11.06.2013 Views

differenziamento in vitro di cellule ossee

differenziamento in vitro di cellule ossee

differenziamento in vitro di cellule ossee

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Trans<strong>di</strong>fferenziazione<br />

e<br />

<strong>di</strong>fferenziazione <strong>di</strong> <strong>cellule</strong> <strong>ossee</strong>


Osteoclasti<br />

Osteoblasti<br />

Osteociti<br />

Cellule <strong>ossee</strong><br />

Riassorbimento<br />

osseo<br />

Formazione <strong>di</strong><br />

matrice ossea<br />

Meccanocettori, riparano<br />

microdanneggiamenti<br />

delle lacune osteocitarie


5%<br />

94%<br />

1%


Seeman E and Delmas P. N Engl J Med 2006;354:2250-2261


RIMODELLAMENTO OSSEO IN CONDIZIONI FISIOLOGICHE<br />

Osteoclast<br />

Precursors<br />

Differentiated<br />

Osteoclast<br />

Riassorbimento<br />

osseo<br />

Osteoblasts<br />

Osteodeposizione


Differenziamento da precursori<br />

midollari<br />

• Cellule osteoclastiche<br />

e<br />

• Cellule osteoblastiche


Skeletal Integrity <strong>in</strong> Oncology<br />

cl<strong>in</strong>icaloptions.com/oncology


M-CSF M-CSF<br />

cellula<br />

progenitrice<br />

monocita<br />

macrofagica<br />

(GM-CFU)<br />

OSTEOCLASTOGENESI<br />

OPG OPG<br />

RANKL RANKL<br />

Preosteoclasto Cluster <strong>di</strong><br />

preosteoclasti<br />

Osteoclasto<br />

maturo<br />

TRAP +<br />

CTR +<br />

αvβ3+


Pre OCs<br />

c-FMS<br />

c-FMS<br />

RANK<br />

RANK<br />

of macrophage<br />

of macrophage


NFAT2<br />

Nature Reviews Immunology 7, 292-304 (April 2007)<br />

DAP12 FcRγ<br />

DC-STAMP<br />

FUSIONE


© 2005 Rockefeller University Press<br />

Potential mechanism of fusion of preosteoclasts and of macrophages.<br />

Vignery A J Exp Med 2005;202:337-340


•Aci<strong>di</strong>ficazione<br />

–Anidrasi carbonica<br />

–Pompa H+/ATPasi<br />

•Proteolisi<br />

–Cateps<strong>in</strong>a


Dopo 24 ore <strong>di</strong> coltura si recupera<br />

la frazione cellulare non aderente<br />

e si coltiva con<br />

MCSF e RANKL


TRAP+ Osteoclasts <strong>in</strong> culture


Osteoclasta<br />

coltivato su<br />

fett<strong>in</strong>a <strong>di</strong> osso<br />

Lacuna <strong>di</strong> riassorbimento<br />

scavata dalla cellula


Bone Marrow<br />

Stromal Cells<br />

AP1<br />

Runx2<br />

Fra-1<br />

JunD<br />

Wnt<br />

Pre-Osteoblasts<br />

ALP+<br />

Coll I+<br />

Early phase of osteoblastogenesis<br />

Osteoblastogenesis<br />

Late phase of osteoblastogenesis<br />

Wnt<br />

Runx2<br />

Osterix<br />

Fra-2<br />

JunD<br />

AP1<br />

Osteoblasts<br />

ALP++<br />

Coll I++<br />

Osteocalc<strong>in</strong><br />

BSP


DKK-1<br />

kremen<br />

LRP5/6<br />

APC<br />

Ax<strong>in</strong><br />

Citoplasma<br />

Sclerost<strong>in</strong><br />

LRP5/6<br />

GSK-3<br />

Nucleo<br />

WNT WIF-1<br />

Frizzled<br />

P<br />

β-Caten<strong>in</strong><br />

TCF/LEF<br />

RUNX2, AP-1<br />

