20.07.2013 Views

NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

NEAR OPTIMAL BOUNDS IN FREIMAN'S THEOREM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

38 CASIM ABBAS<br />

that is, the central orbit has minimal period 2πγ1(0). If the ratio α(r)/β(r) is irrational<br />

then the torus Tr carries no periodic trajectories. Otherwise, Tr is foliated with periodic<br />

trajectories of minimal period<br />

τ = 2πm<br />

α<br />

= 2πn<br />

β ,<br />

where α/β = m/n or β/α = n/m for suitable integers m, n (choose whatever makes<br />

sense if either α or β is zero). We calculate<br />

dα<br />

lim<br />

r→0 dr<br />

γ<br />

= lim<br />

r→0<br />

′′<br />

2 (r)µ(r) − γ ′ 2 (r)µ′ (r)<br />

µ 2 (r)<br />

γ<br />

= lim<br />

r→0<br />

′′′<br />

2 (r)<br />

2µ ′ − lim<br />

(r) r→0<br />

= γ ′′′<br />

= 0<br />

since µ ′′ (0) = γ1(0)γ ′′′<br />

coordinates on the disk, we get<br />

2 (0)<br />

2µ ′ (0)<br />

µ ′′ (r)<br />

2µ ′ γ<br />

(r)<br />

′ 2 (r)<br />

r<br />

′′′ ′′<br />

γ1(0)γ 2 (0)γ 2<br />

− (0)<br />

2(µ ′ (0)) 2<br />

2 (0) and µ′ (0) = γ1(0)γ ′′<br />

2<br />

X(θ,x,y) = α(x,y) ∂<br />

∂θ<br />

− β(x,y) y ∂<br />

∂x<br />

r<br />

µ(r)<br />

(0) > 0. Converting to Cartesian<br />

+ β(x,y) x ∂<br />

∂y ,<br />

and linearizing the Reeb vector field along the center orbit yields<br />

⎛<br />

0 0 0<br />

⎞<br />

DX(θ,0, 0) = ⎝ 0 0 −β(0) ⎠ .<br />

0 β(0) 0<br />

The linearization of the Reeb flow is given by<br />

⎛<br />

1 0 0<br />

⎞<br />

Dφt(θ,0, 0) = ⎝ 0 cos β(0)t − sin β(0)t ⎠ (2.2)<br />

0 sin β(0)t cos β(0)t<br />

with<br />

The spectrum of (t) is given by<br />

(t) = e β(0)tJ , J =<br />

σ (t) ={e ±iβ(0)t }.<br />

<br />

0 −1<br />

.<br />

1 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!