10.11.2014 Views

001 Stand Alone Low Voltage - Garney Construction

001 Stand Alone Low Voltage - Garney Construction

001 Stand Alone Low Voltage - Garney Construction

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Garney</strong> <strong>Construction</strong><br />

785 E Warren<br />

Gardner, KS 66030<br />

Phone: 816-278-5950<br />

Fax: 816-278-5931<br />

SUBMITTAL ITEM<br />

NO. 26 29 13.16-<strong>001</strong><br />

PACKAGE NO: BP4 Reyn<br />

TITLE:<br />

PROJECT:<br />

DRAWING:<br />

STATUS:<br />

BIC:<br />

4d <strong>Stand</strong> <strong>Alone</strong> LV Soft Starters<br />

Ward County Pump Station Project<br />

NEW<br />

RC<br />

REQUIRED START:<br />

REQUIRED FINISH:<br />

DAYS HELD: 0<br />

DAYS ELAPSED: 0<br />

DAYS OVERDUE: 0<br />

RECEIVED FROM<br />

RC<br />

SS<br />

SENT TO<br />

FNI<br />

NL<br />

RETURNED BY<br />

FNI NL<br />

FORWARDED TO<br />

RC<br />

SS<br />

Revision<br />

No.<br />

Description / Remarks<br />

Received<br />

Sent<br />

Drawing<br />

Returned Forwarded Status Sepias Prints Date<br />

HeldElapsed<br />

<strong>001</strong> Bid Pkg 4d <strong>Stand</strong> <strong>Alone</strong> LV<br />

Soft Starters<br />

NEW 0 0 0 0<br />

<strong>Garney</strong> <strong>Construction</strong><br />

Ward County Pump Station Project<br />

Submittal No. 26 29 13.16-<strong>001</strong><br />

This submittal has been reviewed and approved with respect to<br />

the contract documents and specification sectionBP4 Reyn<br />

Approval or acceptance of the submittal does not relieve the<br />

vendor of their responsibility to comply with the contract<br />

documents.<br />

Supplier/Sub:<br />

RC<br />

Date: ______________ Reviewed by: _________________<br />

2-28-12<br />

Expedition ®


Project Submittal<br />

Specification Section 201100643171_26 29 13.16<br />

<strong>Stand</strong>alone <strong>Low</strong> <strong>Voltage</strong> Solid State Starters<br />

SSRVS-WPSP1 Pump WPS-P1<br />

SSRVS-WPSP2 Pump WPS-P2<br />

SSRVS-WPSP3 Pump WPS-P3<br />

Sold To:<br />

Reynolds<br />

Dallas, Texas<br />

Project Owner:<br />

Ward County, Texas<br />

Project Name:<br />

Ward County Water Supply Project C-4<br />

Rockwell Automation Order Number:<br />

R1USX00249<br />

Date:<br />

February 2012<br />

Rockwell Automation<br />

Water/ Wastewater


PROJECT SUBMITTAL<br />

Project Owner:<br />

Ward County, Texas<br />

Project Name:<br />

Ward County Water<br />

Supply Project County<br />

Water Supply Project C-4<br />

RA Order Number:<br />

R1USX00249<br />

Specification<br />

Spec. Section<br />

2011006643171<br />

26 29 13.16<br />

<strong>Stand</strong>alone <strong>Low</strong> <strong>Voltage</strong><br />

Solid State Starters<br />

SSRVS-WPSP1 Pump WPS-P1<br />

SSRVS-WPSP2 Pump WPS-P2<br />

SSRVS-WPSP3 Pump WPS-P3<br />

Book 1 of 1<br />

General Information<br />

Equipment Description<br />

Product References<br />

Miscellaneous<br />

Start-Up/Maintenance


Submittal Index<br />

Project Owner: Ward County, TX USA<br />

Project Name: Ward County Water Supply Project C-4<br />

RA Order Number: R1USX00249<br />

Tab 1. General Information<br />

Guarding Against Electrostatic Damage<br />

Lifting Instructions<br />

Recommended Shielded Wire<br />

Safety Guidelines<br />

Wiring & Grounding Guidelines<br />

Tab 2. Equipment Descriptions<br />

VFD Drawings<br />

Title Sheet<br />

General Notes<br />

Wire Classifications<br />

Electrical Drawings<br />

Layout Drawings and Major Components Lists


Tab 3. Product References<br />

Circuit Breakers<br />

Communication Module<br />

Control Transformer<br />

Elapsed Time Meter<br />

Enclosure Cooling Fan<br />

Fuses<br />

HIM Operator Station<br />

Instrument Transformer<br />

Operator Drive Disable<br />

Operator Pilot Lights<br />

Operator Pushbuttons<br />

Operator Selector Switch<br />

Relays<br />

SMC-Flex 150<br />

<strong>Voltage</strong> Transformer<br />

Tab 4. Miscellaneous Information<br />

Factory Test Process<br />

Factory Test Procedure<br />

Spare Parts List<br />

Harmonics Calculations<br />

Tab 5. Start-Up & Maintenance<br />

SMC-Flex Application Guide<br />

Drives Preventative Maintenance<br />

Drives Technical Support<br />

Extended Warranty Information<br />

Services and Support Contact Information


ALLEN-BRADLEY<br />

Guarding Against<br />

Electrostatic Damage<br />

Testing and Maintenance<br />

Introduction<br />

Electrostatic damage (ESD) is a major cause of failures and malfunctions in<br />

today’s sophisticated electrical components and systems.<br />

Some manufacturers of electronic systems may tell you that ESD is not a<br />

problem with their products. This is misleading. All conscientious<br />

manufacturers take anti-static precautions when they design their products.<br />

However, even the best anti-static designs cannot keep ESD from affecting<br />

sophisticated electronic systems, particularly when they are disassembled.<br />

Proper education combined with simple work-related procedures and<br />

precautions can guard against many of the effects of ESD. This data sheet<br />

explains the causes of ESD, and how you can guard against its effects.<br />

Data Sheet Contents<br />

This data sheet provides the following information:<br />

Table 1.A<br />

Data Sheet Organization<br />

Section<br />

Practices that Guard Against ESD 2<br />

Creating a Static-safe Work Area 2<br />

Wearing a Wrist Strap 3<br />

Handling Sensitive Components Correctly 4<br />

Common Electrostatic <strong>Voltage</strong>s at Work 5<br />

Sensitivity of Components to ESD 5<br />

Hidden Effect of Electrostatic Damage 6<br />

What Causes Electrostatic Damage? 6<br />

Damage Due to Discharge 6<br />

Damage Due to induction 7<br />

Damage Due to Polarization 8<br />

Page


Practices that Guard<br />

against ESD<br />

There are three things you can do to guard against electrostatic damage:<br />

• create a static-safe work area<br />

• handle sensitive components correctly<br />

• wear a wrist strap that grounds you during work.<br />

A<br />

WARNING:<br />

T<br />

a<br />

To avoid shock or personal injury from<br />

accidental contact with line voltage, the ground lead of the<br />

wrist strap must provide a high resistance, a minimum 1<br />

Mohm, path to ground.<br />

Creating a Static-safe<br />

Work Area<br />

An important aspect of guarding against ESD is creating a static-safe work<br />

area. This includes:<br />

covering a work bench with a conductive surface that is grounded<br />

covering the floor of the work area with a conductive material that is<br />

grounded<br />

removing nonconductive materials from the work area such as:<br />

- plastics<br />

- nylon<br />

- styrofoam<br />

- cellophane<br />

grounding yourself by touching a conductive surface before handling<br />

static-sensitive components<br />

being careful with loose parts of clothing such as sleeves, ties, and scarfs,<br />

which can easily carry a charge<br />

being careful not to touch the backplane connector or connector pins of the<br />

system<br />

being careful not to touch other circuit components in a module when you<br />

configure or replace internal components in a module


Wearing a Wrist Strap<br />

The most important aspect of guarding against ESD is wearing a wrist strap<br />

that connects you to ground in a static safe work area. A wrist strap usually<br />

consists of:<br />

elastic wrist strap with snap fastener<br />

molded ground lead with snap and banana plug - has a built-in 1 Mohm<br />

resistor in series to guard against hazardous electrical shock caused by<br />

accidental contact with line voltage<br />

alligator clip - for connection with the ground lead and with ground<br />

You should always wear and use a wrist strap in normal work activities around<br />

sensitive components:<br />

Put the wrist strap on before beginning work.<br />

Make sure the wrist strap fits snugly.<br />

Make sure the ground lead of the wrist strap is assembled properly and<br />

connected securely to ground each time you use it.<br />

Take off the wrist strap as the last thing you do before leaving the work area.<br />

Figure 1<br />

Wrist Strap<br />

Elastic Wrist Strap<br />

Alligator Clip<br />

Banana Plug


Handling Sensitive<br />

Components Correctly<br />

The last important aspect of guarding against ESD is to always store and carry<br />

components and modules in static-shielding containers that guard against the<br />

effect of electric fields.<br />

Remove components and modules from static shielding packages only at a<br />

static-safe work area. Modules are only protected when they are completely in<br />

a static-shielding bag. Using the bag to hold the module does not protect the<br />

module.<br />

You should use correct handling procedures even with modules that are being<br />

returned for repair. This protects the good components for rework.<br />

Common Electrostatic<br />

<strong>Voltage</strong>s at Work<br />

You need to build up only 3,500 volts to feel the effects of ESD. only 4.500<br />

volts to hear them, and only 5,000 volts to see a spark. The normal movements<br />

of someone around a work bench can generate up to 6,000 volts. The charge<br />

that builds up on someone who walks across a nylon carpet in dry air can reach<br />

35,000 volts. Potentials as high as 56,000 volts can be measured when a roll of<br />

plain polythylene is unwound. Potentials of more common work situations<br />

range up to 18,000 volts.<br />

Table 1 .B<br />

Common Electrostatic <strong>Voltage</strong>s<br />

Situation<br />

Person walking on carpet<br />

-humid day<br />

-dry day<br />

Person walking on vinyl floor<br />

-humid day<br />

-dry day<br />

Person in padded chair<br />

Styrofoam coffee cup<br />

Plastic solder sipper<br />

Plastic or scotch tape<br />

Vinyl covered notebook<br />

<strong>Voltage</strong><br />

2,000<br />

35,000<br />

400<br />

12,000<br />

up to 18,000<br />

up to 5,000<br />

up to 8,000 at tip<br />

up to 5,000<br />

up to 8.000<br />

4


Sensitivity of Components<br />

of ESD<br />

Many of today’s electronic components are sensitive to electrostatic voltage as<br />

low as 30 volts and current as low as 0.<strong>001</strong> amps, far less than you can feel,<br />

hear, or see.<br />

Table 1.C<br />

Component Sensitivity to ESD<br />

Electrostatic <strong>Voltage</strong><br />

Device Type<br />

To Degrade<br />

To Destroy<br />

VMOS<br />

MOSFET<br />

GaAsFET<br />

EPROM<br />

JFET<br />

OP AMP<br />

CMOS<br />

Schottky Diodes<br />

Film Resistors (thick, thin)<br />

Bipolar Transistors<br />

ECL (board level)<br />

SCR<br />

Schottky TTL<br />

30 1,800<br />

100 200<br />

100 300<br />

100 -<br />

140 7,000<br />

190 2,500<br />

250 3,000<br />

300 2,500<br />

300 2,500<br />

380 7,000<br />

500 1,500<br />

680 1,000<br />

1,000 2,500<br />

Hidden Effect of<br />

Electrostatic Damage<br />

ESD immediately destroys sensitive devices in only 10% of most ESD<br />

incidents. It degrades performance in the remaining 90%. Only a quarter of the<br />

voltage required to destroy the component is needed to degrade its<br />

performance<br />

A device that is merely degraded in performance may pass all normal<br />

diagnostic tests. However, it may fail intermittently as temperature, vibration,<br />

and load on the device vary. Ultimately, the device may fail prematurely: days,<br />

weeks, or even months after the ESD incident that degraded it.<br />

If you have some minimal static control procedures, you may only experience a<br />

device failure rate of 0.5%. But, if there are:<br />

• 10 devices per board = 5% defective boards<br />

. 10 boards per system = 40% defective systems<br />

This points out the need to follow rigorous static control procedures at all times<br />

when handling and working with static-sensitive devices and modules.


What Causes<br />

Electrostatic Damage?<br />

Electrostatic damage is caused by the effects of an electric field that surrounds<br />

all charged objects. The electric field can damage sensitive components by:<br />

discharge - the charge associated with the field is suddenly grounded and the<br />

movement of the charge creates currents in the device.<br />

induction - the electric field moves in relation to the device and generates a<br />

current in the device.<br />

polarization - the electric field remains stationary and polarizes the device.<br />

Subsequent handling and grounding first charges then discharges the device.<br />

Electric fields are invisible, and exist around all charged materials. They can<br />

generate currents in conductors simply by moving near them. The size of the<br />

current depends on the strength of the field and the speed of movement.<br />

Electric fields can polarize sensitive devices. Subsequent handling can cause<br />

charging and discharging of the device.<br />

Damage Due to Discharge<br />

The surfaces of nonconductive materials develop equal and opposite charges<br />

when they come in contact, move against each other, then separate quickly. An<br />

electric field surrounds a nonconductive material once it is charged.<br />

We normally develop charge on our bodies and clothing as we move. When we<br />

walk on carpet, our feet rub on then separate from the carpet, which can give us<br />

a charge very quickly.<br />

When we approach a conductor, like a door knob or one of today’s sensitive<br />

electronic devices, the air between our body and the conductor initially acts as<br />

an insulator. At some point, the amount of charge we have built up exceeds the<br />

insulating ability of the air, and a spark jumps to the conductor.<br />

Figure 2<br />

Discharge Damage<br />

The spark introduces currents in the conductor. These currents could destroy a<br />

sensitive device or degrade performance.<br />

6


Damage Due to Induction<br />

A conductor that moves in a magnetic field generates an electric current. This<br />

is the basic principle of a generator: induction. The principle is the same if the<br />

magnetic field moves and the conductor is at rest. The electric field is similar to<br />

the magnetic field in its ability to generate a current.<br />

Walking across a carpet, building up charge, and approaching a sensitive device<br />

causes your electric field to move across the conductors of the device. The<br />

stronger your electric field, and faster your approach, the more likely you are to<br />

induce damaging currents.<br />

Figure 3<br />

lnduction Damage<br />

Charged hand<br />

Damage Due to Polarization<br />

If the electric field and a sensitive device remain stationary, but close to each<br />

other, a polarization effect may occur.<br />

A good example of polarization is a styrofoam coffee cup placed next to a chip.<br />

The cup is a nonconductor that is easily charged by handling, or even by simple<br />

movement in the air. Polarization causes the electrons on the chip, which are<br />

negative, to be attracted to the cup, which is positively charged. At this point<br />

the chip is not charged. It is polarized.<br />

Figure 4<br />

Uncharged Polarized Chip


If we pick up the chip, it becomes negatively charged as free electrons flow<br />

from our hand to the chip. If we then place the chip on a grounded surface, it<br />

discharges. The discharge currents can degrade or destroy the chip.<br />

Figure 1.1<br />

Charged Polarized Chip<br />

+ +<br />

+<br />

Q<br />

m5 ALLEN-BRADLEY<br />

mw<br />

A ROCKWELL INTERNATIONAL COMPANY<br />

With offices in major cities worldwide.<br />

A subsidiary of Rockwell International one of the world's largest technology companies,<br />

Allen-Bradley meets today's automation challenges with over 85 years of practical plant<br />

floor experience. More than 12.000 employees throughout the world design, manufacture<br />

and apply a wide range of control and automation products and supporting services to help<br />

our customers continuously improve quality, productivity and time to market These<br />

products and services not only control individual machines, but also integrate the<br />

manufacturing process while providing access to vital plant floor data that can be used to<br />

support decision-making throughout the enterprise.<br />

WORLD<br />

EUROPE/MIDDLE<br />

HEADQUARTERS<br />

EAST/<br />

Allen-Bradley<br />

AFRICA<br />

1201 South Second Street HEADQUARTERS<br />

Milwaukee, WI 53204 Allen-Bndley Europe<br />

USA<br />

B.V.<br />

Tel: (1) 414 382-2000 Amsterdamseweg 15<br />

Telex: 43 11 016<br />

1422 AC Uithoom<br />

Fax: (1) 414 382-4444 The Netherlands<br />

Tel: (31) 2975/43500<br />

Telex: (844) 18042<br />

Fax: (31) 2975/60222<br />

Publication 8000-4.5.2 -May. 1988<br />

Supercedes April, 1987<br />

ASIA/PACIFIC<br />

HEADQUARTERS<br />

Allen-Bradley (Hong Kong)<br />

Limited<br />

Room 1006. Block B, Sea View<br />

Estate<br />

2-8 Watson Road<br />

Hong Kong<br />

Tel: (852) 887-4788<br />

Telex: (780) 64347<br />

Fax: (852)510-9436<br />

CANADA<br />

LATIN AMERICA<br />

HEADQUARTERS<br />

HEADQUARTERS<br />

Allen-Bradley Canada Allen-Bradley<br />

Limited<br />

1201 South Second<br />

135 Dundas street Street<br />

Cambridge. Ontario N1R Milwaukee, WI 53204<br />

5X1<br />

USA<br />

Canada Tel: (1) 414 382-2000<br />

Tel: (1) 519 623-1810 Telex: 43 11 016<br />

Fax: (1) 519 623-8930 Fax: (1) 414 382-2400


Recommended Shielded Wire<br />

Document Update<br />

Reference<br />

AC Drive User Manuals, Power Wiring section.<br />

Acceptable Cable Types<br />

Shielded/Armored Cable<br />

Shielded cable contains all of the general benefits of multi-conductor cable with the added benefit of a copper braided shield that can contain<br />

much of the noise generated by a typical AC Drive. Strong consideration for shielded cable should be given in installations with sensitive<br />

equipment such as weigh scales, capacitive proximity switches and other devices that may be affected by electrical noise in the distribution<br />

system. Applications with large numbers of drives in a similar location, imposed EMC regulations or a high degree of communications /<br />

networking are also good candidates for shielded cable.<br />

Shielded cable may also help reduce shaft voltage and induced bearing currents for some applications. In addition, the increased impedance<br />

of shielded cable may help extend the distance that the motor can be located from the drive without the addition of motor protective devices<br />

such as terminator networks. Refer to Reflected Wave in “Wiring and Grounding Guidelines for PWM AC Drives,” publication DRIVES-<br />

IN<strong>001</strong>A-EN-P.<br />

Consideration should be given to all of the general specifications dictated by the environment of the installation, including temperature,<br />

flexibility, moisture characteristics and chemical resistance. In addition, a braided shield should be included and be specified by the cable<br />

manufacturer as having coverage of at least 75%. An additional foil shield can greatly improve noise containment.<br />

A good example of recommended cable is Belden® 295xx (xx determines gauge). This cable has four (4) XLPE insulated conductors with a<br />

100% coverage foil and an 85% coverage copper braided shield (with drain wire) surrounded by a PVC jacket.<br />

Other types of shielded cable are available, but the selection of these types may limit the allowable cable length. Particularly, some of the<br />

newer cables twist 4 conductors of THHN wire and wrap them tightly with a foil shield. This construction can greatly increase the cable<br />

charging current required and reduce the overall drive performance. Unless specified in the individual distance tables as tested with the drive,<br />

these cables are not recommended and their performance against the lead length limits supplied is not known.<br />

Recommended Shielded Wire<br />

Location Rating/Type Description<br />

<strong>Stand</strong>ard (Option 1) 600V, 90°C (194°F) XHHW2/RHW-2<br />

• Four tinned copper conductors with XLPE insulation.<br />

Anixter B209500-B209507,<br />

• Copper braid/aluminum foil combination shield and tinned copper drain wire.<br />

Belden 29501-29507, or equivalent<br />

• PVC jacket.<br />

<strong>Stand</strong>ard (Option 2)<br />

Class I & II; Division I & II<br />

Tray rated 600V, 90°C (194°F) RHH/RHW-2<br />

Anixter OLF-7xxxxx or equivalent<br />

Tray rated 600V, 90°C (194°F) RHH/RHW-2<br />

Anixter 7V-7xxxx-3G or equivalent<br />

• Three tinned copper conductors with XLPE insulation.<br />

• 5 mil single helical copper tape (25% overlap min.) with three bare copper grounds in<br />

contact with shield.<br />

• PVC jacket.<br />

• Three bare copper conductors with XLPE insulation and impervious corrugated<br />

continuously welded aluminum armor.<br />

• Black sunlight resistant PVC jacket overall.<br />

• Three copper grounds on #10 AWG and smaller.<br />

Publication RA-DU<strong>001</strong>A-EN-P – September 2002<br />

Copyright © 2002 Rockwell Automation, Inc. All rights reserved. Printed in USA.


