11.06.2013 Views

differenziamento in vitro di cellule ossee

differenziamento in vitro di cellule ossee

differenziamento in vitro di cellule ossee

SHOW MORE
SHOW LESS

Trasformi i suoi PDF in rivista online e aumenti il suo fatturato!

Ottimizzi le sue riviste online per SEO, utilizza backlink potenti e contenuti multimediali per aumentare la sua visibilità e il suo fatturato.

Trans<strong>di</strong>fferenziazione<br />

e<br />

<strong>di</strong>fferenziazione <strong>di</strong> <strong>cellule</strong> <strong>ossee</strong>


Osteoclasti<br />

Osteoblasti<br />

Osteociti<br />

Cellule <strong>ossee</strong><br />

Riassorbimento<br />

osseo<br />

Formazione <strong>di</strong><br />

matrice ossea<br />

Meccanocettori, riparano<br />

microdanneggiamenti<br />

delle lacune osteocitarie


5%<br />

94%<br />

1%


Seeman E and Delmas P. N Engl J Med 2006;354:2250-2261


RIMODELLAMENTO OSSEO IN CONDIZIONI FISIOLOGICHE<br />

Osteoclast<br />

Precursors<br />

Differentiated<br />

Osteoclast<br />

Riassorbimento<br />

osseo<br />

Osteoblasts<br />

Osteodeposizione


Differenziamento da precursori<br />

midollari<br />

• Cellule osteoclastiche<br />

e<br />

• Cellule osteoblastiche


Skeletal Integrity <strong>in</strong> Oncology<br />

cl<strong>in</strong>icaloptions.com/oncology


M-CSF M-CSF<br />

cellula<br />

progenitrice<br />

monocita<br />

macrofagica<br />

(GM-CFU)<br />

OSTEOCLASTOGENESI<br />

OPG OPG<br />

RANKL RANKL<br />

Preosteoclasto Cluster <strong>di</strong><br />

preosteoclasti<br />

Osteoclasto<br />

maturo<br />

TRAP +<br />

CTR +<br />

αvβ3+


Pre OCs<br />

c-FMS<br />

c-FMS<br />

RANK<br />

RANK<br />

of macrophage<br />

of macrophage


NFAT2<br />

Nature Reviews Immunology 7, 292-304 (April 2007)<br />

DAP12 FcRγ<br />

DC-STAMP<br />

FUSIONE


© 2005 Rockefeller University Press<br />

Potential mechanism of fusion of preosteoclasts and of macrophages.<br />

Vignery A J Exp Med 2005;202:337-340


•Aci<strong>di</strong>ficazione<br />

–Anidrasi carbonica<br />

–Pompa H+/ATPasi<br />

•Proteolisi<br />

–Cateps<strong>in</strong>a


Dopo 24 ore <strong>di</strong> coltura si recupera<br />

la frazione cellulare non aderente<br />

e si coltiva con<br />

MCSF e RANKL


TRAP+ Osteoclasts <strong>in</strong> culture


Osteoclasta<br />

coltivato su<br />

fett<strong>in</strong>a <strong>di</strong> osso<br />

Lacuna <strong>di</strong> riassorbimento<br />

scavata dalla cellula


Bone Marrow<br />

Stromal Cells<br />

AP1<br />

Runx2<br />

Fra-1<br />

JunD<br />

Wnt<br />

Pre-Osteoblasts<br />

ALP+<br />

Coll I+<br />

Early phase of osteoblastogenesis<br />

Osteoblastogenesis<br />

Late phase of osteoblastogenesis<br />

Wnt<br />

Runx2<br />

Osterix<br />

Fra-2<br />

JunD<br />

AP1<br />

