13.07.2013 Views

Analog CMOS Integrated Circuit Design Set 2 - Courses - University ...

Analog CMOS Integrated Circuit Design Set 2 - Courses - University ...

Analog CMOS Integrated Circuit Design Set 2 - Courses - University ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EECE488: <strong>Analog</strong> <strong>CMOS</strong> <strong>Integrated</strong> <strong>Circuit</strong> <strong>Design</strong><br />

SM<br />

<strong>Set</strong> 2: Background<br />

Shahriar Mirabbasi<br />

Department of Electrical and Computer Engineering<br />

<strong>University</strong> of British Columbia<br />

shahriar@ece.ubc.ca<br />

Technical contributions of Pedram Lajevardi in revising the slides is greatly acknowledged.<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Overview<br />

1. Reading Assignments<br />

2. Structure of MOS Transistors<br />

3. Threshold Voltage<br />

4. Long-Channel Current Equations<br />

5. Regions of Operation<br />

6. Transconductance<br />

7. Second-Order Effects<br />

8. Short-Channel Effects<br />

9. MOS Layout<br />

10.Device Capacitances<br />

11.Small-signal Models<br />

12.<strong>Circuit</strong> Impedance<br />

13.Equivalent Transconductance<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 1<br />

1<br />

2


• Reading:<br />

SM<br />

Chapter 2 of the textbook<br />

Section 16.2 of the textbook<br />

Chapter 17<br />

Reading Assignments<br />

All the figures in the lecture notes are © <strong>Design</strong> of <strong>Analog</strong> <strong>CMOS</strong> <strong>Integrated</strong> <strong>Circuit</strong>s,<br />

McGraw-Hill, 2001, unless otherwise noted.<br />

• Transistor stands for …<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Transistor<br />

• Transistor are semiconductor devices that can be classified as<br />

– Bipolar Junction Transistors (BJTs)<br />

– Field Effect Transistors (FETs)<br />

• Depletion-Mode FETs or (e.g., JFETs)<br />

• Enhancement-Mode FETs (e.g., MOSFETs)<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 2<br />

3<br />

4


SM<br />

Simplistic Model<br />

• MOS transistors have three terminals: Gate, Source, and Drain<br />

• The voltage of the Gate terminal determines the type of connection<br />

between Source and Drain (Short or Open).<br />

• Thus, MOS devices behave like a switch<br />

SM<br />

V G high<br />

V G low<br />

NMOS<br />

Device is ON<br />

D is shorted to S<br />

Device is OFF<br />

D & S are disconnected<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Device is OFF<br />

D & S are disconnected<br />

Device is ON<br />

D is shorted to S<br />

Physical Structure - 1<br />

SM 3<br />

PMOS<br />

• Source and Drain terminals are identical except that Source provides<br />

charge carriers, and Drain receives them.<br />

• MOS devices have in fact 4 terminals:<br />

– Source, Drain, Gate, Substrate (bulk)<br />

© Microelectronic <strong>Circuit</strong>s, 2004 Oxford <strong>University</strong> Press<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

5<br />

6


SM<br />

Physical Structure - 2<br />

• Charge Carriers are electrons in NMOS devices, and holes in<br />

PMOS devices.<br />

• Electrons have a higher mobility than holes<br />

• So, NMOS devices are faster than PMOS devices<br />

• We rather to have a p-type substrate?!<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

L D: Due to Side Diffusion<br />

Poly-silicon used instead of Metal<br />

for fabrication reasons<br />

• Actual length of the channel (L eff) is less than the length of gate<br />

SM<br />

Physical Structure - 3<br />

• N-wells allow both NMOS and PMOS devices to reside on the<br />

same piece of die.<br />

• As mentioned, NMOS and PMOS devices have 4 terminals:<br />

Source, Drain, Gate, Substrate (bulk)<br />

• In order to have all PN junctions reverse-biased, substrate of<br />

NMOS is connected to the most negative voltage, and substrate<br />

of PMOS is connected to the most positive voltage.<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 4<br />

7<br />

8


• MOS transistor Symbols:<br />

SM<br />

Physical Structure - 4<br />

electron<br />

• In NMOS Devices: Source ⎯⎯⎯→<br />

Drain<br />

Current flows from Drain to Source<br />

• In PMOS Devices:<br />

hole<br />

Source ⎯⎯→<br />

Drain<br />

Current flows from Source to Drain<br />

• Current flow determines which terminal is Source and which one<br />

is Drain. Equivalently, source and drain can be determined based<br />

on their relative voltages.<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Threshold Voltage - 1<br />

• Consider an NMOS: as the gate voltage is increased, the surface<br />

under the gate is depleted. If the gate voltage increases more,<br />

free electrons appear under the gate and a conductive channel is<br />

formed.<br />

(a) An NMOS driven by a gate voltage, (b) formation of depletion region, (c) onset of inversion,<br />

and (d) channel formation<br />

• As mentioned before, in NMOS devices charge carriers in the<br />

channel under the gate are electrons.<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 5<br />

9<br />

10


SM<br />

Threshold Voltage - 2<br />

• Intuitively, the threshold voltage is the gate voltage that forces the<br />

interface (surface under the gate) to be completely depleted of charge (in<br />

NMOS the interface is as much n-type as the substrate is p-type)<br />

• Increasing gate voltage above this threshold (denoted by V TH or V t)<br />

induces an inversion layer (conductive channel) under the gate.<br />

SM<br />

Analytically:<br />

V TH = Φ MS + 2 ⋅ Φ F<br />

Q<br />

+<br />

C<br />

Where:<br />

= the<br />

© Microelectronic <strong>Circuit</strong>s, 2004 Oxford <strong>University</strong> Press<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Threshold Voltage - 3<br />