Inhibition Activation of of canonical Wnt signal<strong>in</strong>g<br />

WNT sFRP<br />

Ax<strong>in</strong><br />

WNT<br />

LRP5/6<br />

Frat-1<br />

Dsh<br />

GSK-3<br />

Frizzled<br />

β-Caten<strong>in</strong><br />

β-Caten<strong>in</strong><br />

β-Caten<strong>in</strong><br />

β-Caten<strong>in</strong>


Cellule stromali<br />

del midollo osseo<br />

(BMSCs)<br />

AP1<br />

Runx2<br />

Fra-1<br />

JunD<br />

Wnt<br />

Pre-osteoblasti<br />

ALP+<br />

Coll I+<br />

Wnt<br />

Osterix<br />

Fra-2<br />

JunD<br />

OSTEOBLASTOGENESI<br />

AP1<br />

OSTEOBLASTI OSTEOCITI<br />

ALP++<br />

Coll I++<br />

Osteocalc<strong>in</strong><br />

BSP II


OSTEOBLASTI E ADIPOCITI HANNO UN PROGENITORE COMUNE<br />

BMSC<br />

C/EBPα<br />

Wnt<br />

Cbfa1/Runx2<br />

PPARγ<br />

Wnt<br />

Cbfa1/Runx2<br />

PPARγ<br />

OSTEOBLAST<br />

FORMATION<br />

ADIPOCYTE<br />

FORMATION


CELLULE MESENCHIMALI<br />

STAMINALI<br />

Sono conosciute anche come:<br />

•colony form<strong>in</strong>g fibroblastic cells<br />

•stromal fibroblasts<br />

•marrow stromal stem cells<br />

•mesenchymal progenitor cells<br />

Costituiscono una popolazione residente nel midollo osseo<br />

capace <strong>di</strong> <strong>di</strong>fferenziare <strong>in</strong> <strong>cellule</strong> del tessuto a<strong>di</strong>poso,<br />

del tessuto cartilag<strong>in</strong>eo, del tessuto osseo e nello<br />

stroma che supporta l’ematopoiesi.


ISOLAMENTO DELLE MSC DA<br />

MIDOLLO OSSEO UMANO<br />

1. Centrifugazione su gra<strong>di</strong>ente <strong>di</strong> Ficoll<br />

2. Coltura su piastre alla densità <strong>di</strong> 10000 cell/cm 2<br />

3. Rimozione <strong>cellule</strong> non aderenti


2. Coltura su piastre <strong>di</strong> polistirene non rivestite alla<br />

densità <strong>di</strong> 10000 cell/cm 2<br />

Dopo 24-48 ore<br />

3. Rimozione <strong>cellule</strong> non aderenti<br />

Dopo 10-14 giorni<br />

Cellule subconfluenti<br />

Le <strong>cellule</strong> possono duplicarsi ed essere<br />

espanse per circa 20 passaggi mantenendo<br />

le caratteristiche <strong>di</strong> multipotenza senza<br />

ridurre il tasso <strong>di</strong> crescita. Le <strong>cellule</strong> così<br />

ottenute non hanno proprietà <strong>di</strong> <strong>cellule</strong><br />

immortalizzate e hanno un tempo <strong>di</strong><br />

crescita def<strong>in</strong>ita.


Differenziamento osteogenico<br />

Il <strong><strong>di</strong>fferenziamento</strong> delle MSCs <strong>in</strong> osteoblasti non è sorprendente; il<br />

midollo osseo è contenuto all’<strong>in</strong>terno del canale <strong>di</strong>afisario delle ossa lunghe<br />

dove la struttura dell’osso è estremamente simile a quella dell’osso<br />

spugnoso che si rimodella cont<strong>in</strong>uamente, perciò non sorprende che<br />

campioni <strong>di</strong> midollo prelevati dall’osso possano contenere precursori <strong>di</strong><br />