Safety Guidelines for the<br />

Application, Installation, and<br />

Maintenance of Solid-State<br />

Control<br />

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2<br />

NEMA <strong>Stand</strong>ard Text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2<br />

Section 1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3<br />

Section 2 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4<br />

2.1 Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

2.2 Electrical Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

2.3 Off-State Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5<br />

2.4 Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

2.5 Rate of Rise-<strong>Voltage</strong> or Current (DV/DT or DI/DT) . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

2.6 Surge Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

2.7 Transient Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Section 3 Application Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8<br />

3.1 General Application Precautions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

3.2 Circuit Isolation Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

3.3 Special Application Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

3.4 Planning Electrical Noise Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

3.5 Countering the Effects of Off-State Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

3.6 Avoiding Adverse Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

3.7 The Need for Education – Knowledge Leads to Safety . . . . . . . . . . . . . . . . . . . . . . 19<br />

Section 4 Installation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

4.1 Installation and Wiring Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

4.2 Enclosures (Cooling and Ventilating) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

4.3 Special Handling of Electrostatic Sensitive Devices . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

4.4 Compatibility of Devices with Applied <strong>Voltage</strong>s and Frequencies . . . . . . . . . . . . . . 22<br />

4.5 Testing Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

4.6 Startup Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

Section 5 Preventive Maintenance and Repair Guidelines . . . . . . . . . . . . . . . 24<br />

5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

5.2 Preventive Maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

5.3 Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

5.4 Safety Recommendations for Maintenance Personnel. . . . . . . . . . . . . . . . . . . . . . . . 26


2<br />

Foreword<br />

This Rockwell Automation publication is formatted to harmonize with<br />

NEMA <strong>Stand</strong>ards Publication No. ICS 1.1-1987, also titled Safety<br />

Guidelines for the Application, Installation and Maintenance of<br />

Solid-State Control. The text of the NEMA <strong>Stand</strong>ard has been<br />

reprinted verbatim, with NEMA’s permission, in the left column,<br />

captioned “NEMA <strong>Stand</strong>ard Text”. The right column, captioned<br />

“Explanatory Information”, contains Rockwell Automation<br />

comments and explanation. The comments provide supplementary<br />

information to the NEMA <strong>Stand</strong>ard to help the reader better<br />

understand the characteristics of industrial equipment employing<br />

solid-state technology. Rockwell Automation is solely responsible for<br />

the explanatory comments, which are not part of the NEMA<br />

<strong>Stand</strong>ard.<br />

NEMA <strong>Stand</strong>ards Publication No. ICS 1.1-1984 (R1988, R1993, R1998,<br />

R2003) is available from the National Electrical Manufacturers<br />

Association, 2101 L Street, N.W., Washington, D.C. 20037.<br />

Comments<br />

Rockwell Automation comments on each section of the NEMA<br />

publication will appear after that section, with a “Comments” heading.<br />

NEMA <strong>Stand</strong>ard Text<br />

Scope<br />

This <strong>Stand</strong>ards Publication is intended to provide general guidelines for<br />

the application, installation, and maintenance of solid-state control in the<br />

form of individual devices or packaged assemblies incorporating solidstate<br />

components. The emphasis of the guidelines is personnel safety.<br />

Applicable NEMA standards and product related instructions should be<br />

carefully followed.<br />

Comments: Scope<br />

The scope of this Allen-Bradley Publication (SGI-1.1) is identical to the<br />

scope of NEMA <strong>Stand</strong>ards Publication No. ICS 1.1, quoted above.<br />

Publication SGI-1.1 - April 2009


Section 1: Definitions 3<br />

Section 1: Definitions<br />

Electrical Noise – Unwanted electrical energy that has the possibility of<br />

producing undesirable effects in the control, its circuits and system.<br />

Electrical noise includes Electromagnetic Interference (EMI) and Radio<br />

Frequency Interference (RFI).<br />

Electrical Noise Immunity – The extent to which the control is protected<br />

from a stated electrical noise.<br />

Electromagnetic Interference (EMI) – Electromagnetic disturbance that<br />

manifests itself in performance degradation, malfunction, or failure of<br />

electronic equipment. (IEC)<br />

Off-State Current – The current that flows in a solid-state device in the<br />

off-state condition.<br />

Off-State Condition – The conditions of a solid-state device when no control<br />

signal is applied.<br />

On-State Condition – The condition of a solid-state device when conducting.<br />

Radio Frequency Interference (RFI) – RFI is used interchangeably with EMI.<br />

EMI is a later definition that includes the entire electromagnetic spectrum,<br />

whereas RFI is more restricted to the radiofrequency band, generally<br />

considered to be between 10k and 10G Hz. (IEC)<br />

Surge Current – A current exceeding the steady state current for a short<br />

time duration, normally described by its peak amplitude and time duration.<br />

Transient Overvoltage – The peak voltage in excess of steady state voltage for<br />

a short time during the transient conditions (e.g., resulting from the<br />

operations of a switching device).<br />

Publication SGI-1.1 - August 2009


4 Section 2: General Authorized Engineering Information<br />

Section 2: General Authorized Engineering<br />

Information<br />

General<br />

(Sections 2 through 5 are classified as Authorized Engineering Information<br />

11-15-1984.) Solid-state and electro-mechanical controls can perform similar<br />

control functions, but there are certain unique characteristics of solid-state<br />

controls which must be understood.<br />

In the application, installation and maintenance of solid-state control, special<br />

consideration should be given to the characteristics described in 2.1 through<br />

2.7.<br />

General: Comments<br />

Solid-state devices provide many advantages such as high speed, small<br />

size, and the ability to handle extremely complex functions. However, they<br />

differ from electromechanical devices in the basic operating characteristics<br />

and sensitivity to environmental influences. In addition, solid-state devices<br />

exhibit different failure mechanisms when overstressed.<br />

The comments which follow are intended to provide additional<br />

information to help the reader better understand the operating<br />

characteristics, environmental limitations, and failure modes of industrial<br />

equipment that incorporates solid-state technology. Those who select,<br />

install, use, and service such equipment should apply that knowledge to<br />

make appropriate decisions that will optimize the performance and safety<br />

of their applications.<br />

2.1 Ambient Temperature Care should be taken not to exceed the ambient temperature range specified by<br />

the manufacturer.<br />

Comments: 2.1 — Ambient Temperature<br />

Temperature of the air immediately surrounding an open solid-state device<br />

is the ambient temperature -which must be considered. When equipment<br />

is installed in an enclosure, the enclosure internal air temperature is the<br />

ambient temperature which must be considered. Solid-state component<br />

manufacturers usually publish the component failure rate for an ambient<br />

temperature of 40º C. A useful rule of thumb is: The failure rate of<br />

solid-state components doubles for every 40º C rise in temperature.<br />

This rule of exponential increases in failure rate is a strong incentive for<br />

the user to keep the ambient temperature as low as possible.<br />

See also sections 3.6.1, and 3.6.2.<br />

2.2 Electrical Noise Performance of solid-state controls can be affected by electrical noise. In<br />

general, complete systems are designed with a degree of noise immunity. Noise<br />

immunity can be determined through tests such as described in 3.4.2.<br />

Manufacturer recommended installation practices for reducing the effect of<br />

noise should be followed.<br />

Publication SGI-1.1 - August 2009


Section 2: General Authorized Engineering Information 5<br />

Comments: 2.2 —Electrical Noise<br />

Solid-state devices are generally more susceptible to electrical noise<br />

interference than their electromechanical counterparts. The reasons are<br />

straightforward. The operating mechanism for electromechanical devices<br />

requires a deliberate input of electrical energy that can be converted into a<br />

sustained mechanical force that is strong enough to close the hard<br />

contacts and maintain the closure for the duration on the ON cycle. Most<br />

random electrical noise signals lack the energy content to produce that<br />

magnitude of mechanical force. The operating mechanism for solid-state<br />

devices is totally different. The deliberate electric energy input is used to<br />

disturb the placement of the electrically charged particles within the<br />

molecular structure. This molecular displacement changes the electrical<br />

characteristic from that of an insulator to that of a conductor or vice versa.<br />

The required energy level is very low. In addition, a sustained signal is not<br />

required for components such as SCRs, triacs, and logic gates because<br />

these types are self-latching. Most random electrical noise signals are of<br />

the momentary low-energy type. Since it is difficult to separate deliberate<br />

signals from random noise, the devices are thereby more susceptible. This<br />

is cause for special concern regarding the electrical environment and<br />

possible need for noise rejection measures. See sections 3.4, 3.4.1, 3.4.2,<br />

and 3.4.3.<br />

2.3 Off-State Current Solid-state controls generally exhibit a small amount of current flow when in<br />

the off-state condition. Precautions must be exercised to ensure proper circuit<br />

performance and personnel safety. The value of this current is available from<br />

the manufacturer.<br />

Comments: 2.3— Off-State Current<br />

Off-state current is also referred to as leakage current in the literature. A<br />

solid-state “contact” is a solid block of material that is switched from ON<br />

to OFF by a change internally from a conductor to an insulator. Since a<br />

perfect insulator does not exist, there is always some leakage current<br />

present as long as voltage is applied to the device. The presence of leakage<br />

current indicates that OFF does not mean OPEN. The reader is warned<br />

that simply turning a solid-state device OFF does not remove the<br />

possibility of a shock hazard. Solid-state and electromechanical devices<br />

used as inputs to solid-state controls must be compatible with the<br />

solid-state equipment with which they are used. Solid-state devices have<br />

inherent off-state current, as explained in the preceding paragraph.<br />

Electromechanical devices may also permit a small amount of current to<br />

flow when the device is in the “open” position due to poor insulation<br />

characteristics, which may be subject to further deterioration with age and<br />

use. An example is a switching device that employs a carbon brush in<br />

contact with an insulating segment of the switch in the off-state, such that<br />

a conductive film may be deposited by the brush on the insulating<br />

segment. Any input device that could produce an erroneous signal of<br />

sufficient magnitude to cause a malfunction of the solid-state equipment,<br />

such as unintended turn ON or inability to turn OFF, should not be used<br />

with solid-state controls.<br />

See also section 3.5.2.<br />

Publication SGI-1.1 - August 2009


6 Section 2: General Authorized Engineering Information<br />

2.4 Polarity Incorrect polarity of applied voltages may damage solid-state controls. The<br />

correct polarity of solid-state controls should be observed.<br />

Comments: 2.4 —Polarity<br />

In some instances incorrect polarity can cause damage to controlled<br />

equipment or unintended actuation of outputs. This could result in<br />

personal injury due to an unexpected response of the controlled<br />

equipment or process.<br />

See also section 3.3.2.<br />

2.5 Rate of Rise-<strong>Voltage</strong> or<br />

Current<br />

(DV/DT or DI/DT) Solid-state controls can be affected by rapid changes of<br />

voltage or current if the rate of rise (DV/DT and/or DI/DT) is greater than<br />

the maximum permissible value specified by the manufacturer.<br />

Comments: 2.5 —Rate of Rise-<strong>Voltage</strong> or Current (DV/DT or DI/DT)<br />

The DV/DT rating specifies the maximum rate at which voltage may be<br />

applied to the power terminals of a solid-state device. <strong>Voltage</strong> applied at a<br />

rate exceeding the DV/DT rating can switch the device ON without an<br />

input signal being applied. Electrical noise with high frequency content is<br />

one source of rapidly changing voltage.<br />

Another common source of high DV/DT is an inductive load that is<br />

switched off faster than the stored energy can be dissipated. This fast<br />

switching produces “inductive kick voltages” that might exceed the<br />

DV/DT limit.<br />

The DI/DT rating specifies the maximum rate at which current flow may<br />

be increased when switching from OFF to ON. Currents that increase<br />

faster than the DI/DT rating cause localized hot spots due to current<br />

crowding in a small area until the entire cross section can become<br />

conductive.<br />

This results in gradual degradation of the device. Subsequent operations<br />

generally result in over dissipation and short circuit failures even under<br />

normal load conditions. The most common situations for high DI/DT are<br />

low load impedance, or capacitance loads.<br />

Manufacturers of solid-state equipment usually include internal means to<br />

limit the rate of rise of voltage and current. Nonetheless, the user should<br />

be aware that additional external means may be necessary to adjust to the<br />

specific conditions of some installations.<br />

2.6 Surge Current Current of a value greater than that specified by the manufacturer can affect<br />

the solid-state control. Current limiting means may be required.<br />

Comments: 2.6 — Surge Current<br />

The manufacturer may specify allowable surge current. Common practice<br />

is to specify the peak sinusoidal current that can be allowed for one-half<br />

cycle at line frequency. The intent behind this practice is to give the user<br />

Publication SGI-1.1 - August 2009


Section 2: General Authorized Engineering Information 7<br />

information for selecting an appropriate fuse or other current limiting<br />

means.<br />

Applications that require short-term overcurrent capability (e.g., motor<br />

starting) must observe the manufacturers restrictions on the number of<br />

times the device can be subjected to overcurrent in a specified time<br />

interval. The user should be aware that this specification may vary<br />

depending upon whether the conditions call for hot starts or cold starts.<br />

Hot start means that the solid-state component is at or near the normal<br />

operating temperature due to previous operation history when the<br />

overcurrent condition occurs. Cold start means that the solid-state<br />

component is at or below 40º C when the overcurrent condition occurs.<br />

2.7 Transient Overvoltage Solid-state controls may be affected by transient overvoltages which are in<br />

excess of those specified by the manufacturer. <strong>Voltage</strong> limiting means should<br />

be considered and may be required.<br />

Comments: 2.7 — Transient Overvoltage<br />

Solid-state devices are especially sensitive to excessive voltage. When the<br />

peak voltage rating is exceeded, even for a fraction of a second, permanent<br />

damage can occur. The crystalline structure of the device may be<br />

irretrievably altered and the device may no longer be able to turn OFF.<br />

The external symptom of this situation is exactly the same as that of an<br />

electromechanical device with welded contacts.<br />

Minimum Holding Current<br />

Another characteristic of concern is the minimum holding current<br />

requirement for triacs and SCRs. When the load current falls below the<br />

minimum value, typically 25...100 mA, the triac or SCR ceases conduction<br />

and passes only off-state current until again triggered. Thus, it may not be<br />

possible for the circuit to turn on or conduct full-load current for very<br />

light loads. In these instances, a load resistor called a bleeder resistor may<br />

be connected to the output to provide the minimum load. In some<br />

equipment special circuitry is provided to overcome this problem.<br />

Publication SGI-1.1 - August 2009


8 Section 3: Application Guidelines<br />

Section 3: Application Guidelines<br />

3.1 General Application<br />

Precautions<br />

3.1.1 Circuit Considerations<br />

The consequences of some malfunctions such as those caused by shorted<br />

output devices, alteration, loss of memory, or failure of isolation within<br />

components or logic devices, require that the user be concerned with the<br />

safety of personnel and the protection of the electronics.<br />

It is recommended that circuits which the user considers to be critical to<br />

personnel safety, such as “end of travel” circuits and “emergency stop”<br />

circuits, should directly control their appropriate functions through an<br />

electromechanical device independent of the solid-state logic. Such circuits<br />

should initiate the stop function through deenergization rather than<br />

energization of the control device. This provides a means of circuit control<br />

that is independent of system failure.<br />

Comments: 3.1.1 —Circuit Considerations<br />

The predominant failure mode of solid-state devices is in the ON<br />

condition. This failure mode and the other types of failures mentioned in<br />

the NEMA <strong>Stand</strong>ard are the reasons for the precautions that are<br />

recommended for safetycritical circuits on systems that control potentially<br />

hazardous processes or machine operations. Alternatively, if solid-state is<br />

used for circuits designated as safety-critical, the circuits should be<br />

designed to provide safety equivalent to the recommended “hard-wired”<br />

electromechanical circuits. In such cases consideration should be given to<br />

techniques such as: redundancy, feedback loops, diagnostics, interlocking<br />

and read-only memory for critical parts of a program.<br />

De-energization rather than energization of the control device should be<br />

specified for STOP circuits so broken wires or corroded contacts do not<br />

go undetected. E-stop push buttons or pull cords should be installed at<br />

appropriate locations on a machine to provide operators with a rapid and<br />

convenient means for removing power from devices that control machine<br />

motion.<br />

3.1.2 Power Up/Power Down Considerations<br />

Consideration should be given to system design so that unsafe operation does<br />

not occur under these conditions since solid-state outputs may operate<br />

erratically for a short period of time after applying or removing power.<br />

Comments: 3.1.2 Power Up/Power Down Considerations<br />

Response of a system during power up/power down can create hazards<br />

not encountered during normal operation. Erratic operation of solid-state<br />

outputs due to the changing voltage of DC power supplies during start up<br />

is one example. To avoid unpredictable outputs, many power supplies<br />

incorporate a power turn-on time delay circuit. This allows power supply<br />

output voltage to reach its specified value before being applied to<br />

Publication SGI-1.1 - August 2009


Section 3: Application Guidelines 9<br />

solid-state logic and output circuits. If this protection is not part of the DC<br />

supplies for a system, a timing circuit external to the power supply can be<br />

added to delay the application of power to output devices.<br />

Removing all power or losing all power from a system simultaneously<br />

usually does not result in a hazard since the power for machine operation<br />

is also being removed. However, when power other than electrical power<br />

is being controlled, a power interlock circuit may be required to protect<br />

against unexpected machine motion. Power interlocks with automatic<br />

shutdown should be included if erratic or hazardous operation results due<br />

to loss of one power supply in a system with multiple supplies.<br />

Automatic power supply sequencing should be employed in systems that<br />

require the application or removal of power in a specific sequence. If the<br />

STOP or E-STOP sequence normally employs dynamic braking,<br />

alternative safeguards, such as automatic mechanical braking upon loss of<br />

power, should be provided if coasting stops are hazardous.<br />

If hazardous operation can result from unexpected restoration of power<br />

during a power outage or a system shutdown, the system should include a<br />

feature that requires a deliberate operator action before power is reapplied<br />

