15.07.2013 Views

Consistent chiral three-nucleon interactions in ... - Theory Center

Consistent chiral three-nucleon interactions in ... - Theory Center

Consistent chiral three-nucleon interactions in ... - Theory Center

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4 Three-body Jacobi matrix element transformation <strong>in</strong>to the m-scheme<br />

<strong>in</strong>g. F<strong>in</strong>ally, <strong>in</strong> subsection 4.4, we present the solution of this problem by slightly<br />

chang<strong>in</strong>g our strategy <strong>in</strong>to the calculation of matrix elements that ma<strong>in</strong>ta<strong>in</strong> a total<br />

coupled angular momentum and isosp<strong>in</strong>.<br />

4.1 Matrix elements of the <strong>three</strong>-<strong>nucleon</strong> <strong>in</strong>teraction at N2LO <strong>in</strong><br />

the m-scheme<br />

In the follow<strong>in</strong>g, we derive the formula for the transformation of <strong>three</strong>-particle<br />

<strong>in</strong>teraction matrix elements from the antisymmetrized Jacobi states |EJTi〉 <strong>in</strong>to<br />

the antisymmetrized m-scheme basis<br />

〈EJTi|V NNN |E ′ JTi ′ 〉 −→ a〈abc|V NNN |a ′ b ′ c ′ 〉a . (4.2)<br />

We start with a non-antisymmetrized product state of (ls)-coupled s<strong>in</strong>gle-particle<br />

harmonic oscillator states<br />

|abc〉 = |(nala, sa)jama, (nblb, sb)jbmb, (nclc, sc)jcmc, tamtatbmtb tcmtc〉 . (4.3)<br />

In the first step, we couple the s<strong>in</strong>gle-particle angular momenta ji to total angular<br />

momentum J of the <strong>three</strong> <strong>nucleon</strong>s<br />

|abc〉 = <br />

<br />

<br />

<br />

ja jb Jab Jab jc J<br />

<br />

<br />

<br />

M<br />

Jab,J<br />

ma mb<br />

Mab<br />

Mab mc<br />

× |{[(nala, sa)ja, (nblb, sb)jb]Jab, (nclc, sc)jc}J M, tamtatbmtb tcmtc〉 ,<br />

(4.4)<br />

with Mab = ma + mb and M = Mab + mc. We used the Clebsch-Gordan coefficients<br />

def<strong>in</strong>ed <strong>in</strong> eq. (3.5) and elim<strong>in</strong>ated the sums over projection quantum numbers<br />

us<strong>in</strong>g eq. (3.9).<br />

In the next step we make use of the identity<br />

1 = <br />

ncm,lcm<br />

<br />

α<br />

<br />

J ′ ,M ′<br />

{|ncmlcm〉 ⊗ |α〉} J ′ M ′<br />

{〈ncmlcm| ⊗ 〈α|} J ′ M ′<br />

where ncm, lcm denote center-of-mass quantum numbers and<br />

, (4.5)<br />

|α〉 = |[(n12l12, sab)j12, (n3l3, sc)j3]JMJ, (tabtc)TMT 〉 (4.6)<br />

aga<strong>in</strong> denotes the Jacobi state as already <strong>in</strong>troduced <strong>in</strong> section 3.4. Here, one has<br />

to be careful, s<strong>in</strong>ce |α〉 does not conta<strong>in</strong> the MJ quantum number if its total an-<br />

gular momentum is coupled, as <strong>in</strong> eq. (4.5). There, the curly brackets <strong>in</strong>dicate the<br />

coupl<strong>in</strong>g of the center-of-mass orbital angular momentum with the total angular<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!