26.07.2013 Views

Identification of important interactions between subchondral bone ...

Identification of important interactions between subchondral bone ...

Identification of important interactions between subchondral bone ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

76 Benya P.D. and Shaffer J.D. Dedifferentiated<br />

chondrocytes reexpress the differentiated collagen<br />

phenotype when cultured in agarose gels. Cell.<br />

1982;30(1):215-224.<br />

77 Elima K. and Vuorio E. Expression <strong>of</strong> mRNAs for<br />

collagens and other matrix components in<br />

dedifferentiating and redifferentiating human<br />

chondrocytes in culture. FEBS Lett. 1989;258(2):195-198.<br />

78 Aigner T., Zhu Y., Chansky H.H., Matsen F.A., III,<br />

Maloney W.J., and Sandell L.J. Reexpression <strong>of</strong> type IIA<br />

procollagen by adult articular chondrocytes in<br />

osteoarthritic cartilage. Arthritis Rheum. 1999;42(7):1443-<br />

1450.<br />

79 von der M.K., Kirsch T., Nerlich A., Kuss A., Weseloh G.,<br />

Gluckert K., and Stoss H. Type X collagen synthesis in<br />

human osteoarthritic cartilage. Indication <strong>of</strong> chondrocyte<br />

hypertrophy. Arthritis Rheum. 1992;35(7):806-811.<br />

80 Sandell L.J. and Aigner T. Articular cartilage and changes<br />

in arthritis. An introduction: cell biology <strong>of</strong> osteoarthritis.<br />

Arthritis Res. 2001;3(2):107-113.<br />

81 Tchetina E.V., Squires G., and Poole A.R. Increased type<br />

II collagen degradation and very early focal cartilage<br />

degeneration is associated with upregulation <strong>of</strong><br />

chondrocyte differentiation related genes in early human<br />

articular cartilage lesions. J Rheumatol. 2005;32(5):876-<br />

886.<br />

82 Goldring M.B. and Goldring S.R. Osteoarthritis. J Cell<br />

Physiol. 2007;213(3):626-634.<br />

83 Aigner T., Gluckert K., and von der M.K. Activation <strong>of</strong><br />

fibrillar collagen synthesis and phenotypic modulation <strong>of</strong><br />

chondrocytes in early human osteoarthritic cartilage<br />

lesions. Osteoarthritis Cartilage. 1997;5(3):183-189.<br />

84 Lohmander L.S., Ionescu M., Jugessur H., and Poole A.R.<br />

Changes in joint cartilage aggrecan after knee injury and in<br />

osteoarthritis. Arthritis Rheum. 1999;42(3):534-544.<br />

85 Bollet A.J. and Nance J.L. Biochemical Findings in<br />

Normal and Osteoarthritic Articular Cartilage. II.<br />

Chondroitin Sulfate Concentration and Chain Length,<br />

Water, and Ash Content. J Clin Invest. 1966;45(7):1170-<br />

1177.<br />

86 Goldring M.B. The role <strong>of</strong> the chondrocyte in<br />

osteoarthritis. Arthritis Rheum. 2000;43(9):1916-1926.<br />

87 Goldring M.B. Osteoarthritis and cartilage: the role <strong>of</strong><br />

cytokines. Curr Rheumatol Rep. 2000;2(6):459-465.<br />

CHAPTER 2: Introduction<br />

38<br />

88 Bramono D.S., Richmond J.C., Weitzel P.P., Kaplan D.L.,<br />

and Altman G.H. Matrix metalloproteinases and their<br />

clinical applications in orthopaedics. Clin Orthop Relat<br />

Res. 2004;(428):272-285.<br />

89 Cawston T.E. and Young D.A. Proteinases involved in<br />

matrix turnover during cartilage and <strong>bone</strong> breakdown. Cell<br />

Tissue Res. 2010;339(1):221-235.<br />

90 Hollander A.P., Pidoux I., Reiner A., Rorabeck C., Bourne<br />

R., and Poole A.R. Damage to type II collagen in aging<br />

and osteoarthritis starts at the articular surface, originates<br />

around chondrocytes, and extends into the cartilage with<br />

progressive degeneration. J Clin Invest. 1995;96(6):2859-<br />

2869.<br />

91 Shibakawa A., Yudoh K., Masuko-Hongo K., Kato T.,<br />

Nishioka K., and Nakamura H. The role <strong>of</strong> <strong>subchondral</strong><br />

<strong>bone</strong> resorption pits in osteoarthritis: MMP production by<br />

cells derived from <strong>bone</strong> marrow. Osteoarthritis Cartilage.<br />

2005;13(8):679-687.<br />

92 Bluteau G., Conrozier T., Mathieu P., Vignon E., Herbage<br />

D., and Mallein-Gerin F. Matrix metalloproteinase-1, -3, -<br />

13 and aggrecanase-1 and -2 are differentially expressed in<br />

experimental osteoarthritis. Biochim Biophys Acta.<br />

2001;1526(2):147-158.<br />

93 Freemont A.J., Hampson V., Tilman R., Goupille P.,<br />

Taiwo Y., and Hoyland J.A. Gene expression <strong>of</strong> matrix<br />

metalloproteinases 1, 3, and 9 by chondrocytes in<br />

osteoarthritic human knee articular cartilage is zone and<br />

grade specific. Ann Rheum Dis. 1997;56(9):542-549.<br />

94 Hanemaaijer R., Sorsa T., Konttinen Y.T., Ding Y.,<br />

Sutinen M., Visser H., van H., V et al. Matrix<br />

metalloproteinase-8 is expressed in rheumatoid synovial<br />

fibroblasts and endothelial cells. Regulation by tumor<br />

necrosis factor-alpha and doxycycline. J Biol Chem.<br />

1997;272(50):31504-31509.<br />

95 Salminen H.J., Saamanen A.M., Vankemmelbeke M.N.,<br />

Auho P.K., Perala M.P., and Vuorio E.I. Differential<br />

expression patterns <strong>of</strong> matrix metalloproteinases and their<br />

inhibitors during development <strong>of</strong> osteoarthritis in a<br />

transgenic mouse model. Ann Rheum Dis. 2002;61(7):591-<br />

597.<br />

96 Cole A.A. and Kuettner K.E. MMP-8 (neutrophil<br />

collagenase) mRNA and aggrecanase cleavage products<br />

are present in normal and osteoarthritic human articular<br />

cartilage. Acta Orthop Scand Suppl. 1995;266:98-102.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!