28.01.2013 Views

Zienkiewicz O.C., Taylor R.L. Vol. 3. The finite - tiera.ru

Zienkiewicz O.C., Taylor R.L. Vol. 3. The finite - tiera.ru

Zienkiewicz O.C., Taylor R.L. Vol. 3. The finite - tiera.ru

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.7 <strong>Taylor</strong>±Galerkin procedures for scalar variables<br />

In the <strong>Taylor</strong>±Galerkin process, the <strong>Taylor</strong> expansion in time precedes the Galerkin<br />

space discretization. Firstly, the scalar variable is expanded by the <strong>Taylor</strong> series in<br />

time 58;66<br />

n ‡ 1 ˆ n ‡ t @ n<br />

From Eq. (2.61a) we have<br />

@ n<br />

@t<br />

and<br />

2 n<br />

@ @<br />

ˆ 2 @t @t<br />

@t<br />

‡ t2<br />

2<br />

@ @<br />

ˆ ÿU ‡<br />

@x @x<br />

@ @<br />

ÿU ‡<br />

@x @x<br />

2 n<br />

@<br />

@t2 ‡ O… t3 † …2:108†<br />

k @<br />

@x<br />

k @<br />

@x<br />

‡ Q<br />

n<br />

‡ Q<br />

Substituting Eqs (2.109) and (2.110) into Eq. (2.108) we have<br />

n ‡ 1 n @ @<br />

ÿ ˆÿ t U ÿ<br />

@x @x<br />

k @<br />

@x<br />

‡ Q<br />

Assuming U and k to be constant we have<br />

n ‡ 1 n @ @<br />

ÿ ˆÿ t U ÿ<br />

@x @x<br />

k @<br />

@x<br />

‡ Q<br />

n<br />

n<br />

ÿ t2<br />

2<br />

ÿ t2<br />

2<br />

@<br />

@t<br />

@<br />

@x<br />

n<br />

@ @<br />

U ÿ<br />

@x @x<br />

@ @<br />

U ÿ<br />

@t @x<br />

Inserting Eq. (2.109) into Eq. (2.112) and neglecting higher-order terms<br />

n ‡ 1 n @ @<br />

ÿ ˆÿ t U ÿ<br />

@x @x<br />

‡ t2<br />

2<br />

k @<br />

@x<br />

@<br />

@x U2 @ @<br />

ÿ U<br />

@x @x<br />

‡ Q<br />

n<br />

k @<br />

@x<br />

‡ UQ<br />

n<br />

k @<br />

@x<br />

k @<br />

@t<br />

…2:109†<br />

…2:110†<br />

‡ Q<br />

n<br />

…2:111†<br />

‡ Q<br />

n<br />

…2:112†<br />

‡ O… t 3 † …2:113†<br />

As we can see the above equation, having assumed constant U and k, is identical to<br />

Eq. (2.83a) derived from the characteristic approach. Clearly for scalar variables both<br />

characteristic and <strong>Taylor</strong>±Galerkin procedures give identical stabilizing terms. Thus<br />

selection of a method for a scalar variable is a matter of taste. However, the sound<br />

mathematical justi®cation of the characteristic±Galerkin method should be<br />

mentioned here.<br />

<strong>The</strong> <strong>Taylor</strong>±Galerkin procedure for the convection±di€usion equation in multidimensions<br />

can be written as<br />

n ‡ 1 n<br />

ÿ ˆÿ t Uj<br />

@xj ÿ t<br />

2<br />

@<br />

@x i<br />

@<br />

ÿ @<br />

@x i<br />

@<br />

UiUj @x j<br />

<strong>Taylor</strong>±Galerkin procedures for scalar variables 47<br />

k @<br />

@xi @<br />

ÿ U i<br />

@x j<br />

‡ Q<br />

k @<br />

@x j<br />

‡ U iQ …2:114†

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!