osteoblasti.<br />

Acido ascorbico<br />

Desametasone<br />

Β Glicerofosfato<br />

MSCs Osteoblasti


Differenziamento osteogenico<br />

Acido ascorbico (vitam<strong>in</strong>a C): funziona come cofattore<br />

nella idrossilazione dei residui <strong>di</strong> prol<strong>in</strong>a e lis<strong>in</strong>a nelle<br />

molecole <strong>di</strong> collageno, promuovendo la formazione della<br />

matrice extracellulare, la maturazione e la deposizione <strong>di</strong><br />

collagene; <strong>in</strong>duce l’attività della fosfatasi alcal<strong>in</strong>a della<br />

membrana plasmatica degli osteoprogenitori.<br />

Β glicerofosfato: I fosfati organici promuovono la<br />

m<strong>in</strong>eralizzazione dal momento che il fosfato viene<br />

<strong>in</strong>corporato nei cristalli <strong>di</strong> idrossiapatite della matrice.<br />

Desametasone: promuove il <strong><strong>di</strong>fferenziamento</strong>, agisce sui<br />

promotori responsivi dei fattori <strong>di</strong> trascrizione necessari<br />

per il committment delle MSCs nel l<strong>in</strong>eage osteogenico;<br />

promuove la calcificazione <strong>in</strong> <strong>vitro</strong>.


Conoscere i processi<br />

<strong>di</strong>fferenziativi è importante per<br />

• Stu<strong>di</strong>are i meccanismi responsabili<br />

dell’alterazione del rimodellamento<br />

osseo <strong>in</strong> con<strong>di</strong>zioni patologiche<br />

•Sviluppare nuovi farmaci


Bone Is Removed by Osteoclast Activity<br />

Skeletal Integrity <strong>in</strong> Oncology<br />

Bone Remodel<strong>in</strong>g is Altered <strong>in</strong><br />

cl<strong>in</strong>icaloptions.com/oncology<br />

and Replaced by Osteoblast Activity<br />

Bone<br />

Resorption<br />

RANK/RANKL/OPG<br />

pathological con<strong>di</strong>tions<br />

Normal Bone Remodel<strong>in</strong>g<br />

Courtesy of Dr. G R Mundy, Vanderbilt University.<br />

Bone<br />

Wnt<br />

Formation<br />

signal<strong>in</strong>g


Incidence of Bone Metastases <strong>in</strong> Cancers<br />

• Myeloma 95-100<br />

• Breast 65-75<br />

• Prostate 65-75<br />

• Thyroid 60<br />

• Bladder 40<br />

• Lung 30-40<br />

• Renal 20-25<br />

• Melanoma 14-45<br />

Incidence of<br />

Bone Metastases (%)


OSTEOLISI MASSIVA


Bone Is Removed by Osteoclast Activity<br />

Skeletal Integrity <strong>in</strong> Oncology<br />

cl<strong>in</strong>icaloptions.com/oncology<br />

Bone Remodel<strong>in</strong>g is Uncoupled <strong>in</strong> MM<br />

and Replaced by Osteoblast Activity<br />

RANKL/OPG<br />

Normal Bone Remodel<strong>in</strong>g<br />

Courtesy of Dr. G R Mundy, Vanderbilt University.<br />

Wnt signal<strong>in</strong>g


Cellular mechanisms of myeloma bone <strong>di</strong>sease<br />

The orig<strong>in</strong>al relationship between<br />

myeloma cells and osteoclasts<br />

Current understand<strong>in</strong>g of mechanisms of<br />

myeloma bone <strong>di</strong>sease


Pathogenesis of Multiple Myeloma Bone Disease<br />

Alteration of<br />

RANK/RANKL/OPG<br />

Inhibition of<br />

Wnt signal<strong>in</strong>g


SCOPO DEL LAVORO<br />

Stu<strong>di</strong>are, nel MM, ulteriori meccanismi responsabili:<br />

1<br />

Dell’<strong>in</strong>crementata formazione<br />

e sopravvivenza degli<br />

osteoclasti<br />

OSTEOLISI<br />

2<br />

Della ridotta formazione e<br />

attivazione degli osteoblasti


Formazione <strong>di</strong> OCs da PBMCs <strong>di</strong> soggetti affetti da<br />

