30.07.2013 Views

Regularization of the AVO inverse problem by means of a ...

Regularization of the AVO inverse problem by means of a ...

Regularization of the AVO inverse problem by means of a ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 2. <strong>AVO</strong> MODELING 11<br />

(S-wave reflected), <strong>the</strong> transmitted P-wave, and converted wave upon transmission (S-wave<br />

transmitted) be represented <strong>by</strong> φ1, ψ1, φ2, and ψ2 respectively. Indices 1 and 2 indicate <strong>the</strong><br />

upper and lower layers respectively. The plane wave solutions to equations (2.1) and (2.2)<br />

according to <strong>the</strong> transformation shown in Figure 2.1, we have<br />

φ1 = A0e iω(px+ cos θi cos θr<br />

α z−t) iω(px−<br />

1 α z−t)<br />

+ A1e 1 ,<br />

cos ϕr<br />

iω(px− β z−t)<br />

ψ1 = B1e 1 ,<br />

φ2 = A2e iω(px+ cos θ t<br />

α 2 z−t) ,<br />

ψ2 = B2e iω(px+ cos ϕ t<br />

β 2 z−t) , (2.3)<br />

where A0, A1, B1, A2 and B2 are <strong>the</strong> wave amplitudes for <strong>the</strong> incident P-wave, reflected<br />

P-wave, reflected S-wave (converted upon reflection), transmitted P-wave and transmitted<br />

S-wave (converted P-wave upon transmission) respectively. The parameters p and ω are ray<br />

parameter and frequency respectively. The angles θi, θr, θt are <strong>the</strong> incidence, reflection and<br />

transmission angles <strong>of</strong> <strong>the</strong> P-wave respectively. The remaining angles ϕr and ϕt are <strong>the</strong><br />

reflection and transmission angles for S -waves respectively (refer Figure 2.1).<br />

To proceed fur<strong>the</strong>r, we need to write Snell’s law in terms <strong>of</strong> <strong>the</strong> angles and velocities <strong>of</strong> <strong>the</strong><br />

media. The apparent velocity along <strong>the</strong> interface between <strong>the</strong> two layers is constant<br />

cx = 1 α1<br />

= =<br />

p sin θi<br />

β1<br />

sin ϕr<br />

= α2<br />

=<br />

sin θt<br />

β2<br />

. (2.4)<br />

sin ϕt<br />

The corresponding displacement vectors <strong>of</strong> <strong>the</strong> above equations can be written as<br />

ux1 = iω<br />

ux2 = iω<br />

uz1 = iω<br />

uz2 = iω<br />

(A0 + A1) sin θie iω(px+ cos θ i<br />

α 1 z−t) + ω<br />

cos ϕr<br />

iω(px− β z−t)<br />

B1 cos ϕre 1 ,<br />

α1<br />

β1<br />

A2 sin θte<br />

α2<br />

iω(px+ cos θi α z−t) ω<br />

cos ϕr<br />

iω(px+<br />

2 β z−t)<br />

+ B2 cos ϕte 2 ,<br />

β2<br />

(A0 − A1) cos θie<br />

α1<br />

iω(px+ cos θi α z−t) ω<br />

cos ϕr<br />

iω(px−<br />

1 β z−t)<br />

+ B1 sin ϕre 1 ,<br />

β1<br />

A2 cos θte<br />

α2<br />

iω(px+ cos θi α z−t) ω<br />

cos ϕr<br />

iω(px+<br />

1 β z−t)<br />

− B2 sin ϕte 1 , (2.5)<br />

β2<br />

where ux1, ux2, uz1, and uz2 are <strong>the</strong> tangential component in <strong>the</strong> first medium, <strong>the</strong> tangential<br />

component in <strong>the</strong> second medium, <strong>the</strong> normal component in <strong>the</strong> first medium and <strong>the</strong> normal<br />

component in <strong>the</strong> second medium respectively. In order to arrive to <strong>the</strong> final Zoeppritz<br />

equation, we have to impose boundary conditions on equation (2.3). Some <strong>of</strong> <strong>the</strong> boundary<br />

conditions are from <strong>the</strong> definition <strong>of</strong> stress and strain. Therefore, before we deal with <strong>the</strong><br />

<strong>the</strong> boundary conditions, it is worth writing down <strong>the</strong> important relationship between stress

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!