24.02.2013 Views

Read Back Signals in Magnetic Recording - Research Group Fidler

Read Back Signals in Magnetic Recording - Research Group Fidler

Read Back Signals in Magnetic Recording - Research Group Fidler

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Appendix B<br />

Moreover the second <strong>in</strong>tegral can be transformed <strong>in</strong>to a surface <strong>in</strong>tegral by apply<strong>in</strong>g the<br />

theorem, proved <strong>in</strong> Appendix A<br />

1 r± nε−r′ 1 1<br />

Hr ( ± nε ) = × dV ′ + ( ′′ ) ×<br />

d ′<br />

4π ∫ j j r<br />

4π<br />

� ∫<br />

A . (B.7)<br />

r n r r± nε−r′ 3<br />

±<br />

1/2 1/2<br />

V / Kη ( r) ± ε− ′<br />

∂Kη<br />

( r)<br />

Now we are able to calculate the difference <strong>in</strong> (B.2). Due to the difference and ε→ 0 the first<br />

<strong>in</strong>tegral and the rotund surface of the half sphere do not contribute ( η � ε ), which leads to<br />

1 dA′ 1 dA′<br />

Hr ( + nε) −Hr ( −nε ) = jr ( ′′ ) × − ( ′′ ) ×<br />

π ∫ jr<br />

+ ε− ′ π∫ . (B.8)<br />

r n r r−nε−r ′<br />

+ −<br />

4 4<br />

Cη( r) Cη(<br />

r)<br />

Here Cη( r ) denotes a circle with radius η and radius r. Derivation <strong>in</strong> direction n gives<br />

∂ 1 εdA′<br />

∂n4π C r+ nε−r′ ( Hr ( + nε) −Hr ( −nε ) ) =− ( jr ( ′′ + ) + jr ( ′′ −)<br />

) ×<br />

3<br />

∫<br />

η ( r)<br />

. (B.9)<br />

The substitution ρ= r−r ′ and the simultaneous consideration that n is perpendicular to<br />

( − ′ )<br />

r r lead to<br />

∂ 1 ε<br />

( Hr ( + nε) −Hr ( −nε ) ) =− ( jr ( ′′ + ) + jr ( ′′ −)<br />

) × n<br />

ρdρdϕ. (B.10)<br />

3/2<br />

∂n4π ρ +ε<br />

Calculat<strong>in</strong>g the <strong>in</strong>tegral yields<br />

2π<br />

η<br />

∫∫ 2 2<br />

0 0(<br />

)<br />

∂ out <strong>in</strong> jr ( ′′ + ) + jr ( ′′ ) ⎛<br />

− ε ⎞<br />

( H () r − H () r ) = n×<br />

⎜1− ⎟.<br />

(B.11)<br />

∂n 2 ⎜ 2 2<br />

η +ε ⎟<br />

⎝ ⎠<br />

Now the limit can be calculated <strong>in</strong> (B.2)<br />

∂<br />

∂n<br />

out <strong>in</strong> j( r′′ + ) + j( r′′<br />

−)<br />

H r − H r = n×<br />

. (B.12)<br />

2<br />

( () () )<br />

And f<strong>in</strong>ally, for η→ 0 we get the result<br />

∂<br />

∂n out <strong>in</strong><br />

( )<br />

H () r − H () r = n× j() r . (B.13)<br />

In case of an <strong>in</strong>terface between two volumes V 1 and 2<br />

<strong>in</strong>terface j 1 and j 2 respectively, we have a jump for the normal derivation of H<br />

V with different current densities at the<br />

81

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!