24.12.2012 Views

FIAS Scientific Report 2011 - Frankfurt Institute for Advanced Studies ...

FIAS Scientific Report 2011 - Frankfurt Institute for Advanced Studies ...

FIAS Scientific Report 2011 - Frankfurt Institute for Advanced Studies ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Dynamical equilibration of the strongly-interacting parton matter<br />

Collaborators: V. Ozvenchuk 1 , O. Linnyk 4 , M. Gorenstein 1,3 , W. Cassing 4 , E. Bratkovskaya 1,2<br />

1 <strong>Frankfurt</strong> <strong>Institute</strong> <strong>for</strong> <strong>Advanced</strong> <strong>Studies</strong>, 2 Institut für Theoretische Physik, Johann Wolfgang Goethe University, <strong>Frankfurt</strong><br />

am Main, Germany, 3 Bogolyubov <strong>Institute</strong> <strong>for</strong> Theoretical Physics, Kiev, Ukraine, 4 Institut für Theoretische Physik,<br />

Universität Giessen<br />

We study kinetic and chemical equilibration in ’infinite’ parton-hadron matter within the Parton-Hadron-String<br />

Dynamics (PHSD) transport approach, which is based on generalized transport equations on the basis of the offshell<br />

Kadanoff-Baym equations <strong>for</strong> Green’s functions in phase-space representation. The basis of the partonic<br />

phase description is the dynamical quasiparticle model (DQPM) matched to reproduce lattice QCD results<br />

– including the partonic equation of state – in thermodynamic equilibrium. The transition from partonic to<br />

hadronic degrees of freedom is described by covariant transition rates <strong>for</strong> fusion of quark-antiquark pairs or<br />

three quarks (antiquarks), obeying flavor current conservation, color neutrality as well as energy-momentum<br />

conservation.<br />

The ’infinite’ matter is simulated within a cubic box with periodic boundary conditions initialized at various<br />

values <strong>for</strong> baryon density (or chemical potential) and energy density. The size of box is fixed to 9 3 fm 3 . We<br />

start with light (u,d) and strange quarks, antiquarks and gluons with random space positions and the momenta<br />

distributed exponentially, but not with equilibrium distribution.<br />

A sign <strong>for</strong> chemical equilibration is the stabilization of the numbers of partons of the different species in time<br />

<strong>for</strong> t → ∞. In Fig. 1(a) we show the particle abundances of the u,d,s quarks+antiquarks and gluons as functions<br />

of time <strong>for</strong> system initialized at energy density of 1.1 GeV/fm3 .<br />

��� � ������������� � �<br />

�<br />

�� �<br />

�<br />

�������<br />

���������<br />

���<br />

���<br />

������ �<br />

������ �<br />

������ �<br />

��������<br />

�<br />

� �� �� �� ��� ���<br />

�����������<br />

�<br />

��� ��� ��� ��� ��� ���<br />

�� ������ ���<br />

(a)<br />

(b)<br />

(a) Abundances of the u (solid red), d (short-dashed black), s (dash-dotted blue) quarks+antiquarks and gluons (dashed<br />

green) as a function of time <strong>for</strong> system initialized at energy density of 1.1 GeV/fm3 . (b) The spectrum of u quarks<br />

(antiquarks) <strong>for</strong> system initialized at energy density of 4.72 GeV/fm3 from the PHSD simulations (solid red) in comparison<br />

to the DQPM model (dashed blue).<br />

Choosing the momenta of the partons in the narrow interval |p| ∈ [p−, p+], we construct the distribution of<br />

partons with given energy and momentum as<br />

� � ��� ������� �� �<br />

�� �<br />

�� �<br />

�� �<br />

�� �<br />

�� ��<br />

�����<br />

�������������������� ����������<br />

������������������������������������<br />

�������������������<br />

� �������������� � �<br />

dN g(q, ¯q)<br />

dωd p = V d g(q, ¯q)<br />

2π 3 |pmid| 2 ωρ g(q, ¯q)(ω, pmid)n B(F)(ω/T), (1)<br />

where pmid = (p+ − p−)/2. In Fig. 1(b) we show d 2 N/dωd p <strong>for</strong> u quarks obtained by the PHSD simulations<br />

of infinite partonic system as initialized at energy density of 4.72 GeV/fm 3 . For comparison, we present on the<br />

same plot the DQPM assumption <strong>for</strong> the respective distribution. We find a good agreement between the DQPM<br />

distribution and the result of the microscopic simulations.<br />

Related publication in <strong>2011</strong>:<br />

V. Ozvenchuk, E. Bratkovskaya, O. Linnyk, M. Gorenstein, W. Cassing, arXiv:1101.0218v1 [nucl-th].<br />

46<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!