24.02.2013 Views

Read Back Signals in Magnetic Recording - Research Group Fidler

Read Back Signals in Magnetic Recording - Research Group Fidler

Read Back Signals in Magnetic Recording - Research Group Fidler

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

List of Figures<br />

List of Figures<br />

Figure 1.1: The orig<strong>in</strong>al draw<strong>in</strong>g of Oberl<strong>in</strong> Smith (1888) and Valdemar Poulson’s<br />

telegraphone [2].................................................................................................................7<br />

Figure 1.2: The first computer disk drive RAMAC. The pneumatically driven actuator<br />

arm and some of the 50 disks are visible [4].....................................................................8<br />

Figure 1.3: The development of bit sizes and storage densities over the last years [7]. ........10<br />

Figure 2.1: a) Illustration of the damped precession of the magnetic polarization J<br />

around the effective field Heff, taken from [15]. b) Influence of the Gilbert<br />

damp<strong>in</strong>g constant on the field rise time <strong>in</strong> magnetic read heads. Head field<br />

strength as a function of time for different Gilbert damp<strong>in</strong>g constants with<strong>in</strong> the<br />

head [43]. The dashed l<strong>in</strong>e depicts the current profile. The solid l<strong>in</strong>es give the<br />

head field for α = 1, 0.5, 0.1, and 0.02. The fastest field rise time is achieved with<br />

<strong>in</strong>termediate damp<strong>in</strong>g (α = 0.5).......................................................................................20<br />

Figure 2.2: The sp<strong>in</strong>-split bands of a ferromagnet [18]..........................................................21<br />

Figure 2.3: Giant magnetoresistance <strong>in</strong> Fe/Cr multilayers [18]. ............................................22<br />

Figure 2.4: Schematic model of a sp<strong>in</strong>-valve GMR head (CIP mode) with exchangep<strong>in</strong>ned<br />

layer and longitud<strong>in</strong>al hard bias [19]...................................................................23<br />

Figure 2.5: Change <strong>in</strong> resistance of a sp<strong>in</strong> valve compared to AMR (NiFe) vs.<br />

magnetization orientation [19]. .......................................................................................23<br />

Figure 2.6: The two different modes of a sp<strong>in</strong> valve. The current is applied either<br />

longitud<strong>in</strong>al (CIP) or perpendicular (CPP) to the layer structure [7]. .............................24<br />

Figure 2.7: Potential landscape <strong>in</strong>side the FM/NM/FM active part of a sp<strong>in</strong>-valve, for<br />

the two sp<strong>in</strong> channels <strong>in</strong> the parallel state (a,b) and <strong>in</strong> the antiparallel state (c),<br />

<strong>in</strong>dicat<strong>in</strong>g the different orig<strong>in</strong>s of scatter<strong>in</strong>g [20]............................................................25<br />

Figure 2.8: A comparison of longitud<strong>in</strong>al record<strong>in</strong>g and perpendicular record<strong>in</strong>g [7]. .........27<br />

Figure 3.1: A schematic 2-dimensional model of a read head for longitud<strong>in</strong>al<br />

record<strong>in</strong>g..........................................................................................................................30<br />

Figure 3.2: The magnetic potential at the ABS under Karlquist approximation....................31<br />

Figure 3.3: The x- and the z-component of the normalized head field of a read head<br />

with 60 nm gap, and sens<strong>in</strong>g layer thickness 5 nm, 10 nm below the ABS....................33<br />

Figure 3.4: The effective signal field as function of the relative position of the read<br />

head <strong>in</strong> respect to a perfect transition (Js = 0.5 T)...........................................................35<br />

Figure 3.5: These two figures show the x-component of the magnetization (Js = 0.5 T)<br />

of the data layer after a write process with head velocity 10 m/s (left) and 20 m/s<br />

83

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!