ΦMS = Built - in Potential = Φ gate − ΦSilicon<br />

Φ<br />

F<br />

dep<br />

dep<br />

ox<br />

difference between the work functions of<br />

the polysilicon<br />

gate and the silicon substrate<br />

= Work Function (electrostatic<br />

potential)<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

K ⋅T<br />

⎛ N<br />

⋅ ln⎜<br />

q ⎝ ni<br />

Q = Charge<br />

in the depletion region = 4 ⋅ q ⋅ε<br />

⋅ Φ ⋅ N<br />

SM 6<br />

=<br />

si<br />

F<br />

sub<br />

sub<br />

⎞<br />

⎟<br />

⎠<br />

11<br />

12


SM<br />

Threshold Voltage - 4<br />

• In practice, the “native” threshold value may not be suited for<br />

circuit design, e.g., V TH may be zero and the device may be on for<br />

any positive gate voltage.<br />

• Typically threshold voltage is adjusted by ion implantation into the<br />

channel surface (doping P-type material will increase V TH of<br />

NMOS devices).<br />

• When V DS is zero, there is no horizontal electric field present in the<br />

channel, and therefore no current between the source to the drain.<br />

• When V DS is more than zero, there is some horizontal electric field<br />

which causes a flow of electrons from source to drain.<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Long Channel Current Equations - 1<br />

• The voltage of the surface under the gate, V(x), depends on the<br />

voltages of Source and Drain.<br />

• If V DS is zero, V D= V S=V(x). The charge density Q d (unit C/m) is uniform.<br />

Q<br />

d<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

− Q − C ⋅V<br />

−<br />

= = =<br />

L L<br />

Q = −WC<br />

−<br />

ox ( VGS<br />

VTH<br />

SM 7<br />

d<br />

Qd ( x)<br />

= −WCox<br />

( VGS<br />

−V<br />

( x)<br />

−VTH<br />

)<br />

)<br />

13<br />

( C WL)<br />

⋅ ( V −V<br />

)<br />

• If V DS is not zero, the channel is tapered, and V(x) is not constant. The<br />

charge density depends on x.<br />

ox<br />

L<br />

GS<br />

TH<br />

14


SM<br />

Long Channel Current Equations - 3<br />

dQ dQ dx<br />

I Qd<br />

velocity<br />

dt dx dt<br />

⋅ = × = =<br />

• Current :<br />

Velocity in terms of V(x):<br />

dV<br />

velocity = μ ⋅ E , E = −<br />

dt<br />

− dV ( x)<br />

→ velocity = ( μ ⋅ )<br />

dx<br />

Qd in terms of V(x):<br />

Qd ( x)<br />

= −WC<br />

ox ( VGS<br />

−V<br />

( x)<br />

−VTH<br />

)<br />

• Current in terms of V(x):<br />

L<br />

∫ I dx = ∫WC<br />

μ [ V<br />

D<br />

x=<br />

0<br />

dV ( x)<br />

= WCox<br />

[ VGS<br />

−V<br />

( x)<br />

−VTH<br />

] μ<br />

dx<br />

I D<br />

n<br />

V<br />

DS<br />

V = 0<br />

• Long-channel current equation:<br />

SM<br />

ox<br />

n<br />

GS<br />

−V<br />

( x)<br />

−V<br />

W<br />

1<br />

I D = μ nC<br />

ox [( VGS<br />

−VTH<br />

) VDS<br />

− V<br />

L<br />

2<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 8<br />

TH<br />

2<br />

DS<br />

© Microelectronic <strong>Circuit</strong>s, 2004 Oxford <strong>University</strong> Press<br />

] dV<br />

Long Channel Current Equations - 4<br />

• If V DS ≤ V GS-V TH we say the device is operating in triode (or linear) region.<br />

• Current in Triode Region:<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