to the system.<br />

3.1.3 Redundancy and Monitoring<br />

When solid-state devices are being used to control operations, which the user<br />

determines to be critical, it is strongly recommended that redundancy and<br />

some form of checking be included in the system. Monitoring circuits should<br />

check that actual machine or process operation is identical to controller<br />

commands; and in the event of failure in the machine, process, or the<br />

monitoring system, the monitoring circuits should initiate a safe shutdown<br />

sequence.<br />

Comments: 3.1.3 Redundancy and Monitoring<br />

The normal operating mechanism for solid-state components depends<br />

upon a deliberate electrical signal input altering the internal molecular<br />

structure of the semiconductor material.<br />

Unfortunately, spurious input signals may also alter the internal molecular<br />

structure without any means for external detection that this has happened.<br />

Therefore, solid-state devices are subject to malfunction due to random<br />

causes that are undetectable. Because of this, redundancy and monitoring<br />

are the most highly recommended means for counteracting this situation.<br />

When redundancy is used, dissimilar components not susceptible to<br />

common cause failure should be used for the redundant elements if a<br />

common cause could produce simultaneous failure of those elements in a<br />

dangerous mode.<br />

A “safe shutdown sequence” can involve much more than disconnecting<br />

electrical power for some machinery and processes. Examples include<br />

machines with high inertia and hazardous access points, processes that<br />

become unstable at shutdown unless a specific sequence is followed, etc.<br />

The control system for such applications should be configured to deal<br />

Publication SGI-1.1 - August 2009


10 Section 3: Application Guidelines<br />

with the particular hazard(s) through use of special features such as<br />

automatic transfer of control functions to redundant devices in the event<br />

of failure of primary controls; alarm circuits and diagnostics to signal and<br />

identify failures that require repair in order to maintain redundancy;<br />

emergency power sources with automatic transfer upon loss of primary<br />

power source; or other appropriate features.<br />

3.1.4 Overcurrent Protection<br />

To protect triacs and transistors from shorted loads, a closely matched short<br />

circuit protective device (SCPD) is often incorporated. These SCPDs should<br />

be replaced only with devices recommended by the manufacturer.<br />

Comments: 3.1.4 —Overcurrent Protection<br />

Even a closely matched short-circuit protective device (SCPD) will<br />

generally protect a solid-state device only against shorted loads, an<br />

accidental short to ground, or a phase-to-phase short. Depending upon<br />

the application, additional protective measures may be needed to protect<br />

the solid-state devices against small to moderate overcurrents. Consult<br />

with the manufacturer if necessary.<br />

3.1.5 Overvoltage Protection<br />

To protect triacs, SCRs and transistors from overvoltages, it may be advisable<br />

to consider incorporating peak voltage clamping devices such as varistors,<br />

zener diodes, or snubber networks in circuits incorporating these devices.<br />

Comments: 3.1.5 — Overvoltage Protection<br />

See section 2.7.<br />

3.2 Circuit Isolation<br />

Requirements<br />

3.2.1 Separating <strong>Voltage</strong>s<br />

Solid-state logic uses low level voltage (e.g., less than 32V DC) circuits. In<br />

contrast, the inputs and outputs are often high level (e.g., 120V AC) voltages.<br />

Proper design of the interface protects against an unwanted interaction<br />

between the low level and high level circuits; such an interaction can result in a<br />

failure of the low voltage circuitry. This is potentially dangerous. An input and<br />

output circuitry incorporating effective isolation techniques (which may<br />

include limiting impedance or Class 2 supplied circuitry) should be selected.<br />

Comments: 3.2.1 —Separating <strong>Voltage</strong>s<br />

For specifications of Class 2 circuitry, refer to Article 725 of the National<br />

Electrical Code, NFPA 70.<br />

Publication SGI-1.1 - August 2009


Section 3: Application Guidelines 11<br />

3.2.2 Isolation Techniques<br />

The most important function of isolation components is to separate high level<br />

circuits from low level circuits in order to protect against the transfer of a fault<br />

from one level to the other.<br />

Isolation transformers, pulse transformers, reed relays, or optical couplers are<br />

typical means to transmit low level logic signals to power devices in the high<br />

level circuit. Isolation impedance means also are used to transmit logic signals<br />

to power devices.<br />

Comments: 3.2.2 — Isolation Techniques<br />

In addition to utilizing the various components discussed in the left column,<br />

specific wiring techniques should be applied to assure separation of power<br />

circuit wires from logic circuit wires. If at all possible, logic wires should be run<br />

in a conduit that is segregated for that purpose only. Multiple conductors in a<br />

shielded cable is an appropriate substitute for separate conduits. Another<br />

common practice is to run the logic signals through twisted pairs of wire.<br />

Regardless of the circumstances, wires carrying logic signals should never be<br />

wrapped in the same bundle with wires that carry power signals.<br />

3.3 Special Application<br />

Considerations<br />

3.3.1 Converting Ladder Diagrams<br />

Converting a ladder diagram originally designed for electromechanical systems<br />

to one using solid-state control must account for the differences between<br />

electromechanical and solid-state devices. Simply replacing each contact in the<br />

ladder diagram with a corresponding solid-state "contact" will not always<br />

produce the desired logic functions or fault detection and response. For<br />

example, in electromechanical systems, a relay having a mechanically linked<br />

normally open (N.O.) and normally closed (N.C.) contact can be wired to<br />

check itself. Solid-state components do not have a mutually exclusive<br />

N.O.-N.C. arrangement. However, external circuitry can be employed to<br />

sample the input and "contact" state and compare to determine if the system is<br />

functioning properly.<br />

Comments: 3.3.1 —Converting Ladder Diagrams<br />

The example cited in this section of the NEMA <strong>Stand</strong>ard illustrates only<br />

one of a number of reasons for special care in converting an<br />

electromechanical (relay) ladder diagram to a programmable controller<br />

(PC) program. Some other basic considerations are:<br />

A PC program is an instruction to the PC’s central processing unit to allow<br />

it to perform the logic functions and sequences for a particular<br />

application. Typically, the PC’s logic level components are electrically<br />

isolated from the actual input, sensor and actuator devices, as contrasted<br />

with electromechanical controls which usually include contacts and coils<br />

of the actual plant floor devices in the control schematic. Therefore a PC<br />

program normally functions as open-loop control, unless feedback loops<br />

from the plant floor devices to separate inputs of the PC are provided and<br />

programmed to cause corrective action if inconsistencies are detected.<br />

Publication SGI-1.1 - August 2009


12 Section 3: Application Guidelines<br />

Programmers of PC systems should evaluate functional and safety<br />

implications of all control paths and provide appropriate feedback<br />

arrangements as needed.<br />

In an electromechanical implementation of a ladder diagram, power is<br />

available to every rung at all times, so that the logic of the various rungs is<br />

executed continually and simultaneously, limited of course by the<br />

operating delays inherent in the electromechanical devices. By contrast, a<br />

typical PC examines the status of input devices (I/O scan), then executes<br />

the user program in sequence (program scan), then changes outputs<br />

accordingly in the next I/O scan. Therefore, the sequential order of a PC<br />

program can be of more importance and significance than in its<br />

electromechanical counterpart, particularly when special instructions such<br />

as "immediate" inputs or outputs are programmed as some PC’s permit.<br />

Also, differences in response characteristics of components, differences in<br />

system architecture, and the scan time associates with a PC system can<br />

combine to change timing characteristics of a circuit significantly. In<br />

particular, care must be taken in handling momentary or rapidly changing<br />

inputs to a PC system which might be missed between scans. Simple<br />

transfer of a ladder diagram without consideration of these characteristics<br />

of PC’s may produce unintended and possibly hazardous results.<br />

Programmers should consult the user's manual in order to understand the<br />

characteristics of the particular PC being used, and provide appropriate<br />

features in the program to accommodate them.<br />

Another concern is the operating mode of devices connected to input<br />

terminals. Input signals must be arranged so loss of signal due to a broken<br />

wire or corroded contact does not go undetected and create a hazardous<br />

condition. In particular, stop functions should be initiated by opening a<br />

normally closed external circuit rather than closing a normally open circuit<br />

even though the system is capable of being programmed to accept either<br />

type of input.<br />

The considerations described in this section apply to the creation of "new"<br />

programs as well as conversion of existing ladder diagrams.<br />

3.3.2 Polarity and Phase Sequence<br />

Input power and control signals should be applied with polarity and phase<br />

sequence as specified by the manufacturer. Solid-state devices can be damaged<br />

by the application of reverse polarity or incorrect phase sequence.<br />

Comments: 3.3.2 —Polarity and Phase Sequence<br />

Additionally, incorrect polarity or phase sequence connection may cause<br />

erratic response by solid-state controls, with potential hazards to<br />

personnel. Frequently, such a system contains a detection circuit that<br />

illuminates an indicator when incorrect phase sequence is applied. Phase<br />

sequence may be corrected by interchanging any two system input power<br />

leads. It is advisable to check rotation of motors whenever input power<br />

leads are disconnected and reconnected in a system.<br />

Publication SGI-1.1 - August 2009


Section 3: Application Guidelines 13<br />

3.4 Planning Electrical<br />

Noise Rejection<br />

The low energy levels of solid-state controls may cause them to be vulnerable<br />

to electrical noise. This should be considered in the planning stages.<br />

3.4.1 Assessing Electrical Environment<br />

Sources of noise are those pieces of equipment that have large, fast changing<br />

voltages or currents when they are energized or de-energized, such as motor<br />

starters, welding equipment, SCR type, adjustable speed devices and other<br />

inductive devices. These devices, as well as the more common control relays<br />

and their associated wiring, all have the capability of inducing serious current<br />

and voltage transients on their respective power lines. It is these transients<br />

which nearby solid-state controls must withstand and for which noise<br />

immunity should be provided.<br />

An examination of the proposed installation site of the solid-state control<br />

should identify equipment that could contaminate power lines. All power lines<br />

that will be tapped by the proposed solid-state control should be examined for<br />

the presence, severity, and frequency of noise occurrences. If found, system<br />

plans should provide for the control of such noise.<br />

Comments: 3.4.1 — Assessing Electrical Environment<br />

Noise can also occur in the form of electromagnetic radiation, or due to<br />

improper grounding practices. Section C.3.4.3 explains these forms of<br />

noise and precautionary measures that should be taken for protection<br />

against them.<br />

In many instances a system may begin to malfunction some time after it<br />

has been installed and is working properly. This may be due to recent<br />

installation of new equipment capable of inducing noise into presently<br />

operating systems. Thus, it is not sufficient to merely evaluate a system at<br />

the time of installation. Periodic rechecks should be made, especially as<br />

other equipment is moved, modified, or newly installed. When installing a<br />

solid-state system, it is wise to assume various noise sources exist and<br />

install the system to guard against possible interference.<br />

3.4.2 Selecting Devices to Provide Noise Immunity<br />

Installation planning is not complete without examination of the noise<br />

immunity characteristics of the system devices under consideration. Results of<br />

tests to determine relative immunity to electrical noise may be requested from<br />

the manufacturer. Two such standardized tests are the ANSI (C37.90a-1974)<br />

Surge Withstand Capability Test and the NEMA (ICS.1-1983) noise test<br />

referred to as The Showering Arc Test. These are applied where direct<br />

connection of solid-state control to other electromechanical control circuits is<br />

intended. Circuits involving analog regulating systems or high speed logic are<br />

generally more sensitive to electrical noise; therefore, isolation and separation<br />

of these circuits is more critical.<br />

Further information on electrical noise and evaluation of the severity of noise<br />

may be found in ANSI/IEEE Publication No. 518-1982.<br />

Publication SGI-1.1 - August 2009


14 Section 3: Application Guidelines<br />

Where severe power line transients are anticipated or noted, appropriate filters<br />

such as commercially available line filter, isolation transformers, or voltage<br />

limiting varistors, should be considered.<br />

All inductive components associated with the system should be examined for<br />

the need for noise suppression.<br />

Comments: 3.4.2 —Selecting Devices to Provide Noise Immunity<br />

Inductive devices are capable of generating high voltage transients when<br />

switched off. In addition to possibly causing damage to solid-state devices<br />

by exceeding the semiconductor voltage rating, the high voltage transient<br />

can be coupled to other portions of a system where it appears as noise.<br />

Fortunately, it is fairly easy to limit the effects of this type of noise with<br />

some form of suppression device. When necessary, in addition to<br />

suppression devices often provided in solid-state equipment, an external<br />

suppressor should be connected as close as possible to the source of the<br />

transient for maximum attenuation.<br />

NOTE: A surge suppressor increases drop-out time of an<br />

electromechanical device.<br />

3.4.3 Design of Wiring for Maximum Protection<br />

Once the installation site and power conductors have been examined, the<br />

system wiring plans that will provide noise suppression should be considered.<br />

Conducted noise enters solid-state control at the points where the control is<br />

connected to input lines, output lines, and power supply wires.<br />

Input circuits are the circuits most vulnerable to noise. Noise may be<br />

introduced capacitatively through wire to wire proximity, or magnetically from<br />

nearby lines carrying large currents. In most installations, signal lines and<br />

power lines should be separate. Further, signal lines should be appropriately<br />

routed and shielded according to manufacturer's recommendations.<br />

When planning system layout, care must be given to appropriate grounding<br />

practice. Because design differences may call for different grounding, the<br />

control manufacturer's recommendations should be followed.<br />

C.3.4.3 Design of Wiring for Maximum Protection<br />

Noise can also occur in the form of electromagnetic radiation. Examples<br />

include radio frequency (RF) energy emanating from portable transceivers<br />

(walkie-talkie) and fixed station transmitters of various types. Close<br />

coupling is not required; the various lines entering the system act as<br />

receiving antennas. Tests described in 3.4.2 may not be sufficient to<br />

demonstrate noise immunity to radio frequency signals. Variations in<br />

building construction and equipment installation make it impossible for<br />

equipment manufacturers to perform meaningful tests of radio frequency<br />

sources. RF fields are affected by concentrating masses of metal such as<br />

steel beams, piping, conduit, metal enclosures, and equipment used in<br />

production such as fork lift trucks and products being transported on<br />

conveyors.<br />

Publication SGI-1.1 - August 2009


Section 3: Application Guidelines 15<br />

If the installation site will be subjected to this type of noise, thorough<br />

testing should be performed to assure that the solid-state system has<br />

sufficient noise immunity for the expected levels of radio frequency<br />

energy. Corrective measures should be taken if necessary. These include<br />

shielding of solid-state circuits and/or connected wiring and the<br />

establishment of restrictions to provide safe operating distances between<br />

the solid-state equipment and the RF sources.<br />

Grounding practices in industry are frequently misunderstood and often<br />

ignored. Poor grounding can lead to many problems in solid-state systems.<br />

Intentionally grounding one circuit conductor of any electrical supply<br />

system is widely accepted and is generally required by electrical codes.<br />

However, the non-current carrying parts of a system which enclose<br />

equipment and conductors must also be grounded. In addition to<br />

complying with various codes and standards, proper equipment grounding<br />

achieves several desirable objectives:<br />

1. It reduces the potential difference between conductive surfaces to<br />

minimize electric shock hazard exposure for personnel.<br />

2. It provides a path for passage of fault current to operate protective<br />

devices in the supply circuit.<br />

3. It attenuates the electrical noise and transients that can reach enclosed<br />

equipment and also reduces the electrical noise which the equipment<br />

can contribute to its surroundings.<br />

3.5 Countering the Effects of<br />

Off-State Current<br />

3.5.1 Off-State Current<br />

Solid-state components, such as triacs, transistors, and thyristors, inherently<br />

have in the off-state a small current flow called "off-state current".<br />

Off-state current may also be contributed by devices used to protect these<br />

components, such as RC snubbers.<br />

Comments: 3.5.1 — Off-State Current<br />

See section 2.3.<br />

3.5.2 Off-State Current Precautions<br />

Off-state currents in a device in the off-state may present a hazard of electrical<br />

shock and the device should be disconnected from the power source before<br />

working on the circuit or load.<br />

Comments: 3.5.2 — Off-State Current Precautions<br />

The off-state current of a power switching device such as a solid-state<br />

motor controller can be lethal. Simply switching off power via a stop push<br />

button in a control circuit is not a sufficient precaution, since off-state<br />

current will continue to flow through solid-state devices which remain<br />

connected to the supply. Good practice requires disconnection of all<br />

Publication SGI-1.1 - August 2009


16 Section 3: Application Guidelines<br />

power from equipment before working on or near exposed circuit parts.<br />

(See NFPA 70E, Part II.)<br />

It should not be assumed that a shock hazard does not exist simply<br />

because a solid-state circuit operates at low voltage levels. <strong>Stand</strong>ing on a<br />

wet floor or working in a damp location can lower a person's body<br />

impedance to the extent that off-state current from low voltage also<br />

presents an electrical shock hazard.<br />

If it is necessary to work on energized equipment, the guidelines detailed<br />

in section 5.2 for Preventive Maintenance should be followed. In addition<br />

to the specific procedures for personnel safety, care is needed when<br />

making measurements in energized systems. First, there is a possibility of<br />

damage to delicate instruments due to off-state current. Second, the<br />

off-state current can lead to false conclusions when using sensitive<br />

instruments to check for "contact continuity."<br />

Precautions should be taken to prevent the off-state current of an output<br />

device which is in the off-state from energizing an input device.<br />

When a device (solid-state or electromechanical) that can produce a<br />

leakage current in the off-state is used to provide the input to a solid-state<br />

control, the precautions explained in section C.2.3 apply.<br />

3.6 Avoiding Adverse<br />

Environmental Conditions<br />

3.6.1 Temperature<br />

Solid-state devices should only be operated within the temperature ranges<br />

specified by the manufacturer. Because such devices generate heat, care should<br />

be taken to see that the ambient temperature at the device does not exceed the<br />

temperature range specified by the manufacturer.<br />

The main source of heat in a solid-state system is the energy dissipated in the<br />

power devices. Since the life of the equipment can be increased by reducing<br />

operating temperature, it is important to observe the manufacturer's<br />

"maximum/minimum ambient temperature" guidelines, where ambient refers<br />

to the temperature of the air providing the cooling. The solid-state equipment<br />

must be allowed to stabilize to within the manufacturer's recommended<br />

operating temperature range before energizing control functions.<br />

When evaluating a system design, other sources of heat in the enclosure which<br />

might raise the ambient temperature should not be overlooked. For example,<br />

power supplies, transformers, radiated heat, sunlight, furnaces, incandescent<br />

lamps, and so forth should be evaluated.<br />

In instances where a system will have to exist in a very hot ambient<br />

environment, special cooling methods may have to be employed. Techniques<br />

that are employed include cooling fans (with adequate filtering), vortex coolers,<br />

heat exchanges, and air conditioned rooms.<br />

Over-temperature sensors are recommended for systems where special cooling<br />

is employed. Use of air conditioning should include means for prevention of<br />

condensing moisture.<br />

Publication SGI-1.1 - August 2009


Section 3: Application Guidelines 17<br />

Comments: 3.6.1 — Temperature<br />

Operation above the maximum rated temperature will usually result in<br />

many failures in a short time. Nuisance type malfunctions can also be<br />

encountered as a result of elevated ambient temperature. These<br />

malfunctions, when they occur, are usually temporary and normal<br />

operation resumes when temperatures are lowered.<br />

Some solid-state devices temporarily cease to function when ambient<br />

temperature is below their minimum rated operating temperature.<br />

Operation in cold environments should be avoided or heaters should be<br />

installed in the equipment enclosures to bring the system up to the<br />

minimum specified operating temperature before applying power to the<br />

system.<br />

Air circulating in a non-ventilated enclosure with equipment operating will<br />

be at a higher temperature than the room in which it is installed. A<br />

temperature differential of 10...20º C can be expected in a typical industrial<br />

installation. See also section 2.1.<br />

3.6.2 Contaminants<br />

Moisture, corrosive gases and liquids, and conductive dust can all have adverse<br />

effects on a system that is not adequately protected against atmospheric<br />

contaminants.<br />

If these contaminants are allowed to collect on printed circuit boards, bridging<br />

between the conductors may result in malfunction of the circuit. This could<br />

lead to noisy, erratic control operation, or at worst, a permanent malfunction.<br />

