch<br />

als ein politisch-soziales und mediales<br />

Problem: die Rückbaumassen werden<br />

von der Öffentlichkeit oft als gefährlich<br />

und als „Atommüll“ angesehen,<br />

ihre Entsorgung etwa auf Deponien<br />

ruft Proteste und Widerstände hervor.<br />

In diesem Aufsatz sollen die rechtlichen<br />

Regelungen für die Entsorgung<br />

der beim Rückbau von Kernkraftwerken<br />

anfallenden Reststoffe – also<br />

nicht der radioaktiven Abfälle – beleuchtet<br />

werden. Dabei wird es auch<br />

darum gehen, inwieweit dieser rechtliche<br />

Rahmen bisher tatsächlich<br />

„ gelebt“ und umgesetzt wird. Zunächst<br />

sollen aber einige Hintergründe<br />

zum Anfall von Reststoffen<br />

erläutert werden.<br />

II<br />

Hintergrund und<br />

zeitlicher Rahmen<br />

1 Abschaltung und Rückbau<br />

Auf die endgültige Abschaltung eines<br />

Kernkraftwerks folgt der Rückbau der<br />

Anlagen, sofern einzelne Gebäude<br />

nicht nach Entlassung aus dem Atomrecht<br />

weiter verwendet werden sollen.<br />

Der direkte Rückbau ist für die vom<br />

gesetzlichen Ausstieg erfassten Kernkraftwerke<br />

seit 2017 gesetzlich vorgeschrieben:<br />

§ 7 Abs. 3 S. 4 AtG<br />

bestimmt, dass sie nach Beendigung<br />

des Leistungsbetriebs „unverzüglich<br />

stillzulegen und abzubauen“ sind. Die<br />

damit seither ausgeschlossene Option<br />

des sicheren Einschlusses, bei dem<br />

das Kernkraftwerk noch Jahrzehnte<br />

stehen bleibt und erst viel später rückgebaut<br />

wird, hatten die Energieversorgungsunternehmen<br />

in der Vergangenheit<br />

aber ohnehin nur selten,<br />

für einzelne Prototypreaktoren, gewählt;<br />

1 für die in den letzten drei Jahrzehnten<br />

stillgelegten Anlagen hatten<br />

sie sich stets für den direkten Rückbau<br />

entschieden.<br />

Allerdings dauert es auch nach der<br />

endgültigen Abschaltung eines Kernkraftwerks<br />

noch lange, bis wesent liche<br />

Rückbaumassen anfallen. Zunächst<br />

kann es sein, dass die Anlage jahrelang<br />

im sog. Restbetrieb gehalten werden<br />

muss, solange keine Still legungs- und<br />

Abbaugenehmigung (SAG) vorliegt;<br />

das war das Schicksal der acht „Moratoriumsanlagen“<br />

nach 2011 (siehe<br />

unten). Nach Vorliegen der (ersten)<br />

SAG kann mit dem eigentlichen Rückbau<br />

begonnen werden. Dabei findet<br />

ein Rückbau „von innen nach außen“<br />

statt. Zunächst werden die Systeme<br />

und Komponenten des Reaktors,<br />

wie etwa Kerngerüst, Reaktordruckbehälter,<br />

Rohrleitungen, Pumpen etc.<br />

ausgebaut. Diese Arbeiten dauern<br />

lange, da sie aufgrund der er<strong>for</strong>derlichen<br />

Strahlenschutzmaßnahmen<br />

zum Teil sehr anspruchsvoll sind, vor<br />

allem was die Komponenten des Reaktorkerns<br />

angeht. Die baulichen Strukturen<br />

bleiben in der Regel in dieser<br />

Phase erhalten; sie werden noch benötigt<br />

(Statik, Abschirmung, gefilterte<br />

Lüftung etc.) und selbst leergeräumte<br />

Baulichkeiten werden ggf. anderen<br />

rückbaubedingten Zwecken zugeführt<br />

(so wird z. B. das Maschinenhaus<br />

dann, wenn die Turbine entfernt ist,<br />

oft als Lagerfläche oder für die Bearbeitung<br />

von Reststoffen und Abfällen<br />

verwendet). Erst in der Schlußphase,<br />

also ab etwa anderthalb Jahrzehnten<br />

nach Genehmigungserteilung und<br />

dem entsprechenden Beginn der<br />

Arbeiten, werden dann die wesentlichen<br />

Baulichkeiten abgerissen.<br />

Stilllegung und Abbau eines Kernkraftwerks<br />

bedürfen der Genehmigung<br />

nach § 7 Abs. 3 AtG. In der<br />

Genehmigungspraxis wird nicht<br />

zwischen „Stillegung“ und „Abbau“<br />

unterschieden, sondern es ergehen in<br />

der Regel mehrere „Stilllegungs- und<br />

Abbaugenehmigungen“ (SAG). Im<br />

Zuge zunehmender Erfahrung hat sich<br />

dabei die Zahl der Genehmigungen<br />

verringert. Als „klassisches“ Vorgehen<br />

hat sich bei den acht 2011 stillgelegten<br />

Anlagen ein zweistufiges Modell herausgebildet.<br />

Mit der 1. SAG wird der<br />

Abbau bestimmter Komponenten und<br />

Systeme genehmigt; dabei werden<br />

die Gebäude (Außenwände, Dächer,<br />

tragende oder aussteifende Bauteile)<br />

teils ausdrücklich ausgenommen. 2 Die<br />

Genehmigung umfasst in der Regel<br />

207<br />

ENERGY POLICY, ECONOMY AND LAW<br />

1 So etwa für das Kernkraftwerk Lingen, das 1968-1977 in Betrieb war; 2015 wurde die erste Genehmigung für den Rückbau erteilt.<br />

2 Siehe etwa die Stilllegungs- und erste Abbaugenehmigung (1. SAG) für das Kernkraftwerk Philippsburg, Block 1 (KKP 1) der EnBW Kernkraft GmbH (EnKK)<br />

vom 07.04.2017, S. 10 unter Ziffer 1.4; https://um.baden-wuerttemberg.de/de/umwelt-natur/kernenergie-und-radioaktivitaet/dokumente/genehmigungsverfahren/<br />

kkp/.<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities – A Legal Inventory ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 208<br />

KKW Stilllegung 1. SAG Stand Genehmigungen/Rückbau<br />

Greifswald 1990 30.06.1995 Rückbau läuft<br />

Würgassen 1994 14.07.1997<br />

Mülheim-Kärlich 2000 16.07.2004<br />

Stade 2003 07.09.2005<br />

Obrigheim 2005 28.08.2008<br />

Biblis A 2011 30.03.2017<br />

Biblis B 2011 30.03.2017<br />

auch die oben angesprochene<br />

Nutzungsänderung von Baulichkeiten<br />

wie dem Maschinenhaus. Mit der 2.<br />

SAG wird der Abbau der restlichen<br />

Systeme und Komponenten genehmigt.<br />

3<br />

Für einige der jüngsten Kernkraftwerke<br />

ist eine einstufige, umfassende<br />

SAG beantragt worden. 4<br />

Gleich ob ein zweistufiger oder einstufiger<br />

Weg beschritten wird: der<br />

eigentliche Abriss der Gebäude fällt –<br />

so ist es zumindest vorgesehen –<br />

nicht mehr unter eine atomrechtliche<br />

Genehmigung, da die Strukturen<br />

vorher freigemessen und freigegeben,<br />

also aus dem Atomrecht entlassen<br />

wurden (zur Freigabe siehe unten).<br />

Das heißt: der konventionelle Abriss<br />

erfolgt erst nach dem Abschluss des<br />

atomrechtlichen Genehmigungsverfahrens<br />

und der von diesem umfassten<br />

Rückbauschritte.<br />

Im August 2014 wurden alle Rückbauarbeiten, für die<br />

atomrechtliche Genehmigungen er<strong>for</strong>derlich waren,<br />

abgeschlossen, die Gebäude des ehemaligen Kontrollbereichs<br />

sind freigemessen und erfüllen die Voraussetzungen<br />

für den Abriss<br />

Abbauphasen 1a, 2a, 2b sowie 3c sind genehmigt, es<br />

steht noch ein letzter Genehmigungsschritt 3d aus<br />

Abbau nuklearer Systeme soll 2021 abgeschlossen sein,<br />

konventioneller Abriss bis 2023<br />

4. Abbaugenehmigung wurde am 14.05.2018 erteilt.<br />

Atomrechtlicher Rückbau soll bis 2025 abgeschlossen<br />

sein, anschließend Abriss oder Weiternutzung der<br />

Gebäude<br />

Neckarwestheim 1 2011 03.02.2017 Die 2. (abschließende) SAG wurde am 12.12.2019 erteilt<br />

Brunsbüttel 2011 21.12.2018<br />

Isar 1 2011 17.01.2017<br />

Unterweser 2011 05.02.2018<br />

Philippsburg 1 2011 07.04.2017 2. (abschließende) SAG beantragt<br />

Krümmel 2011 beantragt<br />

Grafenrheinfeld 2015 11.04.2018<br />

Gundremmingen B 2017 19.03.2019<br />

Philippsburg 2 2019 beantragt Antrag zielt auf eine einzige SAG<br />

Grohnde vss. 2021 beantragt<br />

Gundremmingen C vss. 2021 beantragt<br />

Brokdorf vss. 2021 beantragt<br />

Isar 2 vss. 2022 beantragt<br />

Emsland vss. 2022 beantragt<br />

Neckarwestheim 2 vss. 2022 beantragt Antrag zielt auf eine einzige SAG<br />

| Die Übersicht zeigt den Stand der Genehmigungsver fahren.<br />

Die Tabelle beruht auf Angaben, die auf den Websites der Behörden und der Betreiber abrufbar sind. Auf einen Einzelnachweis<br />

wurde verzichtet.<br />

2 Stand der Genehmigungsverfahren<br />

für Stilllegungsund<br />

Abbaugenehmigungen<br />

Hier sollen nur kommerzielle Leistungsreaktoren,<br />

keine Versuchs- und<br />

Prototypreaktoren sowie Forschungsreaktoren,<br />

berücksichtigt werden.<br />

Die Anlagen, die heute rückgebaut<br />

werden bzw. zum Rückbau an stehen,<br />

lassen sich der besseren Übersicht<br />

halber in drei Gruppen einteilen:<br />

p Anlagen, die vor 2011 stillgelegt<br />

wurden. In den Zeitraum ab 1990<br />

fallen die ersten Stilllegungen<br />

großmaßstäblicher Anlagen, aus<br />

jeweils unterschiedlichen Gründen:<br />

Greifswald 1990 (Stilllegung kraft<br />

Einigungsvertrags), Würgassen<br />

1994 (technische Probleme und<br />

wirtschaftliche Erwägungen), Mülheim-<br />

Kärlich 2000 (Genehmigung<br />

aufgehoben durch Gerichtsurteil<br />

von 1988, letzt instanzlich bestätigt<br />

1998), Stade 2003 und Obrigheim<br />

2005 (jeweils im Zusammenhang<br />

mit der Atomausstiegs novelle<br />

2002). Der Rückbau dieser Anlagen<br />

läuft seit vielen Jahren, mit<br />

unterschied lichem Fortschritt; teilweise<br />

sind hier auch bereits<br />

beträcht liche Rückbaumassen angefallen.<br />

p Die sog. Moratoriumsanlagen:<br />

acht Kernkraftwerke, die nach dem<br />

Reaktorunfall von Fukushima im<br />

März 2011 zunächst vorübergehend<br />

und dann, ohne noch einmal<br />

in Betrieb gegangen zu sein, aufgrund<br />

der 13. AtG-Novelle vom<br />

31. Juli 2011 endgültig stillgelegt<br />

wurden. Nach dieser plötzlichen<br />

Stilllegung mussten erst einmal<br />

Anträge auf Stilllegungs- und<br />

Abbaugenehmigungen vorbereitet<br />

und gestellt und von den Behörden<br />

bewältigt werden; die entsprechenden<br />

Genehmigungen wurden<br />

deshalb erst 2017/2018 erteilt;<br />

eine Geneh migung (Krümmel)<br />

steht noch aus. Daraus erklärt sich,<br />

dass der Rückbau dieser Anlagen<br />

erst in der Anfangsphase ist.<br />

p Die restlichen neun Kernkraftwerke,<br />

die spätestens zu den in<br />

der 13. AtG-Novelle festgesetzten<br />

Terminen (beginnend mit Grafenrheinfeld<br />

2015) abgeschaltet werden<br />

mussten bzw. noch müssen<br />

(Endtermin für die letzten Anlagen<br />

2022).<br />

Wie bereits erwähnt, erfolgt der<br />

eigentliche Abriss der wesentlichen<br />

Baustrukturen erst etwa anderthalb<br />

Jahrzehnte nach Erteilung der Genehmigung.<br />

Aus der Übersicht folgt<br />

daher, dass zwar bereits jetzt Rückbaumassen<br />

zur Entsorgung angefallen<br />

sind und laufend und mit steigender<br />

Tendenz anfallen, dass aber die<br />

wesent lichen Stoffströme aus dem<br />

Rückbau, insbesondere aus dem Abriss<br />

der Gebäude, erst bevorstehen<br />

und im weiteren Verlauf der 2020er<br />

und in den 2030er Jahren bewältigt<br />

werden müssen.<br />

3 Welche Rückbaumassen<br />

fallen an?<br />

Unter Verwendung der zu einzelnen<br />

Kraftwerken von den Betreibern oder<br />

Aufsichtsbehörden veröffentlichten<br />

Zahlen, die einer teils unterschiedlichen<br />

Systematik folgen, können für<br />

3 Erstes und bislang einziges Beispiel für die 2011 stillgelegten Moratoriumsanlagen ist die Zweite Abbaugenehmigung für das Kernkraftwerk Neckarwestheim, Block I<br />

(GKN I) der EnBW Kernkraft GmbH (EnKK) vom 12.12.2019; https://um.baden-wuerttemberg.de/de/umwelt-natur/kernenergie-und-radioaktivitaet/dokumente/<br />

genehmigungsverfahren/gkn/.<br />

4 Siehe etwa den Antrag vom 18. Juli 2016 für das Kernkraftwerk Neckarwestheim II; https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/<br />

Dokumente/3_Umwelt/Kernenergie/Genehmigungsverfahren/GKN/GKN_2/160718_Genehmigungsantrag_SAG_GKN-II.pdf.<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities – A Legal Inventory ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

die Zwecke dieses Aufsatzes die<br />

folgenden groben Mengenangaben<br />

gemacht werden.<br />

Die verfügbaren Angaben zur<br />

Gesamtmasse eines Kernkraftwerks<br />

liegen zwischen 300.000 t (Brunsbüttel<br />

5 ) und 675.000 t (Unterweser 6 ).<br />

Ältere und kleinere Anlagen haben<br />

naturgemäß kleinere Massen als<br />

jüngere und leistungsstärkere (elektrische<br />

Leistung Brunsbüttel ca.<br />

800 MW, Unterweser ca. 1.345 MW).<br />

Von dieser Gesamtmasse entfallen<br />

etwa ein Drittel bis 40 % (bei Siedewasserreaktoren<br />

wie Brunsbüttel)<br />

bzw. etwa 60 % oder sogar mehr (bei<br />

Druckwasserreaktoren wie Unterweser)<br />

auf den „nichtnuklearen“ Anlagenteil,<br />

also den Teil, der keinen<br />

Kontrollbereich darstellt und bei dem<br />

die Komponenten und Gebäude in der<br />

Regel dem Verfahren der Herausgabe<br />

unterliegen und somit ohne Einschränkungen<br />

der Kreislaufwirtschaft<br />

zugeführt werden (siehe unten).<br />

Für die Massen aus dem Kontrollbereich<br />

dagegen gilt:<br />

p 2-3 % (also 1-2 % der Gesamt masse<br />

des Kernkraftwerks) müssen als<br />

radioaktive Abfälle entsorgt werden<br />

(in absoluten Zahlen etwa beim<br />

Kernkraftwerk Unterweser: 4.200 t<br />

von insgesamt 193.000 Gesamtmasse<br />

Kontrollbereich).<br />

p Etwa 90 % (Unterweser: 176.900 t)<br />

sind Gebäudestrukturen, die nach<br />

(spezifischer) Freigabe abgerissen<br />

werden; der Bauschutt kann uneingeschränkt<br />

entsorgt werden.<br />

p Die verbleibenden etwa 6-8 %<br />

(Unterweser: 11.900 t) werden<br />

einer uneingeschränkten Freigabe<br />

oder einer spezifischen Freigabe<br />

(etwa zur Deponierung) zugeführt.<br />

Im Ergebnis werden also 98 bis 99 %<br />

der Rückbaumassen letztlich einer<br />

konventionellen Entsorgung (Verwertung<br />

oder Beseitigung) zugeführt,<br />

nachdem sie durch Herausgabe oder<br />

Freigabe aus dem Atomrecht entlassen<br />

wurden. Je nach Art dieser Entlassung<br />

(vor allem bei spezifischer<br />

Freigabe und Freigabe im Einzelfall)<br />

gibt es – gleichsam als „Vermächtnis“<br />

des Atomrechts für die Reststoffe – bestimmte<br />

Vorgaben für die Entsorgung;<br />

das trifft aber letztlich auch nur auf<br />

einen geringeren Teil der Stoffe zu.<br />

Ansonsten greift das Kreislaufwirtschaftsrecht.<br />

Das soll nunmehr im<br />

Einzelnen dargestellt werden.<br />

III<br />

Rechtliche Vorgaben<br />

1 Atom- und Strahlenschutzrecht<br />

Nach den Vorgaben des Atom- und<br />

Strahlenschutzrechts werden die<br />

Weichen für die Entsorgung der beim<br />

Rückbau anfallenden Reststoffe gestellt.<br />

a) Überblick<br />

Ein kleiner Teil der beim Rückbau anfallenden<br />

Stoffe muss den Vorgaben<br />

des § 9a AtG entsprechend als radioaktiver<br />

Abfall entsorgt werden. Das<br />

Atomrecht verlangt, dass radioaktive<br />

Abfälle konditioniert (bearbeitet und<br />

verpackt) und zwischengelagert<br />

werden, bis sie an ein Bundesendlager<br />

abgeliefert werden. Das hierfür – es<br />

handelt sich hier um schwach- bis<br />

höchstens mittelaktive Abfälle – vorgesehene<br />

Endlager ist das Endlager<br />

Schacht Konrad, das sich in der<br />

Errichtungsphase befindet und angabegemäß<br />

2027 in Betrieb gehen<br />

soll. Für die Zwischenlagerung übergeben<br />

die Kernkraftwerksbetreiber im<br />

Normal fall die konditionierten Abfälle<br />

an die bundeseigene BGZ ( Gesellschaft<br />

für Zwischenlagerung mbH), die<br />

die Standort-Zwischen lager von den<br />

Betreibern über nommen hat (siehe<br />

dazu §§ 2 und 3 Entsorgungsübergangsgesetz).<br />

Der Weg der radioaktiven<br />

Abfälle ist somit klar vorgezeichnet<br />

und findet komplett außerhalb<br />

der konventio nellen Kreislaufwirtschaft<br />

statt. Er wird in diesem<br />

Aufsatz nicht weiter behandelt.<br />

Die allermeisten beim Rückbau<br />

anfallenden Reststoffe werden, wie<br />

oben dargestellt, aus der atomrechtlichen<br />

Überwachung entlassen. Sofern<br />

sie nicht (ausnahmsweise) wiederverwendet<br />

werden, werden sie<br />

einer „konventionellen“ Entsorgung<br />

nach dem Kreislaufwirtschaftsrecht<br />

zugeführt.<br />

Die Instrumente zur Entlassung<br />

von Stoffen aus der atomrechtlichen<br />

Überwachung sind die Herausgabe<br />

und die Freigabe.<br />

b) Herausgabe<br />

Die Herausgabe ist im Stilllegungsleitfaden<br />

von 2016 geregelt. 7<br />

Sie<br />

betrifft diejenigen Bereiche der<br />

Anlage und des Anlagengeländes,<br />

die nicht zum Kontrollbereich (vgl.<br />

§ 52 Abs. 2 StrlSchV) gehörten bzw.<br />

gehören, also – grob gesagt – nicht<br />

zu dem Teil der Anlage, in dem die<br />

Kernspaltung stattfand oder der mit<br />

radioaktiven Stoffen in Berührung<br />

gekommen ist. Das betrifft (wie<br />

oben erwähnt) etwa 40-60 % der<br />

Gesamtanlage; der Bereich umfasst<br />

etwa Verwaltungs gebäude, die<br />

Kantine, das In<strong>for</strong>mationszentrum,<br />

Hilfsgebäude, den Generator, bei<br />

Druckwasserreaktoren auch das<br />

Maschinenhaus mit Turbine. Aufgrund<br />

der fehlenden Berührung mit<br />

radioaktiven Stoffen, die mit dem<br />

Reaktorbetrieb zu tun hatten, und<br />

aufgrund des Umstandes, dass sie<br />

keiner relevanten Direktstrahlung aus<br />

dem Reaktor ausgesetzt waren,<br />

können diese Anlagenteile und Gebäude<br />

von vornherein nicht dadurch<br />

aktiviert oder kontaminiert sein und<br />

es wäre sinnlos, für diese Rückbaumassen<br />

eine Freimessung jeder<br />

anfallenden Reststoffcharge durchzuführen.<br />

Voraussetzung ist aber, dass der<br />

Betreiber diesen „unberührten“ Status<br />

nachweist, indem er die Betriebshistorie<br />

der betroffenen Bereiche<br />

lückenlos darlegt und diese Darlegung<br />

mit Beweissicherungsmessungen<br />

unterfüttert. Dabei spielt auch die<br />

Abgrenzung von nicht reaktorbedingten<br />

und nicht der behördlichen<br />

Kontrolle unterliegenden Kontaminationen<br />

aus dem Fallout von Atomwaffenversuchen<br />

oder dem Reaktorunfall<br />

von Tschernobyl eine Rolle. 8<br />

Das Verfahren ist im Detail nicht im<br />

Regelwerk festgelegt; es wird von der<br />

Behörde in einem Bescheid (meist in<br />

einer SAG) konkret festgelegt. 9<br />

Die<br />

Behördenpraxis ist hinsichtlich der<br />

Kontroll- und An<strong>for</strong>derungsdichte<br />

dabei offenbar nicht einheitlich.<br />

Nach Durchführung des jeweils<br />

bestimmten Verfahrens für einzelne<br />

Anlagenbereiche endet die atomrechtliche<br />

Aufsicht, ohne dass es einer<br />

Freigabe bedarf. 10<br />

ENERGY POLICY, ECONOMY AND LAW 209<br />

5 Vattenfall Europe <strong>Nuclear</strong> Energy GmbH, Kurzbeschreibung für den Abbau des KKB, S. 19; https://www.schleswig-holstein.de/DE/Fachinhalte/A/atomausstieg/<br />

Downloads/kurzbeschreibungStilllegungAbbau.html.<br />

6 https://www.preussenelektra.de/content/dam/revu-global/preussenelektra/documents/UnsereKraftwerke/Unterweser/unsere_kraftwerkeunterweserkkuinfotagposter.pdf.<br />

7 Leitfaden zur Stilllegung, zum sicheren Einschluss und zum Abbau von Anlagen oder Anlagenteilen nach § 7 des Atomgesetzes vom 23. Juni 2016, BAnz AT<br />

19.07.2016 B7, Ziff. 6.4.<br />

8 Entsorgungskommission (ESK), Freigabe radioaktiver Stoffe und Herausgabe nicht radioaktiver Stoffe aus dem Abbau von Kernkraftwerken, In<strong>for</strong>mationspapier vom<br />

16.07.2018, Langfassung, S. 18; http://www.entsorgungskommission.de/sites/default/files/reports/In<strong>for</strong>mationspapier_ESK67_16072018_hp.pdf.<br />

9 Dazu Niehaus, Entlassung von Gegenständen aus der atomrechtlichen Überwachung bei Kernkraftwerken, in: Burgi (Hrsg.), 15. Deutsches Atomrechtssymposium,<br />