Osteoblasts<br />

ALP++<br />

Coll I++<br />

Osteocalc<strong>in</strong><br />

BSP


DKK-1<br />

kremen<br />

LRP5/6<br />

APC<br />

Ax<strong>in</strong><br />

Citoplasma<br />

Sclerost<strong>in</strong><br />

LRP5/6<br />

GSK-3<br />

Nucleo<br />

WNT WIF-1<br />

Frizzled<br />

P<br />

β-Caten<strong>in</strong><br />

TCF/LEF<br />

RUNX2, AP-1<br />

Inhibition Activation of of canonical Wnt signal<strong>in</strong>g<br />

WNT sFRP<br />

Ax<strong>in</strong><br />

WNT<br />

LRP5/6<br />

Frat-1<br />

Dsh<br />

GSK-3<br />

Frizzled<br />

β-Caten<strong>in</strong><br />

β-Caten<strong>in</strong><br />

β-Caten<strong>in</strong><br />

β-Caten<strong>in</strong>


Cellule stromali<br />

del midollo osseo<br />

(BMSCs)<br />

AP1<br />

Runx2<br />

Fra-1<br />

JunD<br />

Wnt<br />

Pre-osteoblasti<br />

ALP+<br />

Coll I+<br />

Wnt<br />

Osterix<br />

Fra-2<br />

JunD<br />

OSTEOBLASTOGENESI<br />

AP1<br />

OSTEOBLASTI OSTEOCITI<br />

ALP++<br />

Coll I++<br />

Osteocalc<strong>in</strong><br />

BSP II


OSTEOBLASTI E ADIPOCITI HANNO UN PROGENITORE COMUNE<br />

BMSC<br />

C/EBPα<br />

Wnt<br />

Cbfa1/Runx2<br />

PPARγ<br />

Wnt<br />

Cbfa1/Runx2<br />

PPARγ<br />

OSTEOBLAST<br />

FORMATION<br />

ADIPOCYTE<br />

FORMATION


CELLULE MESENCHIMALI<br />

STAMINALI<br />

Sono conosciute anche come:<br />

•colony form<strong>in</strong>g fibroblastic cells<br />

•stromal fibroblasts<br />

•marrow stromal stem cells<br />

•mesenchymal progenitor cells<br />

Costituiscono una popolazione residente nel midollo osseo<br />

capace <strong>di</strong> <strong>di</strong>fferenziare <strong>in</strong> <strong>cellule</strong> del tessuto a<strong>di</strong>poso,<br />

del tessuto cartilag<strong>in</strong>eo, del tessuto osseo e nello<br />

stroma che supporta l’ematopoiesi.


ISOLAMENTO DELLE MSC DA<br />

MIDOLLO OSSEO UMANO<br />

1. Centrifugazione su gra<strong>di</strong>ente <strong>di</strong> Ficoll<br />

2. Coltura su piastre alla densità <strong>di</strong> 10000 cell/cm 2<br />

3. Rimozione <strong>cellule</strong> non aderenti


2. Coltura su piastre <strong>di</strong> polistirene non rivestite alla<br />

densità <strong>di</strong> 10000 cell/cm 2<br />

Dopo 24-48 ore<br />

3. Rimozione <strong>cellule</strong> non aderenti<br />

Dopo 10-14 giorni<br />

Cellule subconfluenti<br />

Le <strong>cellule</strong> possono duplicarsi ed essere<br />

espanse per circa 20 passaggi mantenendo<br />

le caratteristiche <strong>di</strong> multipotenza senza<br />

ridurre il tasso <strong>di</strong> crescita. Le <strong>cellule</strong> così<br />

ottenute non hanno proprietà <strong>di</strong> <strong>cellule</strong><br />

immortalizzate e hanno un tempo <strong>di</strong><br />

crescita def<strong>in</strong>ita.


