21.03.2014 Views

Optical Coatings

Optical Coatings

Optical Coatings

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PERCENT REFLECTANCE<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0 10 20 30 40 50 60 70 80 90<br />

Figure 5.2 External reflection at a glass surface (n = 1.52)<br />

showing s- and p-polarized components<br />

completely polarized (see figure 5.3). This situation occurs when<br />

the reflected and refracted rays are perpendicular to each other<br />

(v 1 + v 2 = 90º ). This leads to the expression for Brewster’s angle, v B:<br />

v 1 = v B = arctan (n 2 /n 1 ).<br />

s-plane<br />

p-plane<br />

ANGLE OF INCIDENCE IN DEGREES<br />

Under these conditions, electric dipole oscillations of the p-<br />

component will be along the direction of propagation and therefore<br />

cannot contribute to the reflected ray. At Brewster’s angle, reflectance<br />

of the s-component is about 15%.<br />

INTERNAL REFLECTION AT A DIELECTRIC BOUNDARY<br />

For light incident from a higher to a lower refractive index<br />

medium, we can apply the results of Fresnel’s laws in exactly the<br />

same way. The angle in the high-index material at which polarization<br />

occurs is smaller by the ratio of the refractive indices in accordance<br />

with Snell’s law. The internal polarizing angle is 33º2l′ for<br />

a refractive index of 1.52, corresponding to the Brewster angle<br />

(56º 39′) in the external medium as shown in figure 5.4.<br />

The angle at which the emerging refracted ray is at grazing incidence<br />

is called the critical angle (see figure 5.5). For an external<br />

medium of air or vacuum (n = 1), the critical angle is given by<br />

vc ( l ) = arc sin ⎛ 1 ⎞<br />

⎜ ⎟<br />

⎝ n( l)<br />

⎠<br />

and depends on the refractive index n(l), which is a function of<br />

wavelength. For all angles of incidence higher than the critical angle,<br />

total internal reflection occurs.<br />

v p<br />

(5.5)<br />

air or vacuum<br />

index n 1<br />

p-polarized<br />

incident ray<br />

isotropic dielectric solid<br />

index n 2<br />

dipole axis<br />

direction<br />

e 1<br />

normal<br />

v 2<br />

v 1<br />

absent p-polarized<br />

reflected ray<br />

refracted ray<br />

dipole radiation<br />

pattern: sin 2 v<br />

p-polarized<br />

refracted ray<br />

Figure 5.3 Brewster’s angle (at this angle, the p-polarized<br />

component is completely absent in the reflected ray)<br />

n air<br />

n glass<br />

v c = critical angle<br />

d<br />

c<br />

b<br />

a<br />

vc<br />

Figure 5.4 Internal reflection at a glass surface (n = 1.52)<br />

showing s- and p-polarized components<br />

PERCENT REFLECTANCE<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Brewster<br />

total reflection<br />

angle<br />

33°<br />

PRODUCT<br />

21'<br />

NUMBER A B<br />

07 PHT 501/07 PHF 501 10 3<br />

07 PHT 503/07 PHF 503 15 5<br />

07 PHT 505/07 PHF 505 20 5<br />

07 PHT 507/07 PHF 507 30 5<br />

07 PHT 509/07 PHF critical 509 angle 40 5<br />

r<br />

07 PHT s<br />

511/07 PHF 41° 5118'<br />

50 5<br />

r p<br />

0 10 20 30 40 50 60 70 80 90<br />

ANGLE OF INCIDENCE IN DEGREES<br />

Figure 5.5 Critical angle (at this angle, the emerging ray is at<br />

grazing incidence)<br />

a<br />

a<br />

b<br />

c<br />

b<br />

d<br />

c<br />

Fundamental Optics Gaussian Beam Optics <strong>Optical</strong> Specifications Material Properties <strong>Optical</strong> <strong>Coatings</strong><br />

Visit Us Online! www.mellesgriot.com 1 5.5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!