22.08.2013 Views

influence of oxalic acid on the catalytic s

influence of oxalic acid on the catalytic s

influence of oxalic acid on the catalytic s

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INFLUENCE OF OXALIC ACID ON THE CATALYTIC S(IV) OXIDATION BY<br />

OXYGEN UNDER CONDITIONS CLOSE TO THOSE IN THE ATMOSPHERE<br />

Anna Mainka, Irena Wilkosz<br />

Air Protecti<strong>on</strong> Department, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Akademicka 2, 44-100 Gliwice, Poland<br />

e-mail: Anna.Mainka@polsl.pl, Irena.Wilkosz@polsl.pl<br />

ABSTRACT<br />

The paper presents results <str<strong>on</strong>g>of</str<strong>on</strong>g> kinetic studies <strong>on</strong> <strong>the</strong> S(IV) oxidati<strong>on</strong> process catalysed by Mn(II) i<strong>on</strong>s in<br />

<strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g>. Laboratory experiments were carried out at c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reactants and<br />

pH <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s representative for <str<strong>on</strong>g>acid</str<strong>on</strong>g>ified atmospheric water. The results indicate that <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> has a<br />

moderate inhibiting effect <strong>on</strong> <strong>the</strong> Mn(II)-catalysed S(IV) oxidati<strong>on</strong>. Depending <strong>on</strong> <strong>the</strong> experimental<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> Mn(II) catalysed S(IV) oxidati<strong>on</strong> in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> was from 1.3 to 13 times<br />

slower than in <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>acid</str<strong>on</strong>g>.<br />

Key words: atmospheric chemistry; S(IV) oxidati<strong>on</strong>; manganese; <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g>; catalysis; inhibiti<strong>on</strong>.<br />

Introducti<strong>on</strong><br />

Sulphur dioxide emissi<strong>on</strong> results in <str<strong>on</strong>g>acid</str<strong>on</strong>g>ic<br />

depositi<strong>on</strong> which is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> serious global<br />

problems. This process involves complex<br />

transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SO2 to H2SO4 in gaseous and<br />

liquid phases <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> atmosphere. The major<br />

reacti<strong>on</strong> path is <strong>the</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulphur dioxide<br />

in <strong>the</strong> aqueous phase. It is believed that 50-80%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric sulphur dioxide reacts within<br />

atmospheric water droplets (rain, fog and<br />

clouds) (Langner and Rodhe, 1991).<br />

Depending <strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s, three<br />

different SO2 oxidati<strong>on</strong> pathways are crucial in<br />

<strong>the</strong> atmospheric aqueous phase. These are <strong>the</strong><br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved SO2 by H2O2, O3 and by<br />

O2. Oxidati<strong>on</strong> by O2 may be important in <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> catalysts <strong>on</strong>ly. Potential catalysts<br />

are transiti<strong>on</strong> metal i<strong>on</strong>s with at least two<br />

oxidati<strong>on</strong> states (e.g. vanadium, chromium,<br />

manganese, ir<strong>on</strong>, cobalt, nickel, cooper) (Grgić<br />

et al., 1991; Berglund et al., 1993; Brandt and<br />

van Eldik, 1995; Berglund and Elding, 1995).<br />

The most active catalysts in <strong>the</strong> atmosphere are<br />

manganese Mn(II) and ir<strong>on</strong> Fe(III). They both<br />

are comm<strong>on</strong> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> tropospheric<br />

aerosols in heavy polluted urban and industrial<br />

areas. They are present even in remote areas,<br />

due to <strong>the</strong>ir generati<strong>on</strong> from erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

earth’s crust.<br />

The <strong>on</strong>ly source <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se metals in <strong>the</strong><br />

atmospheric aqueous phase is <strong>the</strong> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aerosol particles incorporated in water droplets.<br />

The comm<strong>on</strong> particles c<strong>on</strong>taining trace metals<br />

are soil dust, fly ash from power plants, and<br />

exhaust from combusti<strong>on</strong> engines and industrial<br />

operati<strong>on</strong>s. C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> manganese in<br />

street dust and ambient particulate matter in<br />

industrial areas and heavy traffic density areas<br />

vary from 554 to 2335 mg/kg (Piao et al., 2008;<br />

Lu et al., 2009). C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II)<br />

dissolved in atmospheric waters in urban and<br />

industrial areas range from 10 -7 to 10 -6 mol/dm 3<br />

in rain (Deutsch et al., 1997; Manoj et al., 2000;<br />

Patel et. al., 2001), and from 10 -6 to 10 -5<br />

mol/dm 3 in fog and cloudwater (Millet et al.,<br />

1995; Brandt and van Eldik, 1995).<br />

Besides <strong>the</strong> transiti<strong>on</strong> metal i<strong>on</strong>s some<br />

o<strong>the</strong>r substances present in <strong>the</strong> atmospheric<br />

water may also affect <strong>the</strong> S(IV) oxidati<strong>on</strong> by O2.<br />

Dissolved in atmospheric water organic<br />

compounds such as carboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s may react<br />

with sulphoxy radicals and transiti<strong>on</strong> metal i<strong>on</strong>s,<br />

and thus alter <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>catalytic</strong> S(IV)<br />

oxidati<strong>on</strong> (Martin et al.,1991; Pasiuk-<br />

Br<strong>on</strong>ikowska et al., 1997; Grgić et al., 1998,<br />

1999; Ziajka and Pasiuk-Br<strong>on</strong>ikowska, 2005).<br />

The sources <str<strong>on</strong>g>of</str<strong>on</strong>g> carboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s are<br />

numerous and <strong>the</strong>y comprise anthropogenic and<br />

biogenic emissi<strong>on</strong>s and photochemical<br />

transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> precursors in atmospheric<br />

aqueous, gaseous, and particulate phases<br />

(Chebbi and Carlier, 1996). Direct<br />

anthropogenic emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> carboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s<br />