]<br />

I = μ ⋅ C<br />

• Terminology:<br />

W<br />

Aspect Ratio =<br />

L<br />

Overdrive Voltage = Effective<br />

D<br />

n<br />

ox<br />

W ⎡<br />

1 2 ⎤<br />

⋅ ⋅<br />

⎢(<br />

VGS<br />

−VTH<br />

) ⋅VDS<br />

− ⋅VDS<br />

L ⎣<br />

2 ⎥<br />

⎦<br />

Voltage = V<br />

GS<br />

−V<br />

TH<br />

= V<br />

eff<br />

15<br />

16


If V<br />

SM<br />

DS<br />

Long Channel Current Equations - 5<br />

• For very small V DS (deep Triode Region):<br />

I D can be approximated to be a linear function of V DS.<br />

The device resistance will be independent of V DS and will<br />

only depend on V eff.<br />

The device will behave like a variable resistor<br />

SM<br />


I<br />

D<br />

SM<br />

= I<br />

Long Channel Current Equations - 7<br />

• If V DS > V GS – V TH, the transistor is in saturation (active) region,<br />

and the channel is pinched off.<br />

L'<br />

∫ I dx =<br />

D<br />

x=<br />

0<br />

VGS<br />

−VTH<br />

∫WC<br />

μ [ V<br />

V = 0<br />

ox<br />

1 W<br />

I D = μnC<br />

ox ( VGS<br />

−V<br />

2 L'<br />

n<br />

GS<br />

TH<br />

)<br />

−V<br />

( x)<br />

−V<br />

2<br />

TH<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 10<br />

] dV<br />

• Let’s, for now, assume that L’=L. The fact that<br />

L’ is not equal to L is a second-order effect<br />

known as channel-length modulation.<br />

• Since I D only depends on V GS, MOS transistors in saturation can be<br />

used as current sources.<br />

SM<br />

Long Channel Current Equations - 8<br />

• Current Equation for NMOS:<br />

DS<br />

⎧<br />

⎪0<br />

; if VGS<br />

< VTH<br />

( Cut − off )<br />

⎪<br />

⎪<br />

⎪ W<br />

⎪μ<br />

n ⋅ Cox<br />

⋅ ⋅(<br />

VGS<br />

−VTH<br />

) ⋅V<br />

⎪ L<br />

= ⎨<br />

⎪ W<br />

⎪μ<br />

n ⋅ Cox<br />

⋅ ⋅<br />

⎪ L<br />

⎪<br />

⎪<br />

⎪1<br />

W<br />

2<br />

⋅ μ ⋅ C ⋅ ⋅ ( V −V<br />

)<br />

⎪ n ox<br />

GS TH<br />

⎩2<br />

L<br />

DS<br />

; if V<br />

1 2<br />

[ ( VGS<br />

−VTH<br />

) ⋅V<br />

DS − ⋅VDS<br />

]<br />

2<br />

; if V<br />

GS<br />

GS<br />

> V<br />

> V<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

, V<br />

; if V<br />

TH<br />

TH<br />

, V<br />

GS<br />

DS<br />

DS<br />

V<br />

> V<br />

TH<br />

GS<br />

GS<br />

, V<br />

DS<br />

−V<br />

TH<br />

−V<br />

TH<br />

< V<br />

GS<br />

−V<br />

( Saturation )<br />

19<br />

) ( Deep Triode)<br />

TH<br />

( Triode)<br />

20


I<br />

D<br />

SM<br />

Long Channel Current Equations - 9<br />

• Current Equation for PMOS:<br />

= I<br />

SM<br />

SD<br />

⎧<br />

⎪0<br />

; if VSG<br />

< VTH<br />

( Cut − off )<br />

⎪<br />

⎪<br />

⎪ W<br />

⎪μ<br />

p ⋅ Cox<br />

⋅ ⋅(<br />

VSG<br />

− VTH<br />

) ⋅V<br />

⎪ L<br />

= ⎨<br />

⎪ W<br />

⎪μ<br />

p ⋅ Cox<br />

⋅ ⋅<br />

⎪ L<br />

⎪<br />

⎪<br />

⎪1<br />

W<br />

2<br />

⎪<br />

⋅ μ p ⋅ Cox<br />

⋅ ⋅ ( VSG<br />

− VTH<br />

)<br />

⎩2<br />

L<br />

SD<br />

; if V<br />

1 2<br />

[ ( VSG<br />

− VTH<br />

) ⋅VSD<br />

− ⋅VSD<br />

]<br />

2<br />

; if V<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 11<br />

SG<br />

> V<br />

> V<br />

; if V<br />

TH<br />

, V<br />

SG<br />

, V<br />

SD<br />

V<br />

> V<br />

Regions of Operation - 1<br />

SG<br />

TH<br />

SD<br />

TH<br />

SG<br />

SG<br />

, V<br />

SD<br />

− V<br />

• Regions of Operation:<br />

Cut-off, triode (linear), and saturation (active or pinch-off)<br />

© Microelectronic <strong>Circuit</strong>s, 2004 Oxford <strong>University</strong> Press<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

− V<br />

TH<br />

TH<br />

< V<br />

SG<br />

) ( Deep Triode)<br />

− V<br />

TH<br />

( Saturation )<br />

• Once the channel is pinched off, the current through the channel is<br />

almost constant. As a result, the I-V curves have a very small slope in<br />

the pinch-off (saturation) region, indicating the large channel<br />

resistance.<br />

( Triode)<br />

21<br />

22


SM<br />

Regions of Operation - 2<br />

• The following illustrates the transition from pinch-off to triode region for<br />

NMOS and PMOS devices.<br />

• For NMOS devices:<br />

If V D increases (V G Const.), the device will go from Triode to Pinch-off.<br />

If V G increases (V D Const.), the device will go from Pinch-off to Triode.<br />

** In NMOS, as V DG increases the device will go from Triode to Pinch-off.<br />

• For PMOS devices:<br />

If V D decreases (V G Const.), the device will go from Triode to Pinch-off.<br />

If V G decreases (V D Const.), the device will go from Pinch-off to Triode.<br />

** In PMOS, as V GD increases the device will go from Pinch-off to Triode.<br />

• NMOS Regions of Operation:<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Regions of Operation - 3<br />

© Microelectronic <strong>Circuit</strong>s, 2004 Oxford <strong>University</strong> Press<br />

• Relative levels of the terminal voltages of the enhancement-type NMOS<br />

transistor for different regions of operation.<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 12<br />

23<br />

24


• PMOS Regions of Operation:<br />

SM<br />

Regions of Operation - 4<br />

© Microelectronic <strong>Circuit</strong>s, 2004 Oxford <strong>University</strong> Press<br />

• The relative levels of the terminal voltages of the enhancement-type<br />

PMOS transistor for different regions of operation.<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Regions of Operation - 5<br />

Example:<br />

For the following circuit assume that V TH=0.7V.<br />

• When is the device on?<br />

• What is the region of operation if the device is on?<br />

• Sketch the on-resistance of transistor M 1 as a function of V G.<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 13<br />

25<br />

26


SM<br />

Transconductance - 1<br />

• The drain current of the MOSFET in saturation region is ideally a<br />

function of gate-overdrive voltage (effective voltage). In reality, it is also<br />

a function of V DS.<br />

• It makes sense to define a figure of merit that indicates how well the<br />

device converts the voltage to current.<br />

• Which current are we talking about?<br />

• What voltage is in the designer’s control?<br />

• What is this figure of merit?<br />

• Transconductance in triode:<br />

SM<br />

g<br />

m<br />

∂I<br />

=<br />

∂V<br />

• Transconductance in saturation:<br />

D<br />

GS<br />

= Const.<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Transconductance - 2<br />