Mieloma Multiplo<br />

30 days<br />

T cells support osteoclastogenesis <strong>in</strong><br />

an <strong>in</strong> <strong>vitro</strong> model derived from human<br />

multiple myeloma bone <strong>di</strong>sease through<br />

RANKL production<br />

Colucci S et al. Blood 2004<br />

60 days


-<br />

+<br />

Formazione <strong>di</strong> OCs da PBMCs <strong>di</strong> soggetti affetti da<br />

Mieloma Multiplo<br />

MCSF<br />

RANKL<br />

MCSF<br />

RANKL<br />

Colucci S et al. Blood 2004


-<br />

+<br />

T cells depleted MM PBMC cultures<br />

MCSF<br />

MCSF<br />

RANKL RANKL<br />

RANKL<br />

MCSF<br />

MCSF<br />

RANKL RANKL<br />

RANKL<br />

T cells support osteoclastogenesis


Alterazione dell’asse RANKL/OPG nel Mieloma Multiplo<br />

L<strong>in</strong>fociti T<br />

<strong>di</strong> MM<br />

TRAIL<br />

Apoptosi<br />

Colucci S et al. Blood 2004<br />

OPG<br />

RANKL<br />

Inibizione OCs<br />

RANK RANK<br />

RANK<br />

Plasma<strong>cellule</strong><br />

Mielomatose<br />

Osteolisi<br />

Precursori<br />

osteoclastici


Alterazione dell’asse RANKL/OPG e TNFα nel Mieloma Multiplo<br />

apoptosis<br />

Fas-L<br />

T cells<br />

Colucci S et al Leukemia 2009<br />

DcR3 Plasmacells<br />

TNF-α<br />

RANKL<br />

TNF-α<br />

CD14+<br />

preosteoclasts<br />

Multiple Myeloma osteolysis


RANK/RANKL/OPG<br />

NEL RIMODELLAMENTO OSSEO<br />

IN CONDIZIONI FISIOLOGICHE E<br />

PATOLOGICHE: NUOVE PROSPETTIVE<br />

TERAPEUTICHE


Il RANKL è implicato nella<br />

per<strong>di</strong>ta <strong>di</strong> massa ossea <strong>in</strong> un’ampia<br />

Per<strong>di</strong>ta ossea patologica<br />

Osteoporosi<br />

postmenopausale<br />

Osteoporosi<br />

maschile<br />

gamma <strong>di</strong> patologie<br />

Artrite<br />

reumatoide<br />

Per<strong>di</strong>ta ossea<br />

da trattamento<br />

farmacologico<br />

Glucocorticoide<br />

Osteoporosi<br />

<strong>in</strong>dotta da<br />

glucocorticoi<strong>di</strong><br />

Inibitori<br />

aromatasi<br />

Terapia <strong>di</strong><br />

deprivazione<br />

androgenica<br />

Per<strong>di</strong>ta ossea<br />

collegata alla<br />

terapia<br />

Distruzione<br />

ossea<br />

<strong>in</strong>dotta da<br />

tumore<br />

Metastasi ossea/<br />

Mieloma multiplo


Unopposed RANK Ligand Activity<br />

Causes Long Bone Fragility Fractures<br />

OPG knockout<br />

mouse model<br />

Ra<strong>di</strong>ograph of 1-month-old OPG knockout<br />

mouse with spontaneous fragility fractures<br />

Bucay N, et al. Genes Dev 1998;12:1260-1268. Repr<strong>in</strong>ted with permission.<br />

X


Role of OPG <strong>in</strong> the Regulation of<br />

Bone M<strong>in</strong>eral Density<br />

X<br />

Normal OPG absent OPG excess<br />

No BMD Change<br />

Decreased BMD<br />

Increased BMD<br />

Bolon B, et al. Arthritis Rheum. 2002; 46: 3121-3135. Repr<strong>in</strong>ted with permission of Wiley-Liss, Inc., a<br />

subsi<strong>di</strong>ary of John Wiley & Sons, Inc.