2019, S. 247 (257).<br />

10 Stilllegungsleitfaden (Fn. 7), Ziff. 6.4, S. 15.<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities – A Legal Inventory ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 210<br />

c) Freigabe<br />

aa) Grundlagen<br />

Bei Reststoffen, die beim Rückbau<br />

eines Kontrollbereichs anfallen, wird<br />

im Grundsatz angenommen, dass sie<br />

kontaminiert oder aktiviert sein<br />

können (vgl. § 31 Abs. 1 StrlSchV); sie<br />

werden daher zunächst als radioaktive<br />

Stoffe im Rechtssinne (§ 2 AtG,<br />

§ 3 StrlSchG) behandelt. Bei einem<br />

Teil dieser Reststoffe bleibt das auch<br />

so: sie müssen aufgrund ihrer Aktivität<br />

als radioaktiver Abfall gem. § 9a<br />

AtG entsorgt werden (siehe oben).<br />

Diejenigen Reststoffe aus dem Kontrollbereich,<br />

die tatsächlich nicht oder<br />

nicht in relevantem Maße aktiviert<br />

oder kontaminiert sind oder bei denen<br />

eine vorhandene Kontamination entfernt<br />

oder auf ein unbeachtliches<br />

Niveau reduziert wurde, können dagegen<br />

aus dem Atomrecht entlassen<br />

werden. Das Instrument hierfür ist die<br />

Freigabe.<br />

Das System der Freigabe und die<br />

Festlegung der Freigabewerte beruht<br />

auf dem international anerkannten<br />

Zehn-Mikrosievert-Konzept. Durch<br />

die Entlassung einer Reststoffgruppe<br />

aus der atomrechtlichen Überwachung<br />

und ihren anschließenden<br />

Weg außerhalb des Atomrechts darf<br />

für Einzelpersonen der Bevölkerung<br />

höchstens eine Jahresdosis im Bereich<br />

von zehn Mikrosievert auftreten;<br />

dieses Dosiskriterium ist in § 31 Abs. 2<br />

StrlSchV festgeschrieben. Jeder<br />

Mensch in Deutschland ist einer<br />

natürlichen Strahlenbelastung von<br />

durchschnittlich gut zwei Millisievert<br />

(also gut zweitausend Mikrosievert)<br />

ausgesetzt, wobei dieser Wert abhängig<br />

von Faktoren wie Wohnort,<br />

Beruf, Anzahl der Flugreisen etc.<br />

individuell schwankt, ohne dass dies<br />

Anlass zu Bedenken gibt. 11 Vor diesem<br />

Hintergrund wird die Größenordnung<br />

von zehn Mikrosievert vom Verordnungsgeber<br />

zu Recht als vernachlässigbar<br />

eingestuft, als ein Wert, der<br />

eine strahlenschutzrechtliche Überwachung<br />

nicht mehr rechtfertigt. 12<br />

Wenn die Aktivität eines Reststoffes<br />

nicht zu einer Überschreitung dieses<br />

Dosiskriteriums führt, kann die Aktivität<br />

im Rechtssinne „außer Acht<br />

gelassen“ werden und es handelt sich<br />

nicht (mehr) um einen radioaktiven<br />

Stoff (§ 2 Abs. 1 S. 1 i.V.m. Abs. 2 S. 1<br />

AtG; gleichlautend § 3 Abs. 1 S. 1 und<br />

Abs. 2 S. 1 StrlSchG).<br />

Die Freigabe ist im Einzelnen in<br />

§§ 31-42 StrlSchV geregelt. Rechtlich<br />

gesehen ist die Freigabe der<br />

Verwaltungsakt (der Freigabebescheid,<br />

vgl. § 33 Abs. 2 StrlSchV), in<br />

dem die Behörde die Freigabewerte<br />

(die allerdings weitgehend in Anlage<br />

4 der StrlSchV vorgegeben sind) und<br />

Details zum Verfahren für den Betreiber<br />

verbindlich festschreibt. Dabei<br />

geht es im Freigabebescheid in der<br />

Regel nicht darum, eine konkrete<br />

Reststoffcharge freizugeben. Der Freigabebescheid<br />

trifft vielmehr eine<br />

abstrakte Regelung, anhand derer<br />

dann die einzelnen Reststoffchargen<br />

vom Betreiber „freigemessen“ werden.<br />

Die „Freimessung“ ist der Vollzug<br />

der Freigabe, bezogen auf die jeweilige<br />

Reststoffcharge.<br />

Die Wirkung der Freigabe – die Entlassung<br />

der Reststoffe aus dem Atomrecht<br />

– tritt nach dem Grundkonzept<br />

der StrlSchV, wie es aus § 42 Abs. 1<br />

und 2 StrlSchV hervorgeht, dann ein,<br />

wenn der Genehmigungs inhaber, also<br />

der Strahlenschutzverantwortliche –<br />

in der Praxis vertreten durch den<br />

Strahlenschutzbeauf tragten – eigenverantwortlich<br />

die Übereinstimmung<br />

der Freimessung mit dem Inhalt des<br />

Freigabebe scheides feststellt, ggf.<br />

unter Aufsicht des behördlich bestellten<br />

Sachverständigen, und diese Feststellung<br />

dokumentiert. Allerdings ist<br />

in den Freigabebescheiden oft in einer<br />

Nebenbestimmung festgehalten, dass<br />

die Behörde erst eine Bestätigung für<br />

jede Freimesskampagne erteilen muss,<br />

damit diese Wirkung eintritt. Die Möglichkeit<br />

einer solchen aufschiebenden<br />

Bedingung ist jetzt in § 33 Abs. 3<br />

StrlSchV ausdrücklich klargestellt.<br />

Die Behörde muss aber eine solche<br />

Bestimmung nicht aufnehmen.<br />

Die StrlSchV unterscheidet drei<br />

Arten der Freigabe: die uneingeschränkte<br />

Freigabe, die spezifische<br />

Freigabe und die Freigabe im Einzelfall.<br />

bb) Uneingeschränkte Freigabe<br />

Nach einer uneingeschränkten Freigabe<br />

(§ 35 StrlSchV) – die entsprechenden<br />

Freigabewerte sind für<br />

die einzelnen Nuklide in Anlage 4<br />

Tabelle 1 Spalte 3 StrlSchV enthalten<br />

– dürfen die Reststoffe frei verwendet<br />

werden; Vorgaben und Restriktionen<br />

ergeben sich dann nur noch aus dem<br />

Kreislaufwirtschaftsrecht (etwa Vorrang<br />

der Verwertung vor der Beseitigung<br />

oder bestimmte An<strong>for</strong>derungen<br />

an Abfälle, die schädliche Stoffe wie<br />

PCB oder Asbest enthalten).<br />

cc) Spezifische Freigabe<br />

Eine spezifische Freigabe (§ 36<br />

StrlSchV) ist nach der Systematik der<br />

StrlSchV vorgesehen für Stoffe, die<br />

bestimmte Eigenschaften aufweisen<br />

oder einer bestimmten Verwertung<br />

oder Beseitigung zugeführt werden<br />

sollen. Die Freigabewerte sind in<br />

Anlage 4 Tabelle 1 StrlSchV nach den<br />

verschiedenen in § 36 StrlSchV aufgeführten<br />

Konstellationen enthalten.<br />

Sie sind in der Regel höher (also<br />

weniger anspruchsvoll) als bei der<br />

uneingeschränkten Freigabe, weil der<br />

generelle Nachweis für die Einhaltung<br />

des Dosiskriteriums eben nicht abdeckend<br />

für alle denkbaren Stoffe und<br />

Weiterverwendungen geführt werden<br />

muss, sondern nur für bestimmte<br />

Stoffe und meist einen bestimmten<br />

Entsorgungsweg.<br />

Für den Rückbau von Gebäuden<br />

und den dabei entstehenden Bauschutt<br />

gibt es drei relevante Arten der<br />

spezifischen Freigabe.<br />

p Freigabe von Gebäuden zum Abriss<br />

(§ 36 Abs. 1 Nr. 6 StrlSchV). Hier<br />

erfolgt die Freimessung an der<br />

stehenden Struktur. Nach Vollzug<br />

der Frei gabe wird das Gebäude<br />

konventionell abgerissen, für den<br />

Bauschutt gibt es keine Vorgaben<br />

mehr aus dem Strahlenschutzrecht.<br />

p Freigabe von Bauschutt bei einer<br />

zu erwartenden Masse von mehr<br />

als 1.000 t im Jahr (§ 36 Abs. 1<br />

Nr. 1 StrlSchV). Wie sich aus<br />

Anlage 8 Teil F StrlSchV ergibt, ist<br />

diese Freigabeoption subsidiär: sie<br />

gilt für Bauschutt aus Abriss nur,<br />

wenn die Voraus setzungen für eine<br />

Freimessung an der stehenden<br />

Struktur nicht erfüllt sind.<br />

p Freigabe von festen Stoffen zur<br />

Beseitigung auf Deponien (§ 36<br />

Abs. 1 Nr. 3 StrlSchV). Dies ist eine<br />

von mehreren Fällen der spezifischen<br />

Freigabe, in denen die Freigabe<br />

davon abhängig ist, dass ein<br />

bestimmter Entsorgungsweg (hier:<br />

die Deponierung) gewählt wird<br />

und bestimmten An <strong>for</strong>derungen<br />

genügt. Die besonderen An<strong>for</strong>derungen<br />

an Deponien enthält<br />

Anlage 8 Teil C Ziff. 3 StrlSchV. Es<br />

sind zwei: die Deponie muss den<br />

Deponieklassen I, II, III oder IV der<br />

Deponieverordnung entsprechen<br />

und eine Jahreskapazität von mindestens<br />

10.000 t oder 7.600 m 3 für<br />

die eingelagerte Menge von<br />

Abfällen, gemittelt über die letzten<br />

drei Jahre, aufweisen.<br />

Sofern ein bestimmter Entsorgungsweg<br />

vorgegeben ist, hat das<br />

Auswirkungen auf die Schnittstelle<br />

11 Dazu etwa ESK (Fn. 8), S. 2 f.<br />

12 Siehe die amtliche Begründung zur Strahlenschutzverordnung, BR-Drs. 423/18 vom 05.09.2018, S. 363.<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities – A Legal Inventory ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

zum konventionellen Abfallrecht<br />

( dazu siehe unten).<br />

dd) Freigabe im Einzelfall<br />

Die Freigabewerte für die uneingeschränkte<br />

und für die spezifische<br />

Freigabe sind für fast alle relevanten<br />

Nuklide in Anlage 4 StrlSchV festgelegt;<br />

sie beruhen auf abstraktgenerellen<br />

Berechnungen, die abdeckend<br />

für alle jeweils in Frage<br />

kommenden Varianten der Weiterverwendung,<br />

Verwertung oder Beseitigung<br />

angestellt wurden. In Fällen, in<br />

denen diese generellen Vorgaben<br />

nicht greifen (etwa weil ein bestimmter<br />

Entsorgungsweg bei der spezifischen<br />

Freigabe nicht berücksichtigt<br />

wurde oder weil für ein bestimmtes<br />

Radionuklid kein Freigabewert festgelegt<br />

wurde), kann der Betreiber die<br />

Freigabe im Einzelfall (§ 37 StrlSchV)<br />

beantragen. Hier muss er durch eine<br />

auf die spezielle Situation bezogene<br />

Berechnung darlegen, dass für die<br />

betroffenen Reststoffe das Dosiskriterium<br />

„im Bereich von 10 Mikrosievert<br />

im Kalenderjahr“ aus § 31<br />

Abs. 2 StrlSchV entweder für alle<br />

möglichen künftigen Nutzungen, Verwendungen<br />

etc. eingehalten ist (das<br />

ist die ausdrücklich in § 32 Abs. 4<br />

StrlSchV geregelte Freigabe im Einzelfall<br />

als uneingeschränkte Freigabe)<br />

oder dass das Dosiskriterium – analog<br />

zur spezifischen Freigabe – bei einem<br />

konkret vorgesehenen Verwertungsoder<br />

Beseitigungsweg eingehalten<br />

wird.<br />

Für Bauschutt aus Kernkraftwerken<br />

könnte die Freigabe im Einzelfall<br />

etwa relevant werden, wenn<br />

die Einlagerung auf einer Deponie<br />

geplant wird, die die Voraussetzungen<br />

in Anlage 8 Teil C StrlSchV nicht<br />

erfüllt, oder wenn der Bauschutt als<br />

Bergversatz (siehe unten) verwendet<br />

werden soll.<br />

2 Schnittstelle von Atomrecht<br />

und Kreislaufwirtschaftsrecht<br />

Wie bereits dargestellt, richtet sich die<br />

Entsorgung (Verwertung oder Beseitigung)<br />

von Reststoffen, die durch Herausgabe<br />

oder Freigabe aus dem Atomrecht<br />

entlassen wurden, nach dem<br />

Kreislaufwirtschaftsgesetz (KrWG).<br />

Das ist im Prinzip klar und einfach.<br />

Höchst interessante und durchaus<br />

praxisrelevante Rechtsfragen ergeben<br />

sich aber für Fälle der spezifischen<br />

Freigabe aus dem Umstand, dass die<br />

betreffenden Stoffe und Gegenstände<br />

einerseits freigegeben und damit aus<br />

dem Atomrecht entlassen sind, dass<br />

das Atomrecht ihnen andererseits<br />

aber noch gleichsam ein „Vermächtnis“,<br />

nämlich die Bestimmung für eine<br />

spezifische Entsorgungsart, in ihr neues<br />

Dasein unter dem Kreislaufwirtschaftsrecht<br />

„mitgegeben“ hat.<br />

Hierfür trifft § 11 Abs. 3 AtG (die<br />

Norm ist in § 68 Abs. 2 StrlSchG im<br />

Wesentlichen wörtlich aufgegriffen)<br />

eine Regelung. Er bestimmt für die<br />

Fälle, in denen – wie hier – die Freigabe<br />

eine Beseitigung der betreffenden<br />

Stoffe nach den Vorschriften des<br />

KrWG vorsieht, dass die Stoffe nach<br />

dem KrWG nicht wieder verwendet<br />

oder verwertet werden dürfen. Hintergrund<br />

ist, dass das KrWG zwischen<br />

Abfällen zur Verwertung und Abfällen<br />

zur Beseitigung unterscheidet und der<br />

Verwertung grundsätzlich den Vorrang<br />

einräumt (§ 7 Abs. 2 KrWG). 13<br />

Diese Bewertung und Vorrangregelung<br />

darf natürlich dann nicht vorgenommen<br />

werden, wenn Stoffe vom<br />

Atomrecht ans Kreislaufwirtschaftsrecht<br />

mit der – strahlenschutzrechtlich<br />

begründeten – Maßgabe übergeben<br />

werden, sie auf einem bestimmten<br />

Wege zu entsorgen. Das Kreislaufwirtschaftsrecht<br />

muss sich dann an<br />

diese Vorgabe halten.<br />

Auch § 40 StrlSchV regelt die<br />

Schnittstelle zwischen Strahlenschutzrecht<br />

und Abfallrecht bei der<br />

spezifischen Freigabe, die auf ein bestimmtes<br />

Entsorgungsziel gerichtet<br />

ist. Hiernach dürfen bei der nach<br />

StrlSchV zuständigen Behörde keine<br />

Bedenken hinsichtlich der abfallrechtlichen<br />

Zulässigkeit des vorgesehenen<br />

Verwertungs- oder Beseitigungsweges<br />

bestehen; die abfallrechtlich für die<br />

jeweils vorgesehene Verwertungsoder<br />

Beseitigungsanlage zuständige<br />

Behörde ist zu in<strong>for</strong>mieren und kann<br />

sich in das Verfahren einschalten.<br />

Interessant und vieldiskutiert ist<br />

der denkbare Fall, dass Reststoffe<br />

zwar im Einklang mit diesen Vorschriften<br />

spezifisch freigegeben wurden,<br />

aber dann aufgrund des Eintritts<br />

außergewöhnlicher Umstände ihr<br />

Entsorgungsziel nicht erreichen. Das<br />

wäre zum Beispiel der Fall, wenn Bauschutt<br />

zur Deponierung freigegeben<br />

wurde, die betreffende Deponie aber<br />

kurzfristig geschlossen wird oder den<br />

Bauschutt doch nicht annimmt. Die<br />

neue Regelung in § 33 Abs. 4 StrlSchV,<br />

wonach der Freigabebescheid (unter<br />

anderem) mit einem Widerrufs- oder<br />

Auflagenvorbehalt versehen werden<br />

kann, beruht auf solchen Überlegungen.<br />

Das geht aus der Begründung zur<br />

StrlSchV hervor: wenn sich herausstelle,<br />

dass die „Freigabe nicht erfolgreich<br />

durchgeführt werden“ könne,<br />

müssten die freigegebenen Stoffe wieder<br />

der atom- und strahlenschutzrechtlichen<br />

Aufsicht unterworfen<br />

werden. 14 Das soll durch den Widerrufsvorbehalt<br />

ermöglicht werden.<br />

Richtig ist, dass sich die Stoffe nach<br />

der Freigabe und vor dem Erreichen<br />

des Entsorgungszieles in einer Art<br />

Zwischenzustand befinden, in dem sie<br />

das oben schon erwähnte atomrechtliche<br />

„Vermächtnis“ eines definierten<br />

Entsorgungszieles mit sich tragen, das<br />

aber nicht aus dem – jetzt eigentlich<br />

anwendbaren – Kreislaufwirtschaftsrecht<br />

stammt und dort nicht durchgesetzt<br />

werden kann. Dieses Grundsatzproblem<br />

wird durch eine mit dem neuen<br />

Strahlenschutzrecht eingeführte<br />

Änderung beim System der Freigabewerte<br />

noch stärker betont: das bisherige<br />

Prinzip der „Deckelung“, wonach<br />

die Werte der (nach der alten StrlSchV)<br />

zielgerichteten Freigabe niemals<br />

höher waren als die Freigrenzen, ist<br />

ent fallen. Da nunmehr die Werte der<br />

uneingeschränkten Freigabe und die<br />

abgesenkten Frei grenzen identisch<br />

sind, können die gleichgebliebenen<br />

Werte für die spezifische Freigabe<br />

durchaus höher liegen als die Freigrenzen.<br />

15<br />

Der Bauschutt, der im<br />

obigen Beispiel nicht an die Deponie<br />

abgeliefert werden kann, könnte also<br />

theoretisch eine Aktivität aufweisen,<br />

die über der Freigrenze liegt. Auch aus<br />

diesem Grund ist eine „Verlängerung“<br />

der atomrechtlichen Aufsicht sinnvoll.<br />

16<br />

Ob der Widerruf der Freigabe in<br />

Fällen, in denen das Entsorgungsziel<br />

vereitelt wird, hierfür der richtige<br />

Ansatz ist, erscheint aber zweifelhaft:<br />

dadurch würden die Stoffe umgehend<br />

wieder zu radioaktiven Stoffen – mit<br />

allen (teils widersinnigen) Konsequenzen,<br />

die sich aus dieser „Zurückverwandlung“<br />

ergeben. 17<br />

Plausibler<br />

erscheint die Ansicht, dass hinsichtlich<br />

ENERGY POLICY, ECONOMY AND LAW 211<br />

13 Siehe die amtliche Begründung zu § 11 Abs. 3 AtG, der durch das Änderungsgesetz vom 3. Mai 2000 eingefügt wurde, BT-Drs. 14/2443, S. 12.<br />

14 BR-Drs. 423/18, S. 372.<br />

15 Zum Wegfall der „Deckelung“ siehe die amtliche Begründung zur StrlSchV von 2018, BR-Drs. 423/18, S. 368 und S. 500.<br />

16 So Röller, Freigabe und Erfahrungen bei der Entsorgung freigegebener Stoffe, in: Feldmann/Raetzke/Ruttloff (Hrsg.), Atomrecht in Bewegung, 2019, S. 145 (153).<br />

17 Kritisch zu einer solchen mehrfachen Änderung des rechtlichen Status, die der Rechtssicherheit entgegenstehe, Schirra/Nüsser, Freigabe radioaktiver Stoffe – Rechtsund<br />

Vollzugsfragen aus Betreibersicht, in: Burgi (Hrsg.), 15. Deutsches Atomrechtssymposium, 2019, S. 265 (274 ff.), und Ulrike Feldmann, Das neue Strahlenschutzgesetz<br />

und die Freigabe: Alles neu macht der Mai, <strong>atw</strong> 2018, S. 296 (298).<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities – A Legal Inventory ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 212<br />

des noch nicht erreichten Entsorgungszieles<br />

auch ohne ausdrückliche Ermächtigung<br />

eine weiterwirkende<br />

Anordnungsbefugnis der strahlenschutzrechtlich<br />

zuständigen Behörde<br />

besteht, obwohl es sich infolge der<br />

Freigabe nicht mehr um einen radioaktiven<br />

Stoff handelt. 18 Dies macht den<br />

Widerruf entbehrlich.<br />

In jedem Falle endet die Widerrufsmöglichkeit<br />

laut der Begründung<br />

zur Strahlenschutzverordnung dann,<br />

wenn „der notwendige Endpunkt der<br />

Entsorgung … erreicht ist“ 19 , wenn<br />

also etwa der Bauschutt in die Deponie<br />

eingebaut wurde.<br />

3 Kreislaufwirtschaftsrecht<br />

Nach Freigabe bzw. Herausgabe<br />

unterliegen die Rückbaumassen –<br />

unter Beachtung der soeben behandelten<br />

verbleibenden Maßgaben aus<br />

dem Atomrecht – in vollem Umfang<br />

dem Kreislaufwirtschaftsrecht.<br />

Das hat im Wesentlichen zwei<br />

Folgen. Zum einen muss der Kernkraftwerksbetreiber<br />

die Regelungen<br />

des Kreislaufwirtschaftsrechts beachten,<br />

etwa den Vorrang der Verwertung<br />

vor der Beseitigung, der bei uneingeschränkt<br />

freigegebenen Abfällen – anders<br />

als bei den auf einen bestimmten<br />

Beseitigungsweg festgelegten spezifisch<br />

freigegebenen Stoffen – voll<br />

greift. Enthalten die Abfälle konventionelle<br />

Schadstoffe wie Asbest oder<br />

PCB, sind die entsprechenden Vorgaben<br />

zur Entsorgung naturgemäß zu<br />

beachten, die die Entsorgungsmöglichkeiten<br />

ggf. einschränken.<br />

Zum anderen bedeutet die<br />

Anwendung des Kreislaufwirtschaftsrechts,<br />

dass die örtlich zuständigen<br />

öffentlich-rechtlichen Entsorgungsträger<br />

– also in der Regel die Landkreise<br />

– nach § 20 Abs. 1 KrWG<br />

verpflichtet sind, die Reststoffe als in<br />

ihrem Gebiet anfallende gewerbliche<br />

Abfälle zur Beseitigung anzunehmen<br />

und zu beseitigen. 20<br />

Dass die Entsorgungsträger<br />

dieser Verpflichtung<br />

gegenwärtig nicht vollständig nachkommen,<br />

steht auf einem anderen<br />

Blatt; das soll unten näher ausgeführt<br />

werden.<br />

4 Nutzung von Bauschutt<br />

im Bergversatz<br />

Als weitere Entsorgungsoption wird<br />

neuerdings die Verwertung von Bauschutt<br />

aus Kernkraftwerken zur Verfüllung<br />

von Bergwerken diskutiert. 21<br />

Der Bergversatz stellt nach § 6 Abs. 1<br />

Nr. 4 KrWG eine Abfallverwertung und<br />

keine Abfallbeseitigung dar; Rechtsgrundlage<br />

im Einzelnen ist die Versatzverordnung<br />

(VersatzV). Abfallrechtlich<br />

und bergrechtlich scheint – soweit der<br />

Verfasser das beurteilen kann – die entsprechende<br />

Nutzung von Bauschutt,<br />

der einen unter den Kriterien der genannten<br />

Rechtsgebiete offenbar eher<br />

„unproblematischen“ mineralischen<br />

Abfall darstellt, grundsätzlich möglich.<br />

Insofern stellt sich die Frage nach der<br />

Schnittstelle zum Strahlenschutzrecht.<br />

Eine solche Schnittstelle ist mit<br />

§ 37 Abs. 1 S. 3 StrlSchV nunmehr ausdrücklich<br />

vorhanden. Hiernach kann<br />

bei entsprechendem Nachweis der<br />

Einhaltung des Dosiskriteriums die<br />

Freigabe im Einzelfall auch erfolgen,<br />

„soweit die Freigabe zum Einsatz in<br />

einem Grubenbau nach § 1 Absatz 1<br />

der Versatzverordnung“ erfolgt. Diese<br />

Regelung wurde auf Vorschlag des<br />

Bundesrates in den Entwurf der neuen<br />

Strahlenschutzverordnung eingefügt.<br />

In der Begründung heißt es, „vor<br />

dem Hintergrund der bestehenden<br />

Dis kussion über Unklarheiten zur<br />

diesbezüglichen Rechtslage“ bedürfe<br />

es der Klarstellung, dass diese „zusätzliche<br />

Option“ zu den Entsorgungswegen<br />

der spezifischen Freigabe zulässig<br />

sei. Der Bundesrat führt weiter<br />

aus:<br />

„Die Verbringung in ein Versatzbergwerk<br />

untertage kann einen gleichwertigen<br />

Schutz wie die Verbringung auf<br />

eine Deponie bieten, zumal eine zusätzliche<br />

Abschirmung durch das Deckgebirge<br />

erfolgt. Da der dortige Einbau<br />

zur Sicherung von Hohlräumen erfolgt,<br />

ist dieser schon aus bergbaulicher Sicht<br />

abschließend und nicht reversibel.“ 22<br />

Der letzte Satz bezieht sich offenkundig<br />

auf die oben behandelte<br />

Forderung in § 11 Abs. 3 AtG und § 68<br />

Abs. 2 StrlSchG, wonach zur Beseitigung<br />

freigegebene Stoffe nicht unter<br />

dem Kreislaufwirtschaftsrecht wieder<br />

verwendet oder verwertet werden<br />

dürfen.<br />

Insofern ist die Freigabe im Einzelfall<br />

für die Verwertung von Bauschutt<br />

aus Kernkraftwerken in Versatzbergwerken<br />

grundsätzlich möglich, sofern<br />

die Einhaltung des Dosiskriteriums<br />

„im Bereich von zehn Mikrosievert pro<br />

Jahr“ gem. § 31 Abs. 2 StrlSchV nachgewiesen<br />

wird. 23<br />

Dabei spielt auch<br />

der Langzeitsicherheitsnachweis eine<br />

Rolle, den die VersV bei Salzbergwerken<br />

verlangt und der belegen<br />

muss, dass der Betrieb und die<br />

Nachbetriebsphase eines Bergwerks,<br />

in das Abfälle zur Verwertung eingebracht<br />

werden sollen, zu keiner<br />

18 So Niehaus (Fn. 9), S. 252 f.<br />

19 BR-Drs. 423/18, S. 372.<br />

20 So auch Schirra/Nüsser (Fn. 17), S. 276.<br />

21 Dazu eingehend – am Beispiel der Grube Teutschenthal in Sachsen-Anhalt – Schmidt/Versteyl, Bergversatz als langzeitsichere Alternative zur Deponierung von<br />

„ Stilllegungsabfällen“ und Rückbaumassen kerntechnischer Anlagen in der bergbaulichen Praxis, in: Thiel/Thomé-Kozmiensky/Pretz/Senk/Wotruba (Hrsg.),<br />

Mineralische Produkte und Nebenabfälle 6, 2019; https://www.vivis.de/2019/08/rueckbaumassen-kerntechnischer-anlagen-bergversatz-als-alternative-zuruebertaegigen-deponierung/6906.<br />

Einen entsprechenden Vortrag hielten die Verfasser auch auf der KONTEC 2018.<br />

22 BR-Drs. 423/18 (Beschluss), S. 5 f.<br />

23 So dezidiert auch Schmidt/Versteyl (Fn. 21), S. 589.<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities – A Legal Inventory ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