Differenziamento osteogenico<br />

Il <strong><strong>di</strong>fferenziamento</strong> delle MSCs <strong>in</strong> osteoblasti non è sorprendente; il<br />

midollo osseo è contenuto all’<strong>in</strong>terno del canale <strong>di</strong>afisario delle ossa lunghe<br />

dove la struttura dell’osso è estremamente simile a quella dell’osso<br />

spugnoso che si rimodella cont<strong>in</strong>uamente, perciò non sorprende che<br />

campioni <strong>di</strong> midollo prelevati dall’osso possano contenere precursori <strong>di</strong><br />

osteoblasti.<br />

Acido ascorbico<br />

Desametasone<br />

Β Glicerofosfato<br />

MSCs Osteoblasti


Differenziamento osteogenico<br />

Acido ascorbico (vitam<strong>in</strong>a C): funziona come cofattore<br />

nella idrossilazione dei residui <strong>di</strong> prol<strong>in</strong>a e lis<strong>in</strong>a nelle<br />

molecole <strong>di</strong> collageno, promuovendo la formazione della<br />

matrice extracellulare, la maturazione e la deposizione <strong>di</strong><br />

collagene; <strong>in</strong>duce l’attività della fosfatasi alcal<strong>in</strong>a della<br />

membrana plasmatica degli osteoprogenitori.<br />

Β glicerofosfato: I fosfati organici promuovono la<br />

m<strong>in</strong>eralizzazione dal momento che il fosfato viene<br />

<strong>in</strong>corporato nei cristalli <strong>di</strong> idrossiapatite della matrice.<br />

Desametasone: promuove il <strong><strong>di</strong>fferenziamento</strong>, agisce sui<br />

promotori responsivi dei fattori <strong>di</strong> trascrizione necessari<br />

per il committment delle MSCs nel l<strong>in</strong>eage osteogenico;<br />

promuove la calcificazione <strong>in</strong> <strong>vitro</strong>.


Conoscere i processi<br />

<strong>di</strong>fferenziativi è importante per<br />

• Stu<strong>di</strong>are i meccanismi responsabili<br />

dell’alterazione del rimodellamento<br />

osseo <strong>in</strong> con<strong>di</strong>zioni patologiche<br />

•Sviluppare nuovi farmaci


Bone Is Removed by Osteoclast Activity<br />

Skeletal Integrity <strong>in</strong> Oncology<br />

Bone Remodel<strong>in</strong>g is Altered <strong>in</strong><br />

cl<strong>in</strong>icaloptions.com/oncology<br />

and Replaced by Osteoblast Activity<br />

Bone<br />

Resorption<br />

RANK/RANKL/OPG<br />

pathological con<strong>di</strong>tions<br />

Normal Bone Remodel<strong>in</strong>g<br />

Courtesy of Dr. G R Mundy, Vanderbilt University.<br />

Bone<br />

Wnt<br />

Formation<br />

signal<strong>in</strong>g


Incidence of Bone Metastases <strong>in</strong> Cancers<br />

• Myeloma 95-100<br />

• Breast 65-75<br />

• Prostate 65-75<br />

• Thyroid 60<br />

• Bladder 40<br />

• Lung 30-40<br />

• Renal 20-25<br />

• Melanoma 14-45<br />

Incidence of<br />

Bone Metastases (%)


OSTEOLISI MASSIVA


Bone Is Removed by Osteoclast Activity<br />

Skeletal Integrity <strong>in</strong> Oncology<br />

cl<strong>in</strong>icaloptions.com/oncology<br />

Bone Remodel<strong>in</strong>g is Uncoupled <strong>in</strong> MM<br />

and Replaced by Osteoblast Activity<br />

RANKL/OPG<br />

Normal Bone Remodel<strong>in</strong>g<br />

Courtesy of Dr. G R Mundy, Vanderbilt University.<br />

Wnt signal<strong>in</strong>g


Cellular mechanisms of myeloma bone <strong>di</strong>sease<br />

The orig<strong>in</strong>al relationship between<br />

myeloma cells and osteoclasts<br />

Current understand<strong>in</strong>g of mechanisms of<br />

myeloma bone <strong>di</strong>sease


Pathogenesis of Multiple Myeloma Bone Disease<br />

Alteration of<br />

RANK/RANKL/OPG<br />

Inhibition of<br />

Wnt signal<strong>in</strong>g


SCOPO DEL LAVORO<br />

Stu<strong>di</strong>are, nel MM, ulteriori meccanismi responsabili:<br />

1<br />

Dell’<strong>in</strong>crementata formazione<br />

e sopravvivenza degli<br />

osteoclasti<br />

OSTEOLISI<br />

2<br />

Della ridotta formazione e<br />

attivazione degli osteoblasti


Formazione <strong>di</strong> OCs da PBMCs <strong>di</strong> soggetti affetti da<br />