(e.g. from incomplete combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil<br />

fuels, wood and o<strong>the</strong>r biomass material) and/or<br />

photo-oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic organic<br />

compounds in <strong>the</strong> atmosphere are <strong>the</strong> main<br />

sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se compounds in urban and<br />

industrial envir<strong>on</strong>ments (Chebbi and Carlier,<br />

1996; Kawamura et al., 1996a). It has been<br />

reported that automobile exhaust can be a<br />

significant source as well (Kawamura and<br />

Kaplan, 1987; Souza et al., 1999; Kerminen et


138<br />

al., 2000; Yao et al., 2004). Kawamura and<br />

Kaplan (1987) found that <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s measured in gasoline and<br />

diesel motor exhausts is similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> urban<br />

air samples. The c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se <str<strong>on</strong>g>acid</str<strong>on</strong>g>s in<br />

motor exhausts are 28 (gasoline) and 144<br />

(diesel) times higher than <strong>the</strong> average <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atmospheric c<strong>on</strong>centrati<strong>on</strong>s.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir low vapour pressures<br />

and high solubility in water, dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s<br />

are predominantly present in atmospheric<br />

aerosols, cloud droplets, fog droplets and<br />

precipitati<strong>on</strong> (Chebbi and Carlier, 1996;<br />

Kawamura and Ikushima, 1993; Souza et al.,<br />

1999). Oxalic <str<strong>on</strong>g>acid</str<strong>on</strong>g> is <strong>the</strong> single most abundant<br />

organic compound identified in ambient<br />

aerosols. It is found both in PM10 and PM2.5<br />

fracti<strong>on</strong>s. Its c<strong>on</strong>centrati<strong>on</strong>s in PM10 vary from<br />

0.38 to 1.84 µg/m 3 and in PM2.5 from 0.01 to<br />

1.53 µg/m 3 (Wang et al., 2002, 2007; Huang et<br />

al., 2005; Yao et al. 2004; Yang and Yu, 2008).<br />

C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> in <strong>the</strong> range 0.1 –<br />

40 µmol/dm 3 have been measured in <strong>the</strong><br />

tropospheric aqueous phase samples from<br />

different areas in <strong>the</strong> world (Chebbi and Carlier,<br />

1996; Kawamura et al., 1996b, Löflund et al.,<br />

2002).<br />

Very little is known so far about <strong>the</strong><br />

<str<strong>on</strong>g>influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> carboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s <strong>on</strong> <strong>the</strong> <strong>catalytic</strong><br />

S(IV) oxidati<strong>on</strong> by O2. Current laboratory<br />

studies <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical reacti<strong>on</strong>s involving S(IV)<br />

species and organic ligands have focused <strong>on</strong> <strong>the</strong><br />

ir<strong>on</strong>-catalysed autoxidati<strong>on</strong> (Grgić et al., 1995;<br />

Grgić and Poznič, 1998; Grgić et al., 1998;<br />

Grgić et al., 1999; Wolf et al., 2000). It has been<br />

found that organic ligands such as oxalate,<br />

acetate and formate inhibit this process. The<br />

<str<strong>on</strong>g>influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> some low molecular weight<br />

m<strong>on</strong>ocarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s (formic, acetic, glycolic,<br />

lactic) and dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s (<str<strong>on</strong>g>oxalic</str<strong>on</strong>g>, malic,<br />

mal<strong>on</strong>ic) <strong>on</strong> <strong>the</strong> Mn(II)-catalysed S(IV)<br />

oxidati<strong>on</strong> has also been investigated (Grgić et al.<br />

2002, Podkrajšek et al. 2006, Wilkosz and<br />

Mainka, 2008). It has been established that<br />

m<strong>on</strong>ocarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s inhibit <strong>the</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

S(IV). From am<strong>on</strong>g dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s, <str<strong>on</strong>g>oxalic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>acid</str<strong>on</strong>g> slows down <strong>the</strong> S(IV) oxidati<strong>on</strong>, while<br />

malic and mal<strong>on</strong>ic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s have practically no<br />

<str<strong>on</strong>g>influence</str<strong>on</strong>g>.<br />

The investigated process is a very<br />

complex free radical chain reacti<strong>on</strong>. Its<br />

mechanism and kinetics are so sensitive to <strong>the</strong><br />

reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s that even a slight change in<br />

<strong>the</strong>m can cause a change <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dominant path<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong> course, and thus lead to diverse<br />

results. Thus, despite <strong>the</strong> studies cited above <strong>the</strong><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> carboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s <strong>on</strong> <strong>the</strong> metal catalysed<br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S(IV) in atmospheric water is still<br />

poorly understood and more work in this area is<br />

needed. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present work was to<br />

study <strong>the</strong> <str<strong>on</strong>g>influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Mn(II)catalysed<br />

S(IV) oxidati<strong>on</strong> under <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

representative for <str<strong>on</strong>g>acid</str<strong>on</strong>g>ified atmospheric water in<br />

heavily polluted areas.<br />

Materials and Methods<br />

All reagents used were <str<strong>on</strong>g>of</str<strong>on</strong>g> analytical grade<br />

(Merck). Milli-Q water was used for preparati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all soluti<strong>on</strong>s. Stock soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II) and<br />

<str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> were prepared from MnSO4⋅H2O and<br />

H2C2O4⋅2H2O, respectively. The S(IV) soluti<strong>on</strong>s<br />

were prepared freshly before each run by<br />

dissolving Na2SO3 in water which was<br />

deoxygenated by bubbling high purity arg<strong>on</strong><br />

through <strong>the</strong> Milli-Q water for at least 30 min.<br />

The initial pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soluti<strong>on</strong>s was adjusted with<br />

