26.07.2013 Views

Identification of important interactions between subchondral bone ...

Identification of important interactions between subchondral bone ...

Identification of important interactions between subchondral bone ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

28 Iqbal J., Sun L., and Zaidi M. Coupling <strong>bone</strong> degradation<br />

to formation. Nat Med. 2009;15(7):729-731.<br />

29 Knothe Tate M.L., Adamson J.R., Tami A.E., and Bauer<br />

T.W. The osteocyte. Int J Biochem Cell Biol. 2004;36(1):1-<br />

8.<br />

30 Aubin J.E. Advances in the osteoblast lineage. Biochem<br />

Cell Biol. 1998;76(6):899-910.<br />

31 Gori F., H<strong>of</strong>bauer L.C., Dunstan C.R., Spelsberg T.C.,<br />

Khosla S., and Riggs B.L. The expression <strong>of</strong><br />

osteoprotegerin and RANK ligand and the support <strong>of</strong><br />

osteoclast formation by stromal-osteoblast lineage cells is<br />

developmentally regulated. Endocrinology.<br />

2000;141(12):4768-4776.<br />

32 Lerner U.H. NEW MOLECULES IN THE TUMOR<br />

NECROSIS FACTOR LIGAND AND RECEPTOR<br />

SUPERFAMILIES WITH IMPORTANCE FOR<br />

PHYSIOLOGICAL AND PATHOLOGICAL BONE<br />

RESORPTION. Crit Rev Oral Biol Med. 2004;15(2):64-<br />

81.<br />

33 Thomas G.P., Baker S.U., Eisman J.A., and Gardiner E.M.<br />

Changing RANKL/OPG mRNA expression in<br />

differentiating murine primary osteoblasts. J Endocrinol.<br />

2001;170(2):451-460.<br />

34 Teitelbaum S.L. Bone resorption by osteoclasts. Science.<br />

2000;289(5484):1504-1508.<br />

35 Martin T., Gooi J.H., and Sims N.A. Molecular<br />

mechanisms in coupling <strong>of</strong> <strong>bone</strong> formation to resorption.<br />

Crit Rev Eukaryot Gene Expr. 2009;19(1):73-88.<br />

36 Sims N.A. and Gooi J.H. Bone remodeling: Multiple<br />

cellular <strong>interactions</strong> required for coupling <strong>of</strong> <strong>bone</strong><br />

formation and resorption. Semin Cell Dev Biol.<br />

2008;19(5):444-451.<br />

37 Karsdal M.A., Henriksen K., Sorensen M.G., Gram J.,<br />

Schaller S., Dziegiel M.H., Heegaard A.M. et al.<br />

Acidification <strong>of</strong> the osteoclastic resorption compartment<br />

provides insight into the coupling <strong>of</strong> <strong>bone</strong> formation to<br />

<strong>bone</strong> resorption. Am J Pathol. 2005;166(2):467-476.<br />

38 Martin T.J. and Sims N.A. Osteoclast-derived activity in<br />

the coupling <strong>of</strong> <strong>bone</strong> formation to resorption. Trends Mol<br />

Med. 2005;11(2):76-81.<br />

39 Mundy G.R., Chen D., and Oyajobi B.O. Bone<br />

remodeling. Primer on the metabolic <strong>bone</strong> diseases and<br />

disorders <strong>of</strong> mineral metabolism. 2003;5(7):46-58.<br />

CHAPTER 2: Introduction<br />

36<br />

40 Andersen T.L., Sondergaard T.E., Skorzynska K.E., gnaes-<br />

Hansen F., Plesner T.L., Hauge E.M., Plesner T. et al. A<br />

physical mechanism for coupling <strong>bone</strong> resorption and<br />

formation in adult human <strong>bone</strong>. Am J Pathol.<br />

2009;174(1):239-247.<br />

41 Eriksen E.F., Eghbali-Fatourechi G.Z., and Khosla S.<br />

Remodeling and vascular spaces in <strong>bone</strong>. J Bone Miner<br />

Res. 2007;22(1):1-6.<br />

42 Hauge E.M., Qvesel D., Eriksen E.F., Mosekilde L., and<br />

Melsen F. Cancellous <strong>bone</strong> remodeling occurs in<br />

specialized compartments lined by cells expressing<br />

osteoblastic markers. J Bone Miner Res. 2001;16(9):1575-<br />

1582.<br />

43 Kaunitz J.D. and Yamaguchi D.T. TNAP, TrAP, ecto-<br />

purinergic signaling, and <strong>bone</strong> remodeling. J Cell Biochem.<br />

2008;105(3):655-662.<br />

44 Karsdal M.A., Martin T.J., Bollerslev J., Christiansen C.,<br />

and Henriksen K. Are nonresorbing osteoclasts sources <strong>of</strong><br />

<strong>bone</strong> anabolic activity? J Bone Miner Res. 2007;22(4):487-<br />

494.<br />

45 Karsdal M.A., Neutzsky-Wulff A.V., Dziegiel M.H.,<br />

Christiansen C., and Henriksen K. Osteoclasts secrete<br />

non-<strong>bone</strong> derived signals that induce <strong>bone</strong> formation.<br />

Biochem Biophys Res Commun. 2008;366(2):483-488.<br />

46 Zhao C., Irie N., Takada Y., Shimoda K., Miyamoto T.,<br />

Nishiwaki T., Suda T. et al. Bidirectional ephrinB2-<br />

EphB4 signaling controls <strong>bone</strong> homeostasis. Cell Metab.<br />

2006;4(2):111-121.<br />

47 Aubin J.E. and Bonnelye E. Osteoprotegerin and its<br />

ligand: a new paradigm for regulation <strong>of</strong><br />

osteoclastogenesis and <strong>bone</strong> resorption. Osteoporos Int.<br />

2000;11(11):905-913.<br />

48 Kwan T.S., Lajeunesse D., Pelletier J.P., and Martel-<br />

Pelletier J. Targeting <strong>subchondral</strong> <strong>bone</strong> for treating<br />

osteoarthritis: what is the evidence? Best Pract Res Clin<br />

Rheumatol. 2010;24(1):51-70.<br />

49 Mankin H.J., Brandt K.D., and Shulman L.E. Workshop<br />

on Etiopathogenesis <strong>of</strong> Osteoarthritis. The Journal <strong>of</strong><br />

Rheumatology. 1986;(13):1130-1160.<br />

50 Lefebvre V. and de C.B. Toward understanding SOX9<br />

function in chondrocyte differentiation. Matrix Biol.<br />

1998;16(9):529-540.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!