Mieloma Multiplo<br />

30 days<br />

T cells support osteoclastogenesis <strong>in</strong><br />

an <strong>in</strong> <strong>vitro</strong> model derived from human<br />

multiple myeloma bone <strong>di</strong>sease through<br />

RANKL production<br />

Colucci S et al. Blood 2004<br />

60 days


-<br />

+<br />

Formazione <strong>di</strong> OCs da PBMCs <strong>di</strong> soggetti affetti da<br />

Mieloma Multiplo<br />

MCSF<br />

RANKL<br />

MCSF<br />

RANKL<br />

Colucci S et al. Blood 2004


-<br />

+<br />

T cells depleted MM PBMC cultures<br />

MCSF<br />

MCSF<br />

RANKL RANKL<br />

RANKL<br />

MCSF<br />

MCSF<br />

RANKL RANKL<br />

RANKL<br />

T cells support osteoclastogenesis


Alterazione dell’asse RANKL/OPG nel Mieloma Multiplo<br />

L<strong>in</strong>fociti T<br />

<strong>di</strong> MM<br />

TRAIL<br />

Apoptosi<br />

Colucci S et al. Blood 2004<br />

OPG<br />

RANKL<br />

Inibizione OCs<br />

RANK RANK<br />

RANK<br />

Plasma<strong>cellule</strong><br />

Mielomatose<br />

Osteolisi<br />

Precursori<br />

osteoclastici


Alterazione dell’asse RANKL/OPG e TNFα nel Mieloma Multiplo<br />

apoptosis<br />

Fas-L<br />

T cells<br />

Colucci S et al Leukemia 2009<br />

DcR3 Plasmacells<br />

TNF-α<br />

RANKL<br />

TNF-α<br />

CD14+<br />

preosteoclasts<br />

Multiple Myeloma osteolysis


RANK/RANKL/OPG<br />

NEL RIMODELLAMENTO OSSEO<br />

IN CONDIZIONI FISIOLOGICHE E<br />

PATOLOGICHE: NUOVE PROSPETTIVE<br />

TERAPEUTICHE


Il RANKL è implicato nella<br />

per<strong>di</strong>ta <strong>di</strong> massa ossea <strong>in</strong> un’ampia<br />

Per<strong>di</strong>ta ossea patologica<br />

Osteoporosi<br />

postmenopausale<br />

Osteoporosi<br />

maschile<br />

gamma <strong>di</strong> patologie<br />

Artrite<br />

reumatoide<br />

Per<strong>di</strong>ta ossea<br />

da trattamento<br />

farmacologico<br />

Glucocorticoide<br />

Osteoporosi<br />

<strong>in</strong>dotta da<br />

glucocorticoi<strong>di</strong><br />

Inibitori<br />

aromatasi<br />

Terapia <strong>di</strong><br />

deprivazione<br />

androgenica<br />

Per<strong>di</strong>ta ossea<br />

collegata alla<br />

terapia<br />

Distruzione<br />

ossea<br />

<strong>in</strong>dotta da<br />

tumore<br />

Metastasi ossea/<br />

Mieloma multiplo


Unopposed RANK Ligand Activity<br />

Causes Long Bone Fragility Fractures<br />

OPG knockout<br />

mouse model<br />

Ra<strong>di</strong>ograph of 1-month-old OPG knockout<br />

mouse with spontaneous fragility fractures<br />

Bucay N, et al. Genes Dev 1998;12:1260-1268. Repr<strong>in</strong>ted with permission.<br />

X


Role of OPG <strong>in</strong> the Regulation of<br />

Bone M<strong>in</strong>eral Density<br />

X<br />

Normal OPG absent OPG excess<br />

No BMD Change<br />

Decreased BMD<br />

Increased BMD<br />

Bolon B, et al. Arthritis Rheum. 2002; 46: 3121-3135. Repr<strong>in</strong>ted with permission of Wiley-Liss, Inc., a<br />

subsi<strong>di</strong>ary of John Wiley & Sons, Inc.


