15.07.2013 Views

Consistent chiral three-nucleon interactions in ... - Theory Center

Consistent chiral three-nucleon interactions in ... - Theory Center

Consistent chiral three-nucleon interactions in ... - Theory Center

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3 Mathematical basics<br />

the orig<strong>in</strong>al Jacobi coord<strong>in</strong>ates by us<strong>in</strong>g a HOB<br />

|(n12l12( ξ ′ 1 ), n3l3( ξ ′ 2 ))LML〉<br />

= <br />

<br />

ñ12˜l12 ñ3˜l3 〈〈ñ12 ˜ l12, ñ3 ˜ l3; L|n12l12, n3l3〉〉1<br />

3<br />

(3.115)<br />

×δ 2ñ12+ ˜ l12+2ñ3+ ˜ l3,2n12+l12+2n3+l3 |(ñ12 ˜ l12( ξ1), ñ3 ˜ l3( ξ2))LML〉 .<br />

The spatial matrix element of the transposition operator follows as<br />

〈(n ′ 12 l′ 12 , n′ 3 l′ 3 )L′ M ′ L |T23|(n12l12, n3l3)LML〉<br />

= δL ′ ,L δM ′ L ,ML δ2n ′ 12 +l′ 12 +2n′ 3 +l′ 3 ,2n12+l12+2n3+l3 〈〈n′ 12l ′ 12, n ′ 3l ′ 3; L|n12l12, n3l3〉〉1<br />

3<br />

(3.116)<br />

Comb<strong>in</strong><strong>in</strong>g the results <strong>in</strong> eq. (3.108), (3.109) and (3.116) leads to the total matrix<br />

element of the transposition operator<br />

〈[(n ′ 12 l′ 12 , s′ ab )j′ 12 , (n′ 3 l′ 3 , sc)j ′ 3 ]J ′ M ′ J , (t′ ab tc)T ′ M ′ T |<br />

= <br />

<br />

<br />

<br />

L ′ ,S ′ M ′ L ,M′ L,S ML,MS<br />

S<br />

⎧ ⎫⎧<br />

⎪⎨ l12 sab j12⎪⎬<br />

⎪⎨<br />

× l3 sc j3<br />

⎪⎩ ⎪⎭ ⎪⎩<br />

L S J<br />

× T23|[(n12l12, sab)j12, (n3l3, sc)j3]JMJ, (tabtc)TMT 〉<br />

ˆj ′ 12 ˆj ′ 3 ˆ L ′ ˆ S ′ˆj12 ˆj3 ˆ L ˆ Sˆs ′ ab ˆsab ˆt ′ ab ˆtab<br />

l ′ 12 s ′ ab j′ 12<br />

l ′ 3 sc j ′ 3<br />

L ′ S ′ J ′<br />

× (−1) 1+t′ ab +tab (−1) 1+s ′ ab +sab<br />

⎫<br />

⎪⎬<br />

<br />

L S<br />

<br />

J<br />

<br />

⎪⎭ ML MS<br />

MJ<br />

<br />

ta tb t ′ <br />

ab sa sb s ′ <br />

ab<br />

tc T tab<br />

× δT,T ′ δMT ,M ′ T δS,S ′ δMS,M ′ S δL ′ ,L δM ′ L ,ML<br />

sc S sab<br />

L ′ S ′<br />

M ′ L M ′ S<br />

<br />

<br />

J<br />

<br />

<br />

′<br />

<br />

× δ2n12+ ′ l ′ 12 +2n′ 3 +l′ 3 ,2n12+l12+2n3+l3 〈〈n′ 12l ′ 12, n ′ 3l ′ 3; L|n12l12, n3l3〉〉1 . (3.117)<br />

3<br />

Now we can elim<strong>in</strong>ate the summations over L ′ , M ′ L , S′ , M ′ S<br />

deltas and the orthogonality relation<br />

ML,MS<br />

36<br />

<br />

L S<br />

<br />

J<br />

<br />

<br />

′<br />

<br />

L S<br />

<br />

<br />

<br />

<br />

ML MS<br />

M ′ J<br />

ML MS<br />

J<br />

MJ<br />

<br />

= δJ ′ ,J δ M ′ J ,MJ<br />

M ′ J<br />

us<strong>in</strong>g the Kronecker<br />

(3.118)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!