25.12.2012 Views

ToxCast and Tox21: High Throughput Screening for Hazard & Risk ...

ToxCast and Tox21: High Throughput Screening for Hazard & Risk ...

ToxCast and Tox21: High Throughput Screening for Hazard & Risk ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ToxCast</strong> <strong>and</strong> <strong>Tox21</strong>: <strong>High</strong> <strong>Throughput</strong> <strong>Screening</strong><br />

<strong>for</strong> <strong>Hazard</strong> & <strong>Risk</strong> of Environmental Chemicals<br />

Office of Research <strong>and</strong> Development<br />

National Center <strong>for</strong> Computational Toxicology<br />

David Dix<br />

NLSOT, 07oct2010<br />

This work was reviewed by EPA <strong>and</strong> approved <strong>for</strong> presentation but does not necessarily reflect official Agency policy.


Future of Toxicity Testing <strong>and</strong> Ultimately,<br />

Environmental <strong>Risk</strong> Assessments<br />

Science, February 2008<br />

EPA strategy, March 2009<br />

CTRP 2 nd gen plan, Sept 2009<br />

Science, , August g 21, , 2009<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program 1


Exposure p<br />

Gr<strong>and</strong> Challenge <strong>for</strong> Computational Toxicology:<br />

PPredicting di ti HHuman TToxicity i it<br />

Tissue<br />

Dose<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

Complex<br />

Cellular <strong>and</strong><br />

HCS HTS<br />

�<br />

Biochemical<br />

HTS<br />

Tissues<br />

Cellular Systems<br />

Molecular<br />

Targets<br />

Cell<br />

Changes<br />

Cellular<br />

Networks<br />

�<br />

Molecular<br />

Pathways<br />

��<br />

Cell-Based<br />

HTS<br />

��<br />

Model<br />

Organism<br />

MTS<br />

Virtual Tissues<br />

ToxRefDB<br />

�<br />

2<br />

Toxicity


10000<br />

1000<br />

Too Many Chemicals Too Little Data (%)<br />

100<br />

10<br />

1<br />

9912<br />

IRIS TRI Pesticides<br />

Inerts<br />

MPV<br />

CCL 1 & 2 HPV<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Acute Cancer Gentox<br />

Dev Tox Repro Tox<br />

3


4<br />

Robotic Plat<strong>for</strong>m<br />

Pathway<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

<strong>High</strong> <strong>Throughput</strong> <strong>Screening</strong> 101<br />

(HTS)<br />

96-, 96 ,38 384-, , 1536 536 Well e Plates ates<br />

Target Biology (e.g.,<br />

Estrogen Receptor)<br />

Chemical Exposure<br />

Cell Population<br />

4<br />

HTS: <strong>High</strong> <strong>Throughput</strong> <strong>Screening</strong>


HTS in Drug Development<br />

HTS tests<br />

Make<br />

Id Identify tif CCreate t >100,000 100 000 modifications difi ti<br />

target, testing chemicals with to most active<br />

pathway,<br />

or cellular<br />

phenotype h t<br />

system<br />

(aka,<br />

“ “assay”) ”)<br />

no known<br />

activity<br />

<strong>for</strong> effect on<br />

target<br />

chemicals to<br />

make suitable<br />

f<strong>for</strong> in i vivo i<br />

testing<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

Test in<br />

animals <strong>for</strong><br />

safety,<br />

effectiveness<br />

Test in<br />

humans <strong>for</strong><br />

safety,<br />

effectiveness<br />

effectiveness effectiveness<br />

5


HTS iin TToxicology i l<br />

Test prioritized<br />

chemicals in<br />

animals<br />

Categorize as<br />

inactive subject<br />

to further testing<br />

Computational<br />

analysis<br />

&<br />

Synthesis<br />

of HTS results<br />

HTS tests<br />

chemicals<br />

<strong>for</strong> effect<br />

on assays<br />

Obt Obtain i or<br />

create<br />

testing<br />

systems<br />

(“ (“assays”) ”)<br />

Id Identify tif<br />

toxicity<br />

pathways,<br />

cellular<br />

phenotypes h t<br />

Chemicals C e cas<br />

with known<br />

or<br />

suspected<br />

toxicity/ y<br />

activity<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

6


<strong>ToxCast</strong> <strong>and</strong> <strong>Tox21</strong> <strong>High</strong> <strong>Throughput</strong> <strong>Screening</strong><br />

of Chemical Bioactivity<br />

• Addresses chemical screening <strong>and</strong> prioritization<br />

needs <strong>for</strong> chemicals regulated by EPA<br />

• Comprehensive use of HTS technologies to<br />

generate biological fingerprints <strong>and</strong> predictive<br />

signatures<br />

• Committed to stakeholder involvement <strong>and</strong><br />

transparency p y<br />

• Communities of Practice- Chemical Prioritization;<br />

Exposure<br />

• Release of all data upon peer review publication<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