Inhibition of RANK Ligand – a Potential Future<br />

CFU-GM<br />

Mimic the activity<br />

and b<strong>in</strong>d<strong>in</strong>g<br />

specificity of OPG<br />

for RANK-L<br />

Therapeutic Option<br />

Pre-fusion<br />

Osteoclast<br />

Bone Formation<br />

Osteoblasts<br />

Osteoclast<br />

Formation<br />

Inhibited<br />

RANKL<br />

RANK<br />

OPG<br />

Bone Resorption<br />

Inhibited<br />

denosumab<br />

Osteoclast<br />

Function and Survival<br />

Inhibited<br />

CFU-GM = colony form<strong>in</strong>g unit granulocyte-macrophage; M-CSF = macrophage colony stimulat<strong>in</strong>g factor.<br />

Boyle WJ, et al. Nature 2003;423:337-342.


Denosumab Is the First Fully Human<br />

Monoclonal Antibody Target<strong>in</strong>g RANK Ligand<br />

1997<br />

<strong>in</strong> Cl<strong>in</strong>ical Development<br />

Present<br />

Fc-OPG OPG-Fc RANK-Fc Denosumab<br />

OPG = osteoproteger<strong>in</strong>.<br />

Simonet WS, et al. Cell. 1997;89:309-319.<br />

Data on file, Amgen.<br />

Fusion prote<strong>in</strong>s<br />

Fc OPG<br />

RANK<br />

Fully human<br />

monoclonal<br />

antibody


Denosumab Is a Fully Human<br />

Mur<strong>in</strong>e<br />

100%<br />

mouse prote<strong>in</strong><br />

Example:<br />

Orthoclone OKT ® 3<br />

(muromonab-CD3)<br />

Monoclonal Antibody<br />

Chimeric<br />

34%<br />

mouse prote<strong>in</strong><br />

Example:<br />

ReoPro ®<br />

(abciximab)<br />

Humanized<br />

5%–10%<br />

mouse prote<strong>in</strong><br />

Example:<br />

Hercept<strong>in</strong> ®<br />

(trastuzumab)<br />

Orthoclone OKT ® 3 is a registered trademark of Johnson & Johnson; ReoPro ® is a registered trademark of<br />

Eli Lilly and Company; Hercept<strong>in</strong> ® is a registered trademark of Genentech, Inc.<br />

Bekker PJ, et al. J Bone M<strong>in</strong>er Res. 2004;19:1059-1066; Lonberg N. Nat Biotechnol. 2005;23:1117-1125;<br />

Ternant D, et al. Expert Op<strong>in</strong> Biol Ther. 2005;5(suppl 1):S37-S47; We<strong>in</strong>er LM. J Immunother . 2006;29:1-9;<br />

Yang XD, et al. Crit Rev Oncol Hematol. 2001;38:17-23.<br />

Denosumab<br />

Fully Human<br />

100%<br />

human prote<strong>in</strong>


Pharmacologic Properties of<br />

• Fully human monoclonal<br />

antibody - IgG 2 isotype<br />

• High aff<strong>in</strong>ity for human<br />

RANK ligand<br />

Denosumab<br />

• High specificity for RANK ligand<br />

– No detectable b<strong>in</strong>d<strong>in</strong>g to TNF-α,<br />

TNF-β, TRAIL, or CD40L<br />

• No neutraliz<strong>in</strong>g antibo<strong>di</strong>es<br />

detected <strong>in</strong> cl<strong>in</strong>ical trials to date<br />

Ig = immunoglobul<strong>in</strong>; TNF = tumor necrosis factor;<br />

TRAIL = TNF-α–related apoptosis-<strong>in</strong>duc<strong>in</strong>g ligand.<br />

