17.01.2013 Views

Martin Teichmann Atomes de lithium-6 ultra froids dans la ... - TEL

Martin Teichmann Atomes de lithium-6 ultra froids dans la ... - TEL

Martin Teichmann Atomes de lithium-6 ultra froids dans la ... - TEL

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VOLUME 93, NUMBER 5<br />

gas. The p<strong>la</strong>teau is not reproduced by the mean field<br />

approach of a pure con<strong>de</strong>nsate (dashed line). This is a<br />

signature that the gas is not at T 0. It can be un<strong>de</strong>rstood<br />

with the mean field approach we used previously to <strong>de</strong>scribe<br />

the behavior of the thermal cloud. Since the magnetic<br />

field sweep is slow compared to the gas collision rate<br />

[14], we assume that this sweep is adiabatic and conserves<br />

entropy [27]. We then adjust this entropy to reproduce the<br />

release energy at a particu<strong>la</strong>r magnetic field, B 720 G.<br />

The resulting curve as a function of B (solid line in<br />

Fig. 3(c)] agrees well with our data in the range 680 G<br />

B 770 G, where the con<strong>de</strong>nsate fraction is 40%, and the<br />

temperature is T 0:6T0 C 1:4 K. This mo<strong>de</strong>l is limited<br />

to nma3 m & 1. Near resonance the calcu<strong>la</strong>ted release<br />

energy diverges and clearly <strong>de</strong>parts from the data. On the<br />

BCS si<strong>de</strong>, the release energy of a T 0 i<strong>de</strong>al Fermi gas<br />

gives an upper bound for the data (dot-dashed curve), as<br />

expected from negative interaction energy and a very cold<br />

sample. This low temperature is supported by our measurements<br />

on the BEC si<strong>de</strong> and the assumption of entropy<br />

conservation through resonance which predicts T<br />

0:1 TF [27].<br />

On resonance the gas is expected to reach a universal<br />

behavior, as the scattering length a is not a relevant<br />

parameter any more [5]. In this regime, the release energy<br />

p<br />

scales as E rel<br />

1<br />

E 0 rel , where E0 rel is the release<br />

energy of the noninteracting gas and is a universal<br />

parameter. From our data at 820 G, we get<br />

0:64 15 . This value is <strong>la</strong>rger than the Duke result<br />

0:26 0:07 at 910 G [26], but agrees with that of<br />

Innsbruck 0:68 0:13<br />

0:10<br />

at 850 G [8], and with the<br />

most recent theoretical prediction 0:56 [6].<br />

Around 925 G, where a 270 nm and k Fjaj 1<br />

0:35, the release energy curve disp<strong>la</strong>ys a change of slope.<br />

This is a signature of the transition between the strongly<br />

and weakly interacting regimes. It is also observed near<br />

the same field in [8] through in situ measurement of the<br />

trapped cloud size. Interestingly, the onset of resonance<br />

con<strong>de</strong>nsation of fermionic atom pairs observed in 40 K [7]<br />

and 6 Li [9], corresponds to a simi<strong>la</strong>r value of k Fjaj.<br />

In summary, we have explored the whole region of the<br />

6 Li Feshbach resonance, from a Bose-Einstein con<strong>de</strong>nsate<br />

of fermion dimers to an <strong>ultra</strong>cold interacting Fermi<br />

gas. The extremely <strong>la</strong>rge scattering length between molecules<br />

that we have measured leads to novel BEC conditions.<br />

We have observed hydrodynamic expansions on the<br />

BEC si<strong>de</strong> and nonhydrodynamic expansions at and above<br />

resonance. We suggest that this effect results from a<br />

reduction of the superfluid fraction and we point to the<br />

need of a better un<strong>de</strong>rstanding of the dynamics of an<br />

expanding Fermi gas.<br />

We are grateful to Y. Castin, C. Cohen-Tannoudji,<br />

R. Combescot, J. Dalibard, G. Shlyapnikov, and<br />

S. Stringari for fruitful discussions. This work was supported<br />

by CNRS, Collège <strong>de</strong> France, and Région Ile <strong>de</strong><br />