Beeinträchtigung der Biosphäre führen<br />

können (§ 2 Nr. 2, § 4 Abs. 3<br />

VersV). 24<br />

IV<br />

Umsetzung des<br />

Entsorgungskonzepts<br />

1 Einleitung<br />

Rein rechtlich ist die Entsorgung der<br />

Rückbaumassen aus Kernkraftwerken<br />

ausführlich und ausreichend geregelt,<br />

einschließlich der Pflicht der zuständigen<br />

Entsorgungsträger, bestimmte<br />

Abfälle aus Kernkraftwerken anzunehmen.<br />

Wie einleitend erwähnt, wird<br />

das auf Herausgabe und Freigabe fußende<br />

Entsorgungskonzept jedoch in<br />

Teilen der Medien, der Politik und der<br />

Bevölkerung kritisiert und in Frage<br />

gestellt; die Diskussion dreht sich meist<br />

um die Deponierung von Bauschutt<br />

aus Kernkraftwerken. Gegner, die der<br />

Freigabe und kon ventionellen Entsorgung<br />

grund sätzlich ablehnend gegenüberstehen,<br />

<strong>for</strong>dern den gesicherten<br />

Verbleib der Rückbaumassen auf dem<br />

Anlagengelände („Bunker“) oder die<br />

Errichtung eines „Endlagers“. Kommunale<br />

Träger von Deponien lehnen teilweise<br />

die Annahme von Bauschutt aus<br />

kerntechnischen Anlagen ab.<br />

2 Vorgehen in einzelnen<br />

Bundesländern<br />

Einige Bundesländer haben deshalb<br />

Initiativen ergriffen, um der Bevölkerung<br />

die Unbedenklichkeit der<br />

konventionellen Entsorgung herausgegebener<br />

oder freigegebener<br />

Reststoffe aus dem Rückbau von<br />

Kernkraftwerken zu erläutern und<br />

ggf. durch Zusatzmaßnahmen eine<br />

größere Akzeptanz herzustellen.<br />

a) Baden-Württemberg<br />

In Baden-Württemberg wurde 2015<br />

eine „Handlungsanleitung zur Entsorgung<br />

von freigemessenen Abfällen<br />

auf Deponien in Baden-Württemberg“<br />

veröffentlicht. 25<br />

Sie entstand unter<br />

der Federführung des Landkreistags<br />

Baden-Württemberg und des Städtetags<br />

Baden-Württemberg unter Mitwirkung<br />

des Umweltministeriums.<br />

Das Papier bezieht sich auf die<br />

Entsorgung aller Abfälle, die gemäß<br />

Anlage III Tabelle 1 Spalte 9a bzw.<br />

Spalte 9c der (damaligen) Strahlenschutzverordnung<br />

für die Beseitigung<br />

auf Deponien freigegeben sind (S. 4),<br />

also auf die Deponierung fester Stoffe<br />

bis zu 100 bzw. 1.000 Tonnen pro Jahr<br />

(das entspricht Spalten 8 und 10 in Anlage<br />

4 Tabelle 1 der heutigen StrlSchV).<br />

Es stellt ausdrücklich fest, dass die entsorgungspflichtigen<br />

Deponiebetreiber<br />

in Baden-Württemberg gesetzlich verpflichtet<br />

sind, zur Beseitigung freigegebene<br />

Abfälle auf den Deponien anzunehmen<br />

und abzulagern (S. 2). Dennoch<br />

wird zur „ Gewährleistung einer<br />

unabhängigen zusätzlichen vollständigen<br />

Kontrolle“ (S. 5) in der Handlungsanleitung<br />

ein Verfahren festgelegt, das<br />

über die An<strong>for</strong>derungen der StrlSchV<br />

hinausgeht. Das Papier verzichtet auf<br />

eine ausdrückliche rechtliche Einordnung<br />

dieser Maßnahmen, referiert<br />

aber die (zutreffende) Rechtsansicht<br />

der Kernanlagenbetreiber, dass es sich<br />

um „rechtlich nicht zwingende Erweiterungen“<br />

handele, die aber<br />

freiwillig mitgetragen würden. Die<br />

hauptsäch lichen Zusatzelemente sind:<br />

p Die Freimessung wird vom<br />

Sachverständigen der atomrechtlichen<br />

Aufsichtsbehörde nach § 20<br />

AtG nicht mehr nur stichprobenartig,<br />

sondern vollständig überprüft.<br />

p Der Sachverständige verplombt<br />

nach der Freimessung sowohl den<br />

Behälter als auch den Ladungsträger<br />

für den Transport.<br />

p Die Deponiebetreiber erhalten vom<br />

Betreiber der kerntechnischen<br />

Anlage die Möglichkeit, sich von<br />

der Durchführung der o.g. Maßnahmen<br />

zu überzeugen; sie<br />

können einen eigenen Sachverständigen<br />

mit stichprobenartigen<br />

Prüfungen beauftragen.<br />

p Weitere Maßgaben betreffen die<br />

Protokollierung und Dokumentation<br />

der o.g. Maßnahmen und<br />

das tatsächliche Vorgehen bei<br />

Anlieferung und Einbau in den<br />

Deponien (Bündelung der Anlieferung<br />

an wenigen Tagen,<br />

Einbau auf einer kleinräumigen<br />

Fläche, zeitnahe Abdeckung).<br />

In einem zeitlichen und inhaltlichen<br />

Zusammenhang mit der Handlungsanleitung<br />

stand ein Gutachten,<br />

das die Abfallwirtschaftsgesellschaft<br />

des Neckar-Odenwald-Kreises mbH<br />

(AWN) beim Öko-Institut in Darmstadt<br />

in Auftrag gab; es ging um die<br />

Bewertung der Einlagerung von Bauschutt<br />

aus dem Kernkraftwerk Obrigheim<br />

in einer Deponie der AWN. 26<br />

Das Gutachten äußert sich verhalten<br />

positiv zum Zehn-Mikrosievert-<br />

Konzept (es begrenze mögliche<br />

Risiken für die Bevölkerung auf ein<br />

„sehr niedriges Niveau“) und hält die<br />

untersuchten Elemente des Entsorgungskonzepts,<br />

besonders auch<br />

unter Berücksichtigung der „Handlungsanleitung“,<br />

für belastbar.<br />

Das Ministerium stellte flankierend<br />

zahlreiche In<strong>for</strong>mationen zur Frei ga be<br />

bereit, unter anderem eine grafisch<br />

aufbereitete vergleichende Darstellung<br />

der durchschnittlichen Strahlenbelastung<br />

aus natürlichen bzw. zivilisatorischen<br />

Strahlenquellen in<br />

Deutschland und des Frei gabe-Dosiskrite<br />

riums von zehn Mikro sievert. 27<br />

Trotz dieser aufwendigen Vorarbeiten<br />

stellten sich Hemmnisse<br />

und Verzögerungen bei der Entsorgung<br />

ein. Bereits im Juni 2016<br />

verhängte das Umweltministerium<br />

ein Anlieferstopp auf Deponien für<br />

freigemessene Abfälle aus dem Rückbau<br />

kerntechnischer Anlagen. Zur<br />

Begründung führte es aus, die Frage<br />

der Nachnutzung von stillgelegten<br />

Deponien mit freigemessenen Abfällen<br />

sei bei Erlass der Strahlenschutzverordnung<br />

nicht ausreichend<br />

berücksichtigt worden, da es keine<br />

entsprechenden Berechnungen gegeben<br />

habe. 28<br />

Nachdem das Öko-<br />

Institut in einem vom Ministerium in<br />

Auftrag gegebenen Gutachten 29<br />

entsprechende<br />

Berechnungen nachgeholt<br />

und bestätigt hatte, dass für die<br />

in Frage kommenden Nachnutzungen<br />

(z. B. land- oder <strong>for</strong>stwirtschaftliche<br />

Nutzung, Wohnbebauung oder Verkehrsflächen)<br />

das Zehn-Mikrosievert-<br />

Konzept eingehalten werde, hob das<br />

Umweltministerium am 22.11.2016<br />

die Untersagung auf. 30<br />

ENERGY POLICY, ECONOMY AND LAW 213<br />

24 Näher zum Langzeitsicherheitsnachweis Schmidt/Versteyl (Fn. 21), S. 582 f.<br />

25 https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/3_Umwelt/Kernenergie/Freigaben_StrlSCHVO/Handlungsanleitung_<br />

Deponien_2015.pdf.<br />

26 Öko-Institut e.V. (Christian Küppers unter Mitarbeit von Mathias Steinhoff), Stellungnahme zu konzeptionellen Fragen der Freigabe zur Beseitigung auf einer Deponie<br />

bei Stilllegung und Abbau des Kernkraftwerks Obrigheim (KWO), 03.08.2015; https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/<br />

Dokumente/3_Umwelt/Kernenergie/Freigaben_StrlSCHVO/KWO/KWO_Deponie_bei_Stilllegung_und_Abbau.pdf.<br />

27 Die Grafik kann auf https://um.baden-wuerttemberg.de/de/umwelt-natur/kernenergie-und-radioaktivitaet/entsorgung/freigabe/de-minimis-konzept<br />

heruntergeladen werden.<br />

28 https://um.baden-wuerttemberg.de/de/service/presse/pressemitteilung/pid/gutachten-belegt-unbedenklichkeit-freigemessener-abfaelle/.<br />

29 Öko-Institut e.V. (Küppers/Claus/Ustohalova), Mögliche radiologische Folgen der Freigabe zur Beseitigung nach § 29 StrlSchV bei der Nachnutzung einer Deponie<br />

in der Nachsorgephase und in der Zeit nach der Entlassung aus der Nachsorge, Gutachten vom 15.11.2016; https://um.baden-wuerttemberg.de/fileadmin/<br />

redaktion/m-um/intern/Dateien/Dokumente/3_Umwelt/Kernenergie/Freigaben_StrlSCHVO/20161115_Nachnutzung_Deponie.pdf.<br />

30 Siehe Fn. 28.<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities – A Legal Inventory ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 214<br />

Kurz darauf, am 26.11.2016, verabschiedete<br />

die Vertreterversammlung<br />

der Landesärztekammer Baden-<br />

Württemberg eine Entschließung 31 , in<br />

der sie sich grundsätzlich gegen die<br />

Freigabe von Abfällen aus dem Rückbau<br />

kerntechnischer Anlagen aussprach<br />

und die Verwahrung auch des<br />

„gering strahlenden Mülls“ auf dem<br />

Gelände des jeweiligen Kraftwerks<br />

<strong>for</strong>derte. Die Entschließung argumentiert<br />

damit, dass es keinen Schwellenwert<br />

für die Unbedenklichkeit radioaktiver<br />

Strahlung gebe und dass die<br />

gesundheitlichen Folgen einer „Verteilung<br />

von AKW-Rest-Müll“ nicht<br />

geklärt seien. Eine Intervention des<br />

Umweltministers Untersteller führte<br />

am 15.01.2017 zu einer Pressemitteilung<br />

32 , in der der Präsident der<br />

Landesärztekammer gemeinsam mit<br />

dem Minister die Gültigkeit des Zehn-<br />

Mikrosievert-Konzepts bestätigte. Der<br />

Vorgang wiederholte sich dann auf<br />

Bundesebene: auf dem 120. Deutschen<br />

Ärztetag im Mai 2017 wurde<br />

eine Entschließung verabschiedet,<br />

die sich im Wortlaut weitgehend an<br />

der Erklärung der Landesärztekammer<br />

Baden-Württemberg orientiert. 33<br />

Nach einer erneuten Intervention von<br />

Minister Untersteller 34 teilte der<br />

Präsident der Bundesärztekammer<br />

mit Schreiben vom 08.12.2017 35 einen<br />

Vorstandsbeschluss mit, wonach die<br />

Entschließung des 120. Deutschen<br />

Ärztetages „nicht wissenschaftlich<br />

haltbar“ sei. Im selben Sinne äußerte<br />

sich auch der Fachverband für<br />

Strahlenschutz e.V. 36<br />

b) Schleswig-Holstein<br />

In Schleswig-Holstein legte der damalige<br />

Energiewendeminister Habeck<br />

im April 2016 den Entwurf einer<br />

Entsorgungsvereinbarung vor. 37 Nach<br />

diesem Entwurf sollten sich die nicht<br />

konkret genannten „Parteien“ der Vereinbarung<br />

– wohl das Ministerium,<br />

die Anlagenbetreiber, die öffentlichrechtlichen<br />

Entsorgungsträger und<br />

ausgewählte Umweltverbände – im<br />

Grundsatz zu den bestehenden<br />

rechtlichen Regelungen und damit<br />

zum Freigabekonzept bekennen. Im<br />

Gegenzug waren – im Ansatz ähnlich<br />

wie in der baden-württembergischen<br />

„Handlungsanleitung“ (s. o.) – bestimmte<br />

zusätzliche Elemente vorgesehen<br />

wie etwa die Einrichtung<br />

einer „Begleitgruppe“ der Vertragsparteien,<br />

der unbedingte Vorrang der<br />

Verwertung, falls möglich, vor der<br />

Deponierung, die individuelle Qualifizierung<br />

aller betroffenen Deponien<br />

durch den Gutachter des Ministeriums,<br />

das koordinierte Vorgehen<br />

aller Betreiber durch Errichtung einer<br />

zentralen „gläsernen Gesellschaft“<br />

oder die 100-prozentige Prüfung aller<br />

Freimessungen durch den Sachverständigen<br />

der Behörde.<br />

Nachdem dieser Entwurf sich<br />

offen bar als nicht konsensfähig erwiesen<br />

hatte, rief das Ministerium<br />

eine kleine, nicht öffentlich tagende<br />

Arbeitsgruppe aus Umweltverbänden,<br />

Kommunalen Spitzenverbänden, Verbänden<br />

der Entsorgungswirtschaft<br />

und Kraftwerksbetreibern ins Leben,<br />

die nach insgesamt sechs Sitzungen<br />

im Juni 2018 einen Abschlussbericht<br />

vorlegte. 38 Dieser Bericht enthält im<br />

Wesentlichen eine Darstellung und<br />

Bewertung verschiedener Entsorgungskonzepte.<br />

An mehreren Stellen<br />

enthält der Bericht ein abweichendes<br />

Sondervotum des BUND (als einem<br />

von drei teilnehmenden Umweltverbänden),<br />

wird aber ansonsten von<br />

allen Beteiligten mitgetragen.<br />

Das Zehn-Mikrosievert-Konzept<br />

und die Freigabe zur Deponierung<br />

wird im Grundsatz akzeptiert; radikal<br />

abweichende Alternativen (sicherer<br />

Einschluss des Kernkraftwerks, langfristige<br />

Zwischenlagerung der Rückbaumassen<br />

auf dem Kraftwerksgelände<br />

oder Errichtung eines „Endlagers“<br />

für die Rückbaumassen)<br />

werden letztlich abgelehnt. Für die<br />

Deponierung nicht verwertbarer<br />

Rückbaumassen, die somit grundsätzlich<br />

bejaht wird, werden wiederum<br />

verschiedene Varianten bewertet. Als<br />

„Nullvariante“ wird die Nutzung<br />

bestehender Deponien nach den<br />

rechtlichen Vorgaben des Kreislaufwirtschafts-<br />

und des Strahlenschutzrechts<br />

erörtert und grundsätzlich<br />

befürwortet. Für den Fall, dass<br />

sich hierfür keine Deponiebetreiber<br />

finden, wird als „Rückfallvariante“<br />

eine Zuweisung durch die zuständigen<br />

Behörden als ultima ratio vom<br />

Ministerium eingebracht. Umgekehrt<br />

wird mit „Deponie plus“ ein Konzept<br />

vorgestellt, das mit Zusatzmaßnahmen<br />

wie den oben bereits dargestellten<br />

(etwa Qualifizierung der<br />

einzelnen Deponien etc.) die Akzeptanz<br />

fördern soll; diese Variante wird<br />

letztlich als bevorzugte Variante bezeichnet.<br />

Dementsprechend kündigt<br />

das Ministerium in dem Bericht an,<br />

eine Qualifizierung aller in Betracht<br />

kommenden Deponien und, falls<br />

möglich, ein Ranking vorzunehmen.<br />

Am 9. September 2019 stellte der<br />

neue Minister Albrecht das Ergebnis<br />

eines entsprechenden Gutachtens des<br />

TÜV Nord vom 16.08.2019 vor. 39 Der<br />

TÜV stufte alle sieben untersuchten<br />

Deponien als geeignet ein. Das<br />

Ministerium empfahl jedoch, für die<br />

Ablagerung der Abfälle nur vier der<br />

sieben Deponien weiterzuverfolgen, da<br />

die drei übrigen Deponien kurz vor der<br />

endgültigen Verfüllung stünden und<br />

nicht mehr die nötige Kapazität aufwiesen.<br />

Eine Rangfolge unter den vier<br />

verbleibenden Deponien wurde nicht<br />

aufgestellt. Im Übrigen betonte das<br />

Ministerium, für die Entsorgung müssten<br />

die Betreiber und Ent sor gungsträger<br />

Vereinbarungen abschließen;<br />

das Ministerium werde diesen Vorgang<br />

„ergebnisorientiert begleiten“.<br />

Dass damit der Konflikt nicht gelöst<br />

ist, zeigt ein Beschluss der Bürgerschaft<br />

der Hansestadt Lübeck vom<br />

28.11.2019, in dem die Einlagerung<br />

freigegebener Abfälle aus dem Abriss<br />

von Kernkraftwerken auf der Deponie<br />

Lübeck-Niemark (einer der vier<br />

empfohlenen Deponien) abgelehnt<br />

wird. 40<br />

31 https://www.aerztekammer-bw.de/10aerzte/05kammern/10laekbw/20ehrenamt/16entschliessungen/20161126/522.html.<br />

32 https://www.aerztekammer-bw.de/news/2017/2017-01/gemeinsame-pm/index.html.<br />

33 Beschluss Ib-111 „Keine Freigabe gering radioaktiven Atommülls“, Beschlußprotokoll des 120. Deutschen Ärztetages, S. 240; https://www.bundesaerztekammer.de/<br />

fileadmin/user_upload/downloads/pdf-Ordner/120.DAET/120DaetBeschlussProt_2017-05-26.pdf.<br />

34 https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/3_Umwelt/Kernenergie/Freigaben_StrlSCHVO/170807_Untersteller_<br />

Schreiben_an_Montgomery.pdf.<br />

35 https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/3_Umwelt/Kernenergie/Freigaben_StrlSCHVO/171208_Montgomery_<br />

Schreiben_Vorstandsbeschluss.pdf.<br />

36 Stellungnahme des Fachverbands für Strahlenschutz e.V. vom 29.10.2017, https://fs-ev.org/fileadmin/user_upload/Deutscher_AErztetag_171029.pdf.<br />

37 Vereinbarung zur ortsnahen Verwertung und Beseitigung von Abfällen mit keiner oder zu vernachlässigender Aktivität aus kerntechnischen Anlagen, Stand<br />

27.04.2016; auf der Website des Ministeriums nicht mehr eingestellt.<br />

38 AG Entsorgung freigegebener Abfälle, Entsorgung freigegebener Abfälle aus Kernkraftwerken – Abschlussbericht –,<br />

https://www.schleswig-holstein.de/DE/Fachinhalte/A/atomausstieg/Downloads/abschlussbericht2018.pdf?__blob=publicationFile&v=1.<br />

39 Siehe die Darstellung auf der Website des MELUND unter https://www.schleswig-holstein.de/DE/Fachinhalte/A/atomausstieg/faqEntsorgungsvereinbarung.html.,<br />

dort unter Frage 16. Das Gutachten des TÜV Nord ist auch verfügbar unter https://www.schleswig-holstein.de/DE/Landesregierung/V/_startseite/Artikel2019/<br />

III/190909_Deponie_gutachten/190909_GutachtenDeponien.pdf.<br />

40 Vorlage 2019/08174-01-01; https://www.luebeck.de/de/rathaus/politik/pil/bi/vo020.asp?VOLFDNR=1008376#allrisBV.<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities – A Legal Inventory ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

c) Niedersachsen<br />

In einer Antwort auf eine mündliche<br />

Anfrage im niedersächsischen Landtag<br />

2015 41<br />

verwies der damalige<br />

Umweltminister Wenzel auf die Pflicht<br />

der örtlich zuständigen öffentlichrechtlichen<br />

Entsorgungsträger, also<br />

im Wesentlichen der Landkreise, den<br />

Bauschutt aus Kernkraftwerken anzunehmen.<br />

Systematische Bemühungen<br />

wie in Baden-Württemberg und in<br />

Schleswig-Holstein, die Beteiligten –<br />

ggf. unter Zugeständnissen in Form<br />

zusätzlicher Kontroll- und Sicherheitsmaßnahmen<br />

– zu einem Konsens<br />

über die Entsorgung zu bewegen, sind<br />

aus Niedersachsen bislang nicht bekannt<br />

geworden.<br />

d) Sachsen<br />

Der Blick auf den Freistaat Sachsen<br />

öffnet eine andere Perspektive:<br />

Sachsen hat selbst keine Kernkraftwerke,<br />

war jedoch „Empfängerland“<br />

für Bauschutt. Die StrlSchV sieht<br />

ausdrücklich die Möglichkeit einer<br />

Verwertung bzw. Beseitigung freigegebener<br />

Reststoffe in einem<br />

anderen Bundesland vor; §§ 39 und<br />

40 StrlSchV enthalten entsprechende<br />

Vorgaben zur Abstimmung zwischen<br />

den beteiligten Behörden. Bauschutt<br />

aus dem KKW Stade in Niedersachsen<br />

sollte auf Grundlage entsprechender<br />

privatrechtlicher Verträge ab 2014<br />

auf zwei sächsischen Deponien<br />

entsorgt werden; das sächsische Umweltministerium<br />

hatte nach dem (damaligen)<br />

§ 29 Abs. 2 S. 6 StrlSchV<br />

(heute § 39 Abs. 1 StrlSchV) das Einvernehmen<br />

erteilt. 42<br />

Daraufhin kam<br />

es jedoch zu örtlichen Protesten, die<br />

trotz einer Transparenzoffensive des<br />

sächsischen Ministeriums anhielten. 43<br />

Letztlich verzichteten die beteiligten<br />

Deponien 2015 auf eine Verlängerung<br />

der Verträge. 44<br />

In diesem Zusammenhang wurde<br />

auch thematisiert, ob es eine Verpflichtung<br />

gibt, Rückbaumassen im<br />

eigenen Bundesland zu entsorgen.<br />

Dass die StrlSchV Regelungen gerade<br />

für die länderübergreifende Entsorgung<br />

trifft, ist bereits erwähnt worden;<br />

eine Rechtspflicht zur Entsorgung<br />

im eigenen Bundesland gibt es<br />

daher eindeutig nicht. Von Sachsen<br />

wurde jedoch geltend gemacht, auf<br />

der 83. Umweltministerkonferenz am<br />

24. Oktober 2014 in Heidelberg hätten<br />

sich die Umweltminister auf einen<br />

entsprechenden politischen Grundsatz<br />

geeinigt. 45 Das wird aus anderen<br />

Bundesländern bisher nicht bestätigt.<br />

Der „Abschlussbericht“ aus Schleswig-<br />

Holstein von 2018 kennt eine solche<br />

Vereinbarung nicht, kommt hinsichtlich<br />

des Verbringens in andere Bundesländer<br />

aber zu einer abgewogenen<br />

Bewertung: Rechtlich stehe es den<br />

Betreibern der kerntechnischen<br />

Anlagen in jedem Fall frei, auch<br />

Deponien außerhalb Schleswig-<br />

Holsteins zu nutzen, soweit sich hier<br />

annahmebereite Deponien fänden;<br />

da an solchen Standorten aber<br />

möglicher weise die lokale Akzeptanz<br />

durch die Empfindung gemindert<br />

würde, hier wolle ein anderes Bundesland<br />

sein Entsorgungsproblem abwälzen,<br />

sei dies „keine primäre Option“. 46<br />

3 Bewertung und Ausblick<br />

Die rechtlich bestehende Annahmepflicht<br />

der zuständigen und geeigneten<br />

Deponien öffentlich-rechtlicher<br />

Entsorgungsträger ist von den Aufsichtsbehörden<br />

bislang nicht gegen<br />

örtlichen Widerstand durchgesetzt<br />

worden. Eine Vollziehung des geltenden<br />

Rechts in dieser Hinsicht als<br />

ultima ratio könnte sich letztlich<br />

als unumgänglich herausstellen. 47<br />

Allerdings ist es auch eine empirische<br />

Tatsache, dass politische Entscheidungsträger<br />

sich schwertun, eine<br />

Einlagerung gegen den Widerstand<br />

der örtlichen Bevölkerung und der<br />

jeweiligen Kommunen durchzusetzen.<br />

Natürlich ist es wünschenswert,<br />

dass es gelänge, eine weitgehende<br />

Akzeptanz seitens der Bevölkerung<br />

und der Kommunen herzustellen.<br />

Klare und transparente In<strong>for</strong>mation,<br />

wie sie in vielen Fällen von Kernkraftwerksbetreibern<br />

und Behörden zur<br />

Verfügung gestellt wird, ist hierfür ein<br />

wichtiger Baustein. Das Ziel, Akzeptanz<br />

zu gewinnen, liegt auch dem<br />

Ansatz der baden-württembergischen<br />

„Handlungsanleitung“ und der Vorzugsvariante<br />

„Deponie plus“ des<br />

„ Abschlussberichts“ aus Schleswig-<br />

Holstein zugrunde: durch zusätzliche<br />

Kontroll- und Sicherungsmaßnahmen<br />

soll das Vertrauen in den Freigabeprozess<br />

und damit auch die Akzeptanz<br />

der Entsorgung freigegebener Abfälle<br />

auf Deponien gestärkt werden. Grundsätzlich<br />

ist es zu be grüßen, dass einige<br />

Landesregierungen hier initiativ<br />

geworden sind; auch ist der verfolgte<br />

Ansatz aller Ehren wert. Ob er zielführend<br />

ist, dazu stellen sich jedoch<br />

bei näherer Betrachtung und Überlegung<br />

und angesichts der bisherigen<br />

Erfahrungen Zweifel ein.<br />

Das Dilemma bei einem solchen<br />

Vorgehen besteht zunächst unausweichlich<br />

darin, dass damit die bestehenden<br />

Regelungen tendenziell als<br />

nicht ausreichend hingestellt werden.<br />

Das ist nicht gutzuheißen, denn die<br />

dichten und restriktiven Regelungen<br />

der StrlSchV gewährleisten sehr wohl<br />

die Einhaltung des Bagatellwerts von<br />

zehn Mikrosievert, der gesundheitlich<br />

unbedenklich ist; das ist bei den Vorarbeiten<br />

zur Strahlenschutzverordnung<br />

mit viel Aufwand bedacht und<br />

nachgewiesen worden. Es steht auch<br />

zu befürchten, dass Zusatzmaßnahmen<br />

zu einem Standard werden,<br />

hinter dem andere Akteure nicht<br />

zurückstehen können, obwohl sie es<br />

nach geltendem Recht dürften.<br />

Hinzu kommt: der erhoffte Vorteil,<br />

für den dies alles in Kauf genommen<br />

wird, tritt möglicherweise gar nicht<br />

ein; der Wunsch, durch die zusätzlichen<br />

Maßnahmen Vertrauen und<br />

Akzeptanz zu stärken, scheint sich in<br />

der Praxis nicht unbedingt zu erfüllen.<br />

Die fehlende Überzeugungskraft<br />

erscheint dabei durchaus nachvollziehbar:<br />

je mehr Sicherheitsvorkehrungen<br />

und Kontrollen man zusätzlich<br />

freiwillig „anbietet“, desto<br />

mehr gewinnt der Unbeteiligte den<br />

Eindruck, die betreffenden Stoffe<br />

müssten doch sehr gefährlich sein.<br />

Ein anschauliches Beispiel für die<br />

Schwierigkeiten der Überzeugungsbildung<br />

bieten auch die Erfahrungen<br />

aus Sachsen. Nachdem das sächsische<br />

Umweltministerium die erste Anlieferung<br />

von Bauschutt aus dem KKW<br />

Stade zu einer sächsischen Deponie<br />

mit einer öffentlichen Kontrollmessung,<br />

zu der alle Bürger und die Presse<br />

eingeladen waren, begleitet hatte und<br />

die Messung eine Aktivität weit unterhalb<br />

der Freigabewerte bestätigte,<br />

wurde von der Bürgerinitiative unterstellt,<br />

man habe für diese Lkw-Ladung<br />

ENERGY POLICY, ECONOMY AND LAW 215<br />

41 https://www.umwelt.niedersachsen.de/startseite/aktuelles/pressemitteilungen/antwort-auf-die-muendliche-anfrage-MA23-133701.html.<br />

42 Röller (Fn. 16), S. 150 f.<br />

43 Ebenda, S. 151 f.<br />

44 Siehe Mitteilung des Niedersächsischen Umweltministeriums vom 17.07.2015: https://www.umwelt.niedersachsen.de/startseite/aktuelles/pressemitteilungen/<br />

antwort-auf-die-muendliche-anfrage-wo-soll-der-freigemessene-bauschutt-aus-dem-kkw-stade-hin--135541.html.<br />

45 So die Stellungnahme des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft vom 15.05.2018, https://kleineanfragen.de/sachsen/6/13160-neuerbauschutt-aus-atomkraftwerken-akw-in-sachsen.<br />

46 Abschlussbericht (oben Fn. 38), S. 10.<br />

47 So auch der „Abschlussbericht“ aus Schleswig-Holstein (oben Fn. 38, S. 14 unter dem Stichwort „Zuweisung (‚Rückfallvariante‘)“.<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities – A Legal Inventory ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