Inhibition of RANK Ligand – a Potential Future<br />

CFU-GM<br />

Mimic the activity<br />

and b<strong>in</strong>d<strong>in</strong>g<br />

specificity of OPG<br />

for RANK-L<br />

Therapeutic Option<br />

Pre-fusion<br />

Osteoclast<br />

Bone Formation<br />

Osteoblasts<br />

Osteoclast<br />

Formation<br />

Inhibited<br />

RANKL<br />

RANK<br />

OPG<br />

Bone Resorption<br />

Inhibited<br />

denosumab<br />

Osteoclast<br />

Function and Survival<br />

Inhibited<br />

CFU-GM = colony form<strong>in</strong>g unit granulocyte-macrophage; M-CSF = macrophage colony stimulat<strong>in</strong>g factor.<br />

Boyle WJ, et al. Nature 2003;423:337-342.


Denosumab Is the First Fully Human<br />

Monoclonal Antibody Target<strong>in</strong>g RANK Ligand<br />

1997<br />

<strong>in</strong> Cl<strong>in</strong>ical Development<br />

Present<br />

Fc-OPG OPG-Fc RANK-Fc Denosumab<br />

OPG = osteoproteger<strong>in</strong>.<br />

Simonet WS, et al. Cell. 1997;89:309-319.<br />

Data on file, Amgen.<br />

Fusion prote<strong>in</strong>s<br />

Fc OPG<br />

RANK<br />

Fully human<br />

monoclonal<br />

antibody


Denosumab Is a Fully Human<br />

Mur<strong>in</strong>e<br />

100%<br />

mouse prote<strong>in</strong><br />

Example:<br />

Orthoclone OKT ® 3<br />

(muromonab-CD3)<br />

Monoclonal Antibody<br />

Chimeric<br />

34%<br />

mouse prote<strong>in</strong><br />

Example:<br />

ReoPro ®<br />

(abciximab)<br />

Humanized<br />

5%–10%<br />

mouse prote<strong>in</strong><br />

Example:<br />

Hercept<strong>in</strong> ®<br />

(trastuzumab)<br />

Orthoclone OKT ® 3 is a registered trademark of Johnson & Johnson; ReoPro ® is a registered trademark of<br />

Eli Lilly and Company; Hercept<strong>in</strong> ® is a registered trademark of Genentech, Inc.<br />

Bekker PJ, et al. J Bone M<strong>in</strong>er Res. 2004;19:1059-1066; Lonberg N. Nat Biotechnol. 2005;23:1117-1125;<br />

Ternant D, et al. Expert Op<strong>in</strong> Biol Ther. 2005;5(suppl 1):S37-S47; We<strong>in</strong>er LM. J Immunother . 2006;29:1-9;<br />

Yang XD, et al. Crit Rev Oncol Hematol. 2001;38:17-23.<br />

Denosumab<br />

Fully Human<br />

100%<br />

human prote<strong>in</strong>


Pharmacologic Properties of<br />

• Fully human monoclonal<br />

antibody - IgG 2 isotype<br />

• High aff<strong>in</strong>ity for human<br />

RANK ligand<br />

Denosumab<br />

• High specificity for RANK ligand<br />

– No detectable b<strong>in</strong>d<strong>in</strong>g to TNF-α,<br />

TNF-β, TRAIL, or CD40L<br />

• No neutraliz<strong>in</strong>g antibo<strong>di</strong>es<br />

detected <strong>in</strong> cl<strong>in</strong>ical trials to date<br />

Ig = immunoglobul<strong>in</strong>; TNF = tumor necrosis factor;<br />

TRAIL = TNF-α–related apoptosis-<strong>in</strong>duc<strong>in</strong>g ligand.<br />

