22.08.2013 Views

influence of oxalic acid on the catalytic s

influence of oxalic acid on the catalytic s

influence of oxalic acid on the catalytic s

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

142<br />

The ratio r2/r1 indicates how many times <strong>the</strong><br />

Mn(II)-catalysed S(IV) oxidati<strong>on</strong> in <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> is slower compared with<br />

<strong>the</strong> Mn(II)-catalysed oxidati<strong>on</strong> in <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this <str<strong>on</strong>g>acid</str<strong>on</strong>g>. The results show that <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> has a<br />

moderate inhibiting effect <strong>on</strong> <strong>the</strong> Mn(II)catalysed<br />

S(IV) oxidati<strong>on</strong>. The ratio r2/r1<br />

changes from 1.27 to 13.08 depending <strong>on</strong> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>acid</str<strong>on</strong>g> and Mn(II) c<strong>on</strong>centrati<strong>on</strong>s as well as <strong>the</strong><br />

initial pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soluti<strong>on</strong>.<br />

At a given Mn(II) c<strong>on</strong>centrati<strong>on</strong> and<br />

initial pH, <strong>the</strong> inhibiting effect increases with<br />

<str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>. The str<strong>on</strong>gest<br />

inhibiting effect was observed at <strong>the</strong> highest<br />

<str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> and Mn(II) c<strong>on</strong>centrati<strong>on</strong>s and at <strong>the</strong><br />

highest initial pH, whereas <strong>the</strong> weakest<br />

inhibiting effect was found at <strong>the</strong> lowest <str<strong>on</strong>g>oxalic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>acid</str<strong>on</strong>g> and Mn(II) c<strong>on</strong>centrati<strong>on</strong>s and at <strong>the</strong><br />

highest initial pH.<br />

At lower Mn(II) c<strong>on</strong>centrati<strong>on</strong>s (1·10 -6<br />

- 5·10 -6 mol/dm 3 ), <strong>the</strong> inhibiti<strong>on</strong> factor decreases<br />

with increase in <strong>the</strong> initial pH. However, at <strong>the</strong><br />

highest c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II) (1·10 -5<br />

mol/dm 3 ) such dependence was not observed -<br />

<strong>the</strong> highest inhibiti<strong>on</strong> factors were found at <strong>the</strong><br />

initial pH 5.0, and <strong>the</strong> lowest <strong>on</strong>es were at <strong>the</strong><br />

initial pH 4.0.<br />

At higher <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s<br />

(1·10 -5 - 1·10 -4 mol/dm 3 ) <strong>the</strong> inhibiting effect<br />

increases with increase in Mn(II) c<strong>on</strong>centrati<strong>on</strong><br />

(at all initial pH values). At <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1·10 -6 mol/dm 3 and <strong>the</strong> initial<br />

pH 5.0 <strong>the</strong> similar dependence was observed,<br />

whereas at <strong>the</strong> lower initial pH <strong>the</strong> inhibiting<br />

effect was <strong>the</strong> weakest at Mn(II) c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 5·10 -6 mol/dm 3 .<br />

The inhibiting effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> <strong>on</strong><br />

<strong>the</strong> Mn(II)-catalysed S(IV) oxidati<strong>on</strong> is also<br />

reported by Podkrajšek et al. (2006). They<br />

found that <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> slows down <strong>the</strong> oxidati<strong>on</strong><br />

about 3-times at pH 4.5, and at pH 3.5 <strong>the</strong><br />

inhibiti<strong>on</strong> is even lower. Our results for similar<br />

Mn(II) and <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s as well as<br />

pH indicate that <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> may have a little<br />

str<strong>on</strong>ger inhibiting effect, which can be<br />

explained in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> difference in <strong>the</strong> o<strong>the</strong>r<br />

experimental parameters. In <strong>the</strong> work <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Podkrajšek et al. (2006), S(IV) c<strong>on</strong>centrati<strong>on</strong><br />

was about 1·10 -4 mol/dm 3 , while in our study it<br />

was about 1·10 -3 mol/dm 3 . Mn(II) and <str<strong>on</strong>g>oxalic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s were similar in both <strong>the</strong><br />

studies. However, our experiments have been<br />

performed in a wider c<strong>on</strong>centrati<strong>on</strong> range,<br />

especially for <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g>. The pH range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

reacti<strong>on</strong> soluti<strong>on</strong>s was similar in both studies,<br />

but in experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> above authors, pH was<br />

maintained c<strong>on</strong>stant during <strong>the</strong> reacti<strong>on</strong> course,<br />

while in ours it was left to change.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