ENERGY POLICY, ECONOMY AND LAW 216<br />

gezielt besonders gering belasteten<br />

Bauschutt zusammengesucht. 48<br />

Als<br />

das Ministerium daraufhin in der<br />

Folgezeit mehrere unangekündigte<br />

Messungen von Lkw-Ladungen vornahm,<br />

die ebenfalls Werte weit unterhalb<br />

der Freigabewerte ergaben, 49<br />

wurde das offenbar nicht mehr zur<br />

Kenntnis genommen. 50<br />

Da die Deponierung somit grundsätzlich<br />

streitbehaftet zu bleiben<br />

scheint, stellt sich die Frage, ob der<br />

Bergversatz von Bauschutt aus Kernkraftwerken<br />

eine Lösung wäre, die<br />

Aussichten hat, vor Ort akzeptiert zu<br />

werden. Praktische Erfahrungen bestehen,<br />

soweit ersichtlich, noch nicht,<br />

so dass man letztlich Mutmaßungen<br />

anstellen muss. Für eine Akzeptanz<br />

spricht, dass die Abfälle auf diesem<br />

Wege definitiv und für jedermann<br />

leicht nachvollziehbar aus der Biosphäre<br />

ausgeschlossen werden; das<br />

subjektive Sicherheitsgefühl könnte<br />

durch die Verbringung tief unter Tage<br />

gestärkt werden. Andererseits könnte<br />

der Bergversatz aber auch sachlich<br />

nicht gerechtfertigte Assoziationen an<br />

ein Endlager für radioaktive Abfälle<br />

hervorrufen und – wie oben schon für<br />

freiwillige Zusatzmaßnahmen ausgeführt<br />

– die (unzutreffende) Vorstellung<br />

von einer Gefährlichkeit der<br />

so entsorgten Abfälle nähren. Zudem<br />

dürfte dieser Entsorgungsweg oft<br />

mit der Verbringung in ein anderes<br />

Bundesland verbunden sein, womit<br />

wiederum die dazugehörige Grundsatzdiskussion<br />

aufgerufen würde.<br />

Insofern käme es hier wohl entscheidend<br />

auf eine klare und zielführende<br />

Kommunikation an. Das gilt<br />

im Übrigen für alle einschlägigen<br />

Entsorgungswege.<br />

Letztlich wird es aber unausweichlich<br />

sein, dass zumindest für einen Teil<br />

der Rückbaumassen die bestehenden<br />

rechtlichen Rahmenbedingungen für<br />

die Entsorgung, die oben ausführlich<br />

dargestellt wurden, von den politischen<br />

Verantwortungsträgern mit<br />

klaren, möglichst zwischen den<br />

Bundesländern abgestimmten und<br />

gut und verständlich kommunizierten<br />

48 Röller (oben Fn. 16), S. 151 f.<br />

49 Ebenda.<br />

50 Auch Feldmann (oben Fn. 17) stellt anhand dieses Fallbeispiels fest, dass das Bemühen um Transparenz ins Leere gegangen sei.<br />

Entscheidungen umgesetzt werden.<br />

Anders kann der gesetzlich vorgeschriebene<br />

unverzügliche Abbau<br />

der Kernkraftwerke kaum vonstatten<br />

gehen.<br />

Author<br />

Rechtsanwalt Dr. Christian Raetzke<br />

Beethovenstr. 19<br />

04107 Leipzig<br />

Imprint<br />

| Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Dr. Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Christian Jurianz<br />

Dr. Anton Kastenmüller<br />

Prof. Dr. Marco K. Koch<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christan Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Joachim Ohnemus<br />

Olaf Oldiges<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

| Editorial Office<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

Nicole Koch (Editor)<br />

c/o INFORUM, Berlin, Germany<br />

Phone: +49 176 84184604<br />

E-mail: nicole.koch@nucmag.com<br />

| Official <strong>Journal</strong> of Kerntechnische Gesellschaft e. V. (KTG)<br />

| Publisher<br />

INFORUM Verlags- und Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| General Manager<br />

Dr. Thomas Behringer<br />

| CvD<br />

Nicolas Wendler<br />

| Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

E-mail: petra.dinter@nucmag.com<br />

| Layout<br />

zi.zero Kommunikation<br />

Antje Zimmermann<br />

Berlin, Germany<br />

| Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Buschstraße 81, 53113 Bonn, Germany<br />

| Price List <strong>for</strong> Advertisement<br />

Valid as of 1 January 2019<br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 187.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 187.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 174.77 €<br />

| Copyright<br />

The journal and all papers and photos contained in it are protected by<br />

copyright. Any use made thereof outside the Copyright Act without the<br />

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions, translations,<br />

micro filming and the input and incorporation into electronic systems.<br />

The individual author is held responsible <strong>for</strong> the contents of the<br />

respective paper. Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the association´s staff.<br />

We do not assume any responsibility <strong>for</strong> unrequested contributions.<br />

Signed articles do not necessarily represent the views of the editorial.<br />

ISSN 1431-5254<br />

Energy Policy, Economy and Law<br />

Disposal of Dismantling Materials from <strong>Nuclear</strong> Facilities – A Legal Inventory ı Christian Raetzke


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

Excursus to the World of <strong>Nuclear</strong> Medicine<br />

Andreas Schmidt, Klaus Tatsch, Beate Pfeiffer, Verena Störzbach and Maximilian Kauth<br />

217<br />

1 Introduction <strong>Nuclear</strong> medicine is based on the application of a variety of radiopharmaceuticals, either in<br />

the <strong>for</strong>m of pure unsealed radionuclides or as radiolabeled compounds (tracers) <strong>for</strong> diagnostic and therapeutic purposes<br />

(endoradiotherapy).<br />

ENVIRONMENT AND SAFETY<br />

| Fig. 1.<br />

Example of a functional test of human kidneys. Data derived from the acquired image sequence (upper part) allow to in<strong>for</strong>m about the partial function of the kidneys (red left kidney, green<br />

right kidney), quantitative parameters as tubular extraction rate, and excretion of the radiopharmaceutical from the kidney into the bladder.<br />

The production of artificial radionuclides<br />

with suitable physical properties<br />

<strong>for</strong> imaging in combination<br />

with tracers has enabled imaging a<br />

broad variety of functional (biochemical<br />

and physiological) processes in the<br />

human body and in animals. These<br />

techniques are complementing classical<br />

anatomical imaging such as radiological<br />

methods.<br />

The latest generation of noninvasive<br />

hybrid imaging systems such<br />

as PET/CT or SPECT/CT combine<br />

emission computed tomography with<br />

transmission computed tomography<br />

(CT) to almost simultaneously collect<br />

functional and anatomic in<strong>for</strong>mation.<br />

The in<strong>for</strong>mation is merged into so<br />

called fused (coregistered) images<br />

thus allowing to establish diagnoses<br />

on 3D data sets and, if desired, additionally<br />

over time (dynamic).<br />

While endoradiotherapy is based<br />

on the emission of ionizing radiation<br />

of either alpha or beta particles from<br />

inside the body, radiotherapy (external<br />

beam radiation therapy) is a therapeutic<br />

discipline that uses gamma<br />

radiation, X-rays, electron beams,<br />

neutrons, protons, and heavy ions<br />

from outside the body or, when using<br />

encapsulated sources, from inside the<br />

body.<br />

Radioimmunotherapy and radiochemo<br />

therapy complement the discipline<br />

of radiotherapy. All disciplines<br />

making use of ionizing radiation are<br />

regulated by the Radiation Protection<br />

Ordinance (StrlSchV) within the<br />

framework of German nuclear and<br />

radiation protection law.<br />

2 Medical imaging<br />

methods at a glance<br />

The various medical imaging techniques<br />

can be categorized either by<br />

the applied technique, <strong>for</strong> example:<br />

p X-rays stored on film or digital<br />

media, computed tomography<br />

(CT) or transmission CT<br />

p Scintigraphy, planar or in <strong>for</strong>m of<br />

emission computed tomography<br />

(ECT) e.g. as utilized in singlephoton<br />

emission computed tomography<br />

(SPECT) or positron emission<br />

tomography (PET)<br />

p Sonography, medical ultrasound<br />

p Magnetic resonance imaging<br />

(MRI)<br />

p Endoscopy (video endoscopy)<br />

Or by the type of images resulting<br />

from the applied techniques:<br />

p one-dimensional (1D),<br />

two-dimensional (2D) or<br />

three-dimensional (3D)<br />

p projection data<br />

p cross-sectional images<br />

(axial, coronal and sagittal)<br />

p functional images (Figure 1)<br />

p fused images e.g. such as<br />

coregistered images of MRI and<br />

PET (Figure 2)<br />

p static, whole-body or dynamic<br />

images.<br />

2.1 Radiography<br />

The projection of a volume (3D) on a<br />

planar image (2D) is the most common<br />

method, where the patient is<br />

being irradiated by X-rays from<br />

exterior.<br />

The X-rays are absorbed by the anatomical<br />

structures they pass through<br />

in differing amounts depending on<br />

the density and composition of the<br />

material. X-rays that are not or only<br />

partially absorbed pass through the<br />

object and are recorded on X-ray<br />

sensitive film or digital media.<br />

Objects being irradiated within the<br />

same beam direction are overlaying<br />

each other in the resulting image. It is<br />

difficult to distinguish if the contrast<br />

Environment and Safety<br />

Excursus to the World of <strong>Nuclear</strong> Medicine ı Andreas Schmidt, Klaus Tatsch, Beate Pfeiffer, Verena Störzbach and Maximilian Kauth


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

ENVIRONMENT AND SAFETY 218<br />

| Fig. 2.<br />

FDG PET (upper part) and coregistered MRI and PET (lower part) images<br />

using different color scales. The FDG PET allows the imaging of the<br />

physiological and pathological glucose meta bolism. Regions with a<br />

higher FDG uptake are indicating an enhanced glucose metabolism.<br />

The coregistration with the MRT and its morphological in<strong>for</strong>mation allows<br />

to exactly localize the meta bolically active areas.<br />

seen results from the material density<br />

and subsequently higher absorption<br />

or simply the layer thicknesses.<br />

2.2 Computer Tomography<br />

Computer tomography is the creation<br />

of a 1D absorption profile of an object<br />

from multiple directions. Several of<br />

these absorption profiles are being<br />

used to generate a 3D structure.<br />

The computer-based image reconstruction<br />

system is capable to determine<br />

the particular absorption <strong>for</strong><br />

each volume element of the object<br />

(so-called voxel which corresponds to<br />

a 3D pixel) and subsequently calculate<br />

the image. For many years the filtered<br />

back projection algorithm was state of<br />

the art <strong>for</strong> the image reconstruction<br />

whereas in the recent years more and<br />

more CT systems use iterative reconstruction.<br />

[1] [2]<br />

The calculated image is a transverse<br />

section through the object. With<br />

several rotations around the object<br />

adjacent sectional images can be<br />

created and accumulated to volume<br />

graphics that consist of several dozen<br />

or up to several hundred individual<br />

sectional images.<br />

suitable imaging devices such as<br />

gamma cameras.<br />

Radioactively labeled compounds<br />

(so-called tracers) are injected into<br />

the human or animal body prior to<br />

scintigraphy.<br />

These tracers are transported,<br />

metabolized, or may be accumulated<br />

in the target organ or tissue de pending<br />

on their respective metabolic characteristics.<br />

Resulting images provide mainly<br />

physiological, pathophysiological and<br />

functional in<strong>for</strong>mation about the<br />

scanned organism. Thus, in<strong>for</strong>mation<br />

is provided about the spatial distribution<br />

of the activity (localization of<br />

pathological processes) and changes<br />

of activity distribution over time<br />

(functional diagnosis).<br />

2.4 Emission computer<br />

tomography (ECT)<br />

Where the CT (section 2.2) is based on<br />

rotation of the x-ray source and detector<br />

assembly around the object (transmission),<br />

ECT detects the radiation<br />

emitted from inside the body, i.e. the<br />

body is the source.<br />

Both imaging methods often use<br />

iterative reconstruction <strong>for</strong> image<br />

generation (most commonly).<br />

ECT has an obvious relevance in<br />

the field of nuclear medicine since it<br />

allows the creation of transsectional<br />

images in three orthogonal planes<br />

(transverse, coronal, sagittal) of the<br />

tracer distribution within the human<br />

body, subsequently allowing to draw<br />

conclusions about functionalities in<br />

organs, tissues, or cell structures.<br />

2.4.1 Single-photon emission<br />

computed tomography<br />

(SPECT)<br />

Principally this technique is based<br />

on scintigraphy (section 2.3) and is<br />

used to detect gamma radiation<br />

emitted by either radionuclides and/<br />

or tracers that have been injected<br />

intravenously.<br />

Most often a dual-head gamma<br />

camera rotates around the body<br />

and detects the radiation from<br />

different angles, thus collecting<br />

projection data from a 360° rotation.<br />

The planar projection data are<br />

then reconstructed and converted<br />

into 2D and 3D images. Special<br />

refinements of this technique are<br />

available e.g. in <strong>for</strong>m of gated<br />

SPECT acquisition where a cardiac<br />

cycle may be divided into time<br />

bins, triggered by an ECG (electrocardiogram).<br />

This technique may<br />

allow not only to assess regional<br />

myocardial perfusion but also functional<br />

para meters as regional wall<br />

motion ab normalities or calculation<br />

of the ejection fraction of the left<br />

ventricle of the heart, Figure 3.<br />

2.4.2 Positron emission<br />

tomography (PET)<br />

In contrast to SPECT, PET scanners<br />

require radionuclides that emit<br />

positrons (b + emitters) only. PET<br />

detects the annihilation radiation<br />

resulting from the interaction<br />

of a positron with an electron<br />

inside the body. The resulting<br />

two photons are emitted at an<br />

approximate angle of 180 degrees<br />

2.3 Scintigraphy<br />

Imaging regional activity distribution<br />

in a scintigram is a functional- oriented<br />

examination used in nuclear medicine.<br />

The scintigram is based on the<br />

external detection of radiation from<br />

radionuclides inside the body by<br />

| Fig. 3.<br />

Gated SPECT <strong>for</strong> imaging myocardial perfusion abnormalities. On the left hand side the diastolic and<br />

systolic tracer distributions are shown. On the right hand side blood perfusion conditions can be<br />

quantitatively assigned to the different regions. Gated imaging allows to determine several additional<br />

cardiac output parameters.<br />

Environment and Safety<br />

Excursus to the World of <strong>Nuclear</strong> Medicine ı Andreas Schmidt, Klaus Tatsch, Beate Pfeiffer, Verena Störzbach and Maximilian Kauth


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

to each other and with an energy<br />

of 511 keV (rest energy of an electron).<br />

These two photons from one<br />

annihilation process lead to coincidences<br />

in opposing detectors. The<br />

spatial and time-related distribution<br />

of the detected decays allows to<br />

determine the spatial distribution of<br />

the tracer.<br />

The PET scanner contains of<br />

many photon detectors arranged<br />

in a ring around the gantry. The<br />

detector rings have 30-40 detector<br />

modules, each detector module<br />

consisting of 4-8 detector blocks<br />

that are equipped with several<br />

single crystals. This results in<br />

approximately 10,000 detector crystals<br />

which are arranged in a ring<br />

( scintillation counter) and coupled to<br />

approximately 1,000 photomultipliers<br />

enabling the detection of the annihilation<br />

radiation. Coincidences<br />

between two of these detectors are<br />

registered without physical collimation<br />

(in contrast to SPECT). This<br />

advantage results in higher count<br />

rates, efficiency, reso lution and<br />

ultimately image quality. Today<br />

instead of photo multipliers also<br />

technology based on semicon ductors<br />

is used.<br />

| Fig. 4.<br />

Example <strong>for</strong> the use of F-18-FDG in PET/CT in oncology. In the upper part the PET images show the distribution of the glucose<br />

metabolism. The lower part of the picture shows the PET images coregistered with diagnostic CT to allow morphologic evaluation and<br />

anatomic allocation of the functional images. The patient suffers from lesions with intensively storing thoracic and abdominal foci.<br />

ENVIRONMENT AND SAFETY 219<br />

3 <strong>Nuclear</strong> Medicine<br />

<strong>Nuclear</strong> medicine is based on the use<br />

of open radionuclides or radiopharmaceuticals<br />

(tracers) with rather<br />

short physical half-lives that emit α,<br />

b - , b + or γ radiation.<br />

Prior to injection they are usually<br />

coupled to substances suitable to<br />

depict organ specific processes such as<br />

perfusion, metabolism, organ functions,<br />

receptor availability and many<br />

more.<br />

A wide range of “in-vivo” measurement<br />

methods can be used to<br />

assess the function of organs and/or<br />

organ systems, and to track the<br />

effects of treatment (e.g. chemotherapy<br />

or radiotherapy) and a range<br />

of physiological processes within the<br />

body.<br />

Functional imaging in nuclear<br />

medicine is an interdisciplinary field<br />

which supports almost all medical<br />

disciplines. In particular, but not<br />

exclusively, these are:<br />

p Oncology<br />

p Urology<br />

p Gynecology<br />

p Otorhinolaryngology<br />

p Cardiology<br />

p Dermatology<br />

p Surgery<br />

p Endocrinology<br />

p Neurology<br />

| Fig. 5.<br />

Use of F-18-FDG in PET/CT (neurology).<br />

3.1 Diagnostics<br />

3.1.1 Radiopharmaceuticals<br />

in daily routine used<br />

<strong>for</strong> PET/CT<br />

F-18-FDG (fluorodeoxyglucose)<br />

This is the most commonly used<br />

tracer <strong>for</strong> PET. Tumor cells often<br />

have an increased affinity <strong>for</strong><br />

glucose. Like the unlabeled physiological<br />

glucose FDG is taken up<br />

intracellularly by the glucose transporter<br />

and phos phorylated by the<br />

glucose-6-phosphatase enzym, however,<br />

then the further metabolic<br />

pathway is blocked <strong>for</strong> FDG. There<strong>for</strong>e<br />

FDG is <strong>for</strong> some time trapped<br />

in the cell and the retention rate<br />

in the tissue is mainly related to the<br />

number and activity of the glucose<br />

transport. Similar mechanisms apply<br />

to various inflammatory cells. However,<br />

keep in mind that not all types<br />

of tumors and not all types of<br />

inflammation are FDG positive. F-18<br />

labeled fluorodeoxy glucose (b + )<br />

is a positron emitter, the coincident<br />

gamma radiation of the corres ponding<br />

annihilation process can be detected<br />

by the PET scanner. State-of-the-art<br />

PET scanners are always combined<br />

with a CT unit. PET and CT are<br />

consecutively acquired without the<br />

patient moving between the two<br />

examinations. This achieves the<br />

greatest possible spatial corre lation<br />

between functional and structural<br />

imaging.<br />

For most oncological indications,<br />

a hybrid scanner (PET/CT) is used<br />

<strong>for</strong> whole-body acquisitions in 3D<br />

mode. The quantitative SUV ( standard<br />

uptake value) determination can<br />

objec tify the degree of metabolic<br />

activity.<br />

In the case of neurological disorders,<br />

such as some neurodegenerative<br />

diseases, the FDG brain metabolism<br />

can also be examined.<br />

Environment and Safety<br />

Excursus to the World of <strong>Nuclear</strong> Medicine ı Andreas Schmidt, Klaus Tatsch, Beate Pfeiffer, Verena Störzbach and Maximilian Kauth


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

ENVIRONMENT AND SAFETY 220<br />

| Fig. 6.<br />

Progress monitoring of NET with Ga-68-DOTA-TATE in PET/CT. The PET images (upper part) show the Ga-68-DOTA-TATE distribution in<br />

a patient with extensive hepatic metastatic NETs. The coregistered PET/CT cross sections (lower part) allow a morphologic evaluation<br />

and anatomic allocation. The progress of the metastatic spread, i.e. quantity and size, can be assessed from those images.<br />

| Fig. 7.<br />

Example <strong>for</strong> the use of Ga-68-PSMA in PET/CT (metastases of a prostate cancer). The upper part and the picture on the right hand<br />

side show the PET images that clearly indicate large metastases of a prostate cancer. In the lower part the coregistration with CT<br />

gives more in<strong>for</strong>mation about the exact location.<br />

Ga-68-HA-DOTA-TATE<br />

<strong>for</strong> NET tumors<br />

HA-DOTA-TATE refers to a protein<br />

molecule which resembles the body’s<br />

own hormone somatostatin.<br />

Its special feature is that this molecule<br />

(analog to the physiological<br />

somatostatin) binds to somatostatin<br />

receptors (proteins or protein complexes)<br />

which are highly expressed<br />

on certain types of neuroendocrine<br />

tumors (NET) (e.g. gastrointestinal,<br />

pancreatic). If this molecule is labeled<br />

be<strong>for</strong>ehand with a radionuclide, it is<br />

possible to visualize the tumor manifestations<br />

in the body by means of<br />

PET.<br />

HA-DOTA-TATE is labeled with<br />

gallium-68, a positron emitter (b + ),<br />

which is used <strong>for</strong> diagnosis, staging<br />

and restaging of many NETs. In specific<br />

types of tumors most interestingly<br />

the so called theranostic concept<br />

may come into play. If the tumor<br />

burden is high and a high amount<br />

of receptor availability is documented<br />

by a preceding diagnostic Ga-68<br />

HA-DOTA-TATE scan then replacing<br />

Ga-68 by Lu-177 may offer a specific<br />

therapeutic option to effectively<br />

treat those patients using the same<br />

principle (radiopeptide therapy).<br />

Lutetium-177, a beta emitter (b - ) with<br />

a gamma radiation component, is<br />

labeled to the same protein molecules.<br />

The therapeutic effect is based on the<br />

b - radiation component in the target<br />

areas (tumor manifestations). The<br />

additional gamma radiation component<br />

may be used <strong>for</strong> dosimetry<br />

and SPECT imaging following the<br />

treatment.<br />

Ga-68-PSMA-ligand<br />

<strong>for</strong> prostate cancer<br />

PSMA (prostate-specific membrane<br />

antigen) is a protein physiologically<br />

found on prostate cells, however<br />

which is specifically highly expressed<br />

on prostate cancer cells. Thus labeled<br />

with Ga-68, PSMA is a most interesting<br />

target suitable <strong>for</strong> PET/CT<br />

imaging in prostate cancer to determine<br />

very early recurrent tumor and<br />

metastasis. In dependency of the<br />

imaging results the further therapeutic<br />

strategy <strong>for</strong> the patients may be<br />

modified in many cases (Figure 7).<br />

| Fig. 8.<br />

Bone scans of two different patients. Left: Female patient with normal homogenous distribution<br />

of the tracer over the whole skeletal system. Right: Male patient with multiple osseous metastases<br />

in the upper and middle axial skeleton and pelvis of a prostate carcinoma.<br />

3.1.2 Radiopharmaceuticals in<br />

daily routine <strong>for</strong> SPECT/CT<br />

Tc-99m-diphosphonate<br />

<strong>for</strong> skeletal diagnosis<br />

Bone scintigraphy provides in<strong>for</strong>mation<br />

on bone metabolism. Since<br />

metabolic changes usually precede<br />

Environment and Safety<br />

Excursus to the World of <strong>Nuclear</strong> Medicine ı Andreas Schmidt, Klaus Tatsch, Beate Pfeiffer, Verena Störzbach and Maximilian Kauth