Bekker PJ, et al. J Bone M<strong>in</strong>er Res. 2004;19:1059-1066.<br />

Elliott R, et al. Osteoporos Int. 2007;18:S54. Abstract P149.<br />

McClung MR, et al. N Engl J Med. 2006;354:821-831.<br />

Data on file, Amgen.<br />

Model of Denosumab<br />

This molecule is <strong>in</strong>vestigational and is not<br />

approved by the FDA and EMEA


Hofbauer LC et al. Bone 1999<br />

Sherman ML et al. J Cl<strong>in</strong> Invest 1990<br />

Cenci S et al J Cl<strong>in</strong> Invest 2000<br />

Lam J et al. J Cl<strong>in</strong> Invest 2000<br />

Zhang YH et al J Bol Chem 2001<br />

Fuller K et al Endocr<strong>in</strong>ology 2002<br />

D Aeschlimann and BAJ Evans.<br />

The vital osteoclast: how is it regulated?<br />

Cell Death and Differentiation 2004<br />

RANKL<br />

Stromali <strong>cellule</strong> T<br />

MCSF<br />

(p55/60)<br />

attivate<br />

Pre OC<br />

TNFα<br />

Formazione <strong>di</strong><br />

OCs attivi<br />

RANK


Pathogenesis of Multiple Myeloma Bone Disease<br />

Alteration of<br />

RANK/RANKL/OPG<br />

Inhibition of<br />

Wnt signal<strong>in</strong>g


DKK<br />

LRP5/6<br />

Sclerost<strong>in</strong>a<br />

LRP5/6<br />

WNT WIF-1 WNT sFRP<br />

osteoblast<br />

<strong>di</strong>fferentiation<br />

WNT<br />

LRP5/6<br />

Frizzled


Osteoblast suppression <strong>in</strong> MM bone <strong>di</strong>sease<br />

has been related to the <strong>in</strong>hibition<br />

of the canonical Wnt signal<strong>in</strong>g<br />

Tian E. et al. The role of the Wnt-signal<strong>in</strong>g antagonist DKK1 <strong>in</strong> the<br />

development of osteolytic lesions <strong>in</strong> multiple myeloma. N Engl J Med<br />

349(26):2483-94; 2003.<br />

DKK1<br />

Oshima T et al. Myeloma cells suppress bone formation by secret<strong>in</strong>g a<br />

soluble Wnt <strong>in</strong>hibitor, sFRP-2. Blood 106(9):3160-5; 2005.<br />

sFRP2<br />

Giuliani N. et al. Production of Wnt <strong>in</strong>hibitors by myeloma cells: potential<br />

effects on canonical Wnt pathway <strong>in</strong> the bone microenvironment. Cancer<br />

Res. 67(16):7665-74; 2007.<br />

DKK1, sFRP3


What is known about sclerost<strong>in</strong><br />

<strong>in</strong>volvement <strong>in</strong> MM bone <strong>di</strong>sease?<br />

Terpos E et al., High Serum Sclerost<strong>in</strong> Correlates with Advanced Stage,<br />

Increased Bone Resorption, Reduced Osteoblast Function, and Poor Survival<br />

<strong>in</strong> Newly-Diagnosed Patients with Multiple Myeloma. (ASH Annual Meet<strong>in</strong>g<br />

Abstracts) Blood 2009; 114: (Abstract 425).<br />

Terpos E et al., Circulat<strong>in</strong>g levels of the Wnt <strong>in</strong>hibitors Dickkopf-1 and<br />

sclerost<strong>in</strong> <strong>in</strong> <strong>di</strong>fferent phases of multiple myeloma: alterations post-therapy<br />

with lenalidomide and dexamethasone with or without bortezomib. (ASH<br />

Annual Meet<strong>in</strong>g Abstracts) Blood 2010; 116: (Abstract 2963).