A thick coating of dust could also prevent adequate cooling on the board or<br />

heat sink, causing malfunction. A dust coating on heat sinks reduces their<br />

thermal efficiency.<br />

Preventive measures include a specially conditioned room or a properly<br />

specified enclosure for the system.<br />

Comments: 3.6.2 — Contaminants<br />

Modules for solid-state systems usually consist of electronic devices<br />

mounted on printed circuit boards with relatively close spacing between<br />

conductors. Moisture in the form of humidity is one of the atmospheric<br />

contaminants which can cause failure. If moisture is allowed to condense<br />

on a printed circuit board, the board metallizations could "electroplate"<br />

across the conductor spacings when voltage is applied. In low-impedance<br />

circuits, this conductive path would immediately burn open, then reform<br />

to be burned open again. This action can lead to erratic operation. In high<br />

impedance circuits, a short circuit may appear resulting in a permanent<br />

malfunction. Specifications for equipment often include a relative<br />

humidity exposure limit, but appropriate precautions should be taken to<br />

prevent condensation. Failures due to moisture are often accelerated in the<br />

presence of corrosive gases or vapors. These increase the conductivity of<br />

the moisture layer allowing electromigration to occur more rapidly and at<br />

lower potentials.<br />

Publication SGI-1.1 - August 2009


18 Section 3: Application Guidelines<br />

3.6.3 Shock and Vibration<br />

Excessive shock or vibration may cause damage to solid-state equipment.<br />

Special mounting provisions may be required to minimize damage.<br />

Comments: 3.6.3 — Shock and Vibration<br />

Solid-state systems usually have good resistance to shock and vibration<br />

since they contain no moving parts. However, at relatively high levels of<br />

shock or vibration, circuit boards may disengage from mating connectors<br />

if not restrained sufficiently. Circuit boards can crack, components can<br />

come out of sockets or component leads can break loose from a solder<br />

connection to the board. Mounting position is usually of little significance<br />

to solid-state devices except in instances where air flow is required for<br />

cooling.<br />

3.7 The Need for Education -<br />

Knowledge Leads to Safety<br />

Planning for an effective solid-state circuit requires enough knowledge to<br />

make basic decisions that will render the system safe as well as effective.<br />

Everyone who works with a solid-state control should be educated in its<br />

capabilities and limitations. This includes in-plant installers, operators,<br />

service personnel, and system designers.<br />

Publication SGI-1.1 - August 2009


Section 4: Installation Guidelines 19<br />

Section 4: Installation Guidelines<br />

4.1 Installation and Wiring<br />

Practice<br />

4.1.1<br />

Proper installation and field wiring practices are of prime importance to the<br />

application of solid-state controls. Proper wiring practice will minimize the<br />

influence of electrical noise, which may cause malfunction of equipment.<br />

User and installers should familiarize themselves with the follow installation<br />

and wiring instructions in addition to requirements of all applicable codes,<br />

laws, and standards. The manufacturer of the device or component in question<br />

should be consulted whenever conditions arise that are not covered by the<br />

manufacturer's instructions.<br />

4.1.2<br />

Electrical noise is a very important consideration in any installation of<br />

solid-state control. While wiring practices may vary from situation to situation,<br />

the following are basic to minimizing electrical noise:<br />

1. Sufficient physical separation should be maintained between electrical<br />

noise sources and sensitive equipment to assure that the noise will not<br />

cause malfunctioning or unintended actuation of the control.<br />

2. Physical separation should be maintained between sensitive signal wires<br />

and electrical power and control conductors. This separation can be<br />

accomplished by conduits, wiring trays, or as otherwise recommended<br />

by the manufacturer.<br />

3. Twisted-pair wiring should be used in critical signal circuits and noise<br />

producing circuits to minimize magnetic interference.<br />

4. Shielded wire should be used to reduce the magnitude of the noise<br />

coupled into the low level circuit by electrostatic or magnetic coupling.<br />

5. Provisions of the 1984 National Electrical Code ➊ with respect to<br />

grounding should be followed. Additional grounding precautions may<br />

be required to minimize electrical noise. These precautions generally<br />

deal with ground loop currents arising from multiple ground paths. The<br />

manufacturer's recommendations should be followed.<br />

➊ Available from National Fire Protection Association, Batterymarch Park, Quincy, MA 02269<br />

Comments: 4.1.2<br />

A great deal of effort goes into the design of solid-state equipment to<br />

achieve a reasonable degree of noise immunity. Filters, shielding, and<br />

circuit design are all used. It is, however, impossible to design equipment<br />

which is impervious to every form of noise found in the industrial setting.<br />

Publication SGI-1.1 - August 2009


20 Section 4: Installation Guidelines<br />

When installing a system using solid-state technology it is wise to assume<br />

that electrical noise exists and install the equipment in accordance with the<br />

recommended guidelines to minimize problems.<br />

See also section 3.4.1.<br />

4.2 Enclosures Suitable enclosures and control of the maximum operating temperature, both<br />

of which are environmental variables, may be needed to prevent malfunction<br />

of solid state control.<br />

The manufacturer's recommendations should be followed for the selection of<br />

enclosures, ventilation, air filtering (if required), and ambient temperature.<br />

These recommendations may vary from installation to installation, even within<br />

the same facility.<br />

Comments: 4.2 — Enclosures (Cooling and Ventilating)<br />

NEMA <strong>Stand</strong>ards Publication No. 250 (please reference the latest edition),<br />

classifies enclosures by type number and specifies their design test<br />

requirements.Suitable enclosures and control of the maximum operating<br />

temperature, both of which are environmental variables, may be needed to<br />

prevent malfunctions of solid-state control.<br />

See also sections 2.1 and 3.6.1.<br />

4.3 Special Handling of<br />

Electrostatic Sensitive<br />

Devices<br />

Some devices may be damaged by electrostatic charges. These devices are<br />

identified and should be handled in the special manner specified by the<br />

manufacturer.<br />

NOTE: Plastic wrapping material used to ship these devices may be<br />

conductive and should not be used as insulating material.<br />

Comments: 4.3 — Special Handling of Electrostatic Sensitive Devices<br />

Many problems due to electrostatic discharge (ESD) occur due to<br />

handling of modules during installation or maintenance.<br />

In addition to specific guidelines provided by an equipment supplier, the<br />

following general guidelines can help reduce damage due to ESD.<br />

1. Use a grounding bracelet if possible to minimize charge build-up on<br />

personnel.<br />

2. Handle a module by the edges without touching components or printed<br />

circuit paths.<br />

3. Store modules with ESD sensitive components in the conductive<br />

packaging used for shipping the modules. Also, use conductive<br />

packaging when returning static sensitive modules for repair.<br />

Publication SGI-1.1 - August 2009


Section 4: Installation Guidelines 21<br />

4.4 Compatibility of Devices<br />

with Applied <strong>Voltage</strong>s and<br />

Frequencies<br />

Prior to energization, users and installers should verify that the applied voltage<br />

and frequency agree with the rated voltage and frequency specified by the<br />

manufacturer.<br />

NOTE: Incorrect voltage or frequency may cause a malfunction of, or<br />

damage to the control.<br />

4.5 Testing Precautions When testing solid-state control, the procedures equipment should be<br />

electrically equivalent to that recommended by the manufacturer for the test<br />

procedure. A low impedance voltage tester should not be used.<br />

High voltage insulation tests and dielectric tests should never be used to test<br />

solid-state devices. If high voltage insulation of field wiring is required,<br />

solid-state devices should be disconnected. Ohmmeters should only be used<br />

when and as recommended by the equipment manufacturer.<br />

Testing equipment should be grounded; if it is not, special precautions should<br />

be taken.<br />

Comments: 4.5 —Testing Precautions<br />

Make-do test devices such as incandescent lamps or neon lamps should<br />

not be used for checking voltages in solid-state systems. Incandescent<br />

lamps have low impedance; the low impedance of these devices can<br />

effectively change a voltage level from a logic "1" condition to a logic "0"<br />

condition when attempting to make a measurement. Unexpected machine<br />

motion can result if an output to a controlled device is energized as a<br />

result. Neon lamps do not respond to voltages typically used in logic<br />

circuits (e.g., 32V DC or less). Use of a neon lamp tester could lead to false<br />

conclusions about the voltage level present in a circuit.<br />

High input impedance meters are required to obtain accurate voltage<br />

measurements in high impedance circuits. Unless otherwise specified by<br />

the manufacturer, a meter with an input impedance of ten megohms or<br />

greater is recommended for making voltage measurements. The meter<br />

must also have sufficient sensitivity to measure logic level voltages; some<br />

meters do not respond to low voltages.<br />

4.6 Startup Procedures Checks and tests prior to startup and startup procedures recommended by the<br />

manufacturer should be followed.<br />

Comments: 4.6 —Startup Procedures<br />

Startup procedures can provide important benefits for safety with new<br />

installation, or after modifications or repairs. A "dry run" under controlled<br />

conditions can verify proper installation and functioning of the control<br />

system before it is turned over to operating personnel.<br />

Many programmable solid-state systems have the capability for simulating<br />

operation in a mode known as "test" mode or "dry run" mode. These<br />

modes allow a user to check a program and correct obvious programming<br />

errors with outputs disabled. Unexpected machine motion and possible<br />

damage to workpieces and equipment is thus avoided. These modes can<br />

also be used to verify proper system operation after a repair.<br />

Publication SGI-1.1 - August 2009


22 Section 4: Installation Guidelines<br />

Many programmable systems provide capability for "force on" and "force<br />

off" of inputs and outputs. Use of these functions can reduce<br />

troubleshooting and maintenance time by enabling personnel to bypass<br />

certain operations without physically operating switches on a machine.<br />

Care must be taken when using "force" functions to avoid exposing<br />

personnel to hazardous machine motions or process operations.<br />

For controllers operating a machine tool or robot, running a part program<br />

at a fraction of the programmed operating speed with a workpiece of soft<br />

material is considered "good practice". This allows an operator to observe<br />

possible interference of tooling with the part and make corrections to the<br />

program. A workpiece of soft material such as wood, plastic, or<br />

machinable wax will minimize risk of tool damage if there is a tool crash<br />

with the workpiece.<br />

Publication SGI-1.1 - August 2009


Section 5 : Preventive Maintenance and Repair Guidelines 23<br />

Section 5 : Preventive Maintenance and<br />

Repair Guidelines<br />

5.1 General A well-planned and executed maintenance program is essential to the<br />

satisfactory operation of solid-state electrical equipment. The kind and<br />

frequency of the maintenance operation will vary with the kind and complexity<br />

of the equipment as well as with the nature of the operating conditions.<br />

Maintenance recommendations of the manufacturer or appropriate product<br />

standards should be followed.<br />

Useful reference publications for setting up a maintenance program are NFPA<br />

70B-1983, Maintenance of Electrical Equipment, and NFPA 70E-1983,<br />

Electrical Safety Requirements for Employee Workplaces.<br />

5.2 Preventive Maintenance The following factors should be considered when formulating a maintenance<br />

program:<br />

1. Maintenance must be performed by qualified personnel familiar with the<br />

construction, operation, and hazards involved with the control.<br />

2. Maintenance should be performed with the control out of operation<br />

and disconnected from all sources of power. If maintenance must be<br />

performed while the control is energized, the safety related practices of<br />

NFPA 70E should be followed.<br />

3. Care should be taken when servicing electrostatic sensitive components.<br />

The manufacturer's recommendations for these components should be<br />

followed.<br />

4. Ventilation passages should be kept open. If the equipment depends<br />

upon auxiliary cooling, e.g., air, water, or oil, periodic inspection (with<br />

filter replacement when necessary) should be made of these systems.<br />

5. The means employed for grounding or insulating the equipment from<br />

ground should be checked to assure its integrity (see 4.5).<br />

6. Accumulations of dust and dirt on all parts, including on semiconductor<br />

heat sinks, should be removed according to the manufacturer's<br />

instructions, if provided; otherwise, the manufacturer should be<br />

consulted. Care must be taken to avoid damaging any delicate<br />

components and to avoid displacing dust, dirt, or debris in a way that<br />

permits it to enter or settle into parts of the control equipment.<br />

Publication SGI-1.1 - August 2009


24 Section 5 : Preventive Maintenance and Repair Guidelines<br />

7. Enclosures should be inspected for evidence of deterioration.<br />

Accumulated dust and dirt should be removed from the top of the<br />

enclosures before opening doors or removing covers.<br />

8. Certain hazardous materials removed as part of maintenance or repair<br />

procedure (e.g., polychlorinated biphenyls (PCBs) found in some liquidfilled<br />

capacitors) must be disposed of as described in Federal regulations.<br />

C.5.2 Preventive Maintenance<br />

Lithium batteries are frequently used for memory backup in solid-state<br />

equipment due to their excellent shelf life and high energy-to-weight ratio.<br />

Lithium is a highly reactive metal that can cause burns if there is contact<br />

with skin. The batteries are sealed so there is seldom a problem of contact<br />

with lithium as long as reasonable care is exercised when handling them.<br />

They should only be used in their intended application and not subjected<br />

to rough handling. When batteries are replaced in equipment, the batteries<br />

removed should be disposed of in accordance with supplier's instructions.<br />

The Department of Transportation has certain regulations that prohibit<br />

shipment of equipment with batteries installed if the batteries contain 0.5<br />

gram or greater of lithium. The batteries must be removed from<br />

equipment and shipped separately in a container approved by the<br />

Department of Transportation. Additional Department of Transportation<br />

restrictions apply to the shipment of lithium batteries.<br />

NEMA <strong>Stand</strong>ards Publication No. ICS 1.3 - 1986, Preventive Maintenance<br />

of Industrial Control and System Equipment, is recommended for<br />

personnel responsible for maintenance of equipment.<br />

5.3 Repair If equipment condition indicates repair or replacement, the manufacturer's<br />

instruction manual should be followed carefully. Diagnostic information<br />

within such a manual should be used to identify the probable source of the<br />

problem, and to formulate a repair plan. The level of field repair<br />

recommended by the manufacturer should be followed.<br />

When solid-state equipment is repaired, it is important that any replacement<br />

part be in accordance with the recommendations of the equipment<br />

manufacturer. Care should be taken to avoid the use of parts which are no<br />

longer compatible with other changes in the equipment. Also, replacement<br />

parts should be inspected for deterioration due to "shelf life" and for signs of<br />

rework or wear which may involve factors critical to safety.<br />

After repair, proper startup procedures should be followed. Special<br />

precautions should be taken to protect personnel from hazards during startup.<br />

Comments: 5.3 — Repair<br />

Follow manufacturer's instructions exactly when replacing power<br />

semiconductors mounted on heatsinks since improper installation may<br />

become the source of further difficulties. Torque semiconductors or bolts<br />

retaining semiconductors to the value specified using a torque wrench.<br />

Publication SGI-1.1 - August 2009


Section 5 : Preventive Maintenance and Repair Guidelines 25<br />

Too much pressure against a heatsink can damage a semiconductor while<br />

too little can restrict the amount of heat transferred from the<br />

semiconductor to the heatsink and result in operation at higher<br />

temperature with decreased reliability.<br />

Exercise care when removing modules from a system during maintenance.<br />

Failed modules are frequently returned to the manufacturer for repair. Any<br />

physical damage sustained during removal may result in more expensive<br />

repair or render the module unrepairable if damage is too great.<br />

Modules with electrostatic sensitive components should be handled by the<br />

edges without touching components or printed circuit conductors. Use<br />

packaging material supplied with the replacement module when shipping<br />

the module to the manufacturer for repair.<br />

When the scope of repairs exceeds the manufacturer's recommendations<br />

for field repair, the module(s) should be returned to the manufacturer for<br />

repair. Doing so will help to ensure that only properly selected<br />

components are used, and that all necessary hardware and firmware<br />

revisions are incorporated into the repair. Failure to make necessary<br />

updates may result in safety, compatibility or performance problems which<br />

may not become apparent for some time after the repaired module has<br />

been placed back in service. When firmware is protected by copyright law,<br />

updates can be provided legally only by the manufacturer or licensee.<br />

See also section 4.3.<br />

5.4 Safety Recommendations<br />

for Maintenance Personnel<br />

All maintenance work should be done by qualified personnel familiar with the<br />

construction, operation, and hazards involved with the equipment. The<br />

appropriate work practices of NFPA 70E should be followed.<br />

Publication SGI-1.1 - August 2009


26 Section 5 : Preventive Maintenance and Repair Guidelines<br />

Publication SGI-1.1 - August 2009


Publication SGI - 1.1 — January 2010<br />

Supercedes Publication SGI - 1.1 — April 1990<br />

Copyright ©2010 Rockwell Automation, Inc. All Rights Reserved. Printed in USA.


Installation Instructions<br />

Wiring and Grounding Guidelines<br />

for Pulse Width Modulated (PWM) AC Drives


Important User Information<br />

Solid-state equipment has operational characteristics differing from those of<br />

electromechanical equipment. Safety Guidelines for the Application, Installation and<br />

Maintenance of Solid State Controls (publication SGI-1.1 available from your local<br />

Rockwell Automation sales office or online at http://www.rockwellautomation.com/<br />

literature/) describes some important differences between solid-state equipment and<br />

hard-wired electromechanical devices. Because of this difference, and also because of<br />

the wide variety of uses for solid-state equipment, all persons responsible for applying<br />

this equipment must satisfy themselves that each intended application of this<br />

equipment is acceptable.<br />

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or<br />

consequential damages resulting from the use or application of this equipment.<br />

The examples and diagrams in this manual are included solely for illustrative<br />

purposes. Because of the many variables and requirements associated with any<br />

particular installation, Rockwell Automation, Inc. cannot assume responsibility or<br />

liability for actual use based on the examples and diagrams.<br />

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of<br />

information, circuits, equipment, or software described in this manual.<br />

Reproduction of the contents of this manual, in whole or in part, without written<br />

permission of Rockwell Automation, Inc., is prohibited.<br />

Throughout this manual, when necessary, we use notes to make you aware of safety<br />

considerations.<br />

!<br />

WARNING: Identifies information about practices or circumstances<br />

that can cause an explosion in a hazardous environment, which may lead<br />

to personal injury or death, property damage, or economic loss.<br />

Important: Identifies information that is critical for successful application and<br />

understanding of the product.<br />

!<br />

ATTENTION: Identifies information about practices or circumstances<br />

that can lead to personal injury or death, property damage, or economic<br />

loss. Attentions help you identify a hazard, avoid a hazard, and<br />

recognize the consequences.<br />

Shock Hazard labels may be located on or inside the equipment (e.g.,<br />

drive or motor) to alert people that dangerous voltage may be present.<br />

Burn Hazard labels may be located on or inside the equipment (e.g.,<br />

drive or motor) to alert people that surfaces may be at dangerous<br />

temperatures.<br />

Allen-Bradley, Rockwell Software, Rockwell Automation, PowerFlex, DriveExplorer, DriveExecutive, DPI, and SCANport are either trademarks or<br />

registered trademarks of Rockwell Automation, Inc.<br />

Trademarks not belonging to Rockwell Automation are property of their respective companies.