Bekker PJ, et al. J Bone M<strong>in</strong>er Res. 2004;19:1059-1066.<br />

Elliott R, et al. Osteoporos Int. 2007;18:S54. Abstract P149.<br />

McClung MR, et al. N Engl J Med. 2006;354:821-831.<br />

Data on file, Amgen.<br />

Model of Denosumab<br />

This molecule is <strong>in</strong>vestigational and is not<br />

approved by the FDA and EMEA


Hofbauer LC et al. Bone 1999<br />

Sherman ML et al. J Cl<strong>in</strong> Invest 1990<br />

Cenci S et al J Cl<strong>in</strong> Invest 2000<br />

Lam J et al. J Cl<strong>in</strong> Invest 2000<br />

Zhang YH et al J Bol Chem 2001<br />

Fuller K et al Endocr<strong>in</strong>ology 2002<br />

D Aeschlimann and BAJ Evans.<br />

The vital osteoclast: how is it regulated?<br />

Cell Death and Differentiation 2004<br />

RANKL<br />

Stromali <strong>cellule</strong> T<br />

MCSF<br />

(p55/60)<br />

attivate<br />

Pre OC<br />

TNFα<br />

Formazione <strong>di</strong><br />

OCs attivi<br />

RANK


Pathogenesis of Multiple Myeloma Bone Disease<br />

Alteration of<br />

RANK/RANKL/OPG<br />

Inhibition of<br />

Wnt signal<strong>in</strong>g


DKK<br />

LRP5/6<br />

Sclerost<strong>in</strong>a<br />

LRP5/6<br />

WNT WIF-1 WNT sFRP<br />

osteoblast<br />

<strong>di</strong>fferentiation<br />

WNT<br />

LRP5/6<br />

Frizzled


Osteoblast suppression <strong>in</strong> MM bone <strong>di</strong>sease<br />

has been related to the <strong>in</strong>hibition<br />

of the canonical Wnt signal<strong>in</strong>g<br />

Tian E. et al. The role of the Wnt-signal<strong>in</strong>g antagonist DKK1 <strong>in</strong> the<br />

development of osteolytic lesions <strong>in</strong> multiple myeloma. N Engl J Med<br />

349(26):2483-94; 2003.<br />

DKK1<br />

Oshima T et al. Myeloma cells suppress bone formation by secret<strong>in</strong>g a<br />

soluble Wnt <strong>in</strong>hibitor, sFRP-2. Blood 106(9):3160-5; 2005.<br />

sFRP2<br />

Giuliani N. et al. Production of Wnt <strong>in</strong>hibitors by myeloma cells: potential<br />

effects on canonical Wnt pathway <strong>in</strong> the bone microenvironment. Cancer<br />

Res. 67(16):7665-74; 2007.<br />

DKK1, sFRP3


What is known about sclerost<strong>in</strong><br />

<strong>in</strong>volvement <strong>in</strong> MM bone <strong>di</strong>sease?<br />

Terpos E et al., High Serum Sclerost<strong>in</strong> Correlates with Advanced Stage,<br />

Increased Bone Resorption, Reduced Osteoblast Function, and Poor Survival<br />

<strong>in</strong> Newly-Diagnosed Patients with Multiple Myeloma. (ASH Annual Meet<strong>in</strong>g<br />

Abstracts) Blood 2009; 114: (Abstract 425).<br />

Terpos E et al., Circulat<strong>in</strong>g levels of the Wnt <strong>in</strong>hibitors Dickkopf-1 and<br />

sclerost<strong>in</strong> <strong>in</strong> <strong>di</strong>fferent phases of multiple myeloma: alterations post-therapy<br />

with lenalidomide and dexamethasone with or without bortezomib. (ASH<br />

Annual Meet<strong>in</strong>g Abstracts) Blood 2010; 116: (Abstract 2963).