H2SO4. The source <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen for oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

S(IV) was syn<strong>the</strong>tic air.<br />

Kinetic experiments were c<strong>on</strong>ducted in<br />

a 500 cm 3 glass cylindrical reactor with four<br />

inlet c<strong>on</strong>nectors for: pH electrode, introducing<br />

reagents, <strong>the</strong>rmometer and tefl<strong>on</strong> tube for<br />

sample sipping. The reactor was filled with 450<br />

cm 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> S(IV) soluti<strong>on</strong> <str<strong>on</strong>g>acid</str<strong>on</strong>g>ified to <strong>the</strong><br />

required pH and c<strong>on</strong>taining appropriate amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g>. The reactor was protected from<br />

light and immersed into a <strong>the</strong>rmostat to<br />

guarantee a c<strong>on</strong>stant temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 ± 1 o C.<br />

The air was introduced at <strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> reactor<br />

through a ceramal at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 ± 2 dm 3 /h.<br />

Under such c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> gas and liquid phases<br />

were good mixed and <strong>the</strong> reacti<strong>on</strong> took place in<br />

<strong>the</strong> kinetic regime, i.e. <strong>the</strong> global rate <str<strong>on</strong>g>of</str<strong>on</strong>g> S(IV)<br />

oxidati<strong>on</strong> was limited by <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical<br />

reacti<strong>on</strong>, not by <strong>the</strong> diffusi<strong>on</strong>.<br />

To start <strong>the</strong> reacti<strong>on</strong>, <strong>the</strong> air flow was<br />

turned <strong>on</strong> and just after that <strong>the</strong> Mn(II) soluti<strong>on</strong><br />

was injected into <strong>the</strong> reactor. At selected time<br />

intervals <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S(IV) was<br />

measured by UV-VIS (Shimadzu, Model UV-<br />

2101 PC) spectrophotometer equipped with<br />

Sipper 260 (Model L) - using flow cell method.<br />

The sipping time was set to 5 s, and <strong>the</strong> slit<br />

width was set to 2.0 nm. The S(IV)<br />

measurements were carried out at wavelength<br />

203 nm for <strong>the</strong> initial pH 3.5 and 205 nm for <strong>the</strong><br />

initial pH 4.0 and 5.0. The pH measurements<br />

were performed by an Ori<strong>on</strong> pH meter (Model<br />

710A) combined with a glass electrode. The<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II) was determined by<br />

AVANTA PM atomic absorpti<strong>on</strong> spectrometer<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> GBC.<br />

C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments were as<br />

follows: [S(IV)] ≈ 1·10 -3 mol/dm 3 , 1·10 -6 ≤<br />

[Mn(II)] ≤ 1·10 -5 mol/dm 3 , 1·10 -6 ≤ [H2C2O4] ≤<br />

1·10 -4 mol/dm 3 , 3.5 ≤ <strong>the</strong> initial pH ≤ 5.0, T =<br />

298 K.


Results and Discussi<strong>on</strong><br />

Some typical results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> kinetic<br />

measurements are shown in Figure 1 as <strong>the</strong> time<br />

[S(IV)] t/[S(IV)] 0<br />

[S(IV)] t/[S(IV)] 0<br />

[S(IV)] t/[S(IV)] 0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

a)<br />

139<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> [S(IV)]t/[S(IV)]0 ratios, where<br />

[S(IV)]t is <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S(IV) at time t,<br />

and [S(IV)]0 is <strong>the</strong> initial c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S(IV).<br />

0 40 80 120 160 200<br />

time, min.<br />

b)<br />

0 40 80 120 160 200<br />

time, min.<br />

0 40 80 120 160 200<br />

time, min.<br />

Figure 1. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> S(IV) oxidati<strong>on</strong> in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II) at initial pH=4.0 a)<br />

[Mn(II)]≈1⋅10 -6 mol/dm 3 , b) [Mn(II)]≈5⋅10 -6 mol/dm 3 , c) [Mn(II)]≈1⋅10 -5 mol/dm 3 .<br />

c)


140<br />

Based <strong>on</strong> <strong>the</strong> measurement results, <strong>the</strong> kinetic<br />

law parameters for <strong>the</strong> processes studied were<br />

determined. Since <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II)-catalysed<br />

S(IV) oxidati<strong>on</strong> is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen<br />

where kobs is <strong>the</strong> observed rate c<strong>on</strong>stant, and n is<br />

<strong>the</strong> reacti<strong>on</strong> order with respect to S(IV)<br />

c<strong>on</strong>centrati<strong>on</strong>. The observed rate c<strong>on</strong>stant kobs is<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II) and <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g><br />

[H2C2O4]<br />

mol/dm 3<br />

Initial pH = 3.5<br />

d[<br />

S(IV) ]<br />

r ]<br />

dt<br />

c<strong>on</strong>centrati<strong>on</strong> (Huss et al., 1982; C<strong>on</strong>nick and<br />