Summary of Changes<br />

The information below summarizes the changes to the Wiring and<br />

Grounding Guidelines for Pulse Width Modulated AC Drives, publication<br />

DRIVES-IN<strong>001</strong>, since the last release.<br />

Manual Updates<br />

Change<br />

Page<br />

Motor cable length information added for PowerFlex 753 and 755 A-23<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


soc-ii<br />

Summary of Changes<br />

Notes:<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Table of Contents<br />

Preface<br />

Chapter 1<br />

Chapter 2<br />

Chapter 3<br />

Chapter 4<br />

Chapter 5<br />

Overview<br />

Who Should Use This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-1<br />

Recommended Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-1<br />

Recommended Cable/Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-2<br />

Manual Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-2<br />

General Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-2<br />

Wire/Cable Types<br />

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2<br />

Input Power Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10<br />

Motor Cables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10<br />

Cable for Discrete Drive I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11<br />

Analog Signal and Encoder Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12<br />

Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12<br />

Power Distribution<br />

System Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1<br />

AC Line <strong>Voltage</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4<br />

AC Line Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5<br />

Surge Protection MOVs and Common Mode Capacitors . . . . . . . . . . . . . . . . . . . . . . . . 2-17<br />

Using PowerFlex Drives with Regenerative Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18<br />

DC Bus Wiring Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18<br />

Grounding<br />

Grounding Safety Grounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1<br />

Noise Related Grounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3<br />

Practices<br />

Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1<br />

Conduit Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4<br />

Ground Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6<br />

Wire Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9<br />

Conduit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13<br />

Cable Trays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14<br />

Shield Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15<br />

Conductor Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18<br />

Moisture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19<br />

Reflected Wave<br />

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1<br />

Effects On Wire Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1<br />

Length Restrictions For Motor Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


ii<br />

Table of Contents<br />

Chapter 6<br />

Appendix A<br />

Electromagnetic Interference<br />

What Causes Common Mode Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1<br />

Containing Common Mode Noise With Cabling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2<br />

How Electromechanical Switches Cause Transient Interference . . . . . . . . . . . . . . . . . . . 6-3<br />

How to Prevent or Mitigate Transient Interference from Electromechanical Switches . . 6-3<br />

Enclosure Lighting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6<br />

Bearing Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6<br />

Motor Cable Length Restrictions Tables<br />

PowerFlex 4 Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3<br />

PowerFlex 4M Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4<br />

PowerFlex 40 Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5<br />

PowerFlex 400 Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6<br />

PowerFlex 70 & 700 Drives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8<br />

PowerFlex 700H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-13<br />

PowerFlex 700L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-16<br />

PowerFlex 700S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-18<br />

PowerFlex 753 & 755 Drives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-23<br />

1336 PLUS II and IMPACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-26<br />

1305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-28<br />

160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-29<br />

1321-RWR Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-30<br />

Glossary<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Preface<br />

Overview<br />

The purpose of this manual is to provide you with the basic information<br />

needed to properly wire and ground Pulse Width Modulated (PWM) AC<br />

drives.<br />

Who Should Use This<br />

Manual<br />

This manual is intended for qualified personnel who plan and design<br />

installations of Pulse Width Modulated (PWM) AC drives.<br />

Recommended<br />

Documentation<br />

The following publications provide general drive information.<br />

Title Publication Available…<br />

Installing, Operating and Maintaining<br />

D2-3115-2<br />

Engineered Drive Systems (Reliance Electric)<br />

Safety Guidelines for the Application, Installation SGI-1.1<br />

www.rockwellautomation.com/<br />

and Maintenance of Solid State Control<br />

literature<br />

IEEE Guide for the Installation of Electrical IEEE 518<br />

Equipment to Minimize Electrical Noise Inputs to<br />

Controllers from External Sources<br />

Recommended Practice for Powering and IEEE STD 1100<br />

Grounding Electronic Equipment - IEEE<br />

Emerald Book<br />

Electromagnetic Interference and Compatibility,<br />

Volume 3<br />

N/A<br />

RJ White - publisher<br />

Don White Consultants, Inc., 1981<br />

Grounding, Bonding and Shielding for Electronic Military Handbook 419<br />

Equipment and Facilities<br />

IEEE Recommended Practice for Grounding of IEEE Std 142-1991<br />

Industrial and Commercial Power Systems<br />

National Electrical Code (ANSI/NFPA 70) Articles 250, 725-5,<br />

725-15, 725-52 and<br />

800-52<br />

Noise Reduction Techniques in Electronic<br />

Systems<br />

N/A<br />

Henry W. Ott<br />

Published by Wiley-Interscience<br />

Grounding for the Control of EMI N/A Hugh W. Denny<br />

Published by Don White Consultants<br />

Cable Alternatives for PWM AC Drive<br />

Applications<br />

IEEE Paper No.<br />

PCIC-99-23<br />

EMI Emissions of Modern PWM AC Drives N/A IEEE Industry Applications<br />

Magazine, Nov./Dec. 1999<br />

EMC for Product Designers N/A Tim Williams<br />

Published by Newnes<br />

Application Guide for AC Adjustable Speed<br />

Drive Systems<br />

N/A<br />

NEMA<br />

www.nema.org<br />

IEC 60364-5-52 Selection & Erection of<br />

Electrical Equipment - Wiring systems<br />

N/A<br />

IEC<br />

www.iec.ch<br />

Don’t Ignore the Cost of Power Line Disturbance 1321-2.0<br />

www.rockwellautomation.com/<br />

literature<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


P-2 Overview<br />

Recommended Cable/Wire<br />

The recommended wire and cable referenced in this publication can be<br />

obtained through third-party companies found in our Encompass Product<br />

Program. For further information on these suppliers and their products, refer<br />

to the Encompass web site at http://www.rockwellautomation.com/<br />

encompass. Products can be found by selecting “Locate an Encompass<br />

Referenced Product” and searching for “Variable Frequency Drive -<br />

Cables.”<br />

Manual Conventions<br />

The following words are used throughout the manual to describe an action:<br />

Word<br />

Can<br />

Cannot<br />

May<br />

Must<br />

Shall<br />

Should<br />

Should Not<br />

Meaning<br />

Possible, able to do something<br />

Not possible, not able to do something<br />

Permitted, allowed<br />

Unavoidable, you must do this<br />

Required and necessary<br />

Recommended<br />

Not recommended<br />

General Precautions<br />

!<br />

ATTENTION: To avoid an electric shock hazard, verify that the<br />

voltage on the bus capacitors has discharged before performing<br />

any work on the drive. Measure the DC bus voltage at the +DC &<br />

–DC terminals of the Power Terminal Block. The voltage must be<br />

zero.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Chapter 1<br />

Wire/Cable Types<br />

AC drive installations have specific requirements for cables. Wire or cable<br />

selection for a drive application must consider a variety of criteria.<br />

The following section covers the major issues and proper selection of cable.<br />

Recommendations are made to address these issues. Cable materials and<br />

construction must consider the following:<br />

• Environment including moisture, temperature and harsh or corrosive<br />

chemicals.<br />

• Mechanical needs including geometry, shielding, flexibility and crush<br />

resistance.<br />

• Electrical characteristics including cable capacitance/charging current,<br />

resistance/voltage drop, current rating and insulation. Insulation may be<br />

the most significant of these. Since drives can create voltages well in<br />

excess of line voltage, the industry standard cables used in the past may<br />

not represent the best choice for customers using variable speed drives.<br />

Drive installations benefit from using cable that is significantly different<br />

than cable used to wire contactors and push buttons.<br />

• Safety issues including electrical code requirements, grounding needs<br />

and others.<br />

Choosing incorrect cable can be costly and may adversely affect the<br />

performance of your installation.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


1-2 Wire/Cable Types<br />

General<br />

Material<br />

Use Copper wire only. The wire clamp type terminals in Allen-Bradley<br />

drives are made for use with copper wire only. If you use aluminum wire the<br />

connections may loosen.<br />

Wire gauge requirements and recommendations are based on 75 degrees C.<br />

Do not reduce wire gauge when using higher temperature wire.<br />

Exterior Cover<br />

Whether shielded or unshielded, the cable must be chosen to meet all of the<br />

application requirements. Consideration must be given to insulation value<br />

and resistance to moisture, contaminants, corrosive agents and other<br />

invasive elements. Consult the cable manufacturer and the chart below for<br />

proper selection.<br />

Figure 1.1 Wire Selection Flowchart<br />

Selecting Wire to Withstand Reflected Wave <strong>Voltage</strong> for New and Existing Wire Installations<br />

in Conduit or Cable Trays<br />

DRY (Per<br />

NEC Article 100)<br />

Conductor<br />

Environment<br />

WET (Per<br />

NEC Article 100)<br />

Insulation<br />

Thickness<br />

PVC<br />

Conductor<br />

Insulation<br />

20 mil or > (1)<br />

XLPE<br />

XLPE (XHHW-2)<br />

Insulation for<br />

50 ft.<br />

# of<br />

Drives in Same<br />

Conduit or Wire<br />

Tray<br />

Multiple Drives<br />

in Single Conduit<br />

or Wire Tray<br />

15 mil PVC<br />

Not<br />

Recommended<br />

USE XLPE<br />

or > 20 mil<br />

No RWR<br />

or Terminator<br />

15 mil PVC<br />

Not<br />

Recommended<br />

USE XLPE<br />

or > 20 mil<br />

RWR or<br />

Terminator<br />

(1) The mimimum wire size for PVC cable with 20 mil or greater insulation is 10 gauge.<br />

See NEC Guidelines (Article 310<br />

Adjustment Factors) for Maximum<br />

Conductor Derating and Maximum<br />

Wires in Conduit or Tray<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Wire/Cable Types 1-3<br />

Temperature Rating<br />

In general, installations in surrounding air temperature of 50 °C should use<br />

90 °C wire (required for UL) and installations in 40 °C surrounding air<br />

temperature should use 75 °C wire (also required for UL). Refer to the drive<br />

user manual for other restrictions<br />

The temperature rating of the wire affects the required gauge. Be certain to<br />

meet all applicable national, state and local codes.<br />

Gauge<br />

The proper wire size is determined by a number of factors. Each individual<br />

drive user manual lists a minimum and maximum wire gauge based on the<br />

amperage rating of the drive and the physical limitations of the terminal<br />

blocks. Local or national electrical codes also set the required minimum<br />

gauge based on motor full load current (FLA). Both of these<br />

requirements should be followed.<br />

Number of Conductors<br />

While local or national electrical codes may determine the required number<br />

of conductors, certain configurations are recommended. Figure 1.2 shows<br />

cable with a single ground conductor, which is recommended for drives up<br />

to and including 200 HP (150 kW). Figure 1.3 shows cable with three<br />

ground conductors, which is recommended for drives larger than 200 HP<br />

(150 kW). The ground conductors should be spaced symmetrically around<br />

the power conductors. The ground conductor(s) should be rated for full<br />

drive ampacity.<br />

Figure 1.2 Cable with One Ground Conductor<br />

One Ground Conductor<br />

W<br />

R<br />

G<br />

B<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


1-4 Wire/Cable Types<br />

Figure 1.3 Cable with Three Ground Conductors<br />

Three Ground Conductors<br />

Insulation Thickness and Concentricity<br />

Selected wire must have an insulation thickness of equal to or more then 15<br />

mils (0.4 mm/0.015 in.). The quality of wire should not have significant<br />

variations on concentricity of wire and insulation.<br />

Figure 1.4 Insulation Concentricity<br />

ACCEPTABLE<br />

UNACCEPTABLE<br />

Geometry<br />

The physical relationship between individual conductors plays a large role<br />

in drive installation.<br />

Individual conductors in conduit or cable tray have no fixed relationship and<br />

are subject to a variety of issues including: cross coupling of noise, induced<br />

voltages, excess insulation stress and others.<br />

Fixed geometry cable (cable that keeps the spacing and orientation of the<br />

individual conductors constant) offers significant advantages over<br />

individual loose conductors including reducing cross coupling noise and<br />

insulation stress. Three types of fixed geometry multi-conductor cables are<br />

discussed below: Unshielded, shielded, and armored.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Wire/Cable Types 1-5<br />

Table 1.A Recommended Cable Design<br />

Type Max. Wire Size Where Used Rating/Type Description<br />

Type 1 2 AWG <strong>Stand</strong>ard Installations 600V, 90 °C (194 °F)<br />

Four tinned copper conductors with XLPE insulation<br />

100 HP or less XHHW2/RHW-2<br />

Type 2 2 AWG <strong>Stand</strong>ard Installations<br />

100 HP or less with<br />

600V, 90 °C (194 °F)<br />

RHH/RHW-2<br />

Four tinned copper conductors with XLPE insulation plus<br />

one (1) shielded pair of brake conductors.<br />

Brake Conductors<br />

Type 3 500 MCM AWG <strong>Stand</strong>ard Installations<br />

150 HP or more<br />

Tray rated 600V, 90 °C (194 °F)<br />

RHH/RHW-2<br />

Three tinned copper conductors with XLPE insulation<br />

and (3) bare copper grounds and PVC jacket.<br />

Type 4<br />

500 MCM AWG Water, Caustic Chemical,<br />

Crush Resistance<br />

Tray rated 600V, 90 °C (194 °F)<br />

RHH/RHW-2<br />

Three bare copper conductors with XLPE insulation and<br />

three copper grounds on 10 AWG and smaller.<br />

Acceptable in Class I & II, Division I & II locations.<br />

Type 5 500 MCM AWG 690V Applications Tray rated 2000V, 90 °C (194 °F) Three tinned copper conductors with XLPE insulation. (3)<br />

bare copper grounds and PVC jacket.<br />

Note: If terminator network or output filter is used,<br />

connector insulation must be XLPE, not PVC.<br />

Unshielded Cable<br />

Properly designed multi-conductor cable can provide superior performance<br />

in wet applications, significantly reduce voltage stress on wire insulation<br />

and reduce cross coupling between drives.<br />

The use of cables without shielding is generally acceptable for installations<br />

where electrical noise created by the drive does not interfere with the<br />

operation of other devices such as: communications cards, photoelectric<br />

switches, weigh scales and others. Be certain the installation does not<br />

require shielded cable to meet specific EMC standards for CE, C-Tick or<br />

FCC. Cable specifications depend on the installation Type.<br />

Type 1 & 2 Installation<br />

Type 1 or 2 installation requires 3 phase conductors and a fully rated<br />

individual ground conductor without or with brake leads. Refer to Table 1.A<br />

for detailed information and specifications on these installations.<br />

Figure 1.5 Type 1 Unshielded Multi-Conductor Cable without Brake Leads<br />

Type 1 Installation, without Brake Conductors<br />

Filler<br />

W<br />

B<br />

PVC Outer<br />

Sheath<br />

R<br />

G<br />

Single Ground<br />

Conductor<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


1-6 Wire/Cable Types<br />

Type 3 Installation<br />

Type 3 installation requires 3 symmetrical ground conductors whose<br />

ampacity equals the phase conductor. Refer to Table 1.A for detailed<br />

information and specifications on this installation.<br />

Figure 1.6 Type 3 Unshielded Multi-Conductor Cable<br />

Filler<br />

W<br />

G<br />

B<br />

PVC Outer<br />

Sheath<br />

G<br />

R<br />

G<br />

Multiple Ground<br />

Conductors<br />

The outer sheathing and other mechanical characteristics should be chosen<br />

to suit the installation environment. Consideration should be given to<br />

surrounding air temperature, chemical environment, flexibility and other<br />

factors as necessary in all installation types.<br />

Shielded Cable<br />

Shielded cable contains all of the general benefits of multi-conductor cable<br />

with the added benefit of a copper braided shield that can contain much of<br />

the noise generated by a typical AC Drive. Strong consideration for shielded<br />

cable should be given for installations with sensitive equipment such as<br />

weigh scales, capacitive proximity switches and other devices that may be<br />

affected by electrical noise in the distribution system. Applications with<br />

large numbers of drives in a similar location, imposed EMC regulations or a<br />

high degree of communications/networking are also good candidates for<br />

shielded cable.<br />

Shielded cable may also help reduce shaft voltage and induced bearing<br />

currents for some applications. In addition, the increased size of shielded<br />

cable may help extend the distance that the motor can be located from the<br />

drive without the addition of motor protective devices such as terminator<br />

networks. Refer to Chapter 5 for information regarding reflected wave<br />

phenomena.<br />

Consideration should be given to all of the general specifications dictated by<br />

the environment of the installation, including temperature, flexibility,<br />

moisture characteristics and chemical resistance. In addition, a braided<br />

shield should be included and specified by the cable manufacturer as having<br />

coverage of at least 75%. An additional foil shield can greatly improve<br />

noise containment.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Wire/Cable Types 1-7<br />

Type 1 Installation<br />

An acceptable shielded cable for Type 1 installation will have 4 XLPE<br />

insulated conductors with a 100% coverage foil and an 85% coverage<br />

copper braided shield (with drain wire) surrounded by a PVC jacket. For<br />

detailed specifications and information on these installations, refer to Table<br />