7


GGoals l of f T<strong>ToxCast</strong> C t <strong>and</strong> dT <strong>Tox21</strong> 21<br />

• Identify y toxicity yppathways y<br />

• Obtain HTS assays <strong>for</strong> pathways<br />

• Screen a large chemical library<br />

• Initially link HTS results to adverse effects<br />

- Toxicity signatures<br />

• Ultimately identify points of departure from HTS data<br />

- Toxicity pathways<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

8


96-well plate<br />

<strong>Tox21</strong> <strong>Screening</strong> g <strong>Throughput</strong> g p<br />

� 8 rows x 12 columns<br />

� 88 test samples<br />

384-well plate<br />

4 x 96-well plates<br />

If @ 100 microtiter plates per day:<br />

samples Time to screen<br />

1 MM samples<br />

§ Plate <strong>for</strong>mat samples /day Time to screen<br />

(wells/day) 1 MM samples<br />

§ Plate <strong>for</strong>mat<br />

/day<br />

(wells/day)<br />

96-well<br />

384-well<br />

1,536-well<br />

8,800 (9,600)<br />

35,200 (38,400)<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

140,800 (153,600)<br />

4 months<br />

4 weeks<br />

7 days<br />

� 16 rows x 32 columns<br />

� 352 test samples<br />

1536-well plate<br />

16 x 96-well plates<br />

� 32 rows x 48 columns<br />

� 1,408 test samples<br />

§ wells remaining after subtraction of control wells;<br />

NCGC uses left 4 columns of a 1536-well plate <strong>for</strong><br />

control wells<br />

9


Comparison p of Volumes<br />

<strong>for</strong> <strong>Screening</strong> Compounds in 7 Concentrations<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

Total<br />

VVolume l<br />

96-well plate: 100 �l x 7 pts = 700 �l<br />

384-well plate: 40 �l x 7 pts = 280 �l<br />

1536-well plate: 5 �l x 7 pts = 35 �l<br />

10


• 1536 well HTS<br />

• 10,000 chemicals<br />

• 25 assays per year<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

11


<strong>ToxCast</strong><br />

Phase I<br />

<strong>ToxCast</strong> Phase I <strong>and</strong> II, <strong>Tox21</strong><br />

Number of Chemicals<br />

<strong>ToxCast</strong><br />

Phase II <strong>Tox21</strong><br />

Actives 272 120 700<br />

Inerts 24 100 1000<br />

Antimicrobials 33 100 500<br />

HPV 35 170 1300<br />

MPV 7 60 1500<br />

Green 4 60 500<br />

PCCL 73 150 500<br />

Pharmaceuticals 0 100 2500<br />

Consumer<br />

Products /Food<br />

additives 0 0 1500<br />

Total 309 ~700 ~10000<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program 12


Biochemical Assays<br />

• Protein families<br />

<strong>ToxCast</strong> HTS Assays<br />

~500 Total Endpoints<br />

Cellular Assays<br />

• Cell lines<br />

– HepG2 human hepatoblastoma<br />

– GPCR<br />

– A549 human lung carcinoma<br />

– HEK 293 human embryonic y kidney y<br />

– NR<br />

– Kinase<br />

• Primary cells<br />

– Human endothelial cells<br />

– Phosphatase<br />

– Human monocytes<br />

– Protease<br />

– HHuman kkeratinocytes ti t<br />

– Other enzyme<br />

– Ion channel<br />

– Transporter<br />

– Human fibroblasts<br />

– Human proximal tubule kidney cells<br />

– Human small airway epithelial cells<br />

– Rat hepatocytes p y<br />

– Mouse embryonic stem cells (Sid Hunter)<br />

• Assay <strong>for</strong>mats<br />

– Radiolig<strong>and</strong> binding<br />

– Enzyme activity<br />

– Co-activator recruitment<br />

Primarily Human / Rat<br />

EException: ti ZZebrafish b fi h ddevelopment l t (St (Stephanie h i Padilla)<br />