Zhang, 1996), <strong>the</strong> reacti<strong>on</strong> rate has been<br />

described by <strong>the</strong> equati<strong>on</strong>:<br />

n<br />

= − = kobs<br />

[ S(IV)<br />

(1)<br />

c<strong>on</strong>centrati<strong>on</strong>s as well as <strong>the</strong> initial pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

soluti<strong>on</strong>. The reacti<strong>on</strong> orders and <strong>the</strong> observed<br />

rate c<strong>on</strong>stants determined by <strong>the</strong> standard<br />

integral technique are listed in Tables 1 - 2.<br />

Table 1. Observed rate c<strong>on</strong>stants k1 for <strong>the</strong> Mn(II) catalysed S(IV) oxidati<strong>on</strong><br />

k1, (mol/dm 3 )⋅s -1<br />

Initial pH<br />

[Mn]≈1⋅10 -6<br />

mol/dm 3<br />

[Mn]≈5⋅10 -6<br />

mol/dm 3<br />

[Mn]≈1⋅10 -5<br />

mol/dm 3<br />

3.5 3.904⋅10 -8 1.011⋅10 -7 3.205⋅10 -7<br />

4.0 4.829⋅10 -8 1.306⋅10 -7 3.624⋅10 -7<br />

5.0 5.015⋅10 -8 1.518⋅10 -7 8.772⋅10 -7<br />

Table 2. Observed rate c<strong>on</strong>stants k2 for <strong>the</strong> Mn(II) catalysed S(IV) oxidati<strong>on</strong> in <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g><br />

[Mn] ≈ 1⋅10 -6 mol/dm 3 [Mn] ≈ 5⋅10 -6 mol/dm 3 [Mn] ≈ 1⋅10 -5 mol/dm 3<br />

n k2<br />

(mol/dm 3 ) (1-n) ⋅s -1<br />

n k2<br />

(mol/dm 3 ) (1-n) ⋅s -1<br />

n k2<br />

(mol/dm 3 ) (1-n) ⋅s -1<br />

1⋅10 -6 0 1.365⋅10 -8 0 6.623⋅10 -8 0 1.253⋅10 -7<br />

1⋅10 -5<br />

1⋅10 -4<br />

Initial pH = 4.0<br />

0 1.187⋅10 -8 0 2.733⋅10 -8 0 4.639⋅10 -8<br />

0 8.131⋅10 -9 0 1.422⋅10 -8 0 2.645⋅10 -8<br />

1⋅10 -6 0.05 3.328⋅10 -8 0 9.867⋅10 -8 0.05 2.800⋅10 -7<br />

1⋅10 -5<br />

1⋅10 -4<br />

Initial pH = 5.0<br />

0 1.797⋅10 -8 0 3.950⋅10 -8 0 6.648⋅10 -8<br />

0.1 3.011⋅10 -8 0 1.844⋅10 -8 0.05 5.651⋅10 -8<br />

1⋅10 -6 0.15 1.116⋅10 -7 0.15 3.317⋅10 -7 0 2.335⋅10 -7<br />

1⋅10 -5<br />

1⋅10 -4<br />

0.25 1.819⋅10 -7 0.20 1.956⋅10 -7 0.05 9.650⋅10 -8<br />

0.35 1.926⋅10 -7 0.20 8.613⋅10 -8 0.15 1.890⋅10 -7<br />

The S(IV) oxidati<strong>on</strong> in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II)<br />

i<strong>on</strong>s <strong>on</strong>ly (in <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g>) is zero<br />

order with respect to S(IV) c<strong>on</strong>centrati<strong>on</strong> (n = 0)<br />

over <strong>the</strong> entire studied ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II)<br />

c<strong>on</strong>centrati<strong>on</strong> and <strong>the</strong> initial pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong><br />

soluti<strong>on</strong>. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> observed rate c<strong>on</strong>stant<br />

k1 is dependent <strong>on</strong> <strong>the</strong>se parameters. It increases<br />

from 3.91·10 -8 to 8.89·10 -7 (mol/dm 3 )·s -1 with<br />

increasing Mn(II) c<strong>on</strong>centrati<strong>on</strong> from 1·10 -6 to<br />

1·10 -5 mol/dm 3 and with increasing <strong>the</strong> initial<br />

pH from 3.5 to 5.0 (Table 1). In more detail <strong>the</strong><br />

S(IV) oxidati<strong>on</strong> in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II) i<strong>on</strong>s<br />

al<strong>on</strong>e has been presented in our earlier work<br />

(Wilkosz and Mainka, 2008).


In <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong> rate<br />

deviates from <strong>the</strong> zero-order relati<strong>on</strong> at higher<br />

initial pH values. This tendency is barely visible<br />

at <strong>the</strong> initial pH 4.0, but at <strong>the</strong> pH 5.0 it<br />

becomes quite distinct (Table 2). At <strong>the</strong> initial<br />

pH 4.0 <strong>the</strong> maximum increase in <strong>the</strong> reacti<strong>on</strong><br />

order is 0.1, if any, whereas at <strong>the</strong> pH 5.0 it is<br />

0.35. Thus, at <strong>the</strong> initial pH 5.0, <strong>the</strong> reacti<strong>on</strong><br />

order is between 0 and 0.35. The reacti<strong>on</strong> order<br />

increases with increase in <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> and with decrease in Mn(II)<br />

c<strong>on</strong>centrati<strong>on</strong>.<br />

141<br />

Using <strong>the</strong> determined kinetic parameters, <strong>the</strong><br />

S(IV) oxidati<strong>on</strong> rates (r2) were calculated for<br />

[S(IV)] = 1·10 -3 mol/dm 3 and different Mn(II)<br />

and <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s as well as for<br />

different initial pH values (Table 3). These rates<br />

(r2) are evidently smaller than those (r1) in <strong>the</strong><br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> (Table 1, r1 = k1). To<br />

estimate <strong>the</strong> inhibiting effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> <strong>on</strong><br />

<strong>the</strong> S(IV) oxidati<strong>on</strong> catalysed by Mn(II), ratios<br />

r2/r1 (inhibiti<strong>on</strong> factors) were calculated (Table<br />

4).<br />

Table 3. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mn(II) catalysed S(IV) oxidati<strong>on</strong> in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g><br />