1.A on page 1-5.<br />

Figure 1.7 Type 1 Installation — Shielded Cable with Four Conductors<br />

Drain Wire<br />

Shield<br />

W<br />

R<br />

G<br />

B<br />

Type 2 Installation<br />

An acceptable shielded cable for Type 2 installation is essentially the same<br />

cable as Type 1, plus one (1) shielded pair of brake conductors. For more<br />

information on this installation, refer to Table 1.A on page 1-5.<br />

Figure 1.8 Type 2 Installation — Shielded Cable with Brake Conductors<br />

Drain Wire for<br />

Brake Conductor<br />

Shield<br />

Shield for<br />

Brake<br />

Conductors<br />

W<br />

R<br />

G<br />

B<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


1-8 Wire/Cable Types<br />

Type 3 Installation<br />

These cables have 3 XLPE insulated copper conductors, 25% minimal<br />

overlap with helical copper tape and three (3) bare copper grounds in PVC<br />

jacket.<br />

TIP: Other types of shielded cable are available, but the selection of these<br />

types may limit the allowable cable length. Particularly, some of the newer<br />

cables twist 4 conductors of THHN wire and wrap them tightly with a foil<br />

shield. This construction can greatly increase the cable charging current<br />

required and reduce the overall drive performance. Unless specified in the<br />

individual distance tables as tested with the drive, these cables are not<br />

recommended and their performance against the lead length limits supplied<br />

is not known. For more information, about motor cable lead restrictions<br />

refer to Appendix A, Conduit on page 4-13, Moisture on page 4-19 and<br />

Effects On Wire Types on page 5-1.<br />

Armored Cable<br />

Cable with continuous aluminum armor is often recommended in drive<br />

system applications or specific industries. It offers most of the advantages<br />

of standard shielded cable and also combines considerable mechanical<br />

strength and resistance to moisture. It can be installed in concealed and<br />

exposed manners and removes the requirement for conduit (EMT) in the<br />

installation. It can also be directly buried or embedded in concrete.<br />

Because noise containment can be affected by incidental grounding of the<br />

armor to building steel (see Chapter 2) when the cable is mounted, it is<br />

recommended the armored cable have an overall PVC jacket.<br />

Interlocked armor is acceptable for shorter cable runs, but continuous<br />

welded armor is preferred.<br />

Cable with a single ground conductor is sufficient for drive sizes up to and<br />

including 200 HP (150 kW). Cable with three ground conductors is<br />

recommended for drive sizes larger than 200 HP (150 kW). The ground<br />

conductors should be spaced symmetrically around the power conductors.<br />

The ground conductor(s) should be rated for full drive ampacity.<br />

Cable with a Single Ground Conductor<br />

Cable with Three Ground Conductors<br />

W<br />

B<br />

W<br />

G<br />

B<br />

R<br />

G<br />

G<br />

R<br />

G<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Wire/Cable Types 1-9<br />

Figure 1.9 Armored Cable with Three Ground Conductors<br />

Armor<br />

Optional PVC Outer Sheath<br />

Optional Foil/Copper Tape<br />

and/or inner PVC Jacket<br />

Conductors with XLPE<br />

Insulation<br />

A good example of acceptable cable for Type 5 installation is Anixter<br />

7V-5003-3G, which has three (3) XLPE insulated copper conductors, 25%<br />

minimal overlap with the helical copper tape and three (3) bare copper<br />

grounds in PVC jacket. Please note that if a terminator network or output<br />

filter is used, connector insulation must be XLPE, not PVC.<br />

European Style Cable<br />

Cable used in many installations in Europe should conform to the CE <strong>Low</strong><br />

<strong>Voltage</strong> Directive 73/23/EEC. Generally recommended are flexible cables<br />

with a recommended bend radius of 20 times the cable diameter for<br />

movable cable and 6 times the cable diameter for fixed installations. The<br />

screen (shield) should be between 70 and 85% coverage. Insulation for both<br />

conductors and the outer sheath is PVC.<br />

The number and color of individual conductors may vary, but the<br />

recommendation is for 3 phase conductors (customer preferred color) and<br />

one ground conductor (Green/Yellow)<br />

Ölflex® Classic 100SY or Ölflex Classic 110CY are examples.<br />

Figure 1.10 European Style Multi-Conductor Cable<br />

Filler<br />

PVC Outer<br />

Sheath<br />

W<br />

R<br />

B<br />

Stranded<br />

Neutral<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


1-10 Wire/Cable Types<br />

Input Power Cables<br />

In general, the selection of cable for AC input power to a drive has no<br />

special requirements. Some installations may suggest shielded cable to<br />

prevent coupling of noise onto the cable (see Chapter 2) and in some cases,<br />

shielded cable may be required to meet noise standards such as CE for<br />

Europe, C-Tick for Australia/New Zealand, and others. This may be<br />

especially true if an input filter is required to meet a standard. Each<br />

individual drive user manual will show the requirements for meeting these<br />

types of standards. Additionally, individual industries may have required<br />

standards due to environment or experience.<br />

For AC variable frequency drive applications that must satisfy EMC<br />

standards for CE, C-Tick, FCC or other, Rockwell Automation may<br />

recommend that the same type of shielded cable specified for the AC motors<br />

be used between the drive and transformer. Check the individual user<br />

manuals or system schematic note sheets for specific additional<br />

requirements in these situations.<br />

Motor Cables<br />

The majority of recommendations regarding drive cable address issues<br />

caused by the nature of the drive output. A PWM drive creates AC motor<br />

current by sending DC voltage pulses to the motor in a specific pattern.<br />

These pulses affect the wire insulation and can be a source of electrical<br />

noise. The rise time, amplitude, and frequency of these pulses must be<br />

considered when choosing a wire/cable type. The choice of cable must<br />

consider:<br />

1. The effects of the drive output once the cable is installed<br />

2. The need for the cable to contain noise caused by the drive output<br />

3. The amount of cable charging current available from the drive<br />

4. Possible voltage drop (and subsequent loss of torque) for long wire runs<br />

Keep the motor cable lengths within the limits set by the drive's user<br />

manual. Various issues, including cable charging current and reflected wave<br />

voltage stress may exist. If the cable restriction is listed because of<br />

excessive coupling current, apply the methods to calculate total cable<br />

length, as shown in Figure 1.11. If the restriction is due to voltage reflection<br />

and motor protection, tabular data is available. Refer to Appendix A for<br />

exact distances allowed.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Wire/Cable Types 1-11<br />

Figure 1.11 Motor Cable Length for Capacitive Coupling<br />

All examples represent motor cable length of 182.9 meters (600 feet)<br />

91.4 (300) 91.4 (300)<br />

15.2 (50)<br />

167.6 (550) 152.4 (500)<br />

182.9 (600)<br />

15.2 (50)<br />

15.2 (50)<br />

Important: For multi motor applications review the installation carefully.<br />

Consult your distributor drive specialist or Rockwell<br />

Automation directly, when considering a multi motor<br />

application with greater than two motors. In general most<br />

installations will have no issues. However high peak cable<br />

charging currents can cause drive over-currents or ground<br />

faults.<br />

Cable for Discrete Drive I/O<br />

Discrete I/O such as Start and Stop commands can be wired to the drive<br />

using a variety of cabling. Shielded cable is recommended, as it can help<br />

reduce cross-coupled noise from power cables. <strong>Stand</strong>ard individual<br />

conductors that meet the general requirements for type, temperature, gauge<br />

and applicable codes are acceptable if they are routed away from higher<br />

voltage cables to minimize noise coupling. However, multi-conductor cable<br />

may be less expensive to install. Control wires should be separated from<br />

power wires by at least 0.3 meters (1 foot)<br />

Table 1.B Recommended Control Wire for Digital I/O<br />

Minimum<br />

Type (1) Wire Type(s)<br />

Description<br />

Insulation Rating<br />

Unshielded Per US NEC or applicable national or – 300V, 60 °C<br />

local code<br />

(140 °F)<br />

Shielded Multi-conductor shielded cable 0.750 mm 2 (18AWG),<br />

3 conductor, shielded.<br />

(1)<br />

The cable choices shown are for 2 channel (A&B) or three channel (A,B & Z) encoders. If high resolution or<br />

other types of feedback devices are used, choose a similar cable with the correct gauge and number of<br />

conductor pairs.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


1-12 Wire/Cable Types<br />

Analog Signal and Encoder<br />

Cable<br />

Always use shielded cable with copper wire. Wire with insulation rating of<br />

300V or greater is recommended. Analog signal wires should be separated<br />

from power wires by at least 0.3 meters (1 foot). It is recommended that<br />

encoder cables be run in a separate conduit. If signal cables must cross<br />

power cables, cross at right angles. Terminate the shield of the shielded<br />

cable as recommended by manufacturer of the encoder or analog signal<br />

device.<br />

Table 1.C Recommended Signal Wire<br />

Signal Type/<br />

Where Used<br />

Wire<br />

Type(s) Description<br />

Minimum<br />

Insulation Rating<br />

<strong>Stand</strong>ard Analog I/O – 0.750 mm 2 (18AWG), twisted pair, 100%<br />

shield with drain (1)<br />

Remote Pot – 0.750 mm 2 (18AWG), 3 conductor, shielded<br />

Encoder/Pulse I/O Combined: 0.196 mm 2 (24AWG), individually shielded<br />

Less 30.5 m (100 ft.)<br />

300V,<br />

Encoder/Pulse I/O Signal: 0.196 mm 2 (24AWG), individually shielded 75…90 °C<br />

30.5 m (100 ft.) to<br />

Power: 0.750 mm (167…194 °F)<br />

152.4 m (500 ft.)<br />

(18AWG)<br />

Combined: 0.330 mm 2 or 0.500 mm 2<br />

Encoder/Pulse I/O Signal: 0.196 mm 2 (24AWG), individually shielded<br />

152.4 m (500 ft.) to<br />

Power: 0.750 mm<br />

259.1 m (850 ft.)<br />

(18AWG)<br />

Combined: 0.750 mm 2 (18AWG), individually shielded pair<br />

(1) If the wires are short and contained within a cabinet which has no sensitive circuits, the use of shielded wire<br />

may not be necessary, but is always recommended.<br />

Communications<br />

DeviceNet<br />

DeviceNet cable options, topology, distances allowed and techniques used<br />

are very specific to the DeviceNet network. Refer to DeviceNet Cable<br />

System Planning and Installation Manual, publication DN-6.72.<br />

In general, there are 4 acceptable cable types for DeviceNet media. These<br />

include:<br />

1. Round (Thick) cable with an outside diameter of 12.2 mm (0.48 in)<br />

normally used for trunk lines but can also be used for drop lines<br />

2. Round (Thin) cable with an outside diameter of 6.9 mm (0.27 in)<br />

normally used for drop lines but may also be used for trunk lines<br />

3. Flat cable normally used for trunk lines<br />

4. KwikLink drop cable used only in KwikLink systems.<br />

Round cable contains five wires: one twisted pair (red and black) for 24V<br />

DC power, one twisted pair (blue and white) for signal and a drain wire<br />

(bare).<br />

Flat cable contains four wires: one pair (red and black) for 24V DC power<br />

and one pair (blue and white) for signal.<br />

Drop cable for KwikLink is a 4-wire unshielded gray cable.<br />

The distance between points, installation of terminating resistors and<br />

chosen baud rate all play a significant part in the installation. Refer to the<br />

DeviceNet Cable System Planning and Installation Manual for details.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Wire/Cable Types 1-13<br />

ControlNet<br />

ControlNet cable options, topology, distances allowed and techniques used<br />

are very specific to the ControlNet network. For more information refer to<br />

ControlNet Coax Cable System Planning and Installation Manual,<br />

publication 1786-6.2.1.<br />

Depending on the environment at the installation site there are several types<br />

of RG-6 quad shield cables that may be appropriate. The standard cable<br />

recommended is A-B Cat # 1786-RG6, Quad Shield coax. Country, state or<br />

local codes such as the U.S. NEC govern the installation.<br />

For:<br />

Light Industrial<br />

Heavy Industrial<br />

High/<strong>Low</strong> Temperature or Corrosive<br />

(Harsh Chemicals)<br />

Festooning or Flexing<br />

Moisture: direct burial, with flooding<br />

compound, fungus resistant<br />

Use this Cable Type<br />

• <strong>Stand</strong>ard PVC<br />

• CM-CL2<br />

• Lay-on Armored<br />

• Light Interlocking Armor<br />

• Plenum-FEP<br />

• CMP-CL2P<br />

• High Flex<br />

• Flood Burial<br />

The allowable length of segments and installation of terminating resistors<br />

play a significant part in the installation. Again, refer to the ControlNet<br />

Coax Cable System Planning and Installation Manual for detailed specifics.<br />

Ethernet<br />

The Ethernet communications interface wiring is very detailed as to the type<br />

of cable, connectors and routing. Because of the amount of detail required<br />

to bring Ethernet into the industrial environment, planning an installation<br />

should be done by following all recommendations in the Ethernet/IP Media<br />

Planning and Installation Guide, publication ENET-IN<strong>001</strong>.<br />

In general, Ethernet systems consist of specific cable types (STP shielded<br />

Cable or UTP unshielded cable) using RJ45 connectors that meet the IP67<br />

standard and are appropriate for the environment. Cables should also meet<br />

TIA/EIA standards at industrial temperatures.<br />

Shielded cable is always recommended when the installation may include<br />

welding, electrostatic processes, drives over 10 HP, Motor Control Centers,<br />

high power RF radiation or devices carrying current in excess of 100 Amps.<br />

Shield handling and single point grounding, also discussed in this<br />

document, play an extremely important role in the proper operation of<br />

Ethernet installations.<br />

Finally, there are distance and routing limitations published in detail.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


1-14 Wire/Cable Types<br />

Remote I/O and Data Highway Plus (DH+)<br />

Only 1770-CD is tested and approved for Remote I/O and DH+<br />

installations.<br />

The maximum cable length depends on the chosen baud rate:<br />

Baud Rate<br />

Maximum Cable Length<br />

57.6 KBPS 3,048 m (10,000 ft.)<br />

115.2 KBPS 1524 m (5000 ft.)<br />

230.4 KBPS 762 m (2500 ft.)<br />

All three connections (blue, shield and clear) must be connected at each<br />

node.<br />

Do not connect in star topology. Only two cables may be connected at any<br />

wiring point. Use either series or daisy chain topology at all points.<br />

Serial (RS232/485)<br />

<strong>Stand</strong>ard practices for serial communications wiring should be followed.<br />

One twisted pair and 1 signal common is recommended for RS232.<br />

Recommended cable for RS485 is 2 twisted pair with each pair individually<br />

shielded.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Chapter 2<br />

Power Distribution<br />

This chapter discusses different power distribution schemes and factors<br />

which affect drive performance.<br />

System Configurations<br />

The type of transformer and the connection configuration feeding a drive<br />

plays an important role in its performance and safety. The following is a<br />

brief description of some of the more common configurations and a<br />

discussion of their virtues and shortcomings.<br />

Delta/Wye with Grounded Wye Neutral<br />

Delta/Wye with Grounded Wye Neutral is the most common type of<br />

distribution system. It provides a 30 degree phase shift. The grounded<br />

neutral provides a direct path for common mode current caused by the drive<br />

output (see Chapter 3 and Chapter 6).<br />

Rockwell Automation strongly recommends the use of grounded neutral<br />

systems for the following reasons:<br />

– Controlled path for common mode noise current<br />

– Consistent line to ground voltage reference, which minimizes<br />

insulation stress<br />

– Accommodation for system surge protection schemes<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


2-2 Power Distribution<br />

Delta/Delta with Grounded Leg<br />

or Four-Wire Connected Secondary Delta<br />

or<br />

Delta/Delta with Grounded Leg or Four-Wire Connected Secondary Delta is<br />

a common configuration with no phase shift between input and output. The<br />

grounded center tap provides a direct path for common mode current caused<br />

by the drive output.<br />

Three-Phase Open Delta with Single-Phase Center Tapped<br />

Single Phase Loads<br />

Three<br />

Phase<br />

Loads<br />

Single Phase Loads<br />

Three-Phase Open Delta with Single-Phase Center Tapped is a<br />

configuration providing a Three-Phase delta transformer with one side<br />

tapped. This tap (the neutral) is connected to earth. The configuration is<br />

called the antiphase grounded (neutral) system.<br />

The open delta transformer connection is limited to 58% of the 240V,<br />

single-phase transformer rating. Closing the delta with a third single-phase,<br />

240V transformer allows full rating for the two single-phase, 240V<br />

transformers. The phase leg opposite the midpoint has an elevated voltage<br />

when compared to earth or neutral. The “hottest” high leg must be<br />

positively identified throughout the electrical system. It should be the center<br />

leg in any switch, motor control, three-phase panel board, etc. The NEC<br />

requires orange color tape to identify this leg.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Power Distribution 2-3<br />

Ungrounded Secondary<br />

Grounding the transformer secondary is essential to the safety of personnel<br />

and safe operation of the drive. Leaving the secondary floating allows<br />

dangerously high voltages between the chassis of the drive and the internal<br />

power structure components. Exceeding the voltage rating of the drive’s<br />

input MOV (Metal Oxide Varistor) protection devices could cause a<br />

catastrophic failure. In all cases, the input power to the drive should be<br />

referenced to ground.<br />

If the system is ungrounded, other general precautions such as a system<br />

level ground fault detector or system level line to ground suppressor may be<br />

necessary or an isolation transformer must be considered with the secondary<br />

of the transformer grounded. Refer to local codes regarding safety<br />

requirements. Also refer to Surge Protection MOVs and Common Mode<br />

Capacitors on page 2-17.<br />

High Resistance Ground<br />

Grounding the wye secondary neutral through a resistor is an acceptable<br />

method of grounding. Under a short circuit secondary condition, any of the<br />

output phases to ground will not exceed the normal line to line voltage. This<br />

is within the rating of the MOV input protection devices on the drive. The<br />

resistor is often used to detect ground current by monitoring the associated<br />

voltage drop. Since high frequency ground current can flow through this<br />

resistor, care should be taken to properly connect the drive motor leads<br />

using the recommended cables and methods. In some cases, multiple drives<br />

(that may have one or more internal references to ground) on one<br />

transformer can produce a cumulative ground current that can trigger the<br />

ground fault interrupt circuit. Refer to Surge Protection MOVs and<br />

Common Mode Capacitors on page 2-17.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


2-4 Power Distribution<br />

TN-S Five-Wire System<br />

L1<br />

L2<br />

L3<br />

PEN or N<br />

PE<br />

TN-S five-wire distribution systems are common throughout Europe, with<br />

the exception of the United Kingdom and Germany. Leg to leg voltage<br />

(commonly at 400V) powers three-phase loads. Leg to neutral voltage<br />

(commonly at 230V) powers single-phase loads. Neutral is a current<br />

conducting wire, and connects through a circuit breaker. The fifth wire is a<br />

separate ground wire. There is a single connection between ground and<br />

neutral, typically in the distribution system. There should be no connections<br />

between ground and neutral within the system cabinets.<br />

AC Line <strong>Voltage</strong><br />

In general all Allen-Bradley drives are tolerant to a wide swing of AC line<br />

voltage. Check the individual specification for the drives you are installing.<br />

Incoming voltage imbalances greater than 2% can cause large unequal<br />

currents in a drive. An input line reactor may be necessary when line<br />

voltage imbalances are greater than 2%.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Power Distribution 2-5<br />

AC Line Impedance<br />

To prevent excess current that may damage drives during events such as line<br />

disturbances or certain types of ground faults, drives should have a<br />

minimum amount of impedance in front of them. In many installations, this<br />

impedance comes from the supply transformer and the supply cables. In<br />

certain cases, an additional transformer or reactor is recommended. If any of<br />

the following conditions exist, serious consideration should be given to<br />

adding impedance (line reactor or transformer) in front of the drive:<br />

A. Installation site has switched power factor correction capacitors.<br />

B. Installation site has lightning strikes or voltage spikes in excess of<br />

6000V Peak.<br />

C. Installation site has power interruptions or voltage dips in excess of<br />

200VAC.<br />

D. The transformer is too large in comparison to the drive. See impedance<br />

recommendation tables 2.A through 2.H. Using these tables will allow<br />

the largest transformer size for each product and rating based on<br />

specific differences in construction, and is the preferred method to<br />

follow.<br />

Otherwise, use one of the two following more conservative methods:<br />

1. For drives without built-in inductors, add line impedance whenever the<br />

transformer kVA is more than 10 times larger than the drive kVA, or the<br />

percent source impedance relative to each drive is less than 0.5%.<br />

2. For drives with built-in inductors, add line impedance whenever the<br />

transformer kVA is more than 20 times larger than the drive kVA, or the<br />

percent source impedance relative to each drive is less than 0.25%.<br />

To identify drives with built-in inductors, see the product specific tables.<br />