•Sclerost<strong>in</strong>, encoded by SOST gene, is the most important<br />

negative regulator of bone formation and its production is<br />

restricted to bone tissue<br />

•Mutations <strong>in</strong> the SOST gene cause scleros<strong>in</strong>g bone<br />

dysplasia, such as Sclerosteosis and Van Buchen <strong>di</strong>sease<br />

van Bezooijen et al Cytok<strong>in</strong>e & Growth factor Rev 2005


Sclerost<strong>in</strong> represents a negative regulator<br />

of osteoblast <strong>di</strong>fferentiation<br />

Proliferation<br />

(osteoblast<br />

Progenitors) Matrix formation<br />

(early osteoblasts)<br />

Benzooijen et al Cytok<strong>in</strong>e & Growth factor Rev 2005<br />

Matrix maturation<br />

& m<strong>in</strong>eralization<br />

(mature osteoblasts)<br />

Sclerost<strong>in</strong><br />

L<strong>in</strong><strong>in</strong>g cells<br />

Apoptosis<br />

Osteocytes<br />

Sclerost<strong>in</strong> alteration could be <strong>in</strong>volved <strong>in</strong> bone <strong>di</strong>seases <strong>in</strong>clud<strong>in</strong>g MM


Aim of the work<br />

Investigate the expression of<br />

Sclerost<strong>in</strong> by myeloma cells<br />

Study the Sclerost<strong>in</strong> <strong>in</strong>volvement <strong>in</strong><br />

osteoblast <strong>di</strong>fferentiation <strong>in</strong> a co-colture<br />

system between Bone Marrow Stromal<br />

Cells and myeloma cells


Sclerost<strong>in</strong><br />

Sclerost<strong>in</strong> expression by CD138+ cells from MM patients<br />

and HMCLs<br />

Total ERK<br />

OD RATIO<br />

Sclerost<strong>in</strong>/Total ERK<br />

CD138+<br />

1,6<br />

1,2<br />

0,8<br />

0,4<br />

0<br />

MGUS<br />

MM10<br />

no osteolysis osteolysis<br />

MM11<br />

MM12<br />

MM17<br />

MM19<br />

MM7<br />

MM8<br />

MM4<br />

MM9<br />

MM20<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

U266<br />

H929<br />

Karpas 909<br />

RPMI-8226


…Co-coltures between<br />

bone marrow stromal cells (BMSCs)<br />

and H929/CD138+ cells<br />

anti-Sclerost<strong>in</strong><br />

mAb<br />

H929/CD138+<br />

BMSCs


Formation of CFU-F and CFU-OB<br />

<strong>in</strong> BMSCs co-coltured with H929 or CD138+ cells from the patients<br />