∂ ⎛ W<br />

g m = ⎜ μ n ⋅C<br />

ox ⋅<br />

∂VGS<br />

⎝ L<br />

W<br />

= μ n ⋅ Cox<br />

⋅ ⋅VDS<br />

L<br />

SM 14<br />

V<br />

Example:<br />

Plot the transconductance of the following circuit as a function of V DS<br />

(assume V b is a constant voltage).<br />

∂ ⎛ W<br />

g m = ⎜ ⋅ μ n ⋅ Cox<br />

⋅ ⋅ ( V<br />

∂VGS<br />

⎝ 2 L<br />

W<br />

= μ n ⋅ Cox<br />

⋅ ⋅ ( VGS<br />

−VTH<br />

)<br />

L<br />

DS<br />

1 2<br />

⋅[<br />

( VGS<br />

−VTH<br />

) ⋅VDS<br />

− ⋅VDS<br />

]<br />

1 2<br />

GS −VTH<br />

)<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

2<br />

⎞<br />

⎟<br />

⎠ V<br />

DS<br />

⎞<br />

⎟<br />

⎠ V<br />

DS<br />

= Const.<br />

= Const.<br />

• Moral: Transconductance drops if the device enters the triode region.<br />

27<br />

28


SM<br />

Transconductance - 3<br />

• Transconductance, gm, in saturation:<br />

W<br />

g m = μ n ⋅ Cox<br />

⋅ ⋅ ( VGS<br />

−VTH<br />

) = 2μ<br />

n ⋅ C<br />

L<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 15<br />

ox<br />

W<br />

⋅ ⋅ I<br />

L<br />

D<br />

2 ⋅ I D<br />

=<br />

V −V<br />

• If the aspect ratio is constant: g m depends linearly on (V GS - V TH).<br />

Also, g m depends on square root of I D.<br />

• If I D is constant: g m is inversely proportional to (V GS - V TH).<br />

Also, g m depends on square root of the aspect ratio.<br />

• If the overdrive voltage is constant: g m depends linearly on I D.<br />

Also, g m depends linearly on the aspect ratio.<br />

SM<br />

Second-Order Effects (Body Effect)<br />

Substrate Voltage:<br />

• So far, we assumed that the bulk and source of the transistor are at the<br />

same voltage (V B=V S).<br />

• If V B >V s, then the bulk-source PN junction will be forward biased, and<br />

the device will not operate properly.<br />

• If V B


SM<br />

Body Effect - 2<br />

Example:<br />

Consider the circuit below (assume the transistor is in the active region):<br />

• If body-effect is ignored, V TH will be constant, and I 1 will only depend on<br />

V GS1=V in-V out. Since I 1 is constant, V in-V out remains constant.<br />

Vin −Vout<br />

−VTH<br />

= C = Const.<br />

→ Vin<br />

−Vout<br />

= VTH<br />

+ C = D = Conts.<br />

• In general, I 1 depends on V GS1- V TH =V in-V out-V TH (and with body effect<br />

V TH is not constant). Since I 1 is constant, V in-V out-V TH remains constant:<br />

Vin − Vout<br />

−VTH<br />

= C = Const.<br />

→ Vin<br />

−Vout<br />

= VTH<br />

+ C<br />

• As Vout increases, VSB1 increases, and as a result VTH Therefore, Vin-Vout Increases.<br />

increases.<br />

SM<br />

No Body Effect With Body Effect<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Body Effect - 3<br />

Example:<br />

For the following <strong>Circuit</strong> sketch the drain current of transistor M 1 when V X<br />

varies from -∞ to 0. Assume V TH0=0.6V, γ=0.4V 1/2 , and 2Φ F=0.7V.<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 16<br />

31<br />

32


SM<br />

Channel Length Modulation - 1<br />

• When a transistor is in the saturation region (V DS > V GS – V TH),<br />

the channel is pinched off.<br />

L<br />

• The drain current is<br />

1 W<br />

2<br />

ID = μnCox<br />

( VGS<br />

−VTH<br />

) where L' = L-ΔL<br />

2 L'<br />

•<br />

1 1 1 1 1<br />

= = ⋅ ≈ ⋅ ( 1+<br />

ΔL<br />

)<br />

L'<br />

L − ΔL<br />

L 1−<br />

ΔL<br />

L L<br />

L<br />

1 1<br />

Assuming ΔL = λ ⋅V<br />

we get: ( ΔL<br />

1<br />

≈ ⋅ 1+<br />

) = ⋅ ( 1+<br />

λ ⋅V<br />

)<br />

L DS<br />

L<br />

DS<br />

L'<br />

L<br />

L<br />

1 W<br />

1 W<br />

2<br />

n ox GS TH<br />

n ox GS TH<br />

2<br />

• The drain current is I = μ C ( V −V<br />

) ≈ μ C ( V −V<br />

) ⋅ ( 1+<br />

λ ⋅V<br />

)<br />

D<br />

2 L'<br />

2 L<br />

• As ID actually depends on both VGS and VDS, MOS transistors are<br />

not ideal current sources (why?).<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Channel Length Modulation - 2<br />

• λ represents the relative variation in effective length of the channel for a given<br />

increment in V DS.<br />

• For longer channels λ is smaller, i.e., λ ∝ 1/L<br />

• Transconductance:<br />

In Triode:<br />

∂I<br />

=<br />

∂V<br />

= Const.<br />

In Saturation (ignoring channel length modulation):<br />

In saturation with channel length modulation:<br />

g<br />

m<br />

W<br />

g m = μ n ⋅C<br />

ox ⋅ ⋅V<br />

L<br />

DS<br />

D<br />

GS<br />

V<br />

W<br />

W 2 ⋅ I D<br />

g m = μ n ⋅ Cox<br />

⋅ ⋅ ( VGS<br />

−VTH<br />

) = 2μ<br />

n ⋅ Cox<br />

⋅ ⋅ I D =<br />

L<br />

L V −V<br />

DS<br />

W<br />

W<br />

2 ⋅ I D<br />

g m = μ<br />

n ⋅ Cox<br />

⋅ ⋅ ( VGS<br />

−VTH<br />

) ⋅ ( 1+<br />

λ ⋅VDS<br />

) = 2μ<br />

n ⋅C<br />

ox ⋅ ⋅ I D ⋅ ( 1+<br />

λ ⋅VDS<br />

) =<br />

L<br />

L<br />

VGS<br />

−VTH<br />

• The dependence of ID on VDS is much weaker than its dependence on VGS. EECE 488 – <strong>Set</strong> 2: Background<br />