The shaded rows identify products ratings without built-in inductors.<br />

Use the following equations to calculate the impedance of the drive and<br />

transformer:<br />

Drive Impedance (in ohms)<br />

Z drive<br />

=<br />

V line - line<br />

3 * I input - rating<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


2-6 Power Distribution<br />

Transformer Impedance (in ohms)<br />

Z xfmr<br />

Z<br />

xfmr<br />

=<br />

=<br />

V line - line<br />

3 * I xfmr - rated<br />

* % Impedance<br />

or<br />

(V line - line<br />

) 2<br />

VA<br />

* % Impedance<br />

% Impedance is the nameplate impedance of the transformer<br />

Typical values range from 0.03 (3%) to 0.06 (6%)<br />

Transformer Impedance (in ohms)<br />

Z xfmr<br />

=<br />

V line - line<br />

3 * I xfmr - rated<br />

* % Impedance<br />

% Impedance is the nameplate impedance of the transformer<br />

Typical values range from 0.03 (3%) to 0.06 (6%)<br />

Example: The drive is rated 1 HP, 480V, 2.7A input.<br />

The supply transformer is rated 50,000 VA (50 kVA), 5% impedance.<br />

Vline - line<br />

Z =<br />

3 * I<br />

input - rating<br />

480V<br />

3 * 2.7<br />

= 102.6 ohms<br />

Z<br />

xfmr<br />

=<br />

drive = 50,000<br />

(V<br />

line - line<br />

VA<br />

)<br />

2<br />

* % Impedance =<br />

480<br />

2<br />

* 0.05 = 0.2304 Ohms<br />

Note that the percent (%) impedance has to be in per unit (5% becomes<br />

0.05) for the formula.<br />

Z<br />

Z<br />

xfmr<br />

drive<br />

0.2304<br />

= = 0.00224 = 0.22%<br />

102.6<br />

0.22% is less than 0.5%. Therefore, this transformer is too big for the drive<br />

and a line reactor should be added.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Power Distribution 2-7<br />

Note: Grouping multiple drives on one reactor is acceptable; however, the<br />

reactor percent impedance must be large enough when evaluated for each<br />

drive separately, not evaluated for all loads connected at once.<br />

These recommendations are merely advisory and may not address all<br />

situations. Site specific conditions must be considered to assure a quality<br />

installation.<br />

Table 2.A AC Line Impedance Recommendations for Bulletin 160 Drives<br />

Drive Catalog<br />

Number (1) Volts kW (HP)<br />

Max Supply<br />

kVA (2) 3% Line Reactor<br />

Open Style 1321-<br />

Reactor<br />

Inductance (mH)<br />

Reactor Current<br />

Rating (Amps)<br />

160 AA02 240 0.37(0.5) 15 3R4-B 6.5 4<br />

AA03 240 0.55 (0.75) 20 3R4-A 3 4<br />

AA04 240 0.75 (1) 30 3R4-A 3 4<br />

AA08 240 1.5 (2) 50 3R8-A 1.5 8<br />

AA12 240 2.2 (3) 75 3R12-A 1.25 12<br />

AA18 240 3.7 (5) 100 3R18-A 0.8 18<br />

BA01 480 0.37(0.5) 15 3R2-B 20 2<br />

BA02 480 0.55 (0.75) 20 3R2-A 12 2<br />

BA03 480 0.75 (1) 30 3R2-A 12 2<br />

BA04 480 1.5 (2) 50 3R4-B 6.5 4<br />

BA06 480 2.2 (3) 75 3R8-B 3 8<br />

BA10 480 3.7 (5) 100 3R18-B 1.5 18<br />

(1) Shaded rows identify drive ratings without built-in inductors<br />

(2) Maximum suggested KVA supply without consideration for additional inductance<br />

Table 2.B AC Line Impedance Recommendations for Bulletin 1305 Drives<br />

Drive Catalog<br />

Number (1) Volts kW (HP)<br />

Max Supply<br />

kVA (2) 3% Line Reactor<br />

Open Style 1321-<br />

Reactor<br />

Inductance (mH)<br />

Reactor Current<br />

Rating (Amps)<br />

1305 -AA02A 240 0.37(0.5) 15 3R4-A 3 4<br />

-AA03A 240 0.55 (0.75) 20 3R4-A 4 4<br />

-AA04A 240 0.75 (1) 30 3R8-A 1.5 8<br />

-AA08A 240 1.5 (2) 50 3R8-A 1.5 8<br />

-AA12A 240 2.2 (3) 75 3R18-A 0.8 18<br />

-BA01A 480 0.37 (0.5) 15 3R2-B 20 2<br />

-BA02A 480 0.55 (0.75) 20 3R2-B 20 2<br />

-BA03A 480 0.75 (1) 30 3R4-B 6.5 4<br />

-BA04A 480 1.5 (2) 50 3R4-B 6.5 4<br />

-BA06A 480 2.2 (3) 75 3R8-B 3 8<br />

-BA09A 480 3.7 (5) 100 3R18-B 1.5 18<br />

(1) Shaded rows identify drive ratings without built-in inductors<br />

(2)<br />

Maximum suggested KVA supply without consideration for additional inductance<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


2-8 Power Distribution<br />

Table 2.C AC Line Impedance Recommendations for PowerFlex 4 Drives<br />

Drive Catalog<br />

Number (1) Volts kW (HP)<br />

Max Supply<br />

kVA<br />

3% Line Reactor<br />

Open Style 1321-<br />

Reactor<br />

Inductance (mH)<br />

Reactor Current<br />

Rating (Amps)<br />

PowerFlex 4 22AB1P5 240 0.2 (0.25) 15 3R2-A 12 2<br />

22AB2P3 240 0.4 (0.5) 25 3R4-B 6.5 4<br />

22AB4P5 240 0.75 (1.0) 50 3R8-B 3 8<br />

22AB8P0 240 1.5 (2.0) 100 3R8-A 1.5 8<br />

22AB012 240 2.2 (3.0) 125 3R12-A 1.25 12<br />

22AB017 240 3.7 (5.0) 150 3R18-A 0.8 18<br />

22AD1P4 480 0.4 (0.5) 15 3R2-B 20 2<br />

22AD2P3 480 0.75 (1.0) 30 3R4-C 9 4<br />

22AD4P0 480 1.5 (2.0) 50 3R4-B 6.5 4<br />

22AD6P0 480 2.2 (3.0) 75 3R8-C 5 8<br />

22AD8P7 480 3.7 (5.0) 100 3R8-B 3 8<br />

(1) Shaded rows identify drive ratings without built-in inductors<br />

Table 2.D AC Line Impedance Recommendations for PowerFlex 40 Drive<br />

Drive Catalog<br />

Number (1) Volts kW (HP)<br />

Max Supply<br />

kVA (2) 3% Line Reactor<br />

Open Style 1321-<br />

Reactor<br />

Inductance (mH)<br />

Reactor Current<br />

Rating (Amps)<br />

PowerFlex 40 22BB2P3 240 0.4 (0.5) 25 3R4-B 6.5 4<br />

22BB5P0 240 0.75 (1.0) 50 3R8-B 3 8<br />

22BB8P0 240 1.5 (2.0) 50 3R8-A 1.5 8<br />

22BB012 240 2.2 (3.0) 50 3R12-A 1.25 12<br />

22BB017 240 3.7 (5.0) 50 3R18-A 0.8 18<br />

22BB024 240 5.5 (7.5) 100 3R25-A 0.5 25<br />

22BB033 240 7.5 (10.0) 150 3R35-A 0.4 35<br />

22BD1P4 480 0.4 (0.5) 15 3R2-B 20 2<br />

22BD2P3 480 0.75 (1.0) 30 3R4-C 9 4<br />

22BD4P0 480 1.5 (2.0) 50 3R4-B 6.5 4<br />

22BD6P0 480 2.2 (3.0) 75 3R8-C 5 8<br />

22BD010 480 3.7 (5.0) 100 3R8-B 3 8<br />

22BD012 480 5.5 (7.5) 120 3R12-B 2.5 12<br />

22BD017 480 7.5 (10.0) 150 3R18-B 1.5 18<br />

22BD024 480 11.0 (15.0) 200 3R25-B 1.2 25<br />

22BE1P7 600 0.75 (1.0) 20 3R2-B 20 2<br />

22BE3P0 600 1.5 (2.0) 30 3R4-B 6.5 4<br />

22BE4P2 600 2.2 (3.0) 50 3R4-B 6.5 4<br />

22BE6P6 600 3.7 (5.0) 75 3R8-C 5 8<br />

22BE9P9 600 5.5 (7.5) 120 3R12-B 2.5 12<br />

22BE012 600 7.5 (10.0) 150 3R12-B 2.5 12<br />

22BE019 600 11.0 (15.0) 200 3R18-B 1.5 18<br />

(1) Shaded rows identify drive ratings without built-in inductors<br />

(2) Maximum suggested KVA supply without consideration for additional inductance<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Power Distribution 2-9<br />

Table 2.E AC Line Impedance Recommendations for PowerFlex 400 Drives<br />

Drive Catalog<br />

Number (1) Volts kW (HP)<br />

Max Supply<br />

kVA (2) 3% Line Reactor<br />

Open Style 1321-<br />

Reactor<br />

Inductance (mH)<br />

Reactor Current<br />

Rating (Amps) (3)<br />

PowerFlex 400 22CB012 240 2.2 (3.0) 50 3R12-A N/A N/A<br />

22CB017 240 3.7 (5.0) 50 3R18-A N/A N/A<br />

22CB024 240 5.5 (7.5) 200 3R25-A 0.5 25<br />

22CB033 240 7.7 (10.0) 275 3R35-A 0.4 35<br />

22CB049 240 11 (15.0) 350 3R45-A 0.3 45<br />

22CB065 240 15 (20.0) 425 3R55-A 0.25 55<br />

22CB075 240 18.5 (25.0) 550 3R80-A 0.2 80<br />

22CB090 240 22 (30.0) 600 3R100-A 0.15 100<br />

22CB120 240 30 (40.0) 750 3R130-A 0.1 130<br />

22CB145 240 37 (50.0) 800 3R160-A 0.075 160<br />

22CD6P0 480 2.2 (3.0) N/A N/A N/A N/A<br />

22CD010 480 3.7 (5.0) N/A N/A N/A N/A<br />

22CD012 480 5.5 (7.5) N/A N/A N/A N/A<br />

22CD017 480 7.5 (10) N/A N/A N/A N/A<br />

22CD022 480 11 (15) N/A N/A N/A N/A<br />

22CD030 480 15 (20) N/A N/A N/A N/A<br />

22CD038 480 18.5 (25) N/A N/A N/A N/A<br />

22CD045 480 22 (30) N/A N/A N/A N/A<br />

22CD060 480 30 (40) N/A N/A N/A N/A<br />

22CD072 480 37 (50) N/A N/A N/A N/A<br />

22CD088 480 45 (60) N/A N/A N/A N/A<br />

22CD105 480 55 (75) N/A N/A N/A N/A<br />

22CD142 480 75 (100) N/A N/A N/A N/A<br />

22CD170 480 90 (125) N/A N/A N/A N/A<br />

22CD208 480 110 (150) N/A N/A N/A N/A<br />

(1) Shaded rows identify drive ratings without built-in inductors<br />

(2) Maximum suggested KVA supply without consideration for additional inductance<br />

(3)<br />

N/A = Not Available at time of printing<br />

Table 2.F AC Line Impedance Recommendations for PowerFlex 70 Drives<br />

Drive Catalog<br />

Number (1) Volts kW (HP)<br />

Max Supply<br />

kVA (2) 3% Line Reactor<br />

Open Style 1321-<br />

Reactor<br />

Inductance (mH)<br />

Reactor Current<br />

Rating (Amps) (3)<br />

PowerFlex 70 20AB2P2 240 0.37 (0.5) 25 3R2-D 6 2<br />

20AB4P2 240 0.75 (1) 50 3R4-A 3 4<br />

20AB6P8 240 1.5 (2) 50 3R8-A 1.5 8<br />

20AB9P6 240 2.2 (3) 50 3R12-A 1.25 12<br />

20AB015 240 4.0 (5) 200 3R18-A 0.8 18<br />

20AB022 240 5.5 (7.5) 250 3R25-A 0.5 25<br />

20AB028 240 7.5 (10) 300 3R35-A 0.4 35<br />

20AB042 240 11 (15) 1000 3R45-A 0.3 45<br />

20AB054 240 15 (20) 1000 3R80-A 0.2 80<br />

20AB070 240 18.5 (25) 1000 3R80-A 0.2 80<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


2-10 Power Distribution<br />

Drive Catalog<br />

Max Supply 3% Line Reactor Reactor Reactor Current<br />

Number (1) Volts kW (HP) kVA (2) Open Style 1321- Inductance (mH) Rating (Amps) (3)<br />

PowerFlex 70 20AC1P3 400 0.37 (0.5) 30 3R2-B 20 2<br />

20AC2P1 400 0.75 (1) 50 3R2-B 20 2<br />

20AC3P4 400 1.5 (2) 50 3R4-B 6.5 4<br />

20AC5P0 400 2.2 (3) 75 3R4-B 6.5 4<br />

20AC8P0 400 4.0 (5) 100 3R8-B 3 8<br />

20AC011 400 5.5 (7.5) 250 3R12-B 2.5 12<br />

20AC015 400 7.5 (10) 250 3R18-B 1.5 18<br />

20AC022 400 11 (15) 300 3R25-B 1.2 25<br />

20AC030 400 15 (20) 400 3R35-B 0.8 35<br />

20AC037 400 18.5 (25) 750 3R35-B 0.8 35<br />

20AC043 400 22 (30) 1000 3R45-B 0.7 45<br />

20AC060 400 30 (40) 1000 3R55-B 0.5 55<br />

20AC072 400 37 (50) 1000 3R80-B 0.4 80<br />

20AD1P1 480 0.37 (0.5) 30 3R2-B 20 2<br />

20AD2P1 480 0.75 (1) 50 3R2-B 20 2<br />

20AD3P4 480 1.5 (2) 50 3R4-B 6.5 4<br />

20AD5P0 480 2.2 (3) 75 3R4-B 6.5 4<br />

20AD8P0 480 3.7 (5) 100 3R8-B 3 8<br />

20AD011 480 5.5 (7.5) 250 3R12-B 2.5 12<br />

20AD015 480 7.5 (10) 250 3R18-B 1.5 18<br />

20AD022 480 11 (15) 300 3R25-B 1.2 25<br />

20AD027 480 15 (20) 400 3R35-B 0.8 35<br />

20AD034 480 18.5 (25) 750 3R35-B N/A N/A<br />

20AD040 480 22 (30) 1000 3R45-B N/A N/A<br />

20AD052 480 30 (40) 1000 3R55-B N/A N/A<br />

20AD065 480 37 (50) 1000 3R80-B N/A N/A<br />

20AE0P9 600 0.37 (0.5) 30 3R2-B 20 2<br />

20AE1P7 600 0.75 (1) 50 3R2-B 20 2<br />

20AE2P7 600 1.5 (2) 50 3R4-C 9 4<br />

20AE3P9 600 2.2 (3) 75 3R4-C 9 4<br />

20AE6P1 600 4.0 (5) 100 3R8-C 5 8<br />

20AE9P0 600 5.5 (7.5) 250 3R8-B 3 8<br />

20AE011 600 7.5 (10) 250 3R12-B 2.5 12<br />

20AE017 600 11 (15) 300 3R18-B 1.5 18<br />

20AE022 600 15 (20) 400 3R25-B 1.2 25<br />

20AE027 600 18.5 (25) 1000 3R35-B 0.8 35<br />

20AE031 600 22 (30) 1000 3R35-B 0.8 35<br />

20AE042 600 30 (40) 1000 3R45-B 0.7 45<br />

20AE051 600 37 (50) 1000 3R55-B 0.5 55<br />

(1) Shaded rows identify drive ratings without built-in inductors<br />

(2) Maximum suggested KVA supply without consideration for additional inductance<br />

(3)<br />

N/A = Not Available at time of printing<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Power Distribution 2-11<br />

Table 2.G AC Line Impedance Recommendations for PowerFlex 700/700S Drives<br />

PowerFlex<br />

700/700S<br />

Note: For<br />

PowerFlex<br />

700S, replace<br />

20B with 20D.<br />

Drive Catalog<br />

Number Volts kW (HP)<br />

Max Supply<br />

KVA (1) 3% Line Reactor<br />

Open Style 1321-<br />

Reactor<br />

Inductance (mH)<br />

Reactor Current<br />

Rating (Amps)<br />

20BB2P2 240 0.37 (0.5) 100 3R2-D 6 2<br />

20BB4P2 240 0.75 (1) 125 3R4-A 3 4<br />

20BB6P8 240 1.5 (2) 200 3R8-A 1.5 8<br />

20BB9P6 240 2.2 (3) 300 3R12-A 1.25 12<br />

20BB015 240 3.7 (5) 400 3R18-A 0.8 18<br />

20BB022 240 5.5 (7.5) 500 3R25-A 0.5 25<br />

20BB028 240 7.5 (10) 750 3R35-A 0.4 35<br />

20BB042 240 11 (15) 1000 3R45-A 0.3 45<br />

20BB052 240 15 (20) 1000 3R80-A 0.2 80<br />

20BB070 240 18.5 (25) 1000 3R80-A 0.2 80<br />

20BB080 240 22 (30) 1000 3R100-A 0.15 100<br />

20BB104 240 30 (40) 1000 3R130-A 0.1 130<br />

20BB130 240 37 (50) 1000 3R130-A 0.1 130<br />

20BB154 240 45 (60) 1000 3R160-A 0.075 160<br />

20BB192 240 55 (75) 1000 3R200-A 0.055 200<br />

20BB260 240 75 (100) 1000 3R320-A 0.04 320<br />

20BC1P3 400 0.37 (5) 250 3R2-B 20 2<br />

20BC2P1 400 0.75 (1) 250 3R2-B 20 2<br />

20BC3P5 400 1.5(2) 500 3R4-B 6.5 4<br />

20BC5P0 400 2.2 (3) 500 3R4-B 6.5 4<br />

20BC8P7 400 4 (5) 500 3R8-B 3 8<br />

20BC011 400 5.5 (7.5) 750 3R12-B 2.5 12<br />

20BC015 400 7.5 (10) 1000 3R18-B 1.5 18<br />

20BC022 400 11 (15) 1000 3R25-B 1.2 25<br />

20BC030 400 15 (20) 1000 3R35-B 0.8 35<br />

20BC037 400 18.5(25) 1000 3R45-B 0.7 45<br />

20BC043 400 22 (30) 1000 3R45-B 0.7 45<br />

20BC056 400 30 (40) 1000 3R55-B 0.5 55<br />

20BC072 400 37 (50) 1000 3R80-B 0.4 80<br />

20BC085 400 45 (60) 1000 3R130-B 0.2 130<br />

20BC105 400 55 (75) 1000 3R130-B 0.2 130<br />

20BC125 400 55 (75) 1000 3R130-B 0.2 130<br />

20BC140 400 75 (100) 1000 3R160-B 0.15 160<br />

20BC170 400 90 (125) 1500 3R200-B 0.11 200<br />

20BC205 400 110 (150) 1500 3R200-B 0.11 200<br />

20BC260 400 132 (175) 2000 3RB320-B 0.075 320<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