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

| Fig. 9.<br />

Pulmonary perfusion (SPECT/CT).<br />

| Fig. 10.<br />

Normal pulmonary ventilation (above) and perfusion (below) (scintigram).<br />

morphological findings, bone scintigraphy<br />

(Figure 8) is a very sensitive<br />

diagnostic procedure and can often<br />

detect pathological findings earlier<br />

than other examinations (e.g. conventional<br />

x-rays). In addition, bone scintigraphy<br />

as a whole-body examination<br />

allows assessment of the whole skeleton.<br />

The radiopharmaceuticals used are<br />

Tc-99m phosphonates which are<br />

attached to the bone, depending on<br />

the extent of bone metabolism.<br />

Skeletal metastases frequently cause<br />

increased bone metabolism because<br />

of their stimulation of osteoblastic<br />

activity. Increased bone metabolism is<br />

also found in fractures, traumas, and<br />

some metabolic bone disorders.<br />

Tc-99m-Mag3<br />

<strong>for</strong> renal function testing<br />

Mag3 is a small peptide (mercap toacetyltriglycine<br />

= “glycyl- glycylglycine”).<br />

It is extracted from the<br />

blood by the tubular cells of the kidney,<br />

secreted tubularly and almost not<br />

reabsorbed. Renal scintigraphy with<br />

Mag3 is used to detect two important<br />

parameters: a) clearance and b) partial<br />

function of both kidneys.<br />

In this context, clearance reflects<br />

the tubular extraction rate (TER)<br />

which is calculated from the activity<br />

administered and from the activity<br />

rates measured in the serum at<br />

defined time points.<br />

With renal function scintigraphy<br />

it is possible to determine global<br />

clearance values, partial function of<br />

the respective kidneys, identify<br />

defects in the parenchyma of the<br />

kidneys, assess the outflow and detect<br />

any extravasation from the urinary<br />

tract.<br />

Tc-99m-MIBI<br />

Myocardial perfusion scintigraphy<br />

(MPS) is a non-invasive examination<br />

procedure which illustrates the relative<br />

distribution of blood flow within<br />

the myocardium (left ventricle) in a<br />

3D image (Figure 11). See also<br />

chapter 2.4.1.<br />

As a functional imaging technique,<br />

it differs fundamentally from morphologically<br />

based imaging such as<br />

coronary angiography or coronary<br />

CT angiography (CTA) and magnetic<br />

resonance angiography (MRA) which<br />

ENVIRONMENT AND SAFETY 221<br />

Tc-99m-HSA combined with<br />

Tc-99m-“gas” <strong>for</strong> lung diagnosis<br />

Lung diagnosis in nuclear medicine is<br />

usually per<strong>for</strong>med as a combined V/P<br />

(ventilation/perfusion) examination<br />

using the SPECT/CT technique<br />

(Figure 9). For assessment of lung<br />

per fusion, a temporary microembolization<br />

of capillaries takes place after<br />

intravenous injection of small protein<br />

particles (microspheres, approx. diameter<br />

10 to 30 μm), the size of which<br />

is slightly above the mean capillary<br />

diameter. Distribution of the radiopharmaceutical<br />

corresponds then to<br />

the regional distribution of pulmonary<br />

perfusion.<br />

For assessment of lung ventilation,<br />

a “dry” aerosol of ultra-fine particles<br />

(size


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

ENVIRONMENT AND SAFETY 222<br />

image the coronary arteries directly<br />

but may not allow to draw conclusion<br />

to which extend eventual coronary<br />

artery stenosis affect local myo -<br />

cardial perfusion. The main clinical<br />

application <strong>for</strong> MPS is assessment of<br />

coronary heart disease. MPS is per<strong>for</strong>med<br />

after intravenous injection of<br />

a radio pharmaceutical which is taken<br />

up by the cardiomyocytes in a<br />

perfusion- dependent manner. To<br />

assess the hemodynamic effects of<br />

changes in the coronary vessels on regional<br />

myocardial perfusion, SPECT<br />

images of the myocardium after<br />

injection of a radiopharmaceutical<br />

are taken after physical or druginduced<br />

stress and at rest, and the<br />

resulting patterns of findings are<br />

interpreted.<br />

Sentinel lymph node (SLN)<br />

Sentinel lymph node diagnostics is<br />

another example applying nuclear<br />

medicine diagnostics.<br />

It is used in the early stages of<br />

several types of tumors (e.g. breast<br />

cancer, malignant melanoma, head<br />

and neck tumors) which may spread<br />

via lymph vessels to regional and/or<br />

more distant lymph nodes.<br />

For this procedure radioactively<br />

labeled protein particles are injected<br />

under the skin close to the primary<br />

tumor site. It is expected that lymph<br />

drainage via lymphatic channels will<br />

lead to consecutive storage of the<br />

radiopharmaceutical in the next<br />

regional lymph node. This initial first<br />

filter station is called sentinel lymph<br />

node (SLN) and has an important<br />

predictive role. The Tc-99m nanocolloid<br />

used <strong>for</strong> this type of scintigraphy<br />

is a human albumin-derivative<br />

with a half-life of 6.01 hours and an<br />

energy of 140 keV, since colloids are<br />

trapped in lymph nodes this principal<br />

is an ideal tool to detect the SLN.<br />

Imaging is mostly per<strong>for</strong>med<br />

approximately 24 hours be<strong>for</strong>e the<br />

planned surgical removal of the<br />

detected SLN lymph node (at that<br />

time point radiation burden <strong>for</strong><br />

the surgical staff is below relevant<br />

borders). For imaging SPECT or<br />

SPECT/CT are the favourable techniques<br />

(Figure 12) which facilitate to<br />

localize the SLN with high diagnostic<br />

accuracy.<br />

The approximate location of the<br />

lymph node is also marked on the<br />

skin. On the day of surgery, a handheld<br />

gamma probe (semi-conductor<br />

or scintillation detector) is used to<br />

detect the labeled lymph node intraoperatively<br />

and then it is removed<br />

surgically.<br />

The probe’s spatial resolution is a<br />

decisive criterion <strong>for</strong> the success of<br />

detection, i.e. the full width at half<br />

maximum (FWHM) of the resolution<br />

curve should not be greater than the<br />

actual target volume.<br />

The real advantage of the sentinel<br />

lymph node (SLN) labeling concept is<br />

a selective surgical removal of the SLN<br />

instead of removing many lymph<br />

nodes from the axillar region with<br />

might result in lymphedema of the<br />

respective arm later.<br />

The efficiency of the limited surgical<br />

intervention results in a reduced<br />

operating time, reduced extent of the<br />

surgery and finally the histological<br />

examination of the specific SLN probe<br />

after its removal which – as already<br />

mentioned – is a valuable predictive<br />

marker <strong>for</strong> correct assessment of the<br />

tumor stage.<br />

3.2 Therapy<br />

<strong>Nuclear</strong> medicine therapy today is<br />

mainly focused on thyroid disorders,<br />

neuroendocrine tumors, liver tumors<br />

and prostate tumors. This involves the<br />

use of open radioactive substances<br />

which are administered either orally<br />

or intravenously, which participate in<br />

specific metabolic pathways and on<br />

this way reach the target tissue in<br />

the patient’s body. Radioactive<br />

iodine-131 is used <strong>for</strong> thyroid treatment,<br />

radio active Lutetium-177 <strong>for</strong><br />

radioligand therapy (neuroendocrine<br />

tumors and prostate cancer) and<br />

radio active Yttrium-90 <strong>for</strong> selective<br />

internal radiotherapy (liver tumors).<br />

Only iodine-131 is administered in<br />

pure <strong>for</strong>m. As described earlier the<br />

other mentioned radionuclides are<br />

labeled with pharmaceuticals <strong>for</strong> their<br />

therapeutic use. Depending on the respective<br />

equipment, the labeling procedure<br />

may take place in the hospital’s<br />

| Fig. 13.<br />

The whole-body scintigrams show the time course of the activity distribution typically <strong>for</strong> a time of 3 days (post-injection (pictures 1 & 2), 24 h (3 & 4), 72 h (5 & 6)). For each scan the ventral<br />

(left) and dorsal (right) images are shown. From the ROIs of different organs and the standard syringe (bottom) the activity curve and subsequently the dose can be determined <strong>for</strong> each organ.<br />

Environment and Safety<br />

Excursus to the World of <strong>Nuclear</strong> Medicine ı Andreas Schmidt, Klaus Tatsch, Beate Pfeiffer, Verena Störzbach and Maximilian Kauth


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

own nuclear medicine hot laboratory<br />

or the tracers are delivered ready to<br />

use. These radiotracers are mostly<br />

b-radiating nuclides which transfer<br />

their radiation energy to the tissue<br />

during radioactive decay. The aim is to<br />

destroy the diseased tissue with its<br />

radiation. Generally be<strong>for</strong>e a planned<br />

treatment tests are carried out to<br />

establish parameters <strong>for</strong> the dosimetric<br />

concept (intensity of accumulation<br />

in the target structure,<br />

biological half-life, etc.) Following<br />

therapy specific nuclear medicine<br />

imaging devices (SPECT/CT, PET/CT,<br />

gamma cameras) are used to document<br />

the distribution of activity in the<br />

patient’s body after therapy.<br />

For radiation protection reasons<br />

and <strong>for</strong> observation, patients must be<br />

admitted to a nuclear medicine ward<br />

<strong>for</strong> therapy. During their stay in<br />

the hospital, regularly radioactivity<br />

measurements are per<strong>for</strong>med as well<br />

as imaging of parts of the body or<br />

whole-body scans.<br />

3.2.1 Dosimetry <strong>for</strong> treatment<br />

with open radioactive<br />

substances<br />

These scintigrams are used <strong>for</strong> posttherapeutic<br />

dosimetry. The aim of<br />

dosimetry is to determine the radiation<br />

dose in the patient’s body. The<br />

dose is the amount of radiation energy<br />

transferred to the tissue and is<br />

described by the <strong>for</strong>mula “dose =<br />

energy/mass” (using the unit Joule/<br />

kg = gray). The dose is primarily<br />

determined in the tumor tissue or <strong>for</strong><br />

example in the diseased thyroid.<br />

Radioligand therapy also calculates<br />

the dose of individual organs, such as<br />

the kidneys, spleen, liver, salivary<br />

glands and bone marrow. For the<br />

dosimetry of these organs, it is necessary<br />

to determine the activity curve in<br />

them, since the transmitted radiation<br />

energy is proportional to the number<br />

of radioactive decays that have taken<br />

place in the organ. For this purpose,<br />

various images are taken during<br />

radioligand therapy using a SPECT/<br />

CT camera from GE. They include<br />

several planar scintigrams of the<br />

whole body from the ventral and<br />

dorsal aspect and a tomographic<br />

image (SPECT/CT), usually of the<br />

patient’s trunk. The evaluation software<br />

makes it possible to evaluate the<br />

planar images in such a way that the<br />

radiation pulses arriving in the camera<br />

can be determined quantitatively. The<br />

imaged organs or metastases relevant<br />

<strong>for</strong> dosimetry can be marked as<br />

regions of interest (ROI) and the<br />

pulses displayed. A calibration factor<br />

| Fig. 14.<br />

Thyroid scintigraphy with Tc-99m-PTT - Left: Image with pinhole. A focal autonomy can be observed in the left thyroid lobe.<br />

Eventually there is also a focal autonomy of the right thyroid lobe. Right: Focal autonomy in the left thyroid lobe with almost<br />

completely suppressed paranodular tissue.<br />

is required to calculate the activity in<br />

the organ/tumor from the pulses. The<br />

activity in the patient is known from<br />

the first whole-body scan (measuring<br />

the excretion makes it possible to<br />

deduce the activity remaining in the<br />

body), thus it is possible to calculate a<br />

calibration factor from the total<br />

number of incoming pulses in the<br />

camera. In addition, a 50 ml syringe<br />

filled with known activity is included<br />

in each whole-body image. A calibration<br />

factor can also be determined<br />

here by creating an ROI. The activity<br />

of the organs or tumor/metastases<br />

during SPECT/CT imaging can be<br />

determined with the aid of the evaluation<br />

software, as the equipment has<br />

been calibrated in advance.<br />

A mathematical function, which<br />

approximately describes the activity<br />

curve (usually an exponential function),<br />

is then created <strong>for</strong> the activity<br />

curve, determined using the scintigrams,<br />

in the relevant organs or in the<br />

tumor tissue. The time integral of this<br />

function represents the sum of all<br />

decays that have taken place in the<br />

organ or tumor, which is important <strong>for</strong><br />

dose calculation. To calculate the dose<br />

also requires factors which describe<br />

how much energy is transferred to the<br />

tissue per decay; the mass of the<br />

organ/tumor is also relevant. These<br />

two pieces of in<strong>for</strong>mation can be<br />

found in the so-called S values<br />

according to RADAR (Radiation Dose<br />

Assessment Resource, related literature<br />

at ICRP and MIRD).<br />

This in<strong>for</strong>mation is used as the<br />

basis <strong>for</strong> dosimetry which provides an<br />

important indication as to whether<br />

target doses have been reached in<br />

tumors, metastases or in benign<br />

thyroid tissue, or which radiation dose<br />

healthy organs have been exposed to<br />

by the therapy.<br />

3.2.2 Radioiodine therapy<br />

of the thyroid<br />

Probably the most classic and established<br />

therapy method in nuclear<br />

medicine, it has been practiced <strong>for</strong><br />

more than 50 years and is administered<br />

in Germany 50,000 times a year.<br />

Indications are malignant disorders<br />

(thyroid cancers or their iodinestoring<br />

metastases), as well as benign<br />

disease such as autonomies, other<br />

<strong>for</strong>ms of hyperthyroidism or autoimmune<br />

diseases such as Graves’<br />

disease.<br />

Scintigraphy using Tc-99m-PTT<br />

(pertechnetate) is used to confirm<br />

suspected diagnosis suitable <strong>for</strong> radioiodine<br />

therapy. Pertechnetate ions are<br />

actively taken up in thyroid cells in a<br />

similar way as iodide ions via the<br />

sodium iodide symporter. As a result,<br />

the pertechnetate uptake correlates<br />

to the organ’s iodine avidity. The<br />

regional uptake behavior and the<br />

extent of uptake is assessed quantitatively<br />

in the scintigram. The aims<br />

of the examination are there<strong>for</strong>e a<br />

planar functional image of the thyroid,<br />

which is always correlated with a<br />

sonogram <strong>for</strong> anatomical orientation,<br />

and the quantitative determination of<br />

pertechnetate uptake (TcTU).<br />

This examination is followed by a<br />

radioiodine test, i.e. the imaging of a<br />

compara tively small amount of activity<br />

of iodine- 131 (approx. 5 MBq). This<br />

uptake measurement (quantification<br />

of the max. iodine uptake capacity of<br />

the thyroid), which typically takes<br />

place after 5-8 days, is used to<br />

calculate the amount of I-131 to be<br />

administered during therapy in the<br />

ENVIRONMENT AND SAFETY 223<br />

Environment and Safety<br />

Excursus to the World of <strong>Nuclear</strong> Medicine ı Andreas Schmidt, Klaus Tatsch, Beate Pfeiffer, Verena Störzbach and Maximilian Kauth


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

ENVIRONMENT AND SAFETY 224<br />

| Fig. 15.<br />

Thyroid scintigraphy with I-131 <strong>for</strong> radioiodine test. A homogenous<br />

distribution throughout the thyroid can be observed <strong>for</strong> this patient with<br />

hyperthyroidism.<br />

1) Other controlled<br />

areas are the “hot<br />

laboratory”, the<br />

decay facility <strong>for</strong><br />

radioactive sewage<br />

of the associated<br />

nuclear medicine<br />

treatment center, as<br />

well as the solids<br />

store which serves<br />

as an interim<br />

storage facility <strong>for</strong><br />

radioactive waste<br />

be<strong>for</strong>e it is routed to<br />

the regular disposal<br />

path. Bed linen, <strong>for</strong><br />

example, is also<br />

stored here.<br />

target volume. The radioiodine test is<br />

usually per<strong>for</strong>med on an out-patient<br />

basis (Figure 15).<br />

The actual radioiodine therapy<br />

takes place in one of the hospital’s<br />

controlled 1 areas. Among other<br />

things, this is characterized by staff<br />

access restrictions. After leaving these<br />

areas, a hand-foot-clothing monitor is<br />

used to measure any contamination.<br />

Patients are admitted to hospital<br />

<strong>for</strong> at least 48 hours.<br />

Accordingly, the therapeutic effect<br />

is based on administration of the<br />

I-131 nuclide, a b-emitter with<br />

0.6 MeV, which is almost exclusively<br />

taken up in thyroid cells. Depending<br />

on the therapy, the activity administered<br />

is between 150-1200 MBq<br />

<strong>for</strong> benign disorders. Depending on<br />

the thyroid’s metabolism, patients<br />

may be ad ministered additionally<br />

suppressive thyroid hormones, e.g.<br />

to suppress the uptake of I-131 in<br />

healthy thyroid tissue and to restrict<br />

the uptake only to auto nomous<br />

tissue as target tissue.<br />

In the case of malignant disorders<br />

of the thyroid, the activity administered<br />

may be many times higher in<br />

order to achieve the therapeutic goals.<br />

4 Conclusion<br />

Unlike any other medical discipline,<br />

nuclear medicine provides insights<br />

into many metabolic pathways illustrating<br />

various pathophysiologic concepts<br />

of the human body. It also combines<br />

a large number of medical disciplines<br />

with physics, special machine<br />

construction and computer engineering.<br />

There are many research reports in<br />

the field of artificial intelligence<br />

where machine learning and texture<br />

analysis in fusion imaging may lead to<br />

more advanced imaging technology<br />

which, coupled with even more specific<br />

tracers, will enable even more targeted<br />

and individualized therapy in<br />

the future.<br />

Acknowledgement<br />

Many thanks to our colleagues and<br />

co-authors at the Städtisches Klinikum<br />

Karlsruhe without whose expertise,<br />

but above all without whose time,<br />

help and support, this article would<br />

not have been possible.<br />

References<br />

[1] W. A. Calendar: Computed Tomography. Basics, device<br />

technology, image quality, applications with multilayer spiral<br />

CT. Publicis MCD advertising agency, Munich 2000, ISBN<br />

3-89578-082-0.<br />

[2] T. M. Buzug: Introduction to computer tomography:<br />

Mathematical-physical basics of image reconstruction.<br />

Springer, Berlin/Heidelberg/New York 2002,<br />

ISBN 3-540-20808-9 limited preview in Google book search<br />

Further sources<br />

| Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit<br />

(BMU) [Federal Ministry <strong>for</strong> the Environment, Nature<br />

Conservation and <strong>Nuclear</strong> Safety]<br />

| Strahlenschutzkommission (SSK) [The German Commission<br />

on Radiological Protection]<br />

| DGMP – Deutsche Gesellschaft für Medizinische Physik e.V.<br />

[German Society <strong>for</strong> Medical Physics]<br />

| Guideline to the Radiation Protection Ordinance – Radiological<br />

protection in medicine<br />

Authors<br />

Dipl.-Ing. Andreas Schmidt<br />

Radiation and environmental<br />

protection engineer<br />

Prof. Dr. med. Klaus Tatsch<br />

Director of the Department<br />

of <strong>Nuclear</strong> Medicine<br />

Beate Pfeiffer<br />

Senior medical-technical<br />

radiology assistant<br />

Dipl.-Ing. Verena Störzbach (BA)<br />

Radiation protection officer/<br />

Medical physics expert<br />

Dr. rer. nat. Maximilian Kauth<br />

Senior physicist<br />

Städtisches Klinikum<br />

Karlsruhe gGmbH<br />

Department of <strong>Nuclear</strong> Medicine<br />

Moltkestr. 90<br />

76133 Karlsruhe<br />

Germany<br />

| Fig. 16.<br />

Whole body (left) and SPECT/CT (right) images of a patient with thyroid cancer <strong>for</strong> metastases screening. The I-131 distribution<br />

during the therapy shows no pathological accumulation. The accumulation in bladder and stomach is due to the excretion<br />

of the radionuclide.<br />

Environment and Safety<br />

Excursus to the World of <strong>Nuclear</strong> Medicine ı Andreas Schmidt, Klaus Tatsch, Beate Pfeiffer, Verena Störzbach and Maximilian Kauth


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

Radiation in Art and Cultural Heritage<br />

Frank Meissner and Andrea Denker<br />

225<br />

1 Introduction Art objects like paintings or sculptures represent a considerable part of our history. Besides the<br />

works of art that survived, further remnants are considered of major importance to understand the development of<br />

mankind, like archaeological artefacts. All these objects – art and cultural heritage – give insight into the past and are<br />

essential archives to understand our history. The objects themselves are conserved and studied by specialists, based on<br />

classical knowledge and experience of art historians or archaeologists, but more and more supported by natural sciences<br />

and technical investigation methods. The application of ionising radiation in art history, archaeology or palaeontology<br />

is less known, but represents an important branch of the methods when it comes to the analysis of material composition<br />

or imaging techniques of historically valuable objects. <strong>Nuclear</strong> methods and X-ray technologies are the most important<br />

applications because of their quasi non-destructive features and their macroscopic to microscopic range of the<br />

interactions with the object. Depending on the questions to be answered, one can imagine to introduce various<br />

radiations from nuclear reactors, accelerators, spallation sources or X-ray generators. In this paper, a few selected<br />

examples are presented to give brief insight into the use of reactor neutrons and X-rays in art and cultural heritage and<br />

the results that can be obtained.<br />

2 Methods and results<br />

<strong>Nuclear</strong> methods and X-ray applications<br />

have found entrance into the<br />

investigation of art and cultural<br />

heritage objects. Worldwide, several<br />

institutes have launched research projects<br />

or even founded working groups<br />

in order to use reactor neutrons,<br />

accelerator particle beams or X-rays in<br />

the research of paintings or historical<br />

artefacts. Many of these projects are<br />

spin-offs from material testing and<br />

material studies in solid state physics.<br />

Results are presented at conferences<br />

dedicated to the specific research<br />

like the international “Synchrotron<br />

Radiation and Neutrons in Art and<br />

Archeology” Conference [1], connecting<br />

nuclear physicists with e.g.<br />

art historians, conservators, archaeologists<br />

and paleontologists. Many of<br />

the non-destructive testing methods<br />

in material sciences are applicable to<br />

art and cultural heritage, however,<br />

two important constraints have to be<br />

kept in mind.<br />

First, it is evident that the use of<br />

particles from accelerators or reactors<br />

must be restricted to pure research or<br />

very limited numbers of specific projects<br />

since the technical ef<strong>for</strong>t <strong>for</strong> the<br />

production of the radiation and the<br />

facilities needed <strong>for</strong> their application<br />

is very high. Besides nuclear reactors,<br />

this is also valid <strong>for</strong> synchrotron facilities<br />

which are well suited to produce<br />

high quality X-rays <strong>for</strong> such investigations<br />

and usually operate dedicated<br />

beamlines.<br />

Second, important samples in art<br />

and cultural heritage are unique and<br />

irreplaceable. Owners and conservators<br />

might there<strong>for</strong>e be reluctant to<br />

offer them to research institutes <strong>for</strong><br />

such studies, unless there is close<br />

cooperation and trust. Even if an<br />

object leaves a museum or conservatory<br />

site, considerable ef<strong>for</strong>ts and<br />

costs <strong>for</strong> appropriate transportation<br />

and insurance have to be taken into<br />

account and the correct handling of<br />

the objects within the conservatory<br />

parameters always requires specialist<br />

knowledge.<br />

These constraints are usually not<br />

limiting in the case of X-ray investigations<br />

which take place on-site using<br />

designated equipment like X-ray<br />

generator tubes operated by museums<br />

or mobile X-ray devices from external<br />

service providers. Such X-ray studies,<br />

in particular with the up-to-date hardware<br />

and software, cover a large<br />

fraction of the issues questioned by<br />

the experts and are there<strong>for</strong>e the<br />

first choice when it comes to imaging<br />

or elemental analysis with X-ray<br />

fluorescence.<br />

Imaging methods with neutrons<br />

are usually complementary to X-ray<br />

imaging techniques, so each method<br />

adds specific results because of the<br />

different interaction mechanisms of<br />

neutrons and X-rays in matter. There<strong>for</strong>e,<br />

the neutron results can be well<br />

compared with those obtained by<br />

X-rays [2,3,4,5,6].<br />

Neutrons have no charge and<br />

there<strong>for</strong>e exhibit a higher penetration<br />

depth in matter as compared to other<br />

particles and as compared to X-rays. In<br />

particular, they can pass easily many<br />

centimeters of dense materials like<br />

iron, copper or lead, while their interaction<br />

with light nuclei is larger and<br />

thus scattering and attenuation is<br />

higher in typical organic matrices of<br />

elements like hydrogen, carbon, nitrogen<br />

and oxygen. Besides, neutrons<br />

may also interact with nuclei of the<br />

elements in materials allowing activation<br />

reactions. In this case, the specific<br />

cross sections have to be taken into<br />

account, which will depend on the<br />

energy of the neutrons and the specific<br />

nuclei they interact with. Reactor<br />

neutrons offer the option to use fast<br />

neutrons as well as thermal neutrons<br />

with their different behaviour in<br />

matter [3]. Neutrons have been used<br />

in material sciences since many<br />

decades and the use in art and cultural<br />

heritage, as a later development, is<br />

based on the experience therefrom.<br />

Three methods are widely used, these<br />

are:<br />

p Neutron radiography/tomography,<br />

which produces a twodimensional<br />

or even threedimensional<br />

image by detecting<br />

the images revealed by absorbed<br />

and scattered neutrons,<br />

p Neutron activation analysis (NAA),<br />

which is a method very sensitive to<br />

the elemental composition of the<br />

sample, and<br />

p Neutron activation radiography<br />

(NAR), which reveals images of the<br />

distribution of activation products<br />

by autoradiography.<br />

For such studies, it is sometimes<br />

possible to use accelerators <strong>for</strong> the<br />

required neutron production, but<br />

many specialists rely on nuclear<br />

fission sources, which are represented<br />

by reactors with dedicated beamlines<br />

and defined neutron properties. In<br />

Germany, the neutron source FRM-II<br />

in Munich, the research reactor TRIGA<br />

in Mainz and the (now shutdown)<br />

research reactor BER-II in Berlin are<br />

known <strong>for</strong> their neutron studies in art<br />

and archaeology, some examples can<br />

be found in [3,5,6,7].<br />

For instance, the neutron activation<br />

radiography (NAR) of a painting<br />

is capable of analysing different paint<br />

layers and the painting support. In<br />

RESEARCH AND INNOVATION<br />

Research and Innovation<br />

Radiation in Art and Cultural Heritage ı Frank Meissner and Andrea Denker


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

RESEARCH AND INNOVATION 226<br />

Isotope produced<br />

by neutron activation<br />

Pigment<br />

other cases, the individual brushstroke<br />

applied by the artist is made<br />

visible, as well as changes and corrections<br />

(so-called Pentimenti) introduced<br />

during the painting process.<br />

The NAR method is well suited <strong>for</strong> old<br />

paintings – typically made be<strong>for</strong>e<br />

1800 – when only a limited number of<br />

known pigments was available. The<br />

experimental principle is simple: In a<br />

first step, the painting is exposed to a<br />

flux of cold neutrons. Some of the<br />

nuclei within the pigments capture<br />

neutrons, which make the pigments<br />

radioactive. Moving the support of the<br />

painting within the neutron field<br />

allows activation of the total area of<br />

the painting. Due to the irradiation<br />

time (which is usually a few hours),<br />

only a few atoms are activated, <strong>for</strong><br />

which reason the method is considered<br />

as being quasi non- destructive.<br />

During the irradiation of the pigments,<br />

a limited number of different<br />

light and heavy isotopes is produced,<br />

see Table 1.<br />

After this activation, the neutroninduced<br />

radioactivity decays with the<br />

Half-life<br />

56 Mn Umber, Dark Ochre 2.6 h<br />

64 Cu Azurite, Malachite, Verdigris 13 h<br />

76 As Realgar, Auripigment, Smalt 1.1 d<br />

122 Sb Naples Yellow 2.7 d<br />

124 Sb Naples Yellow 60 d<br />

32 P Bone Black 14 d<br />

203 Hg Cinnabar 47 d<br />

60 Co Smalt 5.3 a<br />

| Tab. 1.<br />

Radioactive isotopes produced during the neutron irradiation of the pigments<br />

used in a historical painting.<br />

specific half-life of the respective isotope.<br />

The β- and γ-radiation from the<br />

induced activity blackens highly sensitive<br />

films (X-ray films) or the radiation<br />

is detected with imaging plates. The<br />

resulting radiography unveils the<br />

spatial distribution of the pigments<br />

containing the radioactive isotopes.<br />

The large advantage of neutron<br />

activation radiography lies in the fact<br />

that different activation products can<br />

be detected on separate films, placed<br />

subsequently on the painting over the<br />

time. During the whole procedure, up<br />

to four film layers or imaging plates<br />

are used to register the radiation,<br />

revealing the short-lived isotopes of<br />

manganese and copper on the first<br />

and second, and the isotopes of<br />

mercury and phosphorus (due to<br />

their longer half-lives) on the last film<br />

layer. In addition, high resolution<br />

Germanium-detectors analyse the<br />

gamma spectrum from specific locations<br />

on the painting, providing the<br />

final in<strong>for</strong>mation about the elemental<br />

composition in the acti vated areas in<br />

the paint layers.<br />

One of the paintings which was earlier<br />

studied by this method is a work of<br />

Poussin. Nicolas Poussin (1594-1665)<br />

is one of the main representatives of<br />

pictorial classicism in the Baroque period.<br />

Already in 1625, the legend of<br />

the sorceress Armida and the crusader<br />

Rinaldo had inspired Poussin to accomplish<br />

the painting “Armida and<br />

Rinaldo”, now owned by the Dulwich<br />

Picture Gallery in London.<br />

Another painting of Poussin’s circle,<br />

which is conserved in the Gemäldegalerie<br />

Berlin, “Armida abducts the<br />

sleeping Rinaldo” (Figure 1), was<br />

always supposed to be a copy after<br />

Poussin. To clarify such questions of<br />

attribution, investigations by means of<br />

neutron activation radiography were<br />

carried out at the BER-II reactor in<br />

Berlin [7,8].<br />

Surprisingly, the results showed<br />

that besides the visible scene further<br />

trees were arranged in the first<br />

composition of the work (Figure 2),<br />

but were later overpainted. This had<br />

not been visible so clear in earlier<br />

X-ray images of the painting. The<br />

neutron activation results and further<br />

investigations also revealed the same<br />

pigments in these areas and their fit<br />

into the overall composition. It was<br />

therefrom strongly supported that the<br />

first composition of the painting had<br />

been changed by the artist. These<br />

changes, called Pentimenti, are given<br />

evidence that the painting can be<br />

considered an original, because such<br />

basic changes of the composition are<br />

unlikely in a copyist’s work. All the<br />

investigations per<strong>for</strong>med on this<br />

Berlin painting are now consistent<br />

with a possible attribution of the<br />

artwork to Nicolas Poussin himself.<br />

| Fig. 1.<br />

Nicolas Poussin: “Armida abducts the sleeping Rinaldo”, ca.1637<br />

© Staatliche Museen zu Berlin – Gemäldegalerie, Inv. Nr. 486 (Jörg P. Anders).<br />