SM 17<br />

GS<br />

TH<br />

33<br />

34<br />

DS


SM<br />

Channel Length Modulation - 3<br />

Example:<br />

Given all other parameters constant, plot ID-VDS characteristic of an NMOS<br />

for L=L1 and L=2L1 • In Triode Region:<br />

• In Saturation Region:<br />

W<br />

ID<br />

≈ μn<br />

⋅Cox<br />

⋅<br />

L<br />

∂ID<br />

W<br />

Therefore : ∝<br />

∂VDS<br />

L<br />

1<br />

⋅[<br />

( VGS<br />

−VTH<br />

) ⋅VDS<br />

− ⋅V<br />

2<br />

DS]<br />

1 W<br />

ID<br />

≈ μnCox<br />

GS TH<br />

2 L<br />

∂I<br />

1 W<br />

So we get : D = μnCox<br />

∂VDS<br />

2 L<br />

∂ID<br />

W ⋅ λ W<br />

Therefore : ∝ ∝<br />

∂V<br />

L 2<br />

DS L<br />

2<br />

( V −V<br />

) ⋅ ( 1+<br />

λ ⋅V<br />

)<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

( V −V<br />

)<br />

SM 18<br />

GS<br />

DS<br />

2<br />

TH ⋅ λ<br />

• Changing the length of the device from L 1 to 2L 1 will flatten the I D-V DS<br />

curves (slope will be divided by two in triode and by four in saturation).<br />

• Increasing L will make a transistor a better current source, while<br />

degrading its current capability.<br />

• Increasing W will improve the current capability.<br />

SM<br />

Sub-threshold Conduction<br />

• If V GS < V TH, the drain current is not zero.<br />

• The MOS transistors behave similar to BJTs.<br />

• In BJT:<br />

• In MOS: I<br />

I = I ⋅ e<br />

C<br />

D<br />

= I<br />

S<br />

0<br />

⋅ e<br />

VBE<br />

VT<br />

VGS<br />

ζ ⋅VT<br />

• As shown in the figure, in MOS transistors, the drain current drops by<br />

one decade for approximately each 80mV of drop in V GS.<br />

• In BJT devices the current drops faster (one decade for approximately<br />

each 60mv of drop in V GS).<br />

• This current is known as sub-threshold or weak-inversion conduction.<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

2<br />

35<br />

36


<strong>CMOS</strong> Processing Technology<br />

• Top and side views of a typical <strong>CMOS</strong> process<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

<strong>CMOS</strong> Processing Technology<br />

• Different layers comprising <strong>CMOS</strong> transistors<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

SM 19<br />

37<br />

38


Photolithography (Lithography)<br />

• Used to transfer circuit layout information to the wafer<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

SM<br />

Typical Fabrication Sequence<br />

SM 20<br />

39<br />

40


Self-Aligned Process<br />

• Why source and drain junctions are formed after the gate oxide<br />

and polysilicon layers are deposited?<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

• Oxide spacers and silicide<br />

Back-End Processing<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

SM 21<br />

41<br />

42


Back-End Processing<br />

• Contact and metal layers fabrication<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

Back-End Processing<br />

• Large contact areas should be avoided to minimize the<br />

possibility of spiking<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

SM 22<br />

43<br />

44


SM<br />

MOS Layout - 1<br />

• It is beneficial to have some insight into the layout of the MOS devices.<br />

• When laying out a design, there are many important parameters we<br />

need to pay attention to such as: drain and source areas,<br />

interconnects, and their connections to the silicon through contact<br />

windows.<br />

• <strong>Design</strong> rules determine the criteria that a circuit layout must meet for a<br />

given technology. Things like, minimum length of transistors, minimum<br />

area of contact windows, …<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

MOS Layout - 2<br />

Example:<br />

Figures below show a circuit with a suggested layout.<br />

• The same circuit can be laid out in different ways, producing different<br />

electrical parameters (such as different terminal capacitances).<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 23<br />

45<br />

46


SM<br />

Device Capacitances - 1<br />

• The quadratic model determines the DC behavior of a MOS transistor.<br />

• The capacitances associated with the devices are important when<br />

studying the AC behavior of a device.<br />

• There is a capacitance between any two terminals of a MOS transistor.<br />

So there are 6 Capacitances in total.<br />

• The Capacitance between Drain and Source is negligible (C DS=0).<br />

• These capacitances will depend on the region of operation (Bias<br />

values).<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Device Capacitances - 2<br />

• The following will be used to calculate the capacitances between<br />

terminals:<br />

1. Oxide Capacitance: C1 = W ⋅ L ⋅ Cox<br />

,<br />

ε ox<br />

Cox<br />

=<br />

2. Depletion Capacitance:<br />

3. Overlap Capacitance:<br />

4. Junction Capacitance:<br />

Sidewall Capacitance:<br />

C = C<br />

Bottom-plate Capacitance:<br />

2<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 24<br />

dep<br />

t<br />

ox<br />

q ⋅ε<br />

si ⋅ N<br />

= W ⋅ L ⋅<br />

4 ⋅ Φ<br />

F<br />

sub<br />

C 3 = C4<br />

= Cov<br />

= W ⋅ LD<br />

⋅ Cox<br />

+ C<br />

C jsw<br />

C j<br />

C 5<br />

= C6<br />

= C + C<br />

j<br />

jsw<br />

fringe<br />

C<br />

jun<br />

C j0<br />

=<br />

⎡ VR<br />

⎤<br />

⎢1<br />

+ ⎥<br />

⎣ Φ B ⎦<br />

m<br />

47<br />

48


SM<br />

Device Capacitances - 3<br />

In Cut-off:<br />

1. CGS: is equal to the overlap capacitance. CGS = Cov<br />

= C3<br />

2. CGD: is equal to the overlap capacitance. CGD = Cov<br />

= C4<br />

3. CGB: is equal to Cgate-channel = C1 in series with Cchannel-bulk = C2. SM<br />

4. C SB: is equal to the junction capacitance between source and<br />

bulk.<br />

5. C DB: is equal to the junction capacitance between source and<br />

bulk.<br />

CSB = C5<br />

CDB = C6<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Device Capacitances - 4<br />

