15.07.2013 Views

Consistent chiral three-nucleon interactions in ... - Theory Center

Consistent chiral three-nucleon interactions in ... - Theory Center

Consistent chiral three-nucleon interactions in ... - Theory Center

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3 Mathematical basics<br />

Now we make use of the fact that the same transformation matrix comb<strong>in</strong>es the<br />

coord<strong>in</strong>ates <strong>in</strong> the follow<strong>in</strong>g way<br />

d<br />

⎛<br />

−r<br />

R<br />

1+d<br />

= ⎝<br />

1<br />

1+d −<br />

Note that R =<br />

<br />

1<br />

1+d <br />

d<br />

1+d<br />

⎞ <br />

⎠<br />

r2<br />

−r1<br />

. (3.49)<br />

<br />

d<br />

1+dr1 <br />

1 + 1+dr2 and r =<br />

<br />

1<br />

1+dr1 <br />

d − 1+dr2 still are given as <strong>in</strong><br />

eq. (3.43). This must always be fulfilled for all symmetry relations we derive <strong>in</strong> the<br />

follow<strong>in</strong>g. Furthermore, we know the follow<strong>in</strong>g relations<br />

〈(n1l1, n2l2)Λλ|r1,r2〉 = (−1) l1 (−1) l1+l2−Λ 〈(n2l2, n1l1)Λλ|r2, −r1〉 , (3.50)<br />

〈(EL, el)Λλ| R,r〉 = (−1) l (−1) l+L−Λ 〈(el, EL)Λλ| − r, R〉 . (3.51)<br />

The first phase factor with one orbital angular momentum <strong>in</strong> the exponent cor-<br />

responds to the behavior of the harmonic oscillator wave functions under parity<br />

transformation. The second one, with <strong>three</strong> orbital angular momenta <strong>in</strong> the expo-<br />

nent, is exactly the one we know from eq. (3.12) and shows up because we reversed<br />

the coupl<strong>in</strong>g order of the angular momenta. Us<strong>in</strong>g these relations we can rewrite<br />

eq. (3.48) as<br />

〈〈n1l1, n2l2; Λ|NL, nl〉〉d<br />

1 <br />

¨<br />

=<br />

2Λ + 1<br />

λ<br />

1 <br />

¨<br />

=<br />

2Λ + 1<br />

λ<br />

d 3 r1d 3 r2〈(n2l2, n1l1)Λλ|r2, −r1〉〈−r, R|(nl, NL)Λλ〉(−1) l2+L<br />

d 3 r1d 3 r2〈(n2l2, n1l1)Λλ|r2, −r1〉〈r2, −r1|(nl, NL)Λλ〉(−1) l2+L<br />

= (−1) l2+L 〈〈n2l2, n1l1; Λ|nl, NL〉〉d , (3.52)<br />

where we used the identity<br />

¨<br />

1 =<br />

d 3 r1d 3 r2|r2, −r1〉〈r2, −r1| . (3.53)<br />

To simplify the phase factor we used the fact that orbital angular momenta are<br />

<strong>in</strong>teger and so (−1) 2l ≡ 1.<br />

For the next symmetry relation we use that the transformation<br />

⎛<br />

R<br />

= ⎝<br />

−r<br />

<br />

1<br />

1+d <br />

d<br />

1+d −<br />

<br />

d<br />

1+d<br />

<br />

1<br />

1+d<br />

⎞ <br />

r2 ⎠<br />

r1<br />

(3.54)<br />

connects the coord<strong>in</strong>ates <strong>in</strong> the correct way, where we also changed d → 1 <strong>in</strong> the d<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!