| Fig. 2.<br />

First neutron activation radiography, assembled from 12 image plate records<br />

of the painting from Fig.1. The coloured areas show those parts of the composition<br />

which had been changed by the artist.<br />

Research and Innovation<br />

Radiation in Art and Cultural Heritage ı Frank Meissner and Andrea Denker


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

| Fig. 3.<br />

High-resolution digital radiography (section) of a French impressionist<br />

painting by Frédéric Cordey,1854-1911, showing the structure of the<br />

canvas, part of its fixing on the stretcher with nails on the right, various<br />

damages in the <strong>for</strong>m of losses, and the brush stroke structure which can be<br />

considered characteristic <strong>for</strong> the painter.<br />

Since Wilhelm Conrad Röntgen<br />

discovered in 1895 that X-rays exhibit<br />

a high penetration, even in materials<br />

which are opaque <strong>for</strong> visible light, the<br />

new radiation was an opportunity<br />

<strong>for</strong> many applications, starting from<br />

medicine, but soon in material<br />

analysis, and also in the study of art<br />

objects and archeological artefacts.<br />

As a helpful tool <strong>for</strong> the questions<br />

rised by art historians, archeologists<br />

or conservators, the classical X-rays<br />

were introduced systematically in<br />

radiography studies of paintings by<br />

the radiologist A. Faber in 1914 [9]<br />

and it is well known that non-destructive<br />

imaging with X-rays was a very<br />

powerful tool to learn more about<br />

mummies in the early 20 th century.<br />

Already in 1924, the Pinakothek in<br />

Munich and the Louvre in Paris<br />

operated own X-ray devices <strong>for</strong> the<br />

radiography of paintings [9]. In the<br />

1930’s dedicated X-ray tubes <strong>for</strong> investigations<br />

of painting were available<br />

and although there was a period of<br />

severe doubts and rumors about possible<br />

radiation damages to valuable<br />

art objects, radiography of paintings<br />

with X-rays became more and more<br />

accepted [9]. The thesis of C. Wolters<br />

[10] on X-ray studies in art history is<br />

one of the basic documents, which<br />

comprised the knowledge so far and<br />

worked out the important factors <strong>for</strong><br />

the interpretation of X-ray images of<br />

paintings.<br />

In the radiography of paintings,<br />

the technique uses the contrast<br />

achieved by different absorption of<br />

X-rays in the pigments, very similar<br />

to the contrast effect of different<br />

tissues in medical X-ray imaging.<br />

Heavy elements clearly dominate this<br />

effect, like lead (in the <strong>for</strong>m of the<br />

pigment Lead-white) or – far less<br />

important – mercury (red Cinnabar<br />

pigment) or barium (Lithopone).<br />

Be<strong>for</strong>e the mid of the 19 th Century,<br />

Lead-white was used in every white<br />

paint layer and blended with other<br />

pigments to brighten these up. In the<br />

case of paintings, high-resolution<br />

X-ray images exhibit the distribution<br />

of lead white pigment with excellent<br />

accuracy and are well suited to analyse<br />

the overall composition, the brushstrokes<br />

of the painter (Figure 3) and<br />

to discover changes (Pentimenti) and<br />

overpaintings.<br />

In an interesting project to be<br />

mentioned here [11], of the French<br />

Centre de Recherche et de Restauration<br />

des Musées de France (C2RMF) in<br />

cooperation with museums, several<br />

important thought-to-be-lost paintings<br />

of the French painter Frédéric Bazille<br />

were rediscovered below the paint<br />

layers of other paintings by Bazille –<br />

which means that he was probably<br />

very critical with his paintings and<br />

overpainted several works. Similar<br />

cases have been reported quite often.<br />

X-ray radiography gives a pro jection<br />

of the thin layers of a painting. Such<br />

projections are similarly applicable to<br />

other objects in cultural heritage like<br />

sculptures or archeolo gical artefacts,<br />

within the limits of the penetration of<br />

denser materials. In the classic X-ray<br />

tube, the radiation is emitted from a<br />

small focal point in the tube, so<br />

geometrical effects when analyzing the<br />

projections have to be taken into<br />

account. These are, how ever less<br />

limiting <strong>for</strong> flat paintings in large focal<br />

distances.<br />

Later and up-to-now developments<br />

comprise 3D X-ray tomography and<br />

optimized X-rays sources, digital<br />

recording instead of film material<br />

and computed analysis. By these<br />

| Fig. 4.<br />

Measurement of X-ray fluorescence radiation (XRF)<br />

with mobile equipment and professional data analysis<br />

reveals the elemental composition of the pigments in the painting.<br />

techniques, 3-dimensional X-ray imaging<br />

with computed tomography became<br />

standard, also in art and cultural<br />

heritage studies. However, as in the<br />

case of reactors and synchrotrons<br />

already mentioned above, such<br />

methods rely on stationary equipment<br />

and are there<strong>for</strong>e not applicable when<br />

an object shall not be moved from the<br />

conservatory environment.<br />

Moreover, X-rays are capable to produce<br />

X-ray fluorescence in materials<br />

that are irradiated, and this X-ray<br />

fluorescence (XRF) is widely used <strong>for</strong><br />

the identification of characteristic<br />

elements in pigments or <strong>for</strong> the analysis<br />

of metallic alloys. The principle is<br />

based on the fact that X-rays from<br />

an X-ray source entering the surface<br />

layers of the object (they will usually<br />

not enter very deep) excite atoms in<br />

the material which then emit their<br />

characteristic K- or L-X-rays. These<br />

characteristic X-rays are detected with<br />

an energy dispersive detector. The<br />

method is there<strong>for</strong>e capable to detect<br />

the elemental composition of the<br />

irradiated spot and thereby support an<br />

assignment of these elements to the<br />

pigments used. The X-ray source <strong>for</strong><br />

the excitation will be chosen adequately<br />

and may be a synchrotron with<br />

brilliant, monochromatic X-ray beam<br />

in a research center or a small, dedicated<br />

X-ray tube.<br />

In their simple <strong>for</strong>m with irradiation<br />

spots adjustable between 1 and<br />

8 mm, these instruments are small<br />

and fully mobile, although they contain<br />

the X-ray source and the detector.<br />

They can there<strong>for</strong>e be brought directly<br />

to the object and mounted on tripods<br />

<strong>for</strong> accurate measurements, see the<br />

typical setup in Figure 4.<br />

Modern XRF instruments dedicated<br />

to art and cultural heritage are<br />

RESEARCH AND INNOVATION 227<br />

Research and Innovation<br />

Radiation in Art and Cultural Heritage ı Frank Meissner and Andrea Denker


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

RESEARCH AND INNOVATION 228<br />

| Fig. 5.<br />

A landscape painting with a large oak tree, assigned to a 19 th century artist.<br />

available with additional options like<br />

automated scanning of the surface of<br />

the painting and automated recording<br />

of the data from the investigated<br />

object. Further optimizations are<br />

precise, very small irradiation spots in<br />

so- called Micro-XRF instruments<br />

using collimating X-ray lenses. The<br />

advantage is at hand: The area under<br />

investigation is much better characterised<br />

and the imaging resolution is<br />

higher, while the scanning over the<br />

whole surface reveals a complete<br />

image of the elemental distribution.<br />

These X-ray images seem much better<br />

achievable than to expend high ef<strong>for</strong>ts<br />

<strong>for</strong> neutron activation radiographies,<br />

although it should be reminded that<br />

low-Z elements are difficult or not at<br />

all detectable in XRF because of the<br />

attenuation of their characteristic<br />

X-rays in the paint layers. Modern<br />

scanning Micro-XRF instruments are<br />

operated in investigations of important<br />

art objects like in the actual<br />

analysis prior to the restoration of<br />

Rembrandt´s painting “Night Watch”<br />

of the Rijksmuseum in Amsterdam<br />

[12].<br />

In the following example measured<br />

at TÜV NORD – the case of a landscape<br />

painting from the 19 th Century<br />

– the power of X-ray radiography<br />

combined with XRF analysis is<br />

demonstrated (Figures 5 and 6). The<br />

painting, showing several traces of old<br />

damages, had been restored earlier<br />

and by this occasion had been relined<br />

(this means, a second canvas was<br />

glued on the backside). The XRF<br />

results from the elements in the paint<br />

layers were consistent <strong>for</strong> the pigments<br />

expected like iron (pigment<br />

Siena or Umber) and manganese<br />

( pigment Umber). The detection of<br />

chromium (pigment Chrome Green<br />

from the beginning of the 19 th century,<br />

or the improved version of<br />

hydrated chromium oxide, which<br />

became known as Viridian Green<br />

during the 1860’s) allows to date the<br />

painting into the 19 th century. Be<strong>for</strong>e<br />

the introduction of these chromium<br />

pigments, green colors in paintings<br />

were mostly based on copper pigments<br />

like Azurite, Malachite or<br />

Verdigris, however, the element<br />

copper was not detected in the XRF<br />

spectra of this painting. It is worth<br />

noting, that similar XRF pigment<br />

analysis is well suited to detect fake<br />

paintings if the <strong>for</strong>ger used modern<br />

pigments like Titanium White (available<br />

since ca. 1920) or various<br />

Cadmium pigments (not available<br />

be<strong>for</strong>e the very late 19 th Century), as it<br />

was discovered in a number of cases of<br />

art <strong>for</strong>gery. The most prominent case<br />

might be the <strong>for</strong>ger Wolfgang Beltracci<br />

who specialized on fakes of Expressionism<br />

painters from around 1900<br />

and probably sold hundreds of fakes<br />

into the art market. In one of his<br />

<strong>for</strong>ged paintings of the famous painter<br />

Campendonk, the pigment Titanium<br />

White was measured in a technical<br />

investigation with XRF, which proved<br />

that the painting was a fake and<br />

thereby uncovered one of the largest<br />

cases of art <strong>for</strong>gery.<br />

In the landscape painting of<br />

Figure 5, surprisingly a high amount<br />

of mercury (an element, which is<br />

umambiguously assigned to the red<br />

pigment Cinnabar) was detected. The<br />

idea, that Cinnabar could have been<br />

used in one of the paint layers below<br />

the visible surface was at hand. By<br />

means of the digital X-ray radiography<br />

of the painting, it was discovered that<br />

the artist had used an older canvas<br />

with a mythological or religious<br />

figural scenery <strong>for</strong> his work (see<br />

Figure 6) and that the overpainted<br />

and hidden composition is well<br />

consistent with the use of Cinnabar<br />

pigment, which often occurs in (red)<br />

clothes of the figures.<br />

As it was stated above, X-ray<br />

radiography is not limited to paintings<br />

and this is shown in the following case<br />

[13]. Near the village of Schortens<br />

in Friesland, a part of North-West-<br />

Germany, a large cemetery field from<br />

the early middle-ages had been<br />

discovered in the 1970’s. The archaeological<br />

findings, attributed to a period<br />

from the 5 th to the 12 th Century,<br />

consisted of cinerary urns including a<br />

variety of corroded metallic artefacts<br />

and are conserved in museums today<br />

(Landesmuseum Natur und Mensch<br />

Oldenburg and Landesmuseum<br />

Hannover). However, most of the<br />

metallic artefacts were never investigated,<br />

although the presumed keys,<br />

buckles, knives or even swords given<br />

to the graves of the dead would reveal<br />

additional knowledge about the life in<br />

these early populations of North-<br />

West- Germany, be<strong>for</strong>e and during the<br />

Christianisation phase. The ef<strong>for</strong>t to<br />

restore such objects is very high and<br />

restoration is under the risk of<br />

damaging the objects during the<br />

delicate procedures involved. Hence,<br />

a non-destructive imaging by X-rays<br />

was chosen in order to reveal first<br />

insight into the corroded pieces and<br />

prepare a decision basis <strong>for</strong> later<br />

restoring.<br />

As an example <strong>for</strong> the results,<br />

Figure 7 shows the amazing pictures<br />

of a so-called needle tubule, which<br />

was an important part of women´s<br />

equipment in the early middle ages,<br />

| Fig. 6.<br />

X-ray radiography (30 kV, 4 mAs, © TÜV NORD EnSys) of the painting from Fig.5, showing the older and<br />

overpainted composition as well as structural in<strong>for</strong>mation.<br />

Research and Innovation<br />

Radiation in Art and Cultural Heritage ı Frank Meissner and Andrea Denker


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

[9] Bildanalyse in der Kunst<br />

A. Beck<br />

in: Forschung mit Röntgenstrahlen<br />

F.H.W. Heuck, E. Macherauch (Eds.)<br />

Springer, Berlin, Heidelberg (1995)<br />

ISBN 978-3-642-78842-0<br />

[10] Die Bedeutung der Gemäldedurchleuchtung mit Röntgenstrahlen<br />

für die Kunstgeschichte<br />

C. Wolters<br />

in: Veröffentlichungen zur Kunstgeschichte Bd. 3<br />

Prestel-Verlag, Frankfurt (1938)<br />

[11] https://www.nga.gov/features/bazille-hiddencompositions.html<br />

Webpage of the National Gallery of Art, Washington,<br />

date: Feb.17 th , 2020<br />

[12] https://www.rijksmuseum.nl/en/the-first-scan<br />

Webpage of the Rijksmuseum, Amsterdam,<br />

date: Feb.14 th , 2020<br />

[13] https://www.archaeologie-online.de/nachrichten/<br />

kulturgut-unter-dem-roentgengeraet-4419/<br />

Authors<br />

Dr. Frank Meissner<br />

TÜV NORD EnSys<br />

Große Bahnstraße 31<br />

22525 Hamburg<br />

Prof. Dr. Andrea Denker<br />

Helmholtz-Zentrum Berlin<br />

Hahn-Meitner-Platz 1<br />

14109 Berlin<br />

RESEARCH AND INNOVATION 229<br />

| Fig. 7.<br />

The digital X-ray radiography (70 kV, 5 mAs, ©TÜV NORD EnSys) of a corroded tubule (above), found<br />

in a cinerary urn shows that the tubule contains a needle. It was given to the buried ashes of its owner,<br />

most likely a woman from the 5 th to 7 th century (Landesmuseum Natur und Mensch, Oldenburg)<br />

usually tied to their belts. These<br />

tubules contained a stitching needle<br />

which was thus readily available <strong>for</strong><br />

sewing and repair work. By means of<br />

digital X-ray radiography, the needle<br />

inside the tubule and also some remnants<br />

of a thread are clearly identified,<br />

see Figure 7. Archeologists are<br />

gaining in<strong>for</strong>mation by these X-ray<br />

images which would otherwise not be<br />

available.<br />

3 Summary<br />

<strong>Nuclear</strong> methods and X-rays applications<br />

are not limited to industry or<br />

medicine, but have found entrance<br />

into the investigation of art and<br />

cultural heritage objects. Worldwide,<br />

a number of institutes work on projects<br />

or even support devoted working<br />

groups in order to use reactor neutrons,<br />

accelerator particle beams and<br />

X-rays from synchrotrons or X-ray<br />

tubes in the research of paintings and<br />

historical artefacts. In the case of<br />

X-rays, mobile equipment <strong>for</strong> radiography<br />

and XRF analysis has large<br />

advantages <strong>for</strong> valuable or non-transportable<br />

objects since they can be<br />

used on-site. Neutrons from reactor<br />

facilities allow complementary techniques,<br />

which reveal striking additional<br />

in<strong>for</strong>mation about the objects,<br />

provided the objects are transported<br />

to the reactor site. Some established<br />

methods in art and cultural heritage<br />

were described to shine on these interesting<br />

radiation applications, which<br />

are well suited to answer questions<br />

deriving from art history, archeology,<br />

conservators and many other professionals<br />

in this field.<br />

Literature<br />

[1] Synchrotron Radiation and Neutrons in Art and Archeology,<br />

9 th <strong>International</strong> Conference, 22-25 February 2021<br />

in Los Angeles<br />

[2] Why use neutrons?<br />

Schillinger, B.<br />

Restaur. Archäol. 8 (2015): 1–7<br />

[3] Neutron Imaging in Cultural Heritage Research at the FRM II<br />

Reactor of the Heinz Maier-Leibnitz Center<br />

Schillinger, B.; Beaudet, A.; Fedrigo, A.; Grazzi, F.; Kullmer, O.;<br />

Laaß, M.; Makowska, M.; Werneburg, I.; Zanolli, C.<br />

J. Imaging 4 (2018): 22.<br />

[4] Neutron activation autoradiography and scanning macro-XRF<br />

of Rembrandt van Rijn’s Susanna and the Elders<br />

(Gemäldegalerie Berlin): a comparison of two methods <strong>for</strong><br />

imaging of historical paintings with elemental contrast<br />

M. Alfeld, C. Laurenze-Landsberg, A. Denker,<br />

K. Janssens, P. Noble<br />

Appl. Phys. A (2015) 119:795-805<br />

[5] Scanning macro-x-ray fluorescence analysis and Neutron<br />

Activation Auto Radiography: Complementary imaging<br />

methods <strong>for</strong> the investigation of historical paintings<br />

M. Alfeld, C. Laurenze-Landsberg, A. Denker,<br />

K. Janssens, P. Noble<br />

Berliner Beiträge zur Archäometrie, Kunsttechnologie und<br />

Konservierungswissenschaft, Band 23 (2015): 9-14<br />

[6] The Examination of Paintings by Rembrandt with Neutron<br />

Autoradiography and a comparison of Neutron Autoradiography<br />

with Scanning Macro-XRF<br />

C. Laurenze-Landsberg<br />

Restaurierung und Archäologie 8 (2015), 99-114<br />

[7] Neutron Autoradiography of Paintings, ‘The Hermit’ by an<br />

unknown artist and ‘Armida abducts the sleeping Rinaldo’<br />

(c.~1637) by Nicolas Poussin<br />

B. Schröder-Smeibidl, C. Laurenze-Landsberg,<br />

C. Schmidt, L. A. Mertens<br />

in: Non-destructive testing and analysis of museum objects<br />

A. Denker, A. Adriaens, M. Dowsett, A. Giumlia-Mair (Editors)<br />

Fraunhofer IRB Verlag, ISBN 978-3-8167-7178-4<br />

[8] BENSC neutrons <strong>for</strong> “Cultural Heritage” Research:<br />

Neutron Autoradiography of Paintings<br />

C. Laurenze-Landsberg, L.A. Mertens,<br />

C. Schmidt, B. Schröder-Smeibidl<br />

Notiziario Neutroni e Luce di Sincrotrone 11 no. 1 (2006):<br />

24-27<br />

Research and Innovation<br />

Radiation in Art and Cultural Heritage ı Frank Meissner and Andrea Denker


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

RESEARCH AND INNOVATION 230<br />

WiN Germany<br />

Price 2019<br />

Studies on the Interaction of Plant Cells<br />

with U(VI) and Eu(III) and<br />

on Stress- induced Metabolite Release<br />

Jenny Jessat, Susanne Sachs, Robin Steudtner and Thorsten Stumpf<br />

The interaction of plant cells with U(VI) and Eu(III) was investigated as a function of exposure time and metal<br />

concentration. Brassica napus (canola) cells were used in the experiments. For europium and uranium, an immobilization<br />

by the plant cells could be observed in first instance, which can be attributed to sorption processes. During the<br />

experiments an equilibrium state was reached, i.e. <strong>for</strong> none of the investigated concentrations a complete bio association<br />

occurred. Especially <strong>for</strong> the examined concentration of 200 µM U(VI) a multi-stage bioassociation process was observed,<br />

i.e. after the described bioassociation a new release of uranium by the cells occurred. By means of time-resolved laserinduced<br />

fluorescence spectroscopy it could be shown that the U(VI) is complexed by cell metabolites in the course of<br />

exposure. Several newly <strong>for</strong>med species could be detected. It can be assumed that metabolites released by plant cells in<br />

response to heavy metal stress complex U(VI) and keep it in solution. Using a combination of solid phase extraction,<br />

high-per<strong>for</strong>mance liquid chromatography and mass spectrometry, p-coumaric acid and fumaric acid were identified as<br />

released metabolites and their complexation behavior with U(VI) was investigated.<br />

| Fig. 1.<br />

Schematic illustration of possible interaction processes of heavy metals<br />

with a plant cell. (adapted from Francis 1998 [13])<br />

Introduction<br />

In Germany, the Ethics Committee on<br />

Secure Energy Supply proposed the<br />

phasing out of the use of nuclear<br />

energy in 2011 and found its realization<br />

possible within the next ten years.<br />

[1] As a result, it was decided to shut<br />

down all German nuclear power<br />

plants by 2022. The decision <strong>for</strong> a<br />

suitable repository site <strong>for</strong> high radioactive<br />

nuclear waste is a major challenge<br />

<strong>for</strong> politicians, energy supply<br />

companies and society. It is the task<br />

of science to understand and predict<br />

the behavior of radionuclides in<br />

the environment to create the basis <strong>for</strong><br />

a safety assessment and thus <strong>for</strong><br />

repository site selection. For a reliable<br />

safety assessment of nuclear waste<br />

reposi tories, it is necessary to consider<br />

possible scenarios in which radionuclides<br />

are released into the environment.<br />

In this context, the transfer<br />

behavior of the radionuclides from the<br />

groundwater zone via the soil into the<br />

plant is of importance. Radionuclides<br />

can be accumulated by plants and<br />

thus, they can enter the food chain.<br />

This creates a health risk <strong>for</strong> humans<br />

and animals. However, there is little<br />

knowledge about the mechanisms of<br />

interaction between radionuclides<br />

and plants. Of course, there are some<br />

studies on this topic [2–5], but in<br />

many cases only transfer factors are<br />

determined which do not provide any<br />

in<strong>for</strong>mation on the underlying processes<br />

taking place. [5–7] It is there<strong>for</strong>e<br />

a major goal to generate a molecular<br />

process understanding in this<br />

field.<br />

Thus, one major objective of the<br />

present work was to investigate the<br />

time dependence of the bioassociation<br />

of uranium (U(VI)) and europium<br />

(Eu(III)) with Brassica napus (canola)<br />

cells. These two elements were chosen<br />

because uranium is a major component<br />

of spent nuclear fuel rods and<br />

europium can be used as an analogue<br />

<strong>for</strong> trivalent actinides, like plutonium<br />

(Pu(III)), americium (Am(III)) and<br />

curium (Cm(III)). [8–10] Americium<br />

and curium, in turn, are significantly<br />

responsible <strong>for</strong> the long-lasting radiotoxicity<br />

of the nuclear waste. [8]<br />

Canola was selected because it is a<br />

typical feed and crop plant in<br />

Germany. It is also known <strong>for</strong> tolerating<br />

high amounts of heavy metals<br />

and is there<strong>for</strong>e a suitable model<br />

organism <strong>for</strong> these studies. [7,11] The<br />

suspension cell cultures used are<br />

obtained from callus cultures. Callus<br />

cells have the advantage that they are<br />

able to synthesize typical secondary<br />

metabolites that are also produced in<br />

whole tissues. [12] It is also of interest<br />

to investigate the <strong>for</strong>mation of<br />

metabolites that are released by the<br />

cells as a response to the heavy metal<br />

stress as well as to study the complexation<br />

behavior of these metabolites<br />

with uranium. These data are<br />

required <strong>for</strong> an improved process<br />

understanding and are the basis <strong>for</strong><br />

the modeling of the radionuclide<br />

transfer in the environment up to the<br />

food chain.<br />

There<strong>for</strong>e it is necessary to know<br />

possible interaction processes of<br />

plant cells with heavy metals including<br />

radio nuclides, as illustrated<br />

in Figure 1.<br />

On the one hand there is the<br />

sorption [14] of heavy metals on cell<br />

walls and membranes, which takes<br />

place passively and fast, on the other<br />

hand there is the accumulation [15]<br />

as an active process through which<br />

heavy metals are taken up into the<br />

cell. As a result of the release of bioligands<br />

by the cell, heavy metals can<br />

be complexed. This process influences<br />

their solubility (biocomplexation).<br />

[16,17] Due to biotrans<strong>for</strong>mation [18]<br />

(usually that is a reduction) the oxidation<br />

state of the heavy metal is<br />

changed by the cell metabolism. For<br />

uranium this could be a reduction<br />

from U(VI) to U(IV). This reduction is<br />

closely related to biomineralization,<br />

which can lead to the <strong>for</strong>mation of<br />

insoluble metal precipitates. [11,19]<br />

To put it simply, all processes with the<br />

exception of complexation lead to an<br />

immobilization of the heavy metals<br />

and are there<strong>for</strong>e summarized under<br />

the term bioassociation. Nevertheless,<br />

it is possible to obtain in<strong>for</strong>mation on<br />

the individual processes, as will be<br />

Research and Innovation<br />

Studies on the Interaction of Plant Cells with U(VI) and Eu(III) and on Stress- induced Metabolite Release ı Jenny Jessat, Susanne Sachs, Robin Steudtner and Thorsten Stumpf


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

shown later. Due to these interactions,<br />

stress reactions can be induced in the<br />

plant cells. The heavy metals can act<br />

directly as chemical stressors and<br />

displace essential metal ions from the<br />

active centers of enzymes or damage<br />

proteins, especially those with thiol<br />

groups. [20] They can also induce a<br />

secondary <strong>for</strong>m of stress – the oxidative<br />

stress – by disturbing the<br />

cellular redox status. This leads to<br />

the <strong>for</strong>mation of reactive oxygen<br />

species, which in turn can damage<br />

cell organelles. [20–22] Plants react<br />

differently to stress. One possible<br />

reaction is the <strong>for</strong>mation of protective<br />

metabolites that can affect the bioavailability<br />

of heavy metals. [20,22]<br />

To investigate the time-dependent<br />

bioassociation behavior of U(VI) und<br />

Eu(III) with canola, B. napus callus<br />

cells (PC-1113 from DSZM, Braunschweig,<br />

Germany) were transferred<br />

to suspension cell cultures and<br />

exposed to a phosphate-reduced cell<br />

culture medium R [23] (R red ) with<br />

different concentrations of U(VI) (20<br />

and 200 µM) or Eu(III) (30 and<br />

200 µM). Exposure times were thereby<br />

varied between 1 and 72 h. At the end<br />

of the exposure time the cells were<br />

separated from the supernatants.<br />

The metabolic activity of the cells<br />

( vitality) was determined by the MTT<br />

test [24] (MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium<br />

bromide). The supernatants were<br />

analyzed concerning their heavy<br />

metal content by ICP-MS (inductively<br />

coupled plasma-mass spectrometry)<br />

as well as regarding the speciation<br />

(physico-chemical <strong>for</strong>m) of U(VI) by<br />

TRLFS (time-resolved laser-induced<br />

fluorescence spectroscopy).<br />

How plant cells react to radionuclides<br />

and their analogues<br />

As mentioned be<strong>for</strong>e, all cell-related<br />

processes that can immobilize heavy<br />

metals are called bioassociation. This<br />

immobilization of U(VI) and Eu(III)<br />

by B. napus cells can be compared <strong>for</strong><br />

different heavy metal concentrations.<br />

Taking into account the metabolic<br />

activity of the plant cells at the considered<br />

exposure times, conclusions<br />

can be drawn about the physiological<br />

state of the cell and the reactions<br />

taking place. For 20 µM U(VI) as well<br />

as <strong>for</strong> 30 and 200 µM Eu(III) a comparable<br />

behavior was observed: up<br />

to about 24 h of exposure a rapid<br />

increase of bioassociation occurs,<br />

followed by an equilibrium adjustment.<br />

This behavior is exemplary<br />

shown in Figure 2 <strong>for</strong> the experiments<br />

carried out with 30 µM Eu(III).<br />

Two conclusions can be drawn<br />

from this. On the one hand, the rapid<br />

increase in bioassociation within the<br />

first few hours suggests that biosorption<br />

as a passive, fast process<br />

plays an important role in the immobilization<br />

of metals. However, it can<br />

be assumed that with increasing<br />

exposure time, other processes such<br />

as bioaccumulation, biocomplexation<br />

and bioprecipitation are also involved<br />

in the overall process. Furthermore,<br />

an equilibrium is reached after 24 h<br />

and it is noticeable that <strong>for</strong> none of the<br />

investigated concentrations 100 % of<br />

the metal was bioassociated at equilibrium.<br />

This means that there is no<br />

complete immobilization of the metals<br />

by the plant cells. This suggests that<br />

bioprecipitated U(VI) remains unnoticed<br />

as colloids in the supernatants<br />

and/or that processes are actively<br />

maintained by the cells to keep the<br />

heavy metals out of or away from the<br />

cells. For the lower U(VI) and Eu(III)<br />

concentrations, cell vitality (metabolic<br />

activity) remains at the level of<br />

the control samples (100 %) over the<br />

entire exposure period. It also turned<br />

out, as expected, that the cell vitality<br />

is increased <strong>for</strong> higher heavy metal<br />

concentrations than <strong>for</strong> lower concentrations.<br />

This difference can be<br />

explained by the fact that plant cells<br />

are exposed to increased stress due to<br />

the higher heavy metal load and react<br />

metabolically to it. The bioassociation<br />

behavior of B. napus cells exposed<br />

to 200 µM U(VI) differs from the<br />

behavior described so far (shown as<br />

an example in Figure 3).<br />

Here, the initially rapid increase in<br />

bioassociation can also be seen, which<br />

is probably again mainly attributable<br />

to biosorption. This is followed by a<br />

decrease of the bioassociated amount<br />

of uranium, i.e. as the exposure time<br />

increases, less immobilized uranium<br />

is present at or in the cells. There<strong>for</strong>e,<br />

it can be concluded that B. napus cells<br />

show a multistage bioassociation process<br />

in the presence of 200 µM U(VI).<br />

At the same time, cell vitality shows<br />

clear fluctuations during this period,<br />

indicating metabolic processes induced<br />

in the cell as a result of radionuclide<br />

exposure. In the literature<br />

such a multistage bioassociation process<br />

could be observed <strong>for</strong> halophilic<br />

archaea. [25] The release of U(VI)<br />

indicates a biocomplexation. In the<br />

literature it is mentioned that plant<br />

cells react to heavy metal stress,<br />

among other things, by releasing<br />

protective metabolites, especially<br />

flavonoids and phenols. [22,26] It can<br />

there<strong>for</strong>e be assumed that, as a result<br />

of the exposure of the cells to U(VI),<br />

the release of protective metabolites<br />

occurs, which complex U(VI) and thus<br />

convert it into a more mobile physicochemical<br />

<strong>for</strong>m. Spectroscopic investigations<br />

with cells and supernatants<br />

were carried out in order to verify this.<br />

Luminescence spectroscopy<br />

shows that plant cells react<br />

to uranium<br />

The investigated system includes the<br />

initial U(VI) containing nutrient<br />

RESEARCH AND INNOVATION 231<br />

| Fig. 2.<br />

Bioassociation behavior and cell vitality of B. napus cells exposed to 30 µM<br />

Eu(III) (mean values of 3 experiments). Cell vitalities are expressed<br />

as a percentage of the cell vitality of the control samples.<br />

| Fig. 3.<br />

Bioassociation behavior and cell vitality of B. napus cells exposed to<br />

200 µM U(VI) (1 experiment). Cell vitalities are expressed as a percentage<br />

of the cell vitality of the control samples.<br />

Research and Innovation<br />

Studies on the Interaction of Plant Cells with U(VI) and Eu(III) and on Stress- induced Metabolite Release ı Jenny Jessat, Susanne Sachs, Robin Steudtner and Thorsten Stumpf


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

RESEARCH AND INNOVATION 232<br />

| Fig. 4.<br />

Luminescence spectra <strong>for</strong> the initial medium R red with 200 µM U(VI)<br />

as well as cells and supernatants after 24 h exposure to 200 µM U(VI).<br />

Spectra recorded after a delay of 0.1 µs.<br />

medium as well as plant cells and<br />

supernatants after exposure to U(VI).<br />

These samples were examined by<br />

means of TRLFS. Complexation with<br />

inorganic and organic ligands present<br />

in solution may change the speciation,<br />

i.e. the physico-chemical <strong>for</strong>m in<br />

which the uranium is present in<br />

solution. These changes in speciation<br />

can be detected by TRLFS. Each U(VI)<br />

species has a spectrum with characteristic<br />

band positions and a typical<br />

luminescence lifetime, which can<br />

be determined by time-dependent<br />

measurements. These data can be<br />

used to determine how many and<br />

which species occur in the system.<br />

Reference substances can be used to<br />

identify them. For biological samples,<br />

cryo-TRLFS measurements are carried<br />

out in particular, in which the samples<br />

are cooled to -120 °C. This step is<br />

necessary because numerous quenching<br />

effects occur in the system due to<br />

medium and cell components that<br />

suppress the luminescence of U(VI).<br />

At low temperatures, quenching<br />

effects are suppressed as far as<br />

possible and spectra can be obtained.<br />

Figure 4 gives an overview of the<br />

luminescence spectra <strong>for</strong> the initial<br />

nutrient medium with 200 µM U(VI)<br />

and cells and supernatants after 24 h<br />

exposure to 200 µM U(VI).<br />

It can be seen that the cell species<br />

differs from the species in the medium<br />

or the supernatant. According to the<br />

literature [3] it can be assumed that<br />

this cell species is <strong>for</strong>med by the<br />

binding of UO 2<br />

2+<br />

to cell membranes<br />

or cell walls. Especially phosphate<br />

groups are of importance <strong>for</strong> the<br />

UO 2<br />

2+<br />

sorption processes. A closer<br />

look at the spectrum from the initial<br />

medium and from the supernatant<br />

after 24 h cell contact shows that<br />

speciation in the medium changes<br />

over time due to cell contact. From the<br />

experiments it can be concluded that<br />

the ((UO 2 ) 3 (OH) 5 ) + complex dominates<br />

in the initial medium according<br />

to the speciation calculations per<strong>for</strong>med<br />

(not shown) and the band<br />

positions [2] of the luminescence<br />

spectrum. However, the species that<br />

dominates the luminescence in the<br />

supernatant is different. The measurements<br />

of the supernatants at different<br />

exposure times showed that various<br />

species occur in the supernatants over<br />

time (not shown). Starting from the<br />

medium species, the ((UO 2 ) 3 (OH) 5 ) +<br />

complex [2], two more species appear<br />

with increasing exposure time. Thus,<br />

the sub-process of biocomplexation<br />

could be detected spectroscopically<br />

<strong>for</strong> B. napus cells. Both species represent<br />

potential U(VI) complexes<br />

with plant cell metabolites. To identify<br />

these species it is necessary to identify<br />

released metabolites and to investigate<br />

their complexation behavior<br />

with U(VI).<br />

Plant cells release metabolites<br />

in response to exposure<br />

to uranium and europium<br />

For the experiments on the enrichment<br />

and identification of plant cell<br />

metabolites only very high concentrations<br />

of U(VI) and Eu(III) were<br />

used and the exposure time was fixed<br />

at 1 week in order to accumulate as<br />

many metabolites as possible in the<br />

nutrient medium. For the identification<br />

of metabolites in the supernatants<br />

after cell contact, sequentially<br />

solid phase extraction, HPLC (highper<strong>for</strong>mance<br />

liquid chromatography)<br />

and MS (mass spectrometry) measurements<br />

were per<strong>for</strong>med. For solid<br />

phase extraction columns were used<br />

that were suitable <strong>for</strong> enrichment of<br />

phenolic compounds and flavonoids.<br />

This procedure made it possible to<br />

obtain chromatograms of the enriched<br />

eluates from the extraction<br />

(Figure 5).<br />

| Fig. 5.<br />

Chromatograms of solid phase extraction eluates of cell culture media after<br />

plant cell exposure to 200 µM U(VI) or Eu(III) in comparison to those of<br />

control samples. Peaks that are new or exhibit higher intensities compared<br />

to the control sample are marked.<br />

Of particular interest are peaks in<br />

the chromatograms, which either<br />

show increased intensities or are new,<br />

compared to the control sample. A<br />

first peak assignment is possible by<br />

measuring reference compounds by<br />

HPLC and comparing their retention<br />

times with those found <strong>for</strong> the eluates<br />

from the solid phase extraction. In the<br />

literature, phenolic compounds and<br />

flavonoids in particular are mentioned<br />

as typical plant metabolites that are<br />

exuded in response to heavy metal<br />

stress. [21,26] In addition, however,<br />

smaller molecules such as organic<br />

acids or amino acids, peptides and<br />

amines are also mentioned. [21] A<br />

number of representatives from these<br />

mentioned substance classes have<br />

there<strong>for</strong>e been measured by HPLC.<br />

Peaks, which matched in their retention<br />

times <strong>for</strong> reference and solid<br />

phase extraction eluates were examined<br />

more closely. The cor responding<br />

peaks were fractionated and two metabolites<br />

could be identified using MS:<br />

p-coumaric acid and fumaric acid.<br />

However, the investi gation of the<br />

complexation behavior of these<br />

compounds with U(VI) showed that<br />

these substances are not involved in<br />

the <strong>for</strong>mation of the two species<br />

identified in the TRLFS measurements<br />

of the supernatants. There<strong>for</strong>e,<br />

further investigations on metabolite<br />

release are still necessary. However,<br />

a complexation constant could be<br />

obtained from the complexation<br />

experiments with fumaric acid, which<br />

will be used <strong>for</strong> calculations.<br />

Summary<br />

The investigation of the timedependent<br />

bioassociation behavior as<br />

well as the spectroscopic, spectrometric<br />

and chromatographic investigation<br />

of the <strong>for</strong>med cell metabolites<br />

and metal species led to molecular<br />

understanding of the interaction of<br />

Research and Innovation<br />

Studies on the Interaction of Plant Cells with U(VI) and Eu(III) and on Stress- induced Metabolite Release ı Jenny Jessat, Susanne Sachs, Robin Steudtner and Thorsten Stumpf


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

the repository-relevant elements uranium<br />

and europium (as analogue <strong>for</strong><br />

tri valent actinides) with B. napus.<br />

When these elements are released<br />

from a repository site into the environment,<br />

they can initially be immobilized<br />

via bioassociation with plants,<br />

mainly by binding to the cell surface.<br />

As a result, these elements may enter<br />

the food chain and create a health risk<br />

<strong>for</strong> the population. Furthermore, in<br />

case of U(VI) exposure a release and<br />

thus mobilization of uranium with the<br />

involvement of metabolites is observed.<br />

This can contribute to a higher<br />

bioavailability <strong>for</strong>, e.g. soil microorganisms<br />

and to the transfer of<br />

uranium in the environment. It can be<br />

assumed that, in addition to uranium,<br />

other actinides are also mobilized by<br />

interactions with plants.<br />

Results of this study contribute<br />

to an enhanced understanding of the<br />

actinide uptake into plants on a<br />

molecular level. Such data are<br />

necessary to improve biogeochemical<br />

models to predict the transfer of these<br />

elements in the environment, which<br />

enables the assessment of more<br />

reliable radiation doses with lower<br />

uncertainties.<br />

[13] A. J. Francis, J. Alloys Compd. 1998, 271–273, 78–84.<br />

[14] M. Vogel, A. Günther, A. Rossberg, B. Li, G. Bernhard, J. Raff,<br />

Sci. Total Environ. 2010, 49, 384–395.<br />

[15] S. Singh, R. Malhotra, B. S. Bajwa, Radiat. Meas. 2005, 40,<br />

666–669.<br />

[16] A. Günther, G. Geipel, G. Bernhard, Radiochim. Acta 2006,<br />

94, 845–851.<br />

[17] A. Günther, R. Steudtner, K. Schmeide, G. Bernhard,<br />

Radiochim. Acta 2011, 99, 535–542.<br />

[18] K. Viehweger, G. Geipel, G. Bernhard, Biometals 2011, 24,<br />

1197–1204.<br />

[19] J. Misson, P. Henner, M. Morello, M. Floriani, T. Wu,<br />

J.-L. Guerquin-Kern, L. Février, Environ. Exp. Bot. 2009, 67,<br />

353–362.<br />

[20] E. Weiler, L. Nover, Allgemeine Und Molekulare Botanik,<br />

Georg Thieme Verlag, Stuttgart, 2008.<br />

[21] O. Sytar, A. Kumar, D. Latowski, P. Kuczynska, K. Strzałka,<br />

M. N. V. Prasad, Acta Physiol. Plant. 2013, 35, 985–999.<br />

[22] A. Emamverdian, Y. Ding, F. Mokhberdoran, Y. Xie,<br />

Sci. World J. 2015, 2015, 1–19.<br />

[23] https://www.dsmz.de/fileadmin/Bereiche/PlantCellLines/<br />

Dateien/R.pdf, zuletzt aufgerufen am 20.08.2018.<br />

[24] T. Mosmann, J. Immunol. Methods 1983, 65, 55–63.<br />

[25] M. Bader, K. Müller, H. Foerstendorf, B. Drobot, M. Schmidt,<br />

N. Musat, J. S. Swanson, D. T. Reed, T. Stumpf, A. Cherkouk,<br />

J. Hazard. Mater. 2017, 327, 225–232.<br />

[26] K. Viehweger, Bot. Stud. 2014, 55, 1–12.<br />

Authors<br />

M. Sc. Jenny Jessat,<br />

Dr. Susanne Sachs,<br />

Dr. Robin Steudtner,<br />

Prof. Dr. Thorsten Stumpf<br />

Helmholtz-Zentrum<br />

Dresden-Rossendorf<br />

Institute of Resource Ecology<br />

Bautzner Landstraße 400<br />

01328 Dresden<br />

Germany<br />

RESEARCH AND INNOVATION 233<br />

Acknowledgement<br />

The authors thank S. Beutner and<br />

S. Bachmann <strong>for</strong> per<strong>for</strong>ming the<br />

ICP-MS measurements as well as<br />

M. Raiwa from the Institute of Radioecology<br />

and Radiation Protection,<br />

Leibniz University Hannover <strong>for</strong><br />

per<strong>for</strong>ming the MS measurements.<br />

The work is part of the project<br />

“TRANS-LARA”, which is funded by<br />

the Federal Ministry of Education and<br />

Research under contract number<br />

02NUK051B.<br />

References<br />

[1] K. Töpfer, M. Kleiner, Deutschlands Energiewende –<br />

Ein Gemeinschaftswerk Für Die Zukunft, Berlin, 2011.<br />

[2] S. Sachs, G. Geipel, F. Bok, J. Oertel, K. Fahmy,<br />

Environ. Sci. Technol. 2017, 51, 10843–10849.<br />

[3] A. Günther, G. Bernhard, G. Geipel, T. Reich, A. Roßberg,<br />

H. Nitsche, Radiochim. Acta 2003, 91, 319–328.<br />

[4] S. D. Ebbs, D. J. Brady, L. V Kochian, J. Exp. Bot. 1998, 49,<br />

1183–1190.<br />

[5] L. Laroche, P. Henner, V. Camilleri, M. Morello,<br />

J. Garnier-Laplace, Radioprotection 2005, 40, 33–39.<br />

[6] F. V. Tomé, P. B. Rodríguez, J. C. Lozano, Chemosphere 2009,<br />

74, 293–300.<br />

[7] P. Chang, K. W. Kim, S. Yoshida, S. Y. Kim,<br />

Environ. Geochem. Health 2005, 27, 529–538.<br />

[8] M. Salvatores, Physics and Safety of Transmutation Systems –<br />

A Status Report, <strong>Nuclear</strong> Energy Agency, Paris, 2006.<br />

[9] D. Westlén, Prog. Nucl. Energy 2007, 49, 597–605.<br />

[10] Z. Zha, D. Wang, W. Hong, L. Liu, S. Zhou, X. Feng, B. Qin,<br />

J. Wang, Y. Yang, L. Du, et al., J. Radioanal. Nucl. Chem.<br />

2014, 301, 257–262.<br />

[11] J. Laurette, C. Larue, I. Llorens, D. Jaillard, P.-H. Jouneau,<br />

J. Bourguignon, M. Carrière, Environ. Exp. Bot. 2012, 77,<br />

87–95.<br />

[12] N. V. Zagoskina, E. A. Goncharuk, A. K. Alyavina, Russ. J.<br />

Plant Physiol. 2007, 54, 237–243.<br />

Research and Innovation<br />

Studies on the Interaction of Plant Cells with U(VI) and Eu(III) and on Stress- induced Metabolite Release ı Jenny Jessat, Susanne Sachs, Robin Steudtner and Thorsten Stumpf


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

234<br />

KTG INSIDE<br />

Inside<br />

KTG-Fachgruppe Stilllegung und Entsorgung<br />

Die KTG ist aktuell in sechs Fachgruppen untergliedert, in<br />

denen sich die KTG-Mitglieder mit Schwerpunktthemen<br />

der Kerntechnik und verwandter Fachgebiete beschäftigen<br />

können.<br />

Die KTG-Fachgruppe Stilllegung und Entsorgung<br />

beschäftigt sich dabei mit allen Themen und Fragestellungen,<br />

die sich aus der Planung und Durchführung von<br />

Stilllegungs- und Rückbauprojekten kerntechnischer<br />

Anlagen sowie aus den Themengebieten Management und<br />

Zwischenlagerung radioaktiver Abfälle ergeben.<br />

Die Arbeit innerhalb der Fachgruppe, z. B. die Vorbereitung<br />

und Durchführung von Exkursionen zu Rückbaustandorten,<br />

die Teilnahme an Fachdiskussionen sowie<br />

die Mitarbeit bei der Lösung spezifischer Fragestellungen<br />

erfolgt überwiegend durch die fünf Arbeitsgruppen<br />

1. Genehmigungs- und Freigabeverfahren,<br />

2. Abfallmanagement,<br />

3. Zwischenlagerung (LAW/MAW und HAW),<br />

4. Radiologische Charakterisierung und<br />

5. Rückbautechnologien.<br />

Mit ca. 490 Mitgliedern ist die Fachgruppe aktuell die<br />

mitgliederstärkste Fachgruppe innerhalb der KTG. Der<br />

Vorstand der Fachgruppe wird alle 5 Jahre neu gewählt<br />

und besteht aus insgesamt 4 Mitgliedern. Die Tätigkeiten<br />

innerhalb der Arbeitsgruppen werden jeweils durch einen<br />

Arbeitsgruppenleiter organisiert.<br />

KTG-Mitglieder, die sich an einer Mitarbeit in der<br />

Fachgruppe bzw. in einer der fünf Arbeitsgruppen<br />

interessieren, sind herzlich eingeladen, diesbezüglich<br />

Kontakt mit dem Sprecher des Vorstandes Andreas Loeb<br />

(entsorgung@ktg.org) oder den Leitern der Arbeitsgruppen<br />

aufzunehmen. Weitere In<strong>for</strong>mationen und<br />

die Kontaktdaten der Vorstandsmitglieder und der<br />

Arbeitsgruppenleiter sind auf der Homepage der KTG<br />

(www.ktg.org) zu finden.<br />

Andreas Loeb<br />

Sprecher der KTG-Fachgruppe Stilllegung und Entsorgung<br />

Herzlichen Glückwunsch!<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

Mai 2020<br />

35 Jahre | 1985<br />

04. Nicole Koch, Mannheim<br />

45 Jahre | 1075<br />

21. Siewert Joswig, Beidentleth<br />

55 Jahre | 1965<br />

27. Dipl.-Ing. Thomas Glaab, Kahl<br />

60 Jahre | 1960<br />

19. Dr. Thomas Walter Tromm,<br />

Walzbachtal-Jöhlingen<br />

27. Hubert Reisinger, Gundremmingen<br />

75 Jahre | 1945<br />

11. Dipl.-Ing. Dieter Kreckel, Mainz<br />

30. Dr. Klaus Kasper, Essen<br />

76 Jahre |1944<br />

12. Peter Faber, Rödermark<br />

77 Jahre | 1943<br />

03. Dipl.-Ing. Hans Lettau, Effeltrich<br />

22. Dr. Wolfgang Schütz, Bruchsal<br />

24. Dipl.-Ing. Rudolf Weh, Stephanskirchen<br />

78 Jahre | 1942<br />

09. Dr. Egbert Brandau, Alzenau<br />

28. Dr. Wolf-Dieter Krebs, Bubenreuth<br />

78 Jahre | 1942<br />

05. Hans-Bernd Maier, Aschaffenburg<br />

11. Dr. Erwin Lindauer, Köln<br />

17. Dr. Heinz-Peter Holley, Forchheim<br />

79 Jahre | 1941<br />

08. Prof. Dr.-Ing. Helmut Alt, Aachen<br />

80 Jahre | 1940<br />

15. Dipl.-Phys. Ludwig Aumüller, Freigericht<br />

24. Dipl.-Ing. Herbert Krinninger,<br />

Bergisch Gladbach<br />

81 Jahre | 1939<br />

04. Dipl.-Ing. Norbert Albert, Ettlingen<br />

82 Jahre | 1938<br />

13. Dipl.-Ing. Otto A. Besch, Geesthacht<br />

13. Dr. Heinrich Werle, Karlsdorf-Neuthard<br />

16. Dr. Hans-Dieter Harig, Hannover<br />

21. Dr. Hans Spenke, Bergisch Gladbach<br />

83 Jahre | 1937<br />

06. Dr. Peter Strohbach, Mainaschaff<br />

26. Dipl.-Ing. Rüdiger Müller, Heidelberg<br />

27. Dr. Johannes Wolters, Düren<br />

28. Dipl.-Ing. Heinz E. Häfner, Bruchsal<br />

85 Jahre | 1935<br />

08. Dipl.-Ing. Klaus Wegner, Hanau<br />

29. Dipl.-Ing. Karlheinz Orth, Marloffstein<br />

86 Jahre | 1934<br />

11. Dr. Eckhart Leischner, Rodenbach<br />

14. Dr. Alexander, Warrikoff,<br />

Frankfurt/Main<br />

26. Dr. Günter Kußmaul, Manosque<br />

87 Jahre | 1933<br />

04. Dr. Klaus Wiendieck, Baden-Baden<br />

25. Dr. Reinhold Mäule, Walheim<br />

90 Jahre | 1930<br />

09. Dr. Hans-Jürgen Hantke, Kempten<br />

92 Jahre | 1928<br />

10. Dr. Heinz Büchler, Sankt Augustin<br />

96 Jahre | 1924<br />

22. Prof. Dr. Fritz Thümmler, Karlsruhe<br />

KTG Inside


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

Top<br />

Foratom calls <strong>for</strong> the EU<br />

to recognise nuclear<br />

as a strategic industry<br />

(<strong>for</strong>atom) Foratom welcomes the<br />

European Commission’s goal of ensuring<br />

Europe’s industry is fit <strong>for</strong> the<br />

ambitions of today and prepared <strong>for</strong><br />

the realities of tomorrow, as outlined<br />

in its Industrial Strategy published<br />

yesterday. The European nuclear<br />

industry stands ready to help Europe<br />

achieve its goals in terms of providing<br />

clean energy and maintaining Europe’s<br />

competitiveness.<br />

As highlighted in the Industrial<br />

Strategy, one of the key challenges<br />

ahead is ensuring that Europe’s<br />

industry has access to a secure supply<br />

of clean energy at a competitive<br />

price. This is crucial <strong>for</strong> maintaining<br />

Europe’s competitiveness.<br />

“<strong>Nuclear</strong> energy can contribute to<br />

making this a reality” states Yves<br />

Desbazeille, FORATOM’s Director<br />

General. “Not only is it low-carbon,<br />

it is also flexible, dispatchable and<br />

cost-effective”.<br />

Indeed, nuclear energy is vital in<br />

this respect as it can help:<br />

p Maintain the competitiveness of<br />

Europe’s industry as energy often<br />

accounts <strong>for</strong> a significant share<br />

of manufacturing costs,<br />

p Decarbonise industry and thus<br />

contribute towards the 2050<br />

carbon neutrality target,<br />

p Provide industry with the energy<br />

it needs when it needs it, which<br />

is particularly important <strong>for</strong><br />

processes which run 24/7,<br />

p Other industries by offering alternative<br />

sources of decarbonised<br />

energy such as hydrogen and heat<br />

(sector coupling).<br />

The European nuclear industry also<br />

contributes significantly to the EU’s<br />

economy as it currently sustains<br />

around 1 million jobs in the EU and<br />

generates around € 450 billion in GDP<br />

(Economic and Social Impact report,<br />

Deloitte 2019. EU-27 & UK).<br />

This is why it is essential that<br />

EU decision-makers take steps to<br />

| The Versatile Test Reactor can help Unlock the<br />

Future of Carbon-Free Energy (Photo credit:<br />

U.S. DOE)<br />

support the nuclear sector’s important<br />

role within the EU economy. This<br />

includes a stable EU policy framework,<br />

and one which encourages<br />

investment in high-overnight costs,<br />

low-carbon technologies. Significant<br />

support to R&D and innovation as<br />

well as increase funding <strong>for</strong> research<br />

into both current and future nuclear<br />

technologies such as SMRs, is also key<br />

to prepare <strong>for</strong> the future, develop new<br />

applications and breakthrough designs<br />

and technologies.<br />

| www.<strong>for</strong>atom.org (20791509)<br />

Company News<br />

Framatome opens new<br />

research and operations center<br />

and expands Intercontrôle<br />

(framatome) Framatome held a<br />

ceremonial ribbon-cutting event in<br />

Cadarache, France, to mark the<br />

opening of its new engineering<br />

research and operations center and<br />

the expansion of Intercontrôle, a<br />

Framatome subsidiary that specializes<br />

in automated non-destructive testing.<br />

More than 100 customers, partners<br />

and employees attended the celebration.<br />

Framatome’s new engineering<br />

research and operations center is<br />

home to a multidisciplinary engineering<br />

team responsible <strong>for</strong> carrying out<br />

construction, safety reviews and<br />

dismantling projects on behalf of the<br />

French Alternative Energies and<br />

Atomic Energy Commission (CEA)<br />

and TechnicAtome. This team also<br />

works on the ITER nuclear fusion<br />

project, responsible <strong>for</strong> the Tokamak<br />

installation as part of a consortium<br />

with Chinese partners.<br />

| www.framatome.com (20791519)<br />

GNS takes over<br />

Eisenwerk Bassum GmbH<br />

(gns) On 21 February 2020 GNS<br />

Gesellschaft für Nuklear-Service mbH<br />

took over 100 % of Eisenwerk Bassum<br />

GmbH. The company with its 106<br />

employees at the Bassum and Peenemünde<br />

sites will continue to provide<br />

the proven supplies and services as an<br />

independent GmbH under the name<br />

Eisenwerk Bassum. The management<br />

has in<strong>for</strong>med the staff about this in<br />

works meetings at both locations.<br />

The previous owners, Edda<br />

Beckedorf and Hartmut Grunau, will<br />

remain active in the company. In<br />

future, the management will consist<br />

of Hartmut Grunau as technical and<br />

Georg Büth as commercial managing<br />

director. “Eisenwerk Bassum GmbH<br />

will be strengthened in view of the<br />

numerous development and approval<br />

procedures that are still required and<br />

the ability to supply all customers<br />

will be further secured,” explained<br />

Hartmut Grunau on the occasion of<br />

the signing of the contract. Our aim is<br />

to continue the reliable cooperation<br />

with all existing customers,” adds<br />

Georg Büth, commercial managing director<br />

of GNS and new member of the<br />

management board of Eisenwerk Bassum.<br />

"In addition, the internationalisation<br />

of GNS will open up<br />

opportunities <strong>for</strong> Eisenwerk Bassum<br />

GmbH and all its employees to develop<br />

further markets in Europe and<br />

beyond.“<br />

| www.gns.de (20791520)<br />

Westinghouse eVinci Micro<br />

reactor awarded funding<br />

<strong>for</strong> Mobile Reactor Design<br />

(westnuc) Westinghouse Electric<br />

Company announced that its eVinci<br />

micro reactor was awarded funding<br />

from the U.S. Department of Defense’s<br />

(DoD) Project Pele, a mobile nuclear<br />

reactor prototyping program. The<br />

funding will be used to finalize the<br />

design <strong>for</strong> a prototype of Westinghouse’s<br />

defense-eVinci (DeVinci)<br />

mobile nuclear power plant (MNPP).<br />

“We are honored to participate in this<br />

strategically important program,” said<br />

Patrick Fragman, President and<br />

Chief Executive Officer, Westinghouse<br />

Electric Company. “Mobile nuclear<br />

reactors offer clean, flexible, and<br />

reliable power <strong>for</strong> our customers. We<br />

are now developing technology to<br />

provide energy security <strong>for</strong> the<br />

Department of Defense, bringing our<br />

exciting concept to realization.”<br />

Westinghouse’s eVinci micro reactor<br />

is a next-generation, very small<br />

modular reactor <strong>for</strong> decentralized<br />

generation markets. The DoD’s mobile<br />

nuclear reactor prototype project<br />

expands upon the transportable capabilities<br />

of the eVinci micro reactor by<br />

allowing <strong>for</strong> operations via a mobile<br />

plat<strong>for</strong>m utilizing standard military<br />

transportation. The eVinci micro<br />

reactor is designed to operate <strong>for</strong><br />

many years, eliminating the need <strong>for</strong><br />

frequent refueling. The innovative<br />

passive safety features of the design<br />

allow the reactor to operate and<br />

achieve safe shutdown without the<br />

need <strong>for</strong> additional controls, external<br />

power source or operator intervention,<br />

enabling highly autonomous<br />

operation.<br />

| www.westinghousenuclear.com<br />

(20791522)<br />

235<br />

NEWS<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

Operating Results December 2019<br />

236<br />

NEWS<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 744 689 506 7 810 262 269 465 470 100.00 97.48 99.93 96.77 100.73 96.91<br />