In Triode:<br />

• The channel isolates the gate from the substrate. This means that if V G<br />

changes, the charge of the inversion layer are supplied by the drain<br />

and source as long as V DS is close to zero. So, C 1 is divided between<br />

gate and drain terminals, and gate and source terminals, and C 2 is<br />

divided between bulk and drain terminals, and bulk and source<br />

terminals.<br />

1. C GS:<br />

2. C GD:<br />

C<br />

CGS = Cov<br />

+<br />

1<br />

2<br />

3. CGB: the channel isolates the gate from the substrate.<br />

C2<br />

4. C C<br />

SB: SB = C5<br />

+<br />

2<br />

5. C C2<br />

DB:<br />

C DB<br />

C<br />

=<br />

C +<br />

CGD ov<br />

1<br />

2<br />

= C6<br />

+<br />

2<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 25<br />

CGB<br />

= 0<br />

49<br />

50


SM<br />

Device Capacitances - 5<br />

In Saturation:<br />

• The channel isolates the gate from the substrate. The voltage across<br />

the channel varies which can be accounted for by adding two<br />

equivalent capacitances to the source. One is between source and<br />

gate, and is equal to two thirds of C1. The other is between source and<br />

bulk, and is equal to two thirds of C2. 1. CGS: 2<br />

CGS = Cov<br />

+ C1<br />

3<br />

2. CGD: C C =<br />

SM<br />

GD<br />

3. CGB: the channel isolates the gate from the substrate.<br />

4.<br />

5.<br />

CSB: CDB: 2<br />

CSB = C5<br />

+ C2<br />

3<br />

• In summary:<br />

C GS<br />

C GD<br />

C GB<br />

C SB<br />

C DB<br />

C DB = C6<br />

ov<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Device Capacitances - 6<br />

Cut-off<br />

C ⋅C<br />

C<br />

Cov<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 26<br />

Triode<br />

C1<br />

Cov +<br />

2<br />

C<br />

Cov +<br />

2<br />

CGB<br />

= 0<br />

Saturation<br />

Cov +<br />

Cov ov C<br />

1<br />

1 2 CGB<br />

C1<br />

1 C2<br />

〈 〈<br />

+<br />

C5<br />

C6<br />

0<br />

C2<br />

C 5 +<br />

2<br />

C2<br />

C 6 +<br />

2<br />

0<br />

2<br />

C1<br />

3<br />

2<br />

C 5 + C<br />

3<br />

C6<br />

2<br />

51<br />

52


Importance of Layout<br />

Example (Folded Structure):<br />

Calculate the gate resistance of the circuits shown below.<br />

Folded structure:<br />

• Decreases the drain capacitance<br />

• Decreases the gate resistance<br />

• Keeps the aspect ratio the same<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

• Resistors<br />

Passive Devices<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

SM 27<br />

53<br />

54


• Capacitors:<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

• Capacitors<br />

Passive Devices<br />

Passive Devices<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

SM 28<br />

55<br />

56


• Inductors<br />

Passive Devices<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

Latch-Up<br />

• Due to parasitic bipolar transistors in a <strong>CMOS</strong> process<br />

SM EECE 588 – <strong>Set</strong> 1: Introduction and Background<br />

SM 29<br />

57<br />

58


SM<br />

Small Signal Models - 1<br />

• Small signal model is an approximation of the large-signal model<br />

around the operation point.<br />

• In analog circuits most MOS transistors are biased in saturation region.<br />

• In general, I D is a function of V GS, V DS, and V BS. We can use this Taylor<br />