[H2C2O4]<br />

mol/dm 3<br />

Initial pH = 3.5<br />

r2, (mol/dm 3 )⋅s -1<br />

[Mn] ≈1⋅10 -6 mol/dm 3 [Mn] ≈ 5⋅10 -6 mol/dm 3 [Mn] ≈ 1⋅10 -5 mol/dm 3<br />

1⋅10 -6 1.365⋅10 -8 6.623⋅10 -8 1.253⋅10 -7<br />

1⋅10 -5 1.187⋅10 -8 2.733⋅10 -8 4.639⋅10 -8<br />

1⋅10 -4 8.131⋅10 -9 1.422⋅10 -8 2.645⋅10 -8<br />

Initial pH = 4.0<br />

1⋅10 -6 2.356⋅10 -8 9.867⋅10 -8 1.982⋅10 -7<br />

1⋅10 -5 1.797⋅10 -8 3.950⋅10 -8 6.648⋅10 -8<br />

1⋅10 -4 1.509⋅10 -8 1.844⋅10 -8 4.001⋅10 -8<br />

Initial pH = 5.0<br />

1⋅10 -6 3.959⋅10 -8 1.177⋅10 -7 2.335⋅10 -7<br />

1⋅10 -5 3.234⋅10 -8 4.914⋅10 -8 6.832⋅10 -8<br />

1⋅10 -4 1.717⋅10 -8 2.163⋅10 -8 6.706⋅10 -8<br />

Table 4. Ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> rates for <strong>the</strong> Mn(II) catalysed S(IV) oxidati<strong>on</strong> in <strong>the</strong> absence and in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g><br />

[H2C2O4]<br />

mol/dm 3<br />

[Mn] ≈ 1⋅10 -6<br />

mol/dm 3<br />

Wi = r1/r2<br />

[Mn] ≈ 5⋅10 -6<br />

mol/dm 3<br />

[Mn] ≈ 1⋅10 -5 mol/dm 3<br />

Initial pH = 3.5<br />

1⋅10 -6 2.86 1.53 2.56<br />

1⋅10 -5 3.29 3.70 6.91<br />

1⋅10 -4 4.80 7.11 12.12<br />

Initial pH = 4.0<br />

1⋅10 -6 2.05 1.32 1.83<br />

1⋅10 -5 2.69 3.31 5.45<br />

1⋅10 -4 3.20 7.08 9.06<br />

Initial pH = 5.0<br />

1⋅10 -6 1.27 1.29 3.76<br />

1⋅10 -5 1.55 3.09 12.84<br />

1⋅10 -4 2.92 7.02 13.08


142<br />

The ratio r2/r1 indicates how many times <strong>the</strong><br />

Mn(II)-catalysed S(IV) oxidati<strong>on</strong> in <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> is slower compared with<br />

<strong>the</strong> Mn(II)-catalysed oxidati<strong>on</strong> in <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this <str<strong>on</strong>g>acid</str<strong>on</strong>g>. The results show that <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> has a<br />

moderate inhibiting effect <strong>on</strong> <strong>the</strong> Mn(II)catalysed<br />

S(IV) oxidati<strong>on</strong>. The ratio r2/r1<br />

changes from 1.27 to 13.08 depending <strong>on</strong> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>acid</str<strong>on</strong>g> and Mn(II) c<strong>on</strong>centrati<strong>on</strong>s as well as <strong>the</strong><br />

initial pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soluti<strong>on</strong>.<br />

At a given Mn(II) c<strong>on</strong>centrati<strong>on</strong> and<br />

initial pH, <strong>the</strong> inhibiting effect increases with<br />

<str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>. The str<strong>on</strong>gest<br />

inhibiting effect was observed at <strong>the</strong> highest<br />

<str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> and Mn(II) c<strong>on</strong>centrati<strong>on</strong>s and at <strong>the</strong><br />

highest initial pH, whereas <strong>the</strong> weakest<br />

inhibiting effect was found at <strong>the</strong> lowest <str<strong>on</strong>g>oxalic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>acid</str<strong>on</strong>g> and Mn(II) c<strong>on</strong>centrati<strong>on</strong>s and at <strong>the</strong><br />

highest initial pH.<br />

At lower Mn(II) c<strong>on</strong>centrati<strong>on</strong>s (1·10 -6<br />

- 5·10 -6 mol/dm 3 ), <strong>the</strong> inhibiti<strong>on</strong> factor decreases<br />

with increase in <strong>the</strong> initial pH. However, at <strong>the</strong><br />

highest c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II) (1·10 -5<br />

mol/dm 3 ) such dependence was not observed -<br />

<strong>the</strong> highest inhibiti<strong>on</strong> factors were found at <strong>the</strong><br />

initial pH 5.0, and <strong>the</strong> lowest <strong>on</strong>es were at <strong>the</strong><br />

initial pH 4.0.<br />

At higher <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s<br />

(1·10 -5 - 1·10 -4 mol/dm 3 ) <strong>the</strong> inhibiting effect<br />

increases with increase in Mn(II) c<strong>on</strong>centrati<strong>on</strong><br />

(at all initial pH values). At <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1·10 -6 mol/dm 3 and <strong>the</strong> initial<br />

pH 5.0 <strong>the</strong> similar dependence was observed,<br />

whereas at <strong>the</strong> lower initial pH <strong>the</strong> inhibiting<br />

effect was <strong>the</strong> weakest at Mn(II) c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 5·10 -6 mol/dm 3 .<br />

The inhibiting effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> <strong>on</strong><br />

