29.12.2012 Views

CONTENTS

CONTENTS

CONTENTS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

J. Duhok Univ., Vol.14, No.1 (Pure and Eng. Sciences), Pp 25-29, 2011<br />

�<br />

t<br />

y ( t , x ) � G ( t , s ) g ( s, x ( s, x )) ds, m �0,1,2,...<br />

m 0<br />

��<br />

m 0<br />

and<br />

�<br />

bt ()<br />

z ( t , x ) � g ( s, x ( s, x )) ds , m �0,1,2,..<br />

m 0<br />

at ()<br />

m 0<br />

Now, we claim that the sequence of functions<br />

x (, t x)<br />

is uniformly convergent on the domain<br />

m<br />

0<br />

[ a, b] � Df<br />

.<br />

For m=1 in (9) using (3)-(5), we find that<br />

t<br />

x ( t , x ) � x ( t , x ) � � f ( s, x ( s, x ),<br />

2 0 1 0<br />

a<br />

1 0<br />

s<br />

��� x 1( s, x 0<br />

bs ( )<br />

� as ( )<br />

1 0<br />

G ( s, � ) g ( �, )) d� , g ( �, x ( �, x )) d�<br />

) �<br />

� �<br />

bs ( )<br />

s<br />

( , , ( , � ) ( � , ) �, g ( �, x ) d�)<br />

f s x G s g x d ds<br />

o<br />

��<br />

o<br />

as ( )<br />

t<br />

( K x 1( s, x )<br />

a<br />

o � x o<br />

�<br />

� HL x 1(<br />

s, x o ) � x o<br />

�<br />

�<br />

�QhHx( s, x ) � x ) ds<br />

� �<br />

1<br />

o o<br />

t<br />

�<br />

� � ( KM ( b �a) � HLM ( b �a) �QhHM<br />

( b � a)) ds<br />

a<br />

�<br />

�<br />

2<br />

� ( K �H( L �Qh))<br />

M ( b � a)<br />

�<br />

� �M ( b � a)<br />

.<br />

Suppose that the following inequality<br />

k<br />

x k �1( t , x 0) � x k ( t , x 0)<br />

� � M ( b � a)<br />

(14)<br />

holds for some m=k, then we shall prove that<br />

the inqualtiy<br />

k �1<br />

x ( t , x ) � x ( t , x ) � � M ( b � a)<br />

k �20k �10<br />

Is true for all t [ a, b]<br />

� , xo � Df<br />

From (9) when m=k+1 and the inequality<br />

(14), we get<br />

x ( t , x ) �x( t , x ) � ( K x ( s, x ) �x(<br />

s, x ) �<br />

k �20k �10<br />

t<br />

� a<br />

k �1<br />

0 k 0<br />

�<br />

HL x k �1( s, x 0) �xk( s, x 0) �QhH<br />

x k �1(<br />

s, x 0) �xk(<br />

s, x 0)<br />

) ds<br />

�<br />

t<br />

k � k<br />

� � ( K � M ( b �a) � HL � M ( b �a) �<br />

a<br />

�<br />

k<br />

QhH � M ( b �a))<br />

ds<br />

�<br />

�<br />

k<br />

( K � H ( L �Qh )) � M ( b � a)<br />

�<br />

k �1<br />

� M ( b �a)<br />

�<br />

By mathematical induction and by (9) and<br />

(12) the following inequality holds:<br />

m<br />

x m�1( t , x 0) � x m(<br />

t , x 0)<br />

� � M ( b � a)<br />

(15)<br />

�<br />

where � � ( K � H ( L � Qh))( b � a)<br />

�<br />

m �<br />

for all 0,1,2,...<br />

From (15) we conclude that for k � 1,<br />

we<br />

have the following inequality :<br />

x ( t , x ) �x( t , x ) � x ( t , x ) �x(<br />

t , x ) �<br />

m �k 0 m 0 m �k 0 m �k �1<br />

0<br />

2<br />

o<br />

x ( t , x ) �x( t , x ) �... � x ( t , x ) �x(<br />

t , x )<br />

m �k �1 0 m �k �2 0 m �1<br />

0 m 0<br />

� � ) � � ) �... �<br />

m �k �1 m �k �2<br />

x 1( t , x 0 �x0x1( t , x 0 �x0<br />

m<br />

� x (, t x ) � x<br />

1 0 0<br />

m 2 k �2k�1 � � ( E � � � � �... � � � � ) x 1(, t x 0) � x 0<br />

therefore<br />

m<br />

�1<br />

x m �k ( t , x 0) � x m ( t , x 0)<br />

� � ( E � �) M ( b � a)<br />

(16)<br />

where E is identity matrix, t � [ a, b]<br />

and xo � D . f<br />

By using the condition (8) and the inequality<br />

(16), we find that<br />

m<br />

lim � � 0<br />

(17)<br />

m ��<br />

The relations (16) and (17) prove the uniform<br />

convergence of the sequence of function (9) in<br />

the domain (10) as m ��.<br />

Let<br />

lim x ( t , x ) � x ( t , x )<br />

(18)<br />

m ��<br />

m<br />

0 � 0<br />

Since the sequence of functions x m (, t x 0)<br />

are<br />

defined and continuous in the domain (10), then<br />

the limiting function x � (, t x 0)<br />

is also defined and<br />

continuous in the domain (10).<br />

Theorem 2. (Uniqueness Theorem)<br />

With the hypotheses and all conditions of the<br />

theorem 1 , the solution of Volterra integral<br />

equation (1) is unique.<br />

*<br />

Proof. Let x (, t x 0)<br />

be another solution of the<br />

Volterra integral equation (1), i.e.<br />

t s<br />

* * *<br />

( , ) ( ) ( , ( , ), ( , �) ( �, ( �, )) �,<br />

o o<br />

a<br />

o<br />

��<br />

o<br />

x t x F t f s x s x G s g x x d<br />

� �� �<br />

�<br />

b( s)<br />

as ( )<br />

and then we have<br />

g x d ds<br />

*<br />

( �, x ( �, o )) � ) ,<br />

( , 0<br />

*<br />

( , 0<br />

t<br />

a<br />

0<br />

s<br />

��� x( , x0<br />

bs ( )<br />

� as ( )<br />

0<br />

x t x ) � x t x ) � � f ( s, x ( s, x ),<br />

G ( s, � ) g ( �, � )) d� , g ( �, x ( �, x )) d�<br />

) �<br />

� �<br />

*<br />

s<br />

*<br />

b ( s )<br />

*<br />

0<br />

��<br />

0<br />

a( s)<br />

0<br />

f ( s, x ( s, x ), G ( s, � ) g ( �, x ( �, x )) d� , g ( �, x ( �, x )) d� ) ds<br />

t<br />

� � a<br />

�<br />

* �<br />

*<br />

( K x ( s, x o) � x ( s, x 0) � HL x ( s, x o)<br />

� x ( s, x 0)<br />

�<br />

�<br />

�QhHxsx� ds<br />

*<br />

( , o ) x (, s x 0)<br />

)<br />

�<br />

�<br />

*<br />

( K � H ( L �Qh ))( b � a) x ( t , x o ) � x ( t , x 0)<br />

so that<br />

x ( t , x ) x ( t , x ) �� x ( t , x ) x ( t , x )<br />

* *<br />

0 � 0 0 � 0<br />

By iteration we find<br />

x ( t , x<br />

*<br />

) �x( t , x<br />

m<br />

) �� x ( t , x<br />

*<br />

) �x(<br />

t , x )<br />

0 0 0 0<br />

But from the condition (8), we get<br />

m<br />

� � 0 when m ��, hence we obtain that<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!