H929<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

CD138+ cells<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

H929<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

CD138+ cells<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

CFU-F CFU-F<br />

- + + + - + + +<br />

- - 50 500 16<br />

12<br />

- - 50 500<br />

CFU-F/well<br />

(Mean ± SE)<br />

0<br />

- + + + - + + +<br />

- - 50 500 16 - - 50 500<br />

CFU-F/well<br />

(Mean ± SE)<br />

8<br />

4<br />

12<br />

CFU-OB CFU-OB<br />

- + + + - + + +<br />

- - 50 500 20 - - 50 500<br />

CFU-OB/well<br />

(Mean ± SE)<br />

- + + + - + + +<br />

- - 50 500 20 - - 50 500<br />

CFU-OB/well<br />

(Mean ± SE)<br />

15<br />

10<br />

5<br />

0<br />

15<br />

10<br />

5<br />

0<br />

8<br />

4<br />

0<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*<br />

*


H929<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

Effect of myeloma cells on<br />

bone matrix prote<strong>in</strong> expression by BMSCs<br />

BSP II<br />

β-Act<strong>in</strong>a<br />

H929<br />

anti-Sclerost<strong>in</strong> (ng/ml)<br />

Coll I<br />

β-Act<strong>in</strong>a<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

Osteocalc<strong>in</strong> mRNA relative<br />

fold change (Mean ± SE)<br />

1,2<br />

0,8<br />

0,4<br />

0<br />

H929<br />

anti-Sclerost<strong>in</strong>a<br />

(ng/ml)<br />

- + + +<br />

- - 50 500<br />

BMSCs<br />

*<br />

*


Effect of myeloma cells on transcription factor<br />

expression by BMSCs<br />

H929<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

Fra-2<br />

Lam<strong>in</strong> B1<br />

H929<br />

anti-Sclerost<strong>in</strong> (ng/ml)<br />

Fra-1<br />

Lam<strong>in</strong> B1<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

H929<br />

anti-Sclerost<strong>in</strong><br />

(ng/ml)<br />

JunD<br />

Lam<strong>in</strong> B1<br />

BMSCs<br />

- + + +<br />

- - 50 500


WNT signal<strong>in</strong>g regulates RANKL/OPG axes<br />

Wnt3a over-expression<br />

up-regulated OPG<br />

Osteoclasts<br />

Osteoblasts<br />

Wnt <strong>in</strong>hibitors<br />

down-regulated OPG expression<br />

Osteoclasts<br />

Osteoblasts


Effect of human myeloma cells on RANKL and OPG<br />

expression by BMSCs<br />

H929<br />

anti-Sclerost<strong>in</strong>a (ng/ml)<br />

RANKL<br />

β-Act<strong>in</strong><br />

H929<br />

anti-Sclerost<strong>in</strong> (ng/ml)<br />

OPG<br />

β-Act<strong>in</strong><br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

OD RATIO<br />

RANKL/ β-act<strong>in</strong><br />

OD RATIO<br />

OPG/ β-act<strong>in</strong><br />

0,6<br />

0,4<br />

0,2<br />

0<br />

1,8<br />

1,5<br />

1,2<br />

0,9<br />

0,6<br />

0,3<br />

0<br />

BMSCs<br />

- + + +<br />

- - 50 500<br />

BMSCs<br />

*<br />

*<br />

- + + +<br />

- - 50 500<br />

*<br />

*


Sclerost<strong>in</strong><br />

Myeloma cells through sclerost<strong>in</strong><br />

secretion contribute to<br />

MM Cells<br />

1) Inhibit OB formation<br />

and activity <strong>di</strong>rectly<br />

OBs<br />

Sclerost<strong>in</strong><br />

OPG<br />

OBs<br />

MM Cells<br />

RANKL<br />

2) Induce OC formation<br />

and resorption <strong>in</strong><strong>di</strong>rectly<br />

Sclerost<strong>in</strong> can be an attractive can<strong>di</strong>date for develop<strong>in</strong>g novel<br />

targeted therapies for this <strong>di</strong>sease


Stabilizzazione della frattura con placca<br />

e viti ed esposizione del focolaio<br />

psudoartrosico<br />

estrazione delle<br />

prelievo <strong>cellule</strong> dalla stam<strong>in</strong>ali: cresta iliaca<br />

<strong>di</strong> metodo aspirato con midollare filtri<br />

scaffold <strong>di</strong> tessuto<br />

osseo<br />

dem<strong>in</strong>eralizzato, (solo<br />

collagene o<br />

substrati s<strong>in</strong>tetici <strong>di</strong><br />

idrossiapatite<br />

o calcio fosfato)<br />

RX postoperatoria con placca e<br />

riempimento del <strong>di</strong>fetto osseo con<br />

lo scaffold arriccito <strong>di</strong> <strong>cellule</strong><br />

stam<strong>in</strong>ali


Riassorbimento dell’osso alveolare<br />

Cellule Stam<strong>in</strong>ali<br />

presenti nella Polpa Dentale


scaffold a base <strong>di</strong> collagene arricchito <strong>di</strong><br />

<strong>cellule</strong> stam<strong>in</strong>ali, prelevate dalla polpa<br />

dentale (<strong>di</strong> terzi molari estratti).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!