2-12 Power Distribution<br />

PowerFlex<br />

700/700S<br />

Note: For<br />

PowerFlex<br />

700S, replace<br />

20B with 20D.<br />

Drive Catalog<br />

Max Supply 3% Line Reactor Reactor Reactor Current<br />

Number Volts kW (HP) KVA (1) Open Style 1321- Inductance (mH) Rating (Amps)<br />

20BD1P1 480 0.37 (0.5) 250 3R2-B 20 2<br />

20BD2P1 480 0.75 (1) 250 3R2-B 20 2<br />

20BD3P4 480 1.5 (2) 500 3R4-B 6.5 4<br />

20BD5P0 480 2.2 (3) 500 3R4-B 6.5 4<br />

20BD8P0 480 4.0 (5) 500 3R8-B 3 8<br />

20BD011 480 5.5 (7.5) 750 3R12-B 2.5 12<br />

20BD014 480 7.5 (10) 750 3R18-B 1.5 18<br />

20BD022 480 11 (15) 750 3R25-B 1.2 25<br />

20BD027 480 15 (20) 750 3R35-B 0.8 35<br />

20BD034 480 18.5 (25) 1000 3R35-B 0.8 35<br />

20BD040 480 22 (30) 1000 3R45-B 0.7 45<br />

20BD052 480 30 (40) 1000 3R55-B 0.5 55<br />

20BD065 480 37 (50) 1000 3R80-B 0.4 80<br />

20BD077 480 45 (60) 1000 3R80-B 0.4 80<br />

20BD096 480 55 (75) 1000 3R100-B 0.3 100<br />

20BD125 480 75 (100) 1000 3R130-B 0.2 130<br />

20BD140 480 75 (100) 1000 3R160-B 0.15 160<br />

20BD156 480 90 (125) 1500 3R160-B 0.15 160<br />

20BD180 480 110 (150) 1500 3R200-B 0.11 200<br />

20BE0P9 600 0.37 (0.5) 250 3R2-B 20 2<br />

20BE1P7 600 0.75 (1) 250 3R2-B 20 2<br />

20BE2P7 600 1.5 (2) 500 3R4-B 6.5 4<br />

20BE3P9 600 2.2 (3) 500 3R4-B 6.5 4<br />

20BE6P1 600 4.0 (5) 500 3R8-B 3 8<br />

20BE9P0 600 5.5 (7.5) 750 3R8-B 3 8<br />

20BE011 600 7.5 (10) 750 3R12-B 2.5 12<br />

20BE017 600 11 (15) 750 3R25-B 1.2 25<br />

20BE022 600 15 (20) 750 3R25-B 1.2 25<br />

20BE027 600 18.5 (25) 1000 3R35-B 0.8 35<br />

20BE032 600 22 (30) 1000 3R35-B 0.8 35<br />

20BE041 600 30 (40) 1000 3R45-B 0.7 45<br />

20BE052 600 37 (50) 1000 3R55-B 0.5 55<br />

20BE062 600 45 (60) 1000 3R80-B 0.4 80<br />

20BE077 600 55 (75) 1000 3R80-B 0.4 80<br />

20BE099 600 75 (100) 1200 3R100-B 0.3 100<br />

20BE125 600 90 (125) 1400 3R130-B 0.2 130<br />

20BE144 600 110 (150) 1500 3R160-B 0.15 160<br />

(1) Maximum suggested KVA supply without consideration for additional inductance<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Power Distribution 2-13<br />

1336 Family-<br />

Plus<br />

Plus II<br />

Impact<br />

Force<br />

Table 2.H AC Line Impedance Recommendations for Bulletin 1336 Drives<br />

Drive Catalog<br />

Number (1) Volts kW (HP)<br />

Max Supply<br />

kVA (2)(3) 3% Line Reactor<br />

Open Style 1321-<br />

Reactor<br />

Inductance (mH)<br />

Reactor Current<br />

Rating (Amps) (4)<br />

AQF05 240 0.37 (0.5) 25 3R4-A 3.0 4<br />

AQF07 240 0.56 (0.75) 25 3R4-A 3.0 4<br />

AQF10 240 0.75 (1) 50 3R8-A 1.5 8<br />

AQF15 240 1.2 (1.5) 75 3R8-A 1.5 8<br />

AQF20 240 1.5 (2) 100 3R12-A 1.25 12<br />

AQF30 240 2.2 (3) 200 3R12-A 1.25 12<br />

AQF50 240 3.7 (5) 275 3R25-A 0.5 25<br />

AQF75 240 5.5 (7.5) 300 3R25-A 0.5 25<br />

A7 240 5.5 (7.5) 300 3R25-A 0.5 25<br />

A10 240 7.5 (10) 350 3R35-A 0.4 35<br />

A15 240 11 (15) 600 3R45-A 0.3 45<br />

A20 240 15 (20) 800 3R80-A 0.2 80<br />

A25 240 18.5 (25) 800 3R80-A 0.2 80<br />

A30 240 22 (30) 950 3R80-A 0.2 80<br />

A40 240 30 (40) 1000 3R130-A 0.1 130<br />

A50 240 37 (50) 1000 3R160-A 0.075 160<br />

A60 240 45 (60) 1000 3R200-A 0.55 200<br />

A75 240 56 (75) 1000 3RB250-A 0.045 250<br />

A100 240 75 (100) 1000 3RB320-A 0.04 320<br />

A125 240 93 (125) 1000 3RB320-A 0.04 320<br />

BRF05 480 0.37 (0.5) 25 3R2-B 20 2<br />

BRF07 480 0.56 (0.75) 30 3R2-B 20 2<br />

BRF10 480 0.75 (1) 30 3R4-B 6.5 4<br />

BRF15 480 1.2 (1.5) 50 3R4-B 6.5 4<br />

BRF20 480 1.5 (2) 50 3R8-B 3.0 8<br />

BRF30 480 2.2 (3) 75 3R8-B 3.0 8<br />

BRF50 480 3.7 (5) 100 3R12-B 2.5 12<br />

BRF75 480 5.5 (7.5) 200 3R18-B 1.5 18<br />

BRF100 480 7.5 (10) 275 3R25-B 1.2 25<br />

BRF150 480 11 (15) 300 3R25-B 1.2 25<br />

BRF200 480 15 (20) 350 3R25-B 1.2 25<br />

B015 480 11 (15) 350 3R25-B 1.2 25<br />

B020 480 15 (20) 425 3R35-B 0.8 35<br />

B025 480 18.5 (25) 550 3R35-B 0.8 35<br />

B030 480 22 (30) 600 3R45-B 0.7 45<br />

B040 480 30 (40) 750 3R55-B 0.5 55<br />

B050 480 37 (50) 800 3R80-B 0.4 80<br />

B060 480 45 (60) 900 3R80-B 0.4 80<br />

B075 480 56 (75) 1000 3R100-B 0.3 100<br />

B100 480 75 (100) 1000 3R130-B 0.2 130<br />

B125 480 93 (125) 1400 3R160-B 0.15 160<br />

B150 480 112 (150) 1500 3R200-B 0.11 N200<br />

B200 480 149 (200) 2000 3RB250-B 0.09 250<br />

B250 480 187 (250) 2500 3RB320-B 0.075 320<br />

B300 480 224 (300) 3000 3RB400-B 0.06 400<br />

B350 480 261 (350) 3500 3R500-B 0.05 500<br />

B400 480 298 (400) 4000 3R500-B 0.05 500<br />

B450 480 336 (450) 4500 3R600-B 0.04 600<br />

B500 480 373 (500) 5000 3R600-B 0.04 600<br />

B600 480 448 (600) 5000 3R750-B 0.029 750<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


2-14 Power Distribution<br />

1336 Family-<br />

Plus<br />

Plus II<br />

Impact<br />

Force<br />

Drive Catalog<br />

Max Supply 3% Line Reactor Reactor Reactor Current<br />

Number (1) Volts kW (HP) kVA (2)(3) Open Style 1321- Inductance (mH) Rating (Amps) (4)<br />

B700 480 (700) 5000 3R850-B 0.027 850<br />

B800 480 (800) 5000 3R1000-B 0.022 1000<br />

BP/BPR250 480 187 (250) N/A N/A N/A N/A<br />

BP/BPR300 480 224 (300) N/A N/A N/A N/A<br />

BP/BPR350 480 261 (350) N/A N/A N/A N/A<br />

BP/BPR400 480 298 (400) N/A N/A N/A N/A<br />

BP/BPR450 480 336 (450) N/A N/A N/A N/A<br />

BX040 480 30 (40) N/A N/A N/A N/A<br />

BX060 480 45 (60) N/A N/A N/A N/A<br />

BX150 480 112 (150) N/A N/A N/A N/A<br />

BX250 480 187 (250) N/A N/A N/A N/A<br />

CWF10 600 0.75 (1) 25 3R4-C 9 4<br />

CWF20 600 1.5 (2) 50 3R4-C 9 4<br />

CWF30 600 2.2 (3) 75 3R8-C 5 8<br />

CWF50 600 3.7 (5) 100 3R8-B 3 8<br />

CWF75 600 5.5 (7.5) 200 3R8-B 3 8<br />

CWF100 600 7.5 (10) 200 3R12-B 2.5 12<br />

CWF150 600 11 (15) 300 3R18-B 1.5 18<br />

CWF200 600 15 (20) 350 3R25-B 1.2 25<br />

C015 600 11 (15) 300 3R18-B 1.5 18<br />

C020 600 15 (20) 350 3R25-B 1.2 25<br />

C025 600 18.5 (25) 500 3R25-B 1.2 25<br />

C030 600 22 (30) 600 3R35-B 0.8 35<br />

C040 600 30 (40) 700 3R45-B 0.7 45<br />

C050 600 37 (50) 850 3R55-B 0.5 55<br />

C060 600 45 (60) 900 3R80-B 0.4 80<br />

C075 600 56 (75) 950 3R80-B 0.4 80<br />

C100 600 75 (100) 1200 3R100-B 0.3 100<br />

C125 600 93 (125) 1400 3R130-B 0.2 130<br />

C150 600 112 (150) 1500 3R160-B 0.15 160<br />

C200 600 149 (200) 2200 3R200-B 0.11 200<br />

C250 600 187 (250) 2500 3R250-B 0.09 250<br />

C300 600 224 (300) 3000 3R320-B 0.075 320<br />

C350 600 261 (350) 3000 3R400-B 0.06 400<br />

C400 600 298 (400) 4000 3R400-B 0.06 400<br />

C450 600 336 (450) 4500 3R500-B 0.05 500<br />

C500 600 373 (500) 5000 3R500-B 0.05 500<br />

C600 600 448 (600) 5000 3R600-B 0.04 600<br />

C650 600 (650) 5000 3R750-B 0.029 750<br />

C700 600 (700) 5000 3R850-B FN-1 0.027 850<br />

C800 600 (800) 5000 3R850-B FN-1 0.027 850<br />

CP/CPR350 600 261 (350) N/A N/A N/A N/A<br />

CP/CPR400 600 298 (400) N/A N/A N/A N/A<br />

(1) Shaded rows identify drive ratings without built-in inductors<br />

(2)<br />

Maximum suggested KVA supply without consideration for additional inductance<br />

(3)<br />

2000 KVA represents 2MVA and Greater<br />

(4) N/A = Not Available at time of printing<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Power Distribution 2-15<br />

Multi-Drive Protection<br />

Multiple drives on a common power line should each have their own line<br />

reactor. Individual line reactors provide filtering between each drive to<br />

provide optimum surge protection for each drive. However, if it is<br />

necessary to group more than one drive on a single AC line reactor, use the<br />

following process to verify that the AC line reactor provides a minimum<br />

amount of impedance:<br />

1. In general, up to 5 drives can be grouped on one reactor.<br />

2. Add the input currents of the drives in the group.<br />

3. Multiply that sum by 125%.<br />

4. Use publication 1321-2.0 to select a reactor with a maximum continuous<br />

current rating greater than the multiplied current.<br />

5. Verify that the impedance of the selected reactor is more than 0.5%<br />

(0.25% for drives with internal inductors) of the smallest drive in the group<br />

by using the formulas below. If the impedance is too small, select a reactor<br />

with a larger inductance and same amperage, or regroup the drives into<br />

smaller groups and start over.<br />

Z<br />

drive<br />

=<br />

V<br />

3 * I<br />

line - line<br />

input - rating<br />

Z reactor<br />

=<br />

L * 2 * 3.14 * f<br />

L is the inductance of the reactor in henries and f is the AC line frequency<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


2-16 Power Distribution<br />

Example: There are 5 drives, each is rated 1 HP, 480V, 2.7 amps. These drives do<br />

not have internal inductors.<br />

Total current = 5 * 2.7 amps = 13.5 amps<br />

125% * Total current = 125% * 13.5 amps = 16.9 amps<br />

From publication 1321-2.0, we selected the reactor 1321-3R12-C, which<br />

has a maximum continuous current rating of 18 amps and an inductance of<br />

4.2 mH (0.0042 henries).<br />

Z<br />

drive<br />

=<br />

V<br />

3 * I<br />

line - line<br />

input - rating<br />

=<br />

480<br />

= 102.6 Ohms<br />

3 * 2.7<br />

Z reactor<br />

= L * (2 * 3.14) * f = 0.0042 * 6.28 * 60 = 1.58 Ohms<br />

Z<br />

Z<br />

reactor<br />

drive<br />

=<br />

1.58<br />

102.6<br />

= 0.0154 = 1.54%<br />

1.54% is more than the 0.5% impedance recommended. The 1321-3R12-C<br />

can be used for the (5) 2.7 amp drives in this example.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Power Distribution 2-17<br />

Surge Protection MOVs and<br />

Common Mode Capacitors<br />

!<br />

ATTENTION: When installing a drive on an ungrounded,<br />

high-resistance or B phase grounded distribution system,<br />

disconnect the phase-to-ground MOV circuit and the common<br />

mode capacitors from ground.<br />

Note: In some drives, a single jumper connects both the phase-to-ground<br />

MOV and the common mode capacitors to ground.<br />

MOV Circuitry<br />

Most drives are designed to operate on three-phase supply systems with<br />

symmetrical line voltages. To meet IEEE 587, these drives are equipped<br />

with MOVs that provide voltage surge protection as well as phase-to-phase<br />

and phase-to-ground protection. The MOV circuit is designed for surge<br />

suppression (transient line protection) only, not for continuous operation.<br />

Figure 2.1 Typical MOV Configuration<br />

Three-Phase<br />

AC Input<br />

Ground<br />

R<br />

S<br />

T<br />

1 2 3 4<br />

PHASE-TO-PHASE MOV RATING<br />

Includes Two Phase-to-Phase MOV's<br />

PHASE-TO-GROUND MOV RATING<br />

Includes One Phase-to-Phase MOV<br />

and One Phase-to-Ground MOV<br />

With ungrounded distribution systems, the phase-to-ground MOV<br />

connection can become a continuous current path to ground. Exceeding the<br />

published phase-to-phase, phase-to-ground voltage or energy ratings may<br />

cause physical damage to the MOV.<br />

Suitable isolation is required for the drive when there is potential for<br />

abnormally high phase-to-ground voltages (in excess of 125% of nominal<br />

line-to-line voltage), or when the supply ground is tied to another system or<br />

equipment that could cause the ground potential to vary with operation. An<br />

isolation transformer is strongly recommended when this condition exists.<br />

Common Mode Capacitors<br />

Many drives also contain common mode capacitors that are referenced to<br />

ground. In installations with ungrounded or high resistive ground systems,<br />

the common mode capacitors can capture high frequency common mode or<br />

ground fault currents. This can cause bus overvoltage conditions, which<br />

could lead to damage or drive faults. Systems which are ungrounded or have<br />

one phase grounded (commonly called B phase grounded) apply higher than<br />

normal voltage stresses directly to the common mode capacitors, which can<br />

lead to shortened drive life or damage.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


2-18 Power Distribution<br />

Using PowerFlex Drives with<br />

Regenerative Units<br />

!<br />

ATTENTION: If a Regenerative unit (i.e. 1336 REGEN) or<br />

other Active Front End (AFE) is used as a bus supply or brake,<br />

the common mode capacitors should be disconnected as<br />

described in the Drive User Manual. This will guard against<br />

possible equipment damage.<br />

DC Bus Wiring Guidelines<br />

DC bus wiring refers to connecting the DC bus of an AC drive to the DC<br />

connections on another piece of equipment. That equipment could include<br />

any or all of the following:<br />

• Additional AC drive<br />

• Non-Regenerative DC Bus Supply<br />

• Regenerative DC Bus Supply<br />

• Regenerative Braking Module<br />

• Dynamic Braking Module<br />

• Chopper Module<br />

For further information on the types of common DC bus configurations and<br />

applications refer to AC Drives in Common Bus Configurations (publication<br />

DRIVES-AT002).<br />

Drive Line-up<br />

Generally, it is desirable to have the drive line-up match the machine layout.<br />

However, if there is a mix of drive frame sizes used in the line-up, the<br />

general system layout should have the largest drives located closest to the<br />

rectifier source. The rectifier source need not be at the left end of the system<br />

line-up. Many times it is advantageous to put the rectifier in the middle of<br />

the line-up, minimizing the distances to the farthest loads. This is needed to<br />

minimize the energy stored in the parasitic inductance of the bus structure<br />

and thus lower peak bus voltages during transient operation.<br />

The system must be contained in one contiguous line-up. The bus cannot be<br />

interrupted to go to another cabinet for the remainder of the system drives.<br />

This is needed to maintain low inductance.<br />

DC Bus Connections<br />

General<br />

The interconnection of drives to the DC bus, and the inductance levels<br />

between the drives, should be kept to a minimum for reliable system<br />

operation. Therefore, a low inductance-type DC bus should be used, 0.35<br />

µH/m or less.<br />

The DC bus connections should not be “daisy chained.” Configuration of<br />

the DC bus connections should be in a “star” configuration to allow for<br />

proper fusing.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Power Distribution 2-19<br />

Figure 2.2 Star Configuration of Common Bus Connections<br />

L1<br />

Bus Supply<br />

L2<br />

L3<br />

DC+ BR1 BR2 DC-<br />

DC+ DC-<br />

DC+ DC-<br />

Power Distribution<br />

Terminal Block<br />

DC+ BR1 BR2 DC-<br />

DC+ BR1 BR2 DC-<br />

L1<br />

L2<br />

L3<br />

AC Drive<br />

L1<br />

L2<br />

L3<br />

AC Drive<br />

L1<br />

L2<br />

L3<br />

AC Drive<br />

M1<br />

M2<br />

M3<br />

Bus Bar vs. Cable<br />

• DC Bus Bar is recommended.<br />

• When DC Bus Bar cannