20.07.2013 Views

NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>NEAR</strong> <strong>OPTIMAL</strong> <strong>BOUNDS</strong> <strong>IN</strong> FREIMAN’S <strong>THEOREM</strong> 11<br />

[3] M.-C. CHANG, A polynomial bound in Freiman’s theorem, Duke Math. J. 113 (2002),<br />

399 – 419. MR 1909605<br />

[4] ———, On problems of Erdős and Rudin, J. Funct. Anal. 207 (2004), 444 – 460.<br />

MR 2032997<br />

[5] ———, On sum-product representations in Zq, J. Eur. Math. Soc. (JEM) 8 (2006),<br />

435 – 463. MR 2250167<br />

[6] ———, Some consequences of the polynomial Freiman-Ruzsa conjecture, C. R. Math.<br />

Acad. Sci. Paris 347 (2009), 583 – 588. MR 2532910 2101, 2, 6, 8911<br />

[7] K. CWAL<strong>IN</strong>A and T. SCHOEN, Linear bound on dimension in Green-Ruzsa’s theorem,<br />

in preparation.<br />

[8] G. A. FREĬMAN, Foundations of a Structural Theory of Set Addition, Trans. Math.<br />

Monog. 37, Amer. Math. Soc., Providence, 1973. MR 0360496<br />

[9] W. T. GOWERS, A new proof of Szemerédi’s theorem for arithmetic progressions of<br />

length four, Geom. Funct. Anal. 8 (1998), 529 – 551. MR 1631259<br />

[10] ———, “Rough structure and classification” in GAFA 2000 (Tel Aviv, 1999), Geom.<br />

Funct. Anal. 2000, 79 – 117. MR 1826250<br />

[11] ———, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001),<br />

465 – 588. MR 1844079<br />

[12] B. GREEN, “Finite field models in additive combinatorics” in Surveys in Combinatorics<br />

2005, London Math. Soc. Lecture Note Ser. 327, Cambridge Univ. Press,<br />

Cambridge, 2005, 1 – 27. MR 2187732<br />

[13] B. GREEN and I. Z. RUZSA, Freiman’s theorem in an arbitrary abelian group, J. Lond.<br />

Math. Soc. (2) 75 (2007), 163 – 175. MR 2302736<br />

[14] B. GREEN and T. TAO, An equivalence between inverse sumset theorems and inverse<br />

conjectures for the U 3 norm, Math. Proc. Cambridge. Philos. Soc. 149 (2010),<br />

1 – 19. MR 2651575<br />

[15] N. H. KATZ and P. KOESTER, On additive doubling and energy, preprint,<br />

arXiv:0802.4371v1 [math.CO]<br />

[16] S. KONYAG<strong>IN</strong> and I. ŁABA, Distance sets of well-distributed planar sets for polygonal<br />

norms, Israel J. Math. 152 (2006), 157 – 175. MR 2214458<br />

[17] T. ŁUCZAK and T. SCHOEN, On a problem of Konyagin, Acta Arith. 134 (2008),<br />

101 – 109. MR 2429639<br />

[18] I. Z. RUZSA, Arithmetical progressions and the number of sums, Period. Math. Hungar.<br />

25 (1992), 105 – 111. MR 1200845<br />

[19] ———, Generalized arithmetical progressions and sumsets, Acta Math. Hungar. 65<br />

(1994), 379 – 388. MR 1281447<br />

[20] T. SANDERS, Additive structures in sumsets, Math. Proc. Cambridge. Philos. Soc. 144<br />

(2008), 289 – 316. MR 2405891<br />

[21] ———, Appendix to Roth’s theorem on progressions revisited by J. Bourgain, J. Anal.<br />

Math. 104 (2008), 193 – 206. MR 2403434<br />

[22] ———, On a nonabelian Balog-Szemerédi-type lemma, J. Aust. Math. Soc. 89 (2010),<br />

127 – 132. MR 2727067<br />

[23] ———, Structure in sets with logarithmic doubling, to appear in Canad. Math. Bull.,<br />

preprint, arXiv:1002.1552v1 [math.CA]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!