08.01.2013 Views

LNCS 2950 - Aspects of Molecular Computing (Frontmatter Pages)

LNCS 2950 - Aspects of Molecular Computing (Frontmatter Pages)

LNCS 2950 - Aspects of Molecular Computing (Frontmatter Pages)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

124 Karel Culik II, Juhani Karhumäki, and Petri Salmela<br />

u3 = ab : a · ab · (bab) n /∈ Suf(X + ) implies aab(bab) n /∈ C(X) sothat<br />

aab(bab) n /∈ XC(X) and therefore ab(bab) n /∈ C(X) for all n ∈ N.<br />

Hence the number n3 does not exist.<br />

u4 = ba : ba · an · a/∈ XC(X) and therefore ba · an /∈ C(X) for all n ∈ N,<br />

and hence the number n4 does not exist.<br />

u5 = bb : bb ∈ X ⊆ C(X) sothatn5 =0.<br />

As a conclusion I = {0, 1, 5}, andG = �<br />

i∈I uiX ni =1· X + a + bb = X. This<br />

gives us the centralizer<br />

in other words we have established:<br />

C(X) =GX ∗ = XX ∗ = X + ,<br />

Fact 1 C({a, bb, aba, bab, bbb})={a, bb, aba, bab, bbb} + .<br />

Next we prove that the fixed point approach applied to the language X leads<br />

to an infinite loop <strong>of</strong> iterations. We prove this by showing that there exist words<br />

in C(X) \ Xi for every Xi <strong>of</strong> the iteration (1). To do this we take a closer look on<br />

the language L =(bab) ∗ ab(bab) ∗ . Clearly L ⊆ X0 =Pref(X + ) ∩ Suf(X + )and<br />

L ∩ X + = ∅.<br />

By the definition <strong>of</strong> the fixed point approach, word w ∈ Xi is in Xi+1 if and<br />

only if Xw ⊆ XiX and wX ⊆ XXi. We will check this condition for an arbitrary<br />

word (bab) k ab(bab) n ∈ L with k, n ≥ 1. The first condition Xw ⊆ XiX leads to<br />

the cases:<br />

and<br />

a · (bab) k ab(bab) n =(aba)(bb · a) k−1 (bab) n+1 ∈ X + X ⊆ XiX,<br />

bb · (bab) k ab(bab) n =(bbb)a(bb · a) k−1 (bab) n+1 ∈ X + X ⊆ XiX,<br />

aba · (bab) k ab(bab) n = a(bab)a(bb · a) k−1 (bab) n+1 ∈ X + X ⊆ XiX,<br />

bbb · (bab) k ab(bab) n =(bb) 2 a(bb · a) k−1 (bab) n+1 ∈ X + X ⊆ XiX<br />

bab · (bab) k ab(bab) n =(bab) k+1 ab(bab) n−1 · bab ∈ XiX.<br />

However, the last one holds if and only if<br />

and<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

(3)<br />

(bab) k+1 ab(bab) n−1 ∈ Xi. (4)<br />

Similarly, the second condition wX ⊆ XXi yields us:<br />

(bab) k ab(bab) n · a = bab(bab) k−1 (a·bb) n aba ∈ XX + ⊆ XXi,<br />

(bab) k ab(bab) n · bb = bab(bab) k−1 (a·bb) n a · bbb ∈ XX + ⊆ XXi,<br />

(bab) k ab(bab) n · aba = bab(bab) k−1 (a·bb) n a·a·bab·a ∈ XX + ⊆ XXi,<br />

(bab) k ab(bab) n · bbb = bab(bab) k−1 (a·bb) n a·a·bb· bb ∈ XX + ⊆ XXi<br />

(bab) k ab(bab) n · bab = bab · (bab) k−1 ab(bab) n+1 ∈ XXi.<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

(5)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!