Oxalic <str<strong>on</strong>g>acid</str<strong>on</strong>g> affects <strong>the</strong> Mn(II)-catalysed<br />

S(IV) oxidati<strong>on</strong> changing <strong>the</strong> reacti<strong>on</strong> rate<br />

and in some cases <strong>the</strong> reacti<strong>on</strong> order in<br />

S(IV) c<strong>on</strong>centrati<strong>on</strong>.<br />

Oxalic <str<strong>on</strong>g>acid</str<strong>on</strong>g> has no <str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> reacti<strong>on</strong><br />

order in S(IV) at <strong>the</strong> initial pH 3.5 (n = 0).<br />

A tendency towards <strong>the</strong> change in <strong>the</strong><br />

reacti<strong>on</strong> order begins to be barely visible at<br />

<strong>the</strong> initial pH 4.0 and it becomes quite<br />

distinct at <strong>the</strong> initial pH 5.0.<br />

A change in <strong>the</strong> reacti<strong>on</strong> order is <strong>the</strong> largest<br />

at <strong>the</strong> highest c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g><br />

and at <strong>the</strong> lowest c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II).<br />

The reacti<strong>on</strong> order in S(IV) changes from 0<br />

(at <strong>the</strong> initial pH 3.5) to 0.35 (at <strong>the</strong> initial<br />

pH 5, <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1·10 -4<br />

mol/dm 3 , and Mn(II) c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1·10 -6<br />

mol/dm 3 ).<br />

Oxalic <str<strong>on</strong>g>acid</str<strong>on</strong>g> inhibits <strong>the</strong> Mn(II)-catalysed<br />

S(IV) oxidati<strong>on</strong>. The inhibiting effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this <str<strong>on</strong>g>acid</str<strong>on</strong>g> is moderate and depends <strong>on</strong> both<br />

<str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> and Mn(II) c<strong>on</strong>centrati<strong>on</strong>s as<br />

well as <strong>the</strong> initial pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soluti<strong>on</strong>.<br />

Depending <strong>on</strong> <strong>the</strong>se parameters <strong>the</strong> S(IV)<br />

oxidati<strong>on</strong> rate decreases from 1.27 to 13.08<br />

times. The str<strong>on</strong>gest inhibiting effect is<br />

observed at <strong>the</strong> highest <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> and<br />

Mn(II) c<strong>on</strong>centrati<strong>on</strong>s (1·10 -4 and 1·10 -5<br />

mol/dm 3 , respectively) and at <strong>the</strong> highest<br />

initial pH (5.0).<br />

REFERENCES<br />

BERGLUND J., ELDING L J., 1995:<br />

Manganese-catalysed autoxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved<br />

sulphur dioxide in <strong>the</strong> atmospheric aqueous<br />

phase, Atmospheric Envir<strong>on</strong>ment, vol. 29, No<br />

12, pp. 1379−1391.<br />

BERGLUND J., FRONAEUS S., ELDING L.,<br />

1993: Kinetics and mechanism for manganesecatalyzed<br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur(IV) by oxygen in<br />

aqueous soluti<strong>on</strong>, Inorganic Chemistry, vol. 32,<br />

No 21, pp. 4527−4537.<br />

BRANDT C., VAN ELDIK R., 1995:<br />

Transiti<strong>on</strong> metal-catalyzed oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sulfur(IV) oxides. Atmospheric-relevant<br />

processes and mechanisms, Chemical Reviews,<br />

vol. 95, No 1, pp. 119−190.<br />

CHEBBI A., CARLIER P., 1996. Carboxylic<br />

<str<strong>on</strong>g>acid</str<strong>on</strong>g>s in <strong>the</strong> troposphere, occurrence, sources,<br />

and sinks: a review, Atmospheric Envir<strong>on</strong>ment,<br />

vol. 30, No 24, 4233–4249.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!