15.07.2013 Views

Consistent chiral three-nucleon interactions in ... - Theory Center

Consistent chiral three-nucleon interactions in ... - Theory Center

Consistent chiral three-nucleon interactions in ... - Theory Center

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3 Mathematical basics<br />

up the (LS)-coupl<strong>in</strong>g us<strong>in</strong>g a Clebsch-Gordan coefficient. We arrive at<br />

|[(n12l12, sab)j12, (n3l3, sc)j3]JMJ, (tabtc)TMT 〉<br />

= <br />

ˆj12<br />

L,ML S,MS<br />

ˆj3 ˆ L ˆ ⎧ ⎫<br />

⎪⎨ l12 sab j12⎪⎬<br />

<br />

L S<br />

<br />

<br />

S l3 sc j3 <br />

⎪⎩ ⎪⎭ ML MS<br />

L S J<br />

J<br />

MJ<br />

× |(n12l12, n3l3)LML, (sab, sc)SMS, (tabtc)TMT 〉 .<br />

The matrix element of T23 then reads<br />

〈[(n ′ 12 l′ 12 , s′ ab )j′ 12 , (n′ 3 l′ 3 , sc)j ′ 3 ]J ′ M ′ J , (t′ ab tc)T ′ M ′ T |<br />

= <br />

<br />

<br />

<br />

L ′ ,S ′ M ′ L ,M′ L,S ML,MS<br />

S<br />

⎧ ⎫⎧<br />

⎪⎨ l12 sab j12⎪⎬<br />

⎪⎨<br />

× l3 sc j3<br />

⎪⎩ ⎪⎭ ⎪⎩<br />

L S J<br />

ˆj ′ 12 ˆj ′ 3 ˆ L ′ ˆ S ′ˆj12 ˆj3 ˆ L ˆ S<br />

l ′ 12 s ′ ab j′ 12<br />

l ′ 3 sc j ′ 3<br />

L ′ S ′ J ′<br />

<br />

(3.102)<br />

× T23|[(n12l12, sab)j12, (n3l3, sc)j3]JMJ, (tabtc)TMT 〉<br />

⎫<br />

⎪⎬<br />

<br />

L S<br />

<br />

<br />

<br />

⎪⎭ ML MS<br />

J<br />

MJ<br />

× 〈(n ′ 12 l′ 12 , n′ 3 l′ 3 )L′ M ′ L |T23|(n12l12, n3l3)LML〉<br />

<br />

L ′ S ′<br />

M ′ L M ′ S<br />

<br />

<br />

J<br />

<br />

<br />

′<br />

<br />

× 〈(s ′ ab , sc)S ′ M ′ S |T23|(sab, sc)SMS〉 〈(t ′ ab , tc)T ′ M ′ T |T23|(tab, tc)TMT 〉 . (3.103)<br />

We note that the structure of the sp<strong>in</strong> and isosp<strong>in</strong> matrix element is identical, so it<br />

is sufficient to work out one of them. We <strong>in</strong>vestigate the isosp<strong>in</strong> matrix element<br />

〈(t ′ ab , tc)T ′ M ′ T |T23|(tab, tc)TMT 〉 , (3.104)<br />

by consider<strong>in</strong>g the action of the transposition operator on the ket<br />

T23|(tab, tc)TMT 〉<br />

= <br />

<br />

mtamt b mtc<br />

= <br />

mtamt b mtc<br />

<br />

ta tb<br />

mta mtb<br />

ta tb<br />

mta mtb<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

tab<br />

mtab<br />

tab<br />

mtab<br />

<br />

<br />

tab tc<br />

mtab mtc<br />

tab tc<br />

mtab mtc<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

T<br />

MT<br />

T<br />

MT<br />

<br />

<br />

M ′ J<br />

T23|tamta, tbmtb , tcmtc〉 (3.105)<br />

|tamta, tcmtc, tbmtb 〉 . (3.106)<br />

Now particle 3 is <strong>in</strong> the state |tbmtb 〉 and couples its isosp<strong>in</strong> with particle 1 to the<br />

same quantum number tab as before. This is the same situation as if we rewrite the<br />

formula with exchanged quantum numbers tb ↔ tc<br />

T23|[(ta, tb)tab, tc]TMT 〉 = |[(ta, tc)tab, tb]TMT 〉 . (3.107)<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!