•Sclerost<strong>in</strong>, encoded by SOST gene, is the most important<br />

negative regulator of bone formation and its production is<br />

restricted to bone tissue<br />

•Mutations <strong>in</strong> the SOST gene cause scleros<strong>in</strong>g bone<br />

dysplasia, such as Sclerosteosis and Van Buchen <strong>di</strong>sease<br />

van Bezooijen et al Cytok<strong>in</strong>e & Growth factor Rev 2005


Sclerost<strong>in</strong> represents a negative regulator<br />

of osteoblast <strong>di</strong>fferentiation<br />

Proliferation<br />

(osteoblast<br />

Progenitors) Matrix formation<br />

(early osteoblasts)<br />

Benzooijen et al Cytok<strong>in</strong>e & Growth factor Rev 2005<br />

Matrix maturation<br />

& m<strong>in</strong>eralization<br />

(mature osteoblasts)<br />

Sclerost<strong>in</strong><br />

L<strong>in</strong><strong>in</strong>g cells<br />

Apoptosis<br />

Osteocytes<br />

Sclerost<strong>in</strong> alteration could be <strong>in</strong>volved <strong>in</strong> bone <strong>di</strong>seases <strong>in</strong>clud<strong>in</strong>g MM


Aim of the work<br />

Investigate the expression of<br />

Sclerost<strong>in</strong> by myeloma cells<br />

Study the Sclerost<strong>in</strong> <strong>in</strong>volvement <strong>in</strong><br />

osteoblast <strong>di</strong>fferentiation <strong>in</strong> a co-colture<br />

system between Bone Marrow Stromal<br />

Cells and myeloma cells


Sclerost<strong>in</strong><br />

Sclerost<strong>in</strong> expression by CD138+ cells from MM patients<br />

and HMCLs<br />

Total ERK<br />

OD RATIO<br />

Sclerost<strong>in</strong>/Total ERK<br />

CD138+<br />

1,6<br />

1,2<br />

0,8<br />

0,4<br />

0<br />

MGUS<br />

MM10<br />

no osteolysis osteolysis<br />

MM11<br />

MM12<br />

MM17<br />

MM19<br />

MM7<br />

MM8<br />

MM4<br />

MM9<br />

MM20<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

U266<br />

H929<br />

Karpas 909<br />

RPMI-8226


…Co-coltures between<br />

bone marrow stromal cells (BMSCs)<br />

and H929/CD138+ cells<br />

anti-Sclerost<strong>in</strong><br />

mAb<br />

H929/CD138+<br />

BMSCs


Formation of CFU-F and CFU-OB<br />

<strong>in</strong> BMSCs co-coltured with H929 or CD138+ cells from the patients<br />