series approximation:<br />

SM<br />

D<br />

D<br />

D<br />

Taylor Expansion : I D = I D0<br />

+ ⋅ ΔVGS<br />

+ ⋅ ΔVDS<br />

+ ⋅ ΔVBS<br />

+ second order terms<br />

∂VGS<br />

∂VDS<br />

∂VBS<br />

ΔI<br />

D<br />

∂I<br />

≈<br />

∂V<br />

D<br />

GS<br />

⋅ ΔV<br />

GS<br />

∂I<br />

+<br />

∂V<br />

D<br />

DS<br />

• Current in Saturation:<br />

• Taylor approximation:<br />

• Partial Derivatives:<br />

∂I<br />

∂V<br />

∂I<br />

∂V<br />

∂I<br />

∂V<br />

D<br />

GS<br />

D<br />

DS<br />

D<br />

BS<br />

= μ ⋅ C<br />

n<br />

∂I<br />

=<br />

∂V<br />

g<br />

D<br />

TH<br />

m<br />

ox<br />

1<br />

= ⋅ μ n ⋅ C<br />

2<br />

= −<br />

⋅ ΔV<br />

∂I<br />

DS<br />

∂I<br />

+<br />

∂V<br />

D<br />

BS<br />

⋅ ΔV<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 30<br />

∂I<br />

BS<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

∂I<br />

ΔV<br />

= g m ⋅ ΔVGS<br />

+<br />

r<br />

Small Signal Models - 2<br />

W<br />

⋅ ⋅ ( V<br />

L<br />

ox<br />

∂V<br />

⋅<br />

∂V<br />

TH<br />

BS<br />

⎡<br />

⋅ ⎢−<br />

⎢<br />

⎣<br />

2<br />

GS<br />

o<br />

DS<br />

+ g<br />

mb<br />

⋅ ΔV<br />

1 W<br />

2 1 W<br />

2<br />

nC<br />

ox ( VGS<br />

−VTH<br />

) ≈ μ nCox<br />

GS TH<br />

BS<br />

59<br />

( V −V<br />

) ⋅ ( + V )<br />

I D = μ 1 λ ⋅<br />

2 L'<br />

2 L<br />

Δ<br />

W<br />

⋅ ⋅ ( V<br />

L<br />

∂I<br />

∂I<br />

∂I<br />

D<br />

D<br />

D<br />

I D ≈ ⋅ ΔVGS<br />

+ ⋅ ΔVDS<br />

+ ⋅ Δ<br />

∂VGS<br />

∂VDS<br />

∂VBS<br />

−V<br />

F<br />

GS<br />

TH<br />

−V<br />

⎡<br />

= ⎢−<br />

μ n ⋅ C<br />

⎣<br />

γ<br />

2 ⋅ Φ<br />

+ V<br />

) ⋅<br />

SB<br />

ox<br />

( 1+<br />

λ ⋅V<br />

)<br />

2<br />

TH<br />

W<br />

⋅ ⋅ ( V<br />

L<br />

⎤<br />

⎥ = g<br />

⎥<br />

⎦<br />

m<br />

DS<br />

GS<br />

= g<br />

−V<br />

⋅η<br />

= g<br />

TH<br />

mb<br />

m<br />

1<br />

) ⋅ λ ≈ I D ⋅ λ =<br />

r<br />

) ⋅<br />

o<br />

( 1+<br />

λ ⋅V<br />

)<br />

DS<br />

V<br />

BS<br />

⎤<br />

⎡<br />

⎥ ⋅ ⎢−<br />

⎦ ⎢<br />

⎣<br />

2<br />

γ<br />

2 ⋅ Φ<br />

F<br />

+ V<br />

60<br />

SB<br />

⎤<br />

⎥<br />

⎥<br />

⎦<br />

DS


• Small-Signal Model:<br />

SM<br />

Small Signal Models - 3<br />

DS<br />

iD = g m ⋅ vGS<br />

+ + g mb ⋅<br />

ro<br />

v<br />

• Terms, g mv GS and g mbv BS, can be modeled by dependent sources.<br />

These terms have the same polarity: increasing v G, has the same<br />

effect as increasing v B.<br />

• The term, v DS/r o can be modeled using a resistor as shown below.<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Small Signal Models - 4<br />

• Complete Small-Signal Model with Capacitances:<br />

• Small signal model including all the capacitance makes the intuitive<br />

(qualitative) analysis of even a few-transistor circuit difficult!<br />

• Typically, CAD tools are used for accurate circuit analysis<br />

• For intuitive analysis we try to find a simplest model that can represent<br />

the role of each transistor with reasonable accuracy.<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 31<br />