P dill )<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

• Biotrans<strong>for</strong>mation competent cells<br />

– Primary rat hepatocytes<br />

– Primary human hepatocytes<br />

• Assay <strong>for</strong>mats<br />

– Cytotoxicity<br />

– Reporter gene<br />

– Gene expression<br />

13<br />

– Biomarker production<br />

– <strong>High</strong>-content imaging <strong>for</strong> cellular phenotype


Assays<br />

Chemicals<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

The <strong>ToxCast</strong> In Vitro Data Set<br />

Many hits – median value=50<br />

Fewer in cell-free HTS<br />

(Novascreen, red)<br />

Many hits are at or near top of<br />

tested concentration range<br />

A few are in nanomolar range<br />

14


…<br />

4<br />

Emax<br />

3 2 1 0<br />

Concentration<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

<strong>ToxCast</strong> Data Analysis<br />

AC50<br />

Chemicalls<br />

Assays<br />

828 Assay-Chemical Pairs<br />

had AC50s of less than 1µM<br />

: Assay-Chemical Hit<br />

500 Assays X 320 Chemicals X {5-18} Concentrations X<br />

{1-3} Replicates X {1-3} Time Points ≈<br />

3.2 Million Data Points<br />

Emax: Maximal efficacy/response/activity<br />

15<br />

AC50: Concentration whereby 50% of maximal response was achieved<br />

Conc (uM): Micromolar concentrations of chemical


micals<br />

Chem<br />

Digitizing Legacy in Vivo Data in ToxRefDB<br />

Chronic/Cancer<br />

Multigenation<br />

Developmental<br />

Martin et al 2009a,b<br />

Knudsen et al 2009<br />

30 years <strong>and</strong> more than $2B worth of data 16<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program 16<br />

SOT 2010


Predicting Toxicity <strong>and</strong> Disease<br />

from HTS Data<br />

ToxRefDB <strong>ToxCast</strong> Human Disease<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

17


<strong>ToxCast</strong>: Multiple Assays <strong>and</strong> Technologies per Target<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

18


Biologically Multiplexed<br />

Activity Profiling (BioMAP)<br />

Multiplex Transcription<br />

Reporter Assay<br />

Cell-based HTS Assays<br />

Cell-free HTS Assays<br />

<strong>High</strong> Content Cell Imaging<br />

Assays<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

<strong>ToxCast</strong>: Multiple Targets per Pathway<br />

19


No Pathology<br />

Proliferative Lesions<br />

Pre-neoplastic Lesions<br />

Neoplastic Lesions<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

Building Toxicity Signatures <strong>for</strong><br />

RRat t Li Liver Histopathology<br />

Hi t th l<br />

from Chronic Bioassays<br />

37<br />

68<br />

21<br />

N = 248 Chemicals in ToxRefDB<br />

20


Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

Judson et al, EHP (2010)<br />

<strong>ToxCast</strong> Identied Genes Associated with<br />

Progression of Rat Liver Disease<br />

Any Lesion Pre-Neoplastic Neoplastic<br />

132 60 21<br />

Liver Disease Progression<br />

21


Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

Toxicity Pathways<br />

Chemical<br />

Receptors p / Enzymes y / etc.<br />

Direct Molecular Interaction<br />

Pathway Regulation /<br />

Genomics<br />

Cellular Processes<br />

Tissue / Organ / Organism Tox Endpoint<br />

22


Predictive Signatures from <strong>ToxCast</strong> <strong>for</strong> Chronic,<br />

Developmental p <strong>and</strong> Reproductive p Toxicityy<br />

• Chronic/Cancer endpoints from rat, mouse <strong>and</strong> dog<br />

• Developmental endpoints from rat <strong>and</strong> rabbit<br />

• Reproductive endpoints from rat<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

23


ToxPi: Prioritizing Chemicals <strong>for</strong><br />

PPotential t ti l Endocrine E d i Activity A ti it<br />

Prioritization Index = ToxPi = f(HTS ( assays y + Chemical properties p p + Pathways) y )<br />

Bisphenol A Tebuthiuron<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

Other<br />

XME/ADME<br />

Other NR<br />

LogP_TPSA<br />

Predicted<br />

CaCO-2<br />

Reif et al, EHP, 2010<br />

TR<br />

KEGG<br />

pathways<br />

ER<br />

AR<br />

Disease<br />

classes<br />

Ingenuity<br />

pathways


ToxPi score<br />

309 3 Chemicaals<br />

sorted by<br />

lowest<br />

Linuron<br />

Tebuthiuron<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

ToxPi Ranking of Chemicals<br />

ToxPi<br />

Pyrimethanil<br />

ToxScore<br />

hi highest h<br />

Other<br />

XME/ADME<br />

Other<br />

NR<br />

LogP_TPSA<br />

CaCO-2<br />

HPTE<br />

TR<br />

KEGG<br />

path<br />

ER<br />

AR<br />

Disease<br />

classes<br />

Ingenuity<br />

path<br />

Reif et al, 2010


Exp<strong>and</strong>ing the ToxPi Approach <strong>for</strong> Prioritization of Toxicity<br />

