15.07.2013 Views

Consistent chiral three-nucleon interactions in ... - Theory Center

Consistent chiral three-nucleon interactions in ... - Theory Center

Consistent chiral three-nucleon interactions in ... - Theory Center

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4 Three-body Jacobi matrix element transformation <strong>in</strong>to the m-scheme<br />

4.2 Calculation of the T -coefficient<br />

In the last subsection we def<strong>in</strong>ed the T-coefficient as<br />

⎛<br />

⎞<br />

a b c Jab J J<br />

⎜<br />

⎟<br />

T⎝<br />

⎠<br />

ncm lcm n12 l12 n3 l3<br />

sab j12 j3 tab T MT<br />

= 〈ncmlcm| ⊗ 〈α| J M<br />

|{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}J M, tamtatbmtb tcmtc〉<br />

:= 〈ncmlcm| ⊗ 〈α| J M <br />

Jab<br />

J M (4.28)<br />

{|a〉 ⊗ |b〉} ⊗ |c〉 .<br />

Now we will derive the explicit formula to compute it. Hence, we will start with the<br />

state {|a〉 ⊗ |b〉} Jab ⊗ |c〉 J M and express it stepwise by |ncmlcm〉 ⊗ |α〉 J M . Ob-<br />

viously, we have to change the underly<strong>in</strong>g coord<strong>in</strong>ate system on our way through<br />

the transformation, s<strong>in</strong>ce we must change quantum numbers of the relative and<br />

center-of-mass part of the <strong>three</strong>-<strong>nucleon</strong> system <strong>in</strong>to s<strong>in</strong>gle-particle quantum num-<br />

bers. As outl<strong>in</strong>ed <strong>in</strong> section 3.3, we can achieve this with the help of HOBs. We will<br />

encounter two of them.<br />

We start our transformations with coupl<strong>in</strong>g the isosp<strong>in</strong> of {|a〉⊗|b〉} Jab⊗|c〉 J M<br />

to total isosp<strong>in</strong> quantum numbers T, MT<br />

<br />

Jab<br />

J M<br />

{|a〉 ⊗ |b〉} ⊗ |c〉<br />

= <br />

<br />

<br />

ta tb tab<br />

<br />

<br />

tab,T<br />

mta mtb<br />

mtab<br />

tab tc<br />

mtab tc<br />

<br />

<br />

<br />

<br />

<br />

T<br />

MT<br />

<br />

×|{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}J M, [(ta, tb)tab, tc]TMT 〉 . (4.29)<br />

As usual, we elim<strong>in</strong>ated already the sums over the projection quantum numbers<br />

by mtab = mta + mtb and MT = mtab + mtc. For the further steps the isosp<strong>in</strong> part is<br />

dispensable, so we omit it for brevity.<br />

In the follow<strong>in</strong>g, we carry out a number of unitary transformations by <strong>in</strong>sert<strong>in</strong>g<br />

appropriate identity operators. How the parts of the state that are affected by the<br />

transformation change is always shown <strong>in</strong> the head<strong>in</strong>g of each step. We encounter<br />

sums and transformation coefficients <strong>in</strong> every s<strong>in</strong>gle step. We quote them only<br />

once <strong>in</strong> the step they are relevant for and highlight them with a box. At the end we<br />

will collect everyth<strong>in</strong>g together and write down the complete formula. The same<br />

applies for the summation bounds: we specify them <strong>in</strong> each step and summarize<br />

them <strong>in</strong> a simplified form for a special order<strong>in</strong>g of the sums <strong>in</strong> appendix A.2.<br />

Moreover, we will use the shorthand ˆx = √ 2x + 1 and omit the projection quan-<br />

tum number M correspond<strong>in</strong>g to J s<strong>in</strong>ce it does not change dur<strong>in</strong>g the transfor-<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!