v<br />

BS<br />

61<br />

62


SM<br />

<strong>Circuit</strong> Impedance - 1<br />

• It is often useful to determine the impedance of a circuit seen from a<br />

specific pair of terminals.<br />

• The following is the recipe to do so:<br />

1. Connect a voltage source, V X, to the port.<br />

2. Suppress all independent sources.<br />

3. Measure or calculate I X.<br />

SM<br />

V<br />

R = X<br />

I<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

<strong>Circuit</strong> Impedance - 2<br />

Example:<br />

• Find the small-signal impedance of the following current<br />

sources.<br />

• We draw the small-signal model, which is the same for both<br />

circuits, and connect a voltage source as shown below:<br />

v<br />

v<br />

X<br />

X<br />

i =<br />

+ g ⋅ v =<br />

X<br />

m GS<br />

r<br />

r<br />

o<br />

vX<br />

R = = r<br />

X<br />

o<br />

i<br />

X<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 32<br />

X<br />

X<br />

o<br />

63<br />

64


SM<br />

<strong>Circuit</strong> Impedance - 3<br />

Example:<br />

• Find the small-signal impedance of the following circuits.<br />

• We draw the small-signal model, which is the same for both<br />

circuits, and connect a voltage source as shown below:<br />

SM<br />

v<br />

v<br />

X<br />

X<br />

i = − g ⋅ v − g ⋅ v = + g ⋅ v + g ⋅ v<br />

X<br />

m GS mb BS<br />

m X mb X<br />

r<br />

r<br />

o<br />

v 1 1 1<br />

X R = =<br />

= r<br />

X<br />

o<br />

i 1<br />

g g<br />

X<br />

m mb<br />

+ g + g m mb<br />

r<br />

o<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

<strong>Circuit</strong> Impedance - 4<br />

Example:<br />

• Find the small-signal impedance of the following circuit. This<br />

circuit is known as the diode-connected load, and is used<br />

frequently in analog circuits.<br />

• We draw the small-signal model and connect the voltage<br />

source as shown below:<br />

v<br />

v<br />

⎛ 1 ⎞<br />

X<br />

X<br />

i = + g ⋅ v = + g ⋅ v = v ⋅⎜<br />

+ g ⎟<br />

X<br />

m GS<br />

m X X<br />

m<br />

r<br />

r<br />

r<br />

o<br />

o<br />

⎝ o ⎠<br />

v 1 1<br />

X R = = = r<br />

X<br />

o<br />

i 1 g<br />

X<br />

m + gm<br />

r<br />

o<br />

• If channel length modulation is ignored (r o=∞) we get:<br />

1<br />

R =<br />

r = ∞<br />

X o<br />

g<br />

m<br />

1 1<br />

=<br />

g g<br />

m<br />

m<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 33<br />

o<br />

65<br />

66


SM<br />

<strong>Circuit</strong> Impedance - 5<br />

Example:<br />

• Find the small-signal impedance of the following circuit. This<br />

circuit is a diode-connected load with body effect.<br />

v<br />

v<br />

X<br />

X<br />

i = − g ⋅ v − g ⋅ v = + g ⋅ v + g ⋅ v<br />

X<br />

m GS mb BS<br />

m X mb X<br />

r<br />

r<br />

o<br />

⎛ 1 ⎞<br />

= v ⋅⎜<br />

+ g + g ⎟<br />

X<br />

m mb<br />

⎝ ro<br />

⎠<br />

v 1<br />

1 1 1<br />

X R = =<br />

= r = r<br />

X<br />

o<br />

o<br />

i 1<br />

g g g g<br />

X<br />

m mb<br />

m mb<br />

+ g + g<br />

+<br />

m mb<br />

r<br />

o<br />

o<br />

• If channel length modulation is ignored (r o=∞) we get:<br />

1<br />

R = r = ∞<br />

X o<br />

g + g<br />

SM<br />

m<br />

mb<br />

1 1 1 1<br />

= =<br />

g + g g + g g g<br />

m<br />

mb<br />

m<br />

mb<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Equivalent Transconductance - 1<br />

• Recall that the transconductance of a transistor was a a figure of<br />

merit that indicates how well the device converts a voltage to current.<br />

∂I<br />

D g = m<br />

∂V<br />

GS<br />

V<br />

DS<br />

• It is sometimes useful to define the equivalent transconductance of a<br />

circuit as follows:<br />

∂I<br />

OUT G = m<br />

∂V<br />

V = Const.<br />

IN<br />

OUT<br />

SM 34<br />

m<br />

mb<br />

= Const.<br />

• The following is a small-signal block diagram of an arbitrary circuit<br />

with a Norton equivalent at the output port. We notice that:<br />

V OUT=Constant so v OUT=0 in the small signal model.<br />

i<br />

G<br />

= m<br />

v<br />

OUT<br />

IN<br />

v<br />

OUT<br />

= 0<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

67<br />

68


SM<br />

Equivalent Transconductance - 2<br />

Example:<br />

• Find the equivalent transconductance of an NMOS transistor<br />

in saturation from its small-signal model.<br />

SM<br />

i<br />

OUT<br />

= g ⋅ v = g ⋅ v<br />

m<br />

IN<br />

GS<br />

iOUT<br />

G = = g<br />

m<br />

m<br />

v<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Equivalent Transconductance - 3<br />

Example:<br />

• Find the equivalent transconductance of the following circuit<br />

when the NMOS transistor in saturation.<br />

v<br />

i<br />

IN<br />

OUT<br />

= v<br />

GS<br />

+ v = v + i<br />

S<br />

GS<br />

OUT<br />

⋅ R<br />

⎛<br />

R ⎞ S<br />

i ⋅⎜1<br />

+ g ⋅ R + g ⋅ R + ⎟ = g ⋅ v<br />

OUT<br />

m S mb S<br />

m IN<br />

⎝<br />

rO<br />

⎠<br />

i<br />

g<br />

OUT<br />

m<br />

G = =<br />

=<br />

m<br />

v<br />

R<br />

IN<br />

S r r O O<br />

1+<br />

g ⋅ R + g ⋅ R +<br />

+ ⋅<br />

m S mb S<br />

r<br />

O<br />

S<br />

vS<br />

= g ⋅ v + g ⋅ v − = g ⋅ (<br />

v − i ⋅ R ) + g ⋅<br />

m GS mb BS<br />

m IN OUT S<br />

mb<br />

r<br />

O<br />

SM 35<br />

m<br />

IN<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

m<br />

( − i ⋅ R )<br />

g ⋅ r<br />

O<br />

OUT<br />

OUT<br />

( g ⋅ R + g ⋅ R ) + R<br />

m S mb S<br />

S<br />

S<br />

i<br />

−<br />

⋅ RS<br />

r<br />

O<br />

69<br />

70


SM<br />

Short-Channel Effects<br />

• Threshold Reduction<br />

– Drain-induced barrier lowering (DIBL)<br />

• Mobility degradation<br />

• Velocity saturation<br />

• Hot carrier effects<br />

– Substrate current<br />

– Gate current<br />

• Output impedance variation<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Threshold Voltage Variation in Short Channel Devices<br />

• The Threshold of transistors fabricated on the same chip decreases as<br />

the channel length decreases.<br />

• Intuitively, the extent of depletion regions associated with drain and<br />

source in the channel area, reduces the immobile charge that must be<br />

imaged by the charge on the gate.<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 36<br />

71<br />

72


SM<br />

Drain-Induced Barrier Lowering (DIBL)<br />

When the channel is short, the drain<br />

voltage increases the channel surface<br />

potential, lowering the barrier to flow<br />

charge from source (think of increased<br />

electric field) and therefore, decreasing<br />

the threshold.<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Effects of Velocity Saturation<br />

• Due to drop in mobility at high electric fields<br />

• (a) Premature drain current saturation and (b) reduction in g m<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 37<br />

73<br />

74


SM<br />

Hot Carrier Effects<br />

• Short channel devices may experience high lateral drain-source<br />

electric field<br />

• Some carriers that make it to drain have high velocity (called<br />

“hot” carriers)<br />

• “Hot” carriers may “hit” silicon atoms at high speed and cause<br />

impact ionization<br />

• The resulting electron and holes are absorbed by the drain and<br />

substrate causing extra drain-substrate current<br />

• Really “hot” carriers may be injected into gate oxide and flow out<br />

of gate causing gate current!<br />

Recall the definition of λ.<br />

SM<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

Output Impedance Variation<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 38<br />

75<br />

76


SM<br />

Output Impedance Variation in Short-Channel Devices<br />

EECE 488 – <strong>Set</strong> 2: Background<br />

SM 39<br />

77

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!