Testing Based on <strong>ToxCast</strong> Chemical Profiling<br />

DEVEL<br />

CANCER<br />

PPathways th<br />

associated with<br />

CANCER in vivo<br />

endpoints<br />

In vitro assays<br />

associated with<br />

CANCER in vivo<br />

endpoints<br />

REPRO SYSTEMIC<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

Identify in vitro assays,<br />

targets, g ,ggenes<br />

<strong>and</strong><br />

pathways associated<br />

with multiple sectors<br />

of in vivo toxicity toxicity.<br />

26


ToxPi Scores <strong>for</strong> Antimicrobial Pesticide Actives<br />

One of the methods be<br />

developed to use <strong>ToxCast</strong><br />

data <strong>for</strong> classifying <strong>and</strong><br />

prioritizing antimicrobials<br />

<strong>and</strong> inerts.<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

27


Future ToxPi (Toxicological Prioritization Index)<br />

ToxPi = f(Exposure + Chemical properties + In vitro assays + Pathways)<br />

Incorporate additional components<br />

(slices) ( ) from other domains:<br />

- Exposure<br />

- Chemical properties<br />

- QSAR<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

28


log (mg/kgg/day)<br />

Pyrithiobac-sodium<br />

Triclosan<br />

Range of in vitro AC50<br />

values l converted t d tto s<br />

human in vivo daily dose<br />

Margin<br />

Estimated Exposure<br />

Etoxxazole<br />

Emammectin<br />

Buproofezin<br />

Dibutyl phthhalate<br />

Pyraclosttrobin<br />

Paraathion<br />

Isoxxaben<br />

Pryrithiobac-soodium<br />

Bentaazone<br />

Propetammphos<br />

2,4-D<br />

S-Bioalleethrin<br />

MGK<br />

Atraazine<br />

Broomacil<br />

Fenoxxycarb<br />

Forchlorfennuron<br />

Methyl Paraathion<br />

Tricclosan<br />

Roteenone<br />

Cyprrodinil<br />

Isoxafflutole<br />

Acetammiprid<br />

Zoxaamide<br />

Diuron D<br />

Benssulide<br />

Vincloozolin<br />

Oxytetracyclinne<br />

DH<br />

Dicrotoophos<br />

Metribuzin<br />

Triadimmefon<br />

Thiaazopyr<br />

Fenamiphos<br />

Clothiaanidin<br />

Bispheenol-A<br />

Alaachlor<br />

Acetoochlor<br />

Diazzoxon<br />

Dichlorvos<br />

Chlorpyriphos--oxon<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

Rotroff, et al. Tox.Sci. In Press<br />

29<br />

Reverse<br />

Tooxicokkinetics


Systems Approaches to Modeling Toxicity:<br />

From Pathways to Virtual Tissues<br />

chemicals pathways networks cell states tissue function<br />

Moving beyond<br />

empirical models, to<br />

multi-scale models of<br />

complex biological<br />

systems: vLiver,<br />

vEmbryo…<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

Identify Key Targets <strong>and</strong> Pathways<br />

For Prioritization<br />

Quantitative<br />

Dose-Response<br />

Models<br />

Next Generation<br />

<strong>Risk</strong> assessments<br />

30<br />

SOT 2010


Exposure<br />

HIGH THROUGHPUT SCREENING <strong>and</strong><br />

CHARACTERIZATION OF HAZARD & RISK<br />

Tissue<br />

Dose<br />

Molecular<br />

Targets<br />

Molecular<br />

Pathways<br />

Tissues<br />

Cellular Systems<br />

Cell<br />

Changes<br />

Cellular<br />

Networks<br />

IN VITRO: concentration response<br />

Toxicity<br />

Human IN SILICO: exposure dose response<br />

Animal IN VIVO: exposure dose response<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program 31<br />

SOT 2010


Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program<br />

<strong>ToxCast</strong> Phase I Publications & Data Release<br />

32<br />

http://epa.gov/ncct/toxcast/<br />

SOT 2010


Robert Kavlock<br />

Keith Houck<br />

Matt Martin<br />

Richard Judson<br />

Ann Richard<br />

David Reif<br />

Daniel Rotroff<br />

Woody Setzer<br />

Holly Mortenson<br />

AAndrew d BBeam<br />

Acknowledgements<br />

Tom Knudsen<br />

Imran Shah<br />

JJohn h WWambaugh b h<br />

Ray Tice<br />

Chris Austin<br />

http://www.epa.gov/ncct/<br />

Office of Research <strong>and</strong> Development<br />

Computational Toxicology Research Program 33<br />

SOT 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!