OL2 Olkiluoto BWR FI 910 880 744 689 612 7 467 543 259 364 086 100.00 93.18 100.00 92.76 100.75 92.66<br />

KCB Borssele PWR NL 512 484 744 380 093 6 259 745 167 981 434 99.56 87.74 99.55 87.68 100.04 85.16<br />

KKB 1 Beznau 7) PWR CH 380 365 744 286 693 2 974 710 130 308 820 100.00 89.75 100.00 89.60 101.47 89.29<br />

KKB 2 Beznau 7) PWR CH 380 365 744 284 932 2 946 376 137 296 783 100.00 88.93 100.00 88.78 100.85 88.42<br />

KKG Gösgen 7) PWR CH 1060 1010 744 793 809 8 240 707 322 116 235 100.00 89.44 99.99 89.00 100.66 88.75<br />

KKM Mühleberg BWR CH 390 373 468 160 570 3 208 590 130 612 905 100.00 100.00 91.32 99.32 87.97 96.97<br />

CNT-I Trillo PWR ES 1066 1003 744 760 320 8 456 358 255 748 026 100.00 91.87 99.94 91.56 95.25 89.97<br />

Dukovany B1 PWR CZ 500 473 744 372 627 3 654 690 115 884 184 100.00 85.29 100.00 84.84 100.17 83.44<br />

Dukovany B2 PWR CZ 500 473 744 370 332 2 809 147 111 043 318 100.00 65.65 100.00 65.15 99.55 64.14<br />

Dukovany B3 PWR CZ 500 473 744 370 311 3 753 696 110 251 736 100.00 87.96 99.92 87.65 99.55 85.70<br />

Dukovany B4 1,2) PWR CZ 500 473 571 283 155 4 263 688 110 706 957 76.75 97.90 76.22 97.73 76.12 97.34<br />

Temelin B1 4) PWR CZ 1080 1030 520 529 271 7 553 771 121 914 813 69.89 81.35 65.83 80.80 65.75 79.71<br />

Temelin B2 PWR CZ 1080 1030 744 814 518 8 210 101 117 482 618 100.00 86.23 100.00 86.04 101.18 86.62<br />

Doel 1 PWR BE 454 433 0 0 2 291 598 137 736 060 0 56.73 0 56.39 0 56.31<br />

Doel 2 PWR BE 454 433 0 0 2 533 531 136 335 470 0 64.55 0 63.46 0 63.41<br />

Doel 3 PWR BE 1056 1006 744 806 677 7 979 166 263 111 650 100.00 85.76 100.00 85.26 102.15 85.78<br />

Doel 4 PWR BE 1084 1033 744 812 318 9 264 865 269 638 275 100.00 100.00 99.96 97.16 99.35 96.01<br />

Tihange 1 PWR BE 1009 962 698 692 594 8 716 566 307 547 424 93.79 99.47 91.77 99.28 92.37 98.72<br />

Tihange 2 PWR BE 1055 1008 744 780 282 3 402 589 258 054 519 100.00 38.55 100.00 37.70 100.40 37.11<br />

Tihange 3 PWR BE 1089 1038 744 807 404 9 335 304 280 562 577 100.00 99.98 99.98 99.43 100.31 98.37<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 744 953 817 10 153 213 360 721 023 100.00 87.69 94.25 82.34 86.26 78.01<br />

KKE Emsland DWR 1406 1335 744 1 019 334 10 781 232 357 600 201 100.00 89.20 100.00 89.12 97.43 87.54<br />

KWG Grohnde DWR 1430 1360 744 1 004 034 10 700 632 388 274 846 100.00 90.06 99.99 89.82 93.85 84.89<br />

KRB C Gundremmingen SWR 1344 1288 744 987 844 10 381 798 341 323 552 100.00 89.15 98.31 88.54 98.33 87.75<br />

KKI-2 Isar DWR 1485 1410 744 1 024 900 10 411 410 340 238 244 100.00 94.03 100.00 87.18 98.61 85.04<br />

GKN-II Neckarwestheim DWR 1400 1310 744 1 069 425 12 036 656 365 762 469 100.00 95.95 100.00 95.68 96.45 92.17<br />

KKP-2 Philippsburg 4) DWR 1468 1402 739 840 227 10 606 307 376 767 462 99.33 89.63 97.85 89.31 75.15 81.12<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data <strong>for</strong> the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

Organisations<br />

Comment on<br />

decarbonisation in Germany<br />

(nuklearia) Rainer Reelfs, Stellvertretender<br />

Vorsitzender der Nuklearia<br />

e.V. zur Energiestrategie in Deutschland:<br />

„Um das Ziel der Dekarbonisierung<br />

Deutschlands zu erreichen,<br />

sollte eine Expertenkommission eingerichtet<br />

werden, die den aktuellen<br />

Stand der deutschen Energieversorgung<br />

überprüft und mit den erklärten<br />

Klimazielen abgleicht. Wenn dies<br />

erfolgt, wird sich schnell herausstellen,<br />

dass der gleichzeitige Verzicht<br />

auf Kohle und Kernenergie die Sicherheit<br />

der Stromversorgung weitgehend<br />

gefährdet. Folglich, kann bei einem<br />

Kohleausstieg diese nur durch Kernenergie<br />

ersetzt werden.<br />

Was eine mögliche Rückkehr zur<br />

Atomenergie in Deutschland angeht,<br />

ist zu verstehen, dass die Politiker<br />

zuerst die Energieversorgungssicherheit,<br />

die Verfügbarkeit von Strom und<br />

den Verzicht auf den Einsatz von<br />

Kohle sicherstellen müssen. So ist<br />

die Aussage von Sachsens Ministerpräsidenten<br />

Michael Kretschmer, dass<br />

Deutschland die Kompetenzen im<br />

Kernenergiebereich erhalten sollte,<br />

auch wenn keine neuen KKW gebaut<br />

werden, als Stimmungstest für die<br />

öffentliche Meinung zu verstehen.<br />

Tatsache ist, dass die Kernenergie ist<br />

die einzige dauerhaft verfügbare und<br />

quasi unerschöpfliche Energiequelle<br />

mit geringen CO 2 -Emissionen ist. Sie<br />

ist zudem in der Lage, den Markt für<br />

Strom und Wärme zu bedienen. Erst<br />

mit der Kernenergie ist in Deutschland<br />

eine nachhaltige Dekarbonisierung<br />

möglich.<br />

Wenn man von der Strategie der<br />

EU-Kommission „Green Deal“ spricht,<br />

ist festzustellen, dass sich ihre Umsetzung<br />

negativ auf die deutsche<br />

Wirtschaft auswirken wird. Man muss<br />

dazu erkennen, dass Wind- und Solarenergie<br />

erst aufgrund eines hohen<br />

Niveaus von direkten und indirekten<br />

Subventionen auf dem Markt existieren<br />

können.“<br />

| www.nuklearia.de<br />

People<br />

Professor Karl Kußmaul –<br />

90. Geburtstag<br />

(uni) Der Reutlinger Karl Kußmaul<br />

begeht am 8. April 2020 seinen 90.<br />

Geburtstag im Kreise seiner Familie.<br />

An der Universität Stuttgart hat er<br />

als Ordinarius für Materialprüfung,<br />

Werkstoffkunde und Festigkeitslehre<br />

und Direktor der Staatlichen Materialprüfungsanstalt<br />

(MPA Stuttgart) 22<br />

Jahre lang gewirkt und ist 1998<br />

emeritiert worden. Auch danach war<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

es ihm möglich, seine Projekte und<br />

Vorstellungen als Berater und Gutachter<br />

bis heute <strong>for</strong>tzuführen.<br />

Eine offizielle Würdigung seiner<br />

Bedeutung und weitgespannten internationalen<br />

Aktivitäten in Europa,<br />

Amerika, Asien und Südafrika, findet<br />

am 6. Oktober 2020 im Rahmen des<br />

46. MPA-Seminars in der Filderhalle,<br />

Leinfelden-Echterdingen, im Beisein<br />

von Vertretern aus Politik und Wirtschaft<br />

statt. Die jährlich stattfindenden<br />

MPA-Seminare zählen zu den<br />

weltweit wichtigsten Konferenzen, bei<br />

denen sich Fachleute über innovative<br />

Werkstoffkonzeptionen und Sicherheitsfragen<br />

hochbeanspruchter Bauteile<br />

im Anlagen- und Energiesektor<br />

austauschen.<br />

Hochaktuell sind die von Kußmaul<br />

bereits im Jahr 1990 großangelegten<br />

sicherheitstechnischen und experimentellen<br />

MPA-Untersuchungen zur<br />

Ermöglichung einer auf Wasserstoff<br />

basierenden Energieversorgung, die<br />

besonders im Verkehrswesen eine<br />

nachhaltige Perspektive aufzeigen.<br />

Kußmauls Wirken ist durch seine<br />

außerordentliche Breite geprägt: so<br />

ist die Berstsicherheit für die unterschiedlichen<br />

Ariane-Raketen ebenso<br />

an der MPA nachgewiesen worden,<br />

wie er auch das entscheidende Genehmigungsgutachten<br />

im Bereich des<br />

Stahlbaus für das Centre Pompidou<br />

in Paris erstellte. Genehmigungsbehörden<br />

und Verwaltungsgerichte<br />

haben den unabhängigen Sicherheitsexperten<br />

als Gutachter und Zeugen<br />

bestellt. Entscheidend waren seine<br />

differenzierten und wissenschaftlich<br />

fundierten Aussagen in den Kernenergieprozessen.<br />

Kußmaul ist mehrfach ausgezeichnet<br />

worden. 1986 hat er das<br />

Bundes verdienstkreuz Erster Klasse<br />

erhalten. 1988 wurde ihm eine Ehrenprofessur<br />

in China am Nanking Institut<br />

für Chemische Technologie verliehen.<br />

1989 wurde er Ehrendoktor<br />

der Technischen Wissenschaften<br />

der Technischen Universität Graz.<br />

1997 folgte die Verdienstmedaille des<br />

Landes Baden-Württemberg.<br />

Zeichen der Wertschätzung sind<br />

auch der Erfahrungsaustausch mit<br />

dem Kurchatov Institut der Russischen<br />

Akademie der Wissenschaften,<br />

das Ersuchen des französischen Hochkommissars<br />

für Atomenergie um<br />

Mitarbeit in der „Kommission zur<br />

Definition der Voraussetzungen, unter<br />

denen ein Universitätsunterricht für<br />

das Atomwesen gestaltet werden<br />

kann“, die Tätigkeit für die IAEA in<br />

Wien und in Sofia, Bulgarien, als<br />

Leiter des internationalen „Workshops<br />

Uranium<br />

Prize range: Spot market [USD*/lb(US) U 3O 8]<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

1980<br />

Jan. 2009<br />

Yearly average prices in real USD, base: US prices (1982 to1984) *<br />

Jan. 2010<br />

1985<br />

Jan. 2011<br />

1990<br />

Jan. 2012<br />

Jan. 2013<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

on Koslodui Unit 1 Pressure Vessel<br />

Integrity“. Diese Druckbehälterart ist<br />

insofern von Bedeutung, als sich noch<br />

bis heute Reaktoren der 1. Generation<br />

mit der Technik der sechziger Jahre<br />

im russischen Kernkraftwerk Kola<br />

befinden. Zu nennen sind auch die<br />

OECD in Paris, sowie das Angebot der<br />

UNESCO für die in Arbeit befindliche<br />

„Enzyklopädie für Systeme zur<br />

Erhaltung des menschlichen Lebens in<br />

einer zum Leben ungeeigneten Umgebung“<br />

die Position des Honorary<br />

Editors für den Teil Energiewerkstoffe<br />

und Reaktoren einzunehmen, sowie<br />

als Hauptherausgeber der Redaktion<br />

mitzuwirken.<br />

| www.mpa.uni-stuttgart.de<br />

(20791534)<br />

Market data<br />

(All in<strong>for</strong>mation is supplied without<br />

guarantee.)<br />

<strong>Nuclear</strong> Fuel Supply<br />

Market Data<br />

In<strong>for</strong>mation in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data <strong>for</strong> the <strong>for</strong>merly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices [US-$/<br />

1995<br />

Jan. 2014<br />

2000<br />

Jan. 2015<br />

Jan. 2016<br />

2005<br />

Jan. 2017<br />

) 1<br />

2010<br />

Jan. 2018<br />

Jan. 2019<br />

2015<br />

Jan. 2020<br />

2020<br />

Year<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2020<br />

* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2020<br />

| Uranium spot market prices from 1980 to 2020 and from 2009 to 2020. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

Separative work: Spot market price range [USD*/kg UTA]<br />

Conversion: Spot conversion price range [USD*/kgU]<br />

180.00<br />

26.00<br />

) 1 ) 1<br />

160.00<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Jan. 2021<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2020<br />

Uranium prize range: Spot market [USD*/lb(US) U 3O 8]<br />

140.00<br />

) 1<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

24.00<br />

22.00<br />

20.00<br />

18.00<br />

16.00<br />

14.00<br />

12.00<br />

10.00<br />

Jan. 2009<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2010<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />

Jan. 2011<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2012<br />

Jan. 2013<br />

Jan. 2013<br />

2017<br />

p Uranium: 19.25–26.50<br />

p Conversion: 4.50–6.75<br />

p Separative work: 39.00–50.00<br />

2018<br />

p Uranium: 21.75–29.20<br />

p Conversion: 6.00–14.50<br />

p Separative work: 34.00–42.00<br />

2019<br />

January to June 2019<br />

p Uranium: 23.90–29.10<br />

p Conversion: 13.50–18.00<br />

p Separative work: 41.00–49.00<br />

July to December 2019<br />

p Uranium: 24.50–26.25<br />

p Conversion: 18.00–23.00<br />

p Separative work: 47.00–52.00<br />

2020<br />

January 20202<br />

p Uranium: 24.10–24.90<br />

p Conversion: 22.00–23.00<br />

p Separative work: 48.00–51.00<br />

| Source: Energy Intelligence<br />

www.energyintel.com<br />

Jan. 2014<br />

Jan. 2014<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Jan. 2015<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2019<br />

Jan. 2020<br />

Jan. 2020<br />

Jan. 2021<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2020<br />

| Separative work and conversion market price ranges from 2009 to 2020. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation <strong>for</strong> spot market prices. The change results in virtual price leaps.<br />

* Actual nominal USD prices, not real prices referring to a base year<br />

Sources: Energy Intelligence, Nukem; Bilder/Figures: <strong>atw</strong> 2020<br />

Jan. 2021<br />

237<br />

NEWS<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 4 ı April<br />

238<br />

NUCLEAR TODAY<br />

John Shepherd is a<br />

freelance journalist<br />

and communications<br />

consultant.<br />

Sources:<br />

Franz Timmermans<br />

interview<br />

https://bit.ly/39APlV0<br />

NEA <strong>Nuclear</strong> Energy<br />

Date 2019<br />

https://bit.ly/38xxLjt<br />

Barakah-1<br />

announcement<br />

https://bit.ly/2IvGatm<br />

Cards Still Stacked Against <strong>Nuclear</strong><br />

in Green Investment Deal<br />

John Shepherd<br />

The launch a few weeks ago of proposals <strong>for</strong> a European Climate Law should have been a clarion call towards ushering<br />

in a cleaner, greener future – but instead of a fanfare <strong>for</strong> change. I heard only another requiem <strong>for</strong> common sense.<br />

I had initially listened with anticipation as Frans<br />

Timmermans, the European Commission’s executive<br />

vice-president, opened a ‘high-level public conference’ on<br />

the European Union’s so-called Green Deal investment<br />

plan and the proposals <strong>for</strong> the new climate law.<br />

The background to the conference was the Commission’s<br />

decision to enshrine in the law the goal of achieving<br />

net zero carbon emissions by 2050. This is without doubt a<br />

worthy ambition <strong>for</strong> Europe that can impact the wider<br />

world. However, the conference appears to have been yet<br />

another missed opportunity to demonstrate that nuclear<br />

technology might finally be judged on its merits in the<br />

climate debate rather than political ideology.<br />

One might have expected better of such a grand<br />

European initiative, yet such hopes were dashed in favour<br />

of disappointment.<br />

According to the Commission, it plans at least € 1<br />

trillion in sustainable investments over the next decade to<br />

support its Green Deal, but transition fund money under<br />

the plan will not contribute towards building nuclear<br />

power plants.<br />

Vice-president Timmermans himself told the conference<br />

that, in support of the climate law, Europe has “the<br />

science and technology and we can certainly find the<br />

money”. But he neglected to say money would not be fairly<br />

allocated.<br />

He said the law would “give that extra bit of security”<br />

some investors needed to make “the jump into the future”<br />

in terms of providing technological projects that would<br />

support the EU’s goal of achieving climate neutrality and a<br />

substantial reduction of emissions by 2030. But what<br />

investor will feel secure in pursuing advances in clean,<br />

nuclear energy development without a level playing field<br />

on which to compete <strong>for</strong> funds?<br />

We have heard warm words indeed from the Commissioner,<br />

but they offer only cold com<strong>for</strong>t <strong>for</strong> potential<br />

nuclear technology investors. Indeed, the Commissioner<br />

was quoted as saying in a recent interview that while<br />

nuclear has a positive effect on greenhouse gas emissions,<br />

he believed nuclear was “not sustainable”.<br />

The high-level conference compounded its disdain <strong>for</strong><br />

keeping an open mind on climate-friendly technologies<br />

when it held two debates with panelists. Not one nuclear<br />

industry representative was on either panel, although a<br />

solar power company CEO was allowed in.<br />

Europe can and should do better than this. The near-130<br />

nuclear reactor units in operation across the EU provide<br />

more than half of the bloc’s low-carbon electricity output.<br />

According to the OECD’s <strong>Nuclear</strong> Energy Agency<br />

(NEA), despite a 1.1 % decrease in total nuclear capacity<br />

across NEA member countries in 2018 (292.7 GWe in<br />

2018 compared to 296.0 GWe in 2017), the total<br />

electricity production of these highly-efficient plants<br />

increased.<br />

Meanwhile, one of the planet’s oil-rich regions declared<br />

itself the world’s latest nuclear energy newcomer with<br />

the successful completion of fuel assembly loading at Unit<br />

1 of the United Arab Emirates’ Barakah nuclear plant.<br />

The UAE said on 3 March it was the first country in the<br />

Arab world to achieve this status. CEO of the Emirates<br />

<strong>Nuclear</strong> Energy Corporation, Mohamed Al Hammadi, said<br />

the move was progress towards providing the UAE with<br />

“clean, reliable and abundant electricity to power our<br />

economic and societal growth”.<br />

Oil exports account <strong>for</strong> around 25 % of the UAE’s gross<br />

domestic product, so when such a region sees the economic<br />

and environmental value of investing in nuclear power,<br />

one might have thought that even the corridors of power in<br />

Brussels would pay attention. Sadly not.<br />

A reliance on facts seems to have little impact when it<br />

comes to changing minds and policies on certain subjects<br />

and nuclear often seems to fall victim to intransigence,<br />

regardless of the evidence. There<strong>for</strong>e, it’s important <strong>for</strong><br />

those who work inside and alongside the nuclear energy<br />

community to build new alliances.<br />

The president and CEO of the US <strong>Nuclear</strong> Energy<br />

Industry, Maria Korsnick, hit the nail on the head recently.<br />

She was discussing some of the misconceptions that<br />

surround the industry when she said: “What we need is a<br />

partnership between wind, solar and batteries, and a<br />

carbon-free source like nuclear power that can always be<br />

there. It’s really all of that working together.”<br />

Cooperation between nuclear and battery storage does<br />

of course hold promise. But I’ve even seen a nonsensical<br />

approach to EU policymaking hamper progress in the<br />

battery industry.<br />

A couple of years ago, the Commission launched a<br />

‘ Batteries Alliance’ to invest in research and development<br />

of technologies to power future electric vehicles. All<br />

well and good, I hear you say. Indeed, that would be<br />

true, except <strong>for</strong> the fact that the initiative unashamedly<br />

favored one chemistry (lithium-ion) over another (lead<br />

batteries).<br />

The then energy commissioner, Maroš Šefčovič, said<br />

the EU would invest to support firms producing European<br />

batteries with “truly green” credentials, which he regarded<br />

as lithium rather than lead.<br />

However, a study compiled <strong>for</strong> the Commission concluded<br />

that the EU should first deal with its “outdated”<br />

rules and inadequate targets <strong>for</strong> recycling lithium batteries.<br />

By contrast, the study said the bloc’s lead battery firms<br />

were helping to ensure near 100 % recycling of their<br />

products under a highly-regulated process that was<br />

“ generally profitable” and helped to reduce greenhouse<br />

gas emissions!<br />

Our politicians and policymakers have got to get out of<br />

this bad habit of stacking the cards against a particular<br />

technology <strong>for</strong> ideological reasons alone. There is no<br />

one-size-fits-all solution to tackling climate change and<br />

certainly no silver bullet.<br />

<strong>Nuclear</strong> Today<br />

Cards Still Stacked Against <strong>Nuclear</strong> in Green Investment Deal ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

Strahlenschutz – Aktuell<br />

In Kooperation mit<br />

TÜV SÜD Energietechnik GmbH<br />

Baden-Württemberg<br />

Seminar:<br />

Das Strahlenschutzrecht<br />

und seine praktische Umsetzung<br />

Seminarinhalte<br />

1. Einführung: Grundlagen des Strahlenschutzes und des Strahlenschutzrechts<br />

2. Das neue Strahlenschutzrecht von 2017/18<br />

3. Genehmigungen, Anzeigen, Pflichten bei strahlenschutzrelevanten Aktivitäten<br />

a. Geplante Expositionssituationen (Tätigkeiten)<br />

b. Bestehende Expositionssituationen<br />

c. Notfallexpositionssituationen (Schutz der Einsatzkräfte)<br />

4. Umsetzung des Strahlenschutzes<br />

a. Dosisgrenzwerte, Dosisrichtwerte<br />

b. Betriebliche Organisation des Strahlenschutzes<br />

c. Fachkunde<br />

d. Strahlenschutzregister<br />

5. Aufsicht<br />

6. Notfallschutz und Notfallvorsorge<br />

7. Strahlenschutz im Back End<br />

a. Radioaktive Abfälle<br />

b. Freigabe, Herausgabe<br />

Zielgruppe<br />

Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, an Projekt- und Abteilungsleiter und<br />

Experten aus den Bereichen Betrieb, Abfälle, Genehmigung, Strategie und Unternehmens kommunikation<br />

sowie an Juristen.<br />

Referenten<br />

Dr. Maria Poetsch<br />

Dr. Christian Raetzke<br />

ı Strahlenschutzexpertin bei der TÜV SÜD Energietechnik GmbH<br />

Baden-Württemberg<br />

ı Rechtsanwalt, Leipzig<br />

Wir freuen uns auf Ihre Teilnahme!<br />

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.<br />

Termine<br />

2 Tage<br />

16. bis 17. Juni 2020<br />

29. bis 30. Oktober 2020<br />

Tag 1: 10:30 bis 17:30 Uhr<br />

Tag 2: 09:00 bis 16:30 Uhr<br />

Berlin<br />

Teilnahmegebühr<br />

1.598,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

Seminare@KernD.de


#51KT<br />

www.kerntechnik.com<br />

Medienpartner<br />

Achtung! Wichtiger Hinweis:<br />

Aufgrund der Entwicklungen rund um das Coronavirus<br />

können wir leider noch keine verbindliche Aussage<br />

zur Kerntechnik 2020 machen. Wir werden unsere Aussteller,<br />

Experten und registrierten Besucher schnellstmöglich<br />

über aktuelle Entscheidungen in Kenntnis setzen.<br />

Bitte in<strong>for</strong>mieren Sie sich auch auf unserer Website: www.kerntechnik.com<br />

51. KERNTECHNIK<br />

2020<br />

5. – 6. Mai 2020<br />

Estrel Convention Center<br />

Berlin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!