14.08.2013 Views

Implementing IIR/FIR Filters

Implementing IIR/FIR Filters

Implementing IIR/FIR Filters

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Z-Domain Transfer Function<br />

Hz ( )<br />

Difference Equation (Direct Form)<br />

Coefficients<br />

α 1 μz 1 –<br />

σz 2 –<br />

( + + )<br />

1/2 γz 1 –<br />

– βz 2 –<br />

= ------------------------------------------------<br />

+<br />

yn ( ) = 2{ α[ x(<br />

n)<br />

+ μxn ( – 1)<br />

+ σxn ( – 2)]<br />

+ γyn ( – 1)<br />

– βyn ( – 2)<br />

}<br />

1<br />

β --<br />

2<br />

1 1/2dsinθ –<br />

0<br />

2tan( θ<br />

= -----------------------------------<br />

0 /2Q)<br />

γ = ( 1/2 + β)<br />

cosθ<br />

1 + 1/2dsinθ d = --------------------------------<br />

0<br />

0<br />

sinθ0<br />

where 0 < β < 1/2 and θ0 2 π f 0 /fs f 0<br />

Q = ----- = -------------------------------- = --------------<br />

Δ0 2π( f2 – f1)/fs f 2 – f 1<br />

where f0 is the center frequency of the bandpass or bandstop filter,<br />

f1 and f2 are the half-power points (where gain is equal to 1/ 2),<br />

and<br />

fs is the sample frequency. Note the f0 is replaced with fc in the lowpass<br />

and highpass cases.<br />

Type α μ σ Unity Gain at<br />

Lowpass<br />

Highpass<br />

Bandpass<br />

Bandstop<br />

NOTE: θ 0 = 2πf 0 /f s<br />

Numerator Coefficients<br />

(1/2 + β−γ)/4<br />

(1/2 + β+γ)/4<br />

(1/2 - β)/2<br />

(1/2 + β)/2<br />

2<br />

-2 0<br />

-2cosθ 0<br />

Figure 2-22 Summary of Digital Coefficients for the Four Basic Filter Types<br />

MOTOROLA 2-27<br />

1<br />

1<br />

-1 1<br />

f = 0<br />

f = f s /2<br />

f = f 0<br />

f = 0 and f = f s/2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!