<strong>the</strong> Mn(II)-catalysed S(IV) oxidati<strong>on</strong> is also<br />

reported by Podkrajšek et al. (2006). They<br />

found that <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> slows down <strong>the</strong> oxidati<strong>on</strong><br />

about 3-times at pH 4.5, and at pH 3.5 <strong>the</strong><br />

inhibiti<strong>on</strong> is even lower. Our results for similar<br />

Mn(II) and <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s as well as<br />

pH indicate that <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> may have a little<br />

str<strong>on</strong>ger inhibiting effect, which can be<br />

explained in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> difference in <strong>the</strong> o<strong>the</strong>r<br />

experimental parameters. In <strong>the</strong> work <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Podkrajšek et al. (2006), S(IV) c<strong>on</strong>centrati<strong>on</strong><br />

was about 1·10 -4 mol/dm 3 , while in our study it<br />

was about 1·10 -3 mol/dm 3 . Mn(II) and <str<strong>on</strong>g>oxalic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s were similar in both <strong>the</strong><br />

studies. However, our experiments have been<br />

performed in a wider c<strong>on</strong>centrati<strong>on</strong> range,<br />

especially for <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g>. The pH range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

reacti<strong>on</strong> soluti<strong>on</strong>s was similar in both studies,<br />

but in experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> above authors, pH was<br />

maintained c<strong>on</strong>stant during <strong>the</strong> reacti<strong>on</strong> course,<br />

while in ours it was left to change.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

Oxalic <str<strong>on</strong>g>acid</str<strong>on</strong>g> affects <strong>the</strong> Mn(II)-catalysed<br />

S(IV) oxidati<strong>on</strong> changing <strong>the</strong> reacti<strong>on</strong> rate<br />

and in some cases <strong>the</strong> reacti<strong>on</strong> order in<br />

S(IV) c<strong>on</strong>centrati<strong>on</strong>.<br />

Oxalic <str<strong>on</strong>g>acid</str<strong>on</strong>g> has no <str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> reacti<strong>on</strong><br />

order in S(IV) at <strong>the</strong> initial pH 3.5 (n = 0).<br />

A tendency towards <strong>the</strong> change in <strong>the</strong><br />

reacti<strong>on</strong> order begins to be barely visible at<br />

<strong>the</strong> initial pH 4.0 and it becomes quite<br />

distinct at <strong>the</strong> initial pH 5.0.<br />

A change in <strong>the</strong> reacti<strong>on</strong> order is <strong>the</strong> largest<br />

at <strong>the</strong> highest c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g><br />

and at <strong>the</strong> lowest c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn(II).<br />

The reacti<strong>on</strong> order in S(IV) changes from 0<br />

(at <strong>the</strong> initial pH 3.5) to 0.35 (at <strong>the</strong> initial<br />

pH 5, <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1·10 -4<br />

mol/dm 3 , and Mn(II) c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1·10 -6<br />

mol/dm 3 ).<br />

Oxalic <str<strong>on</strong>g>acid</str<strong>on</strong>g> inhibits <strong>the</strong> Mn(II)-catalysed<br />

S(IV) oxidati<strong>on</strong>. The inhibiting effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this <str<strong>on</strong>g>acid</str<strong>on</strong>g> is moderate and depends <strong>on</strong> both<br />

<str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> and Mn(II) c<strong>on</strong>centrati<strong>on</strong>s as<br />

well as <strong>the</strong> initial pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soluti<strong>on</strong>.<br />

Depending <strong>on</strong> <strong>the</strong>se parameters <strong>the</strong> S(IV)<br />

oxidati<strong>on</strong> rate decreases from 1.27 to 13.08<br />

times. The str<strong>on</strong>gest inhibiting effect is<br />

observed at <strong>the</strong> highest <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> and<br />

Mn(II) c<strong>on</strong>centrati<strong>on</strong>s (1·10 -4 and 1·10 -5<br />

mol/dm 3 , respectively) and at <strong>the</strong> highest<br />

initial pH (5.0).<br />

REFERENCES<br />

BERGLUND J., ELDING L J., 1995:<br />

Manganese-catalysed autoxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved<br />

sulphur dioxide in <strong>the</strong> atmospheric aqueous<br />

phase, Atmospheric Envir<strong>on</strong>ment, vol. 29, No<br />

12, pp. 1379−1391.<br />

BERGLUND J., FRONAEUS S., ELDING L.,<br />

1993: Kinetics and mechanism for manganesecatalyzed<br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur(IV) by oxygen in<br />

aqueous soluti<strong>on</strong>, Inorganic Chemistry, vol. 32,<br />

No 21, pp. 4527−4537.<br />

BRANDT C., VAN ELDIK R., 1995:<br />

Transiti<strong>on</strong> metal-catalyzed oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sulfur(IV) oxides. Atmospheric-relevant<br />

processes and mechanisms, Chemical Reviews,<br />

vol. 95, No 1, pp. 119−190.<br />

CHEBBI A., CARLIER P., 1996. Carboxylic<br />

<str<strong>on</strong>g>acid</str<strong>on</strong>g>s in <strong>the</strong> troposphere, occurrence, sources,<br />

and sinks: a review, Atmospheric Envir<strong>on</strong>ment,<br />

vol. 30, No 24, 4233–4249.