H929<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

CD138+ cells<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

H929<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

CD138+ cells<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

CFU-F CFU-F<br />

- + + + - + + +<br />

- - 50 500 16<br />

12<br />

- - 50 500<br />

CFU-F/well<br />

(Mean ± SE)<br />

0<br />

- + + + - + + +<br />

- - 50 500 16 - - 50 500<br />

CFU-F/well<br />

(Mean ± SE)<br />

8<br />

4<br />

12<br />

CFU-OB CFU-OB<br />

- + + + - + + +<br />

- - 50 500 20 - - 50 500<br />

CFU-OB/well<br />

(Mean ± SE)<br />

- + + + - + + +<br />

- - 50 500 20 - - 50 500<br />

CFU-OB/well<br />

(Mean ± SE)<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

0<br />

8<br />

4<br />

0<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*


H929<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

Effect of myeloma cells on<br />

bone matrix prote<strong>in</strong> expression by BMSCs<br />

BSP II<br />

β-Act<strong>in</strong>a<br />

H929<br />

anti-Sclerost<strong>in</strong> (ng/ml)<br />

Coll I<br />

β-Act<strong>in</strong>a<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

Osteocalc<strong>in</strong> mRNA relative<br />

fold change (Mean ± SE)<br />

1,2<br />

0,8<br />

0,4<br />

0<br />

H929<br />

anti-Sclerost<strong>in</strong>a<br />

(ng/ml)<br />

- + + +<br />

- - 50 500<br />

BMSCs<br />

*<br />

*


Effect of myeloma cells on transcription factor<br />

expression by BMSCs<br />

H929<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

Fra-2<br />

Lam<strong>in</strong> B1<br />

H929<br />

anti-Sclerost<strong>in</strong> (ng/ml)<br />

Fra-1<br />

Lam<strong>in</strong> B1<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

H929<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

JunD<br />

Lam<strong>in</strong> B1<br />

BMSCs<br />

- + + +<br />

- - 50 500


WNT signal<strong>in</strong>g regulates RANKL/OPG axes<br />

Wnt3a over-expression<br />

up-regulated OPG<br />

Osteoclasts<br />

Osteoblasts<br />

Wnt <strong>in</strong>hibitors<br />

down-regulated OPG expression<br />

Osteoclasts<br />

Osteoblasts


Effect of human myeloma cells on RANKL and OPG<br />

expression by BMSCs<br />

H929<br />

anti-Sclerost<strong>in</strong>a (ng/ml)<br />

RANKL<br />

β-Act<strong>in</strong><br />

H929<br />

anti-Sclerost<strong>in</strong> (ng/ml)<br />

OPG<br />

β-Act<strong>in</strong><br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

OD RATIO<br />

RANKL/ β-act<strong>in</strong><br />

OD RATIO<br />

OPG/ β-act<strong>in</strong><br />

0,6<br />

0,4<br />

0,2<br />

0<br />

1,8<br />

1,5<br />

1,2<br />

0,9<br />

0,6<br />

0,3<br />

0<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

BMSCs<br />

*<br />

*<br />

- + + +<br />

- - 50 500<br />

*<br />

*


Sclerost<strong>in</strong><br />

Myeloma cells through sclerost<strong>in</strong><br />

secretion contribute to<br />

MM Cells<br />

1) Inhibit OB formation<br />

and activity <strong>di</strong>rectly<br />

OBs<br />

Sclerost<strong>in</strong><br />

OPG<br />

OBs<br />

MM Cells<br />

RANKL<br />

2) Induce OC formation<br />

and resorption <strong>in</strong><strong>di</strong>rectly<br />

Sclerost<strong>in</strong> can be an attractive can<strong>di</strong>date for develop<strong>in</strong>g novel<br />

targeted therapies for this <strong>di</strong>sease


Stabilizzazione della frattura con placca<br />

e viti ed esposizione del focolaio<br />

psudoartrosico<br />

estrazione delle<br />

prelievo <strong>cellule</strong> dalla stam<strong>in</strong>ali: cresta iliaca<br />

<strong>di</strong> metodo aspirato con midollare filtri<br />

scaffold <strong>di</strong> tessuto<br />

osseo<br />

dem<strong>in</strong>eralizzato, (solo<br />

collagene o<br />

substrati s<strong>in</strong>tetici <strong>di</strong><br />

idrossiapatite<br />

o calcio fosfato)<br />

RX postoperatoria con placca e<br />

riempimento del <strong>di</strong>fetto osseo con<br />

lo scaffold arriccito <strong>di</strong> <strong>cellule</strong><br />

stam<strong>in</strong>ali


Riassorbimento dell’osso alveolare<br />

Cellule Stam<strong>in</strong>ali<br />

presenti nella Polpa Dentale


scaffold a base <strong>di</strong> collagene arricchito <strong>di</strong><br />

<strong>cellule</strong> stam<strong>in</strong>ali, prelevate dalla polpa<br />

dentale (<strong>di</strong> terzi molari estratti).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!