26.07.2013 Views

Identification of important interactions between subchondral bone ...

Identification of important interactions between subchondral bone ...

Identification of important interactions between subchondral bone ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.4 References for CHAPTER 3<br />

1 von der M.K., Gauss V., von der M.H., and Muller P.<br />

Relationship <strong>between</strong> cell shape and type <strong>of</strong> collagen<br />

synthesised as chondrocytes lose their cartilage phenotype<br />

in culture. Nature. 1977;267(5611):531-532.<br />

2 Lee D.A., Reisler T., and Bader D.L. Expansion <strong>of</strong><br />

chondrocytes for tissue engineering in alginate beads<br />

enhances chondrocytic phenotype compared to<br />

conventional monolayer techniques. Acta Orthop Scand.<br />

2003;74(1):6-15.<br />

3 Takigawa M., Okawa T., Pan H., Aoki C., Takahashi K.,<br />

Zue J., Suzuki F. et al. Insulin-like growth factors I and II<br />

are autocrine factors in stimulating proteoglycan synthesis,<br />

a marker <strong>of</strong> differentiated chondrocytes, acting through<br />

their respective receptors on a clonal human<br />

chondrosarcoma-derived chondrocyte cell line, HCS-2/8.<br />

Endocrinology. 1997;138(10):4390-4400.<br />

4 Manning W.K. and Bonner W.M., Jr. Isolation and culture<br />

<strong>of</strong> chondrocytes from human adult articular cartilage.<br />

Arthritis Rheum. 1967;10(3):235-239.<br />

5 Mackay A.M., Beck S.C., Murphy J.M., Barry F.P.,<br />

Chichester C.O., and Pittenger M.F. Chondrogenic<br />

differentiation <strong>of</strong> cultured human mesenchymal stem cells<br />

from marrow. Tissue Eng. 1998;4(4):415-428.<br />

6 Neutzsky-Wulff A.V., Karsdal M.A., and Henriksen K.<br />

Characterization <strong>of</strong> the <strong>bone</strong> phenotype in ClC-7-deficient<br />

mice. Calcif Tissue Int. 2008;83(6):425-437.<br />

7 Schaller S., Henriksen K., Hoegh-Andersen P.,<br />

Sondergaard B.C., Sumer E.U., Tanko L.B., Qvist P. et al.<br />

In vitro, ex vivo, and in vivo methodological approaches<br />

for studying therapeutic targets <strong>of</strong> osteoporosis and<br />

degenerative joint diseases: how biomarkers can assist?<br />

Assay Drug Dev Technol. 2005;3(5):553-580.<br />

8 Hascall V.C., Morales T.I., Hascall G.K., Handley C.J.,<br />

and McQuillan D.J. Biosynthesis and turnover <strong>of</strong><br />

proteoglycans in organ culture <strong>of</strong> bovine articular cartilage.<br />

J Rheumatol Suppl. 1983;11:45-52.<br />

9 Sondergaard B.C., Wulf H., Henriksen K., Schaller S.,<br />

Oestergaard S., Qvist P., Tanko L.B. et al. Calcitonin<br />

directly attenuates collagen type II degradation by<br />

inhibition <strong>of</strong> matrix metalloproteinase expression and<br />

activity in articular chondrocytes. Osteoarthritis Cartilage.<br />

2006;14(8):759-768.<br />

CHAPTER 3: Overview <strong>of</strong> OA models<br />

48<br />

10 Sondergaard B.C., Henriksen K., Wulf H., Oestergaard S.,<br />

Schurigt U., Brauer R., Danielsen I. et al. Relative<br />

contribution <strong>of</strong> matrix metalloprotease and cysteine<br />

protease activities to cytokine-stimulated articular cartilage<br />

degradation. Osteoarthritis Cartilage. 2006;14(8):738-748.<br />

11 Charni-Ben T.N., Desmarais S., Bay-Jensen A.C., Delaisse<br />

J.M., Percival M.D., and Garnero P. The type II collagen<br />

fragments Helix-II and CTX-II reveal different enzymatic<br />

pathways <strong>of</strong> human cartilage collagen degradation.<br />

Osteoarthritis Cartilage. 2008;16(10):1183-1191.<br />

12 Dingle J.T., Horsfield P., Fell H.B., and Barratt M.E.<br />

Breakdown <strong>of</strong> proteoglycan and collagen induced in pig<br />

articular cartilage in organ culture. Ann Rheum Dis.<br />

1975;34(4):303-311.<br />

13 Fell H.B. and Barratt M.E. The role <strong>of</strong> s<strong>of</strong>t connective<br />

tissue in the breakdown <strong>of</strong> pig articular cartilage cultivated<br />

in the presence <strong>of</strong> complement-sufficient antiserum to pig<br />

erythrocytes. I. Histological changes. Int Arch Allergy<br />

Appl Immunol. 1973;44(3):441-468.<br />

14 Roy-Beaudry M., Martel-Pelletier J., Pelletier J.P., M'Barek<br />

K.N., Christgau S., Shipkolye F., and Moldovan F.<br />

Endothelin 1 promotes osteoarthritic cartilage degradation<br />

via matrix metalloprotease 1 and matrix metalloprotease<br />

13 induction. Arthritis Rheum. 2003;48(10):2855-2864.<br />

15 Saklatvala J. Tumour necrosis factor alpha stimulates<br />

resorption and inhibits synthesis <strong>of</strong> proteoglycan in<br />

cartilage. Nature. 1986;322(6079):547-549.<br />

16 Cawston T.E., Curry V.A., Summers C.A., Clark I.M.,<br />

Riley G.P., Life P.F., Spaull J.R. et al. The role <strong>of</strong><br />

oncostatin M in animal and human connective tissue<br />

collagen turnover and its localization within the<br />

rheumatoid joint. Arthritis Rheum. 1998;41(10):1760-<br />

1771.<br />

17 Sondergaard B.C., Schultz N., Madsen S.H., Bay-Jensen<br />

A.C., Kassem M., and Karsdal M.A. MAPKs are essential<br />

upstream signaling pathways in proteolytic cartilage<br />

degradation--divergence in pathways leading to<br />

aggrecanase and MMP-mediated articular cartilage<br />

degradation. Osteoarthritis Cartilage. 2010;18(3):279-288.<br />

18 Madsen S.H., Sondergaard B.C., Bay-Jensen A.C., and<br />

Karsdal M.A. Cartilage formation measured by a novel<br />

PIINP assay suggests that IGF-I does not stimulate but<br />

maintains cartilage formation ex vivo. Scand J Rheumatol.<br />

2009;38(3):222-226.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!