France. S. Kokkelmans acknowledges a Marie Curie<br />

PHYSICAL REVIEW LETTERS week ending<br />

30 JULY 2004<br />

grant from the E.U. un<strong>de</strong>r Contract No. MCFI-2002-<br />

00968. Laboratoire Kastler-Brossel is Unité <strong>de</strong> recherche<br />

<strong>de</strong> l’Ecole Normale Supérieure et <strong>de</strong> l’Université Pierre et<br />

Marie Curie, associée auCNRS.<br />

[1] M. Greiner, C. A. Regal, and D. S Jin, Nature (London)<br />

426, 537 (2003).<br />

[2] S. Jochim et al., Science 302, 2101 (2003).<br />

[3] M.W. Zwierlein et al., Phys. Rev. Lett. 91, 250401 (2003).<br />

[4] A. J. Leggett, J. Phys. C (Paris) 41, 7 (1980); P. Nozières<br />

and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985);<br />

C. Sá <strong>de</strong> Melo, M. Ran<strong>de</strong>ria, and J. Engelbrecht, Phys.<br />

Rev. Lett. 71, 3202 (1993); M. Hol<strong>la</strong>nd, S. Kokkelmans,<br />

M. Chiofalo, and R. Walser, Phys. Rev. Lett. 87, 120406<br />

(2001); Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89,<br />

130402 (2002); J. N. Milstein, S. J. J. M. F. Kokkelmans,<br />

and M. J. Hol<strong>la</strong>nd, Phys. Rev. A 66, 043604 (2002);<br />

R. Combescot, Phys. Rev. Lett. 91, 120401 (2003);<br />

G. M. Falco and H.T. C. Stoof, cond-mat/0402579.<br />

[5] H. Heiselberg, Phys. Rev. A 63, 043606 (2001).<br />

[6] J. Carlson, S-Y Chang, V. R. Pandharipan<strong>de</strong>, and K. E.<br />

Schmidt, Phys. Rev. Lett. 91, 050401 (2003).<br />

[7] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,<br />

040403 (2004).<br />

[8] M. Bartenstein et al., Phys. Rev. Lett. 92, 120401 (2004).<br />

[9] M. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004).<br />

[10] D. S. Petrov, C. Salomon, and G.V. Shlyapnikov, condmat/0309010.<br />

[11] G. Baym et al., Eur. Phys. J. B 24, 107 (2001).<br />

[12] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari,<br />

Rev. Mod. Phys. 71, 463 (1999).<br />

[13] F. Gerbier et al., Phys. Rev. Lett. 92, 030405 (2004).<br />

[14] J. Cubizolles et al., Phys. Rev. Lett. 91, 240401 (2003).<br />

[15] T. Bour<strong>de</strong>l et al., Phys. Rev. Lett. 91, 020402 (2003).<br />

[16] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature<br />

(London) 424, 47 (2003).<br />

[17] We correct our data for the presence of a magnetic field<br />

curvature which leads to an antitrapping frequency of<br />

100 Hz at 800 G along x.<br />

[18] Yu. Kagan, E. L. Surkov, and G.V. Shlyapnikov, Phys.<br />

Rev. A 54, 1753(R) (1996).<br />

[19] Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 (1996).<br />

[20] L. Khaykovich et al., Science 296, 1290 (2002).<br />

[21] L. Pitaevskii and S. Stringari, Phys. Rev. Lett. 81, 4541<br />

(1998).<br />

[22] A mean field self-consistent calcu<strong>la</strong>tion of the molecu<strong>la</strong>r<br />

<strong>de</strong>nsity profile in the trap at TC leads to Tmf C<br />

0:58T 0 C<br />

0:8 K. S. Kokkelmans (to be published).<br />

[23] J. Söding et al., Appl. Phys. B 69, 257 (1999).<br />

[24] C. Regal, M. Greiner, and D. Jin, Phys. Rev. Lett. 92,<br />

083201 (2004).<br />

[25] C. Menotti, P. Pedri, and S. Stringari, Phys. Rev. Lett. 89,<br />

250402 (2002).<br />

[26] K. O’Hara et al., Science 298, 2179 (2002); M. Gehm<br />

et al., Phys. Rev. A 68, 011401 (2003).<br />

[27] L. D. Carr, G.V. Shlyapnikov, and Y. Castin, Phys. Rev.<br />

Lett. 92, 150404 (2004).<br />

050401-4 050401-4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!