CONNICK R., ZHANG Y., 1996: Kinetics and<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HSO by O2.<br />

The manganese(II) catalysed reacti<strong>on</strong>, Inorganic<br />

Chemistry, vol. 35, No 16, pp. 4613–4621.<br />

DEUTSCH F., HOFFMANN P., ORTNER H.,<br />

1997: Analytical characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> manganese<br />

in rainwater and snow samples, Fresenius'<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Analytical Chemistry, vol. 357, No 1,<br />

pp. 105-111.<br />

GRGIĆ I., DOVŽAN A., NOVIČ G., HUDNIK<br />

V., 1995: Aqueous S(IV) oxidati<strong>on</strong> in <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric aerosol particles: effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic ligands <strong>on</strong> Fe-catalyzed oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

S(IV), Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Aerosol Science, vol. 26,<br />

Suppl. 1, S497−S498.<br />

GRGIĆ I., HUDNIK V., BIZJAK M., LEVEC<br />

J., 1991: Aqueous S(IV) oxidati<strong>on</strong> – I. Catalytic<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> some metal i<strong>on</strong>s, Atmospheric<br />

Envir<strong>on</strong>ment, vol. 25A, No 8, pp. 1591-1597.<br />

GRGIĆ I., DOVŽAN A., BERČIČ G.,<br />

HUDNIK V., 1998: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric<br />

organic compounds <strong>on</strong> <strong>the</strong> Fe-catalyzed S(IV)<br />

autoxidati<strong>on</strong> in aqueous soluti<strong>on</strong>, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Atmospheric Chemistry, vol. 29, No 1, pp. 315-<br />

337.<br />

GRGIĆ I., POZNIČ M., 1998: Water soluble<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> and oxalate in atmospheric<br />

aerosols and its effect <strong>on</strong> SO2 oxidati<strong>on</strong>, Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Aerosol Science, vol. 29 Suppl. I, S1029-<br />

S1030.<br />

GRGIĆ I., PODKRAJŠEK B., TURŠIČ J.:<br />

Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> pH and organics <strong>on</strong> autoxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

S(IV) catalysed by manganese; in: Proceedings<br />

from <strong>the</strong> EUROTRAC-2 Symposium 2002,<br />

Transport and Chemical Transformati<strong>on</strong> in <strong>the</strong><br />

Troposphere, ed. Midgeley, P.M., Reu<strong>the</strong>r, M.,<br />

Margraf Verlag, Weikersheim 2002.<br />

GRGIĆ I., POZNIČ M., BIZJAK M., 1999:<br />

S(IV) autoxidati<strong>on</strong> in atmospheric liquid water:<br />

<strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe(II) and <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> oxalate,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Atmospheric Chemistry, vol. 33, No<br />

1, pp. 89-102.<br />

HUANG X.-F., HU M., HE L.-Y., TANG X.-<br />

Y.; 2005: Chemical characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> watersoluble<br />

organic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s in PM2.5 in Beijing,<br />

China, Atmospheric Envir<strong>on</strong>ment, vol. 39, No<br />

16, pp. 2819–2827<br />

HUSS A., JR., LIM P., ECKERT C., 1982:<br />

Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous sulfur dioxide. 2. Highpressure<br />

studies and proposed reacti<strong>on</strong><br />

mechanisms, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry,<br />

vol. 86, No 21, pp. 4229-4233.<br />

−<br />

3<br />

143<br />

KAWAMURA K., KAPLAN I., 1987: Motor<br />

exhaust emissi<strong>on</strong>s as a primary source for<br />

dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s in Los Angels ambient air,<br />

Envir<strong>on</strong>mental Science and Technology, vol. 21,<br />

No 1, pp. 105–110.<br />

KAWAMURA K., IKUSHIMA K., 1993.<br />

Seas<strong>on</strong>al changes in <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s in <strong>the</strong> urban atmosphere,<br />

Envir<strong>on</strong>mental Science and Technology, vol. 27,<br />

No 10, pp. 2227–2235.<br />

KAWAMURA K., KASUKABE H., BARRIE<br />

L., 1996a. Source and reacti<strong>on</strong> pathways <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s, keto<str<strong>on</strong>g>acid</str<strong>on</strong>g>s and dicarb<strong>on</strong>yls in<br />

Arctic aerosols: <strong>on</strong>e year <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s,<br />

Atmospheric Envir<strong>on</strong>ment, vol. 30, No 10-11,<br />

pp. 1709–1722.<br />

KAWAMURA K., STEINBERG S., KAPLAN<br />

I., 1996b: C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ocarboxylic<br />

and dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s and aldehydes in<br />

sou<strong>the</strong>rn California wet precipitati<strong>on</strong>s:<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urban and n<strong>on</strong>urban samples and<br />

compositi<strong>on</strong>al changes during scavenging,<br />

Atmospheric Envir<strong>on</strong>ment, vol. 30, No 7, pp.<br />

1035- 1052.<br />

KERMINEN V.M., OJANEN C., PAKKANEN<br />

T., HILLAMO R., AURELA M.,<br />

MERILÄINEN J., 2000: Low-molecular-weight<br />

dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s in an urban and rural<br />

atmosphere, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Aerosol Science, vol. 31,<br />

No 3, pp. 349–362.<br />

LANGNER J., RODHE H., 1991: A global<br />

three dimensi<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tropospheric<br />

sulfur cycle, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Atmospheric Chemistry,<br />

vol. 13, No 3, pp. 255 – 263.<br />

LÖFLUND M., KASPER-GIEBL A.,<br />

SCHUSTER B., GIEBL H., HITZENBERGER<br />

R., PUXBAUM H., 2002: Formic, acetic,<br />

mal<strong>on</strong>ic and succinic <str<strong>on</strong>g>acid</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s and<br />

<strong>the</strong>ir c<strong>on</strong>tributi<strong>on</strong> to organic carb<strong>on</strong> in cloud<br />

water, Atmospheric Envir<strong>on</strong>ment, vol. 36, No. 9,<br />

pp. 1553-1558.<br />

LU X., WANG L.,. LEI K, HUANG J., ZHAI<br />

Y., 2009: C<strong>on</strong>taminati<strong>on</strong> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> copper,<br />

lead, zinc, manganese and nickel in street dust<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Baoji, NW China, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hazardous<br />

Materials, vol. 161, No. 2-3, pp. 1058–1062.<br />

MANOJ S., MISHRA C., SHARMA M., RANI<br />

A., JAIN R., BANSAL S., GUPTA K., 2000:<br />

Ir<strong>on</strong>, manganese and copper c<strong>on</strong>centrati<strong>on</strong>s in<br />

wet precipitati<strong>on</strong>s and kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxidati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SO2 in rain water at two urban sites, Jaipur<br />

and Kota, in Western India, Atmospheric<br />

Envir<strong>on</strong>ment, vol. 34, No. 26, pp. 4479-4486.


144<br />

MARTIN L., HILL M., TAI A., GOOD T.,<br />

1991: The ir<strong>on</strong> catalyzed oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur(IV)<br />

in aqueous soluti<strong>on</strong>: Differing effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organics at high and low pH, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Geophysical Research, vol. 96, No D2, pp.<br />

3085–3097.<br />

MARTIN L., HILL M., 1987: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

i<strong>on</strong>ic strength <strong>on</strong> <strong>the</strong> manganese catalyzed<br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur (IV), Atmospheric<br />

Envir<strong>on</strong>ment, vol 21, No 10, pp. 2267 – 2270.<br />

MILLET M., WORTHAM H., MIRABEL PH.,<br />

1995: Solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> polyvalent cati<strong>on</strong>s in<br />

fogwater at an urban site in Strasbourg (France),<br />

Atmospheric Envir<strong>on</strong>ment, vol 29, No 19, pp.<br />

2625-2631.<br />

PASIUK-BRONIKOWSKA, W.,<br />

BRONIKOWSKI, T., ULEJCZYK M., 1997:<br />

Solubilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organics in water coupled with<br />

sulphite autoxidati<strong>on</strong>, Water Research vol. 31,<br />

No 7, pp. 1767-1775.<br />

PATEL K., SHUKLA A., TRIPATHI A.,<br />

HOFFMANN P., 2001: Heavy metal<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> in east Madhya<br />

Pradesh <str<strong>on</strong>g>of</str<strong>on</strong>g> India, Water Air Soil Poll, vol. 130,<br />

No 1-4 II, pp. 463-468.<br />

PIAO F., SUN X., LIU S., YAMAUCHI T.,<br />

2008: C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic heavy metals in<br />

ambient particulate matter in an industrial area<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>astern China, Fr<strong>on</strong>tiers <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine in<br />

China, vol. 2, No 2, pp. 207-210.<br />

PODKRAJŠEK B., GRGIĆ I., TURŠIČ J.,<br />

BERČIČ G., 2006: Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric<br />

carboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s <strong>on</strong> <strong>catalytic</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sulfur(IV), Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Atmospheric Chemistry,<br />

vol. 54, No 2, pp. 103–120.<br />

SOUZA S., VASCONCELLOS P.,<br />

CARVALHO L., 1999. Low molecular weight<br />

carboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s in an urban atmosphere: winter<br />

measurements in São Paulo City, Brazil,<br />

Atmospheric Envir<strong>on</strong>ment, vol. 33, No 16,<br />

pp.2563–2574.<br />

WANG G., NIU S., LIU C., WANG L., 2002.<br />

Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s and<br />

aldehydes <str<strong>on</strong>g>of</str<strong>on</strong>g> PM10 and PM2.5 aerosols in<br />

Nanjing, China. Atmospheric Envir<strong>on</strong>ment, vol.<br />

36, No 12, pp. 1941–1950.<br />

WANG Y., ZHUANG G., CHEN S., AN Z.,<br />

ZHENG A., 2007: Characteristics and sources<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> formic, acetic and <str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g>s in PM2.5 and<br />

PM10 aerosols in Beijing, China, Atmospheric<br />

Research, vol. 84, No 2, pp. 169–181.<br />

WILKOSZ I., MAINKA A., 2008: Mn(II)catalysed<br />

S(IV) oxidati<strong>on</strong> and its inhibiti<strong>on</strong> by<br />

acetic <str<strong>on</strong>g>acid</str<strong>on</strong>g> in <str<strong>on</strong>g>acid</str<strong>on</strong>g>ic aqueous soluti<strong>on</strong>s, Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Atmospheric Chemistry, vol. 60, No 1-102,<br />

pp.1 − 17.<br />

WOLF A., DEUTSCH F., HOFFMANN P.,<br />

ORTNER H. M., 2000: The <str<strong>on</strong>g>influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxalate<br />

<strong>on</strong> Fe-catalyzed S(IV) oxidati<strong>on</strong> by oxygen in<br />

aqueous soluti<strong>on</strong>, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Atmospheric<br />

Chemistry, vol. 37, No 2, pp.125-135.<br />

YAO X., FANG M., CHAN C., HO K., LEE S.,<br />

2004. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dicarboxylic <str<strong>on</strong>g>acid</str<strong>on</strong>g>s in<br />

PM2.5 in H<strong>on</strong>g K<strong>on</strong>g, Atmospheric<br />

Envir<strong>on</strong>ment, vol. 38, No 7, pp. 963–970<br />

YANG L., YU L.E.; 2008: Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oxalic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g>, oxalates, mal<strong>on</strong>ic <str<strong>on</strong>g>acid</str<strong>on</strong>g>, and<br />

mal<strong>on</strong>ates in atmospheric particulates,<br />

Envir<strong>on</strong>mental Science and Technology, vol. 42,<br />

No 24, pp. 9268-9275.<br />

ZIAJKA J., PASIUK-BRONIKOWSKA W.<br />

2005: Rate c<strong>on</strong>stants for atmospheric trace<br />

•−<br />

organics scavenging SO 4 in <strong>the</strong> Fe-catalysed<br />

autoxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S(IV), Atmospheric<br />

Envir<strong>on</strong>ment, vol. 39, No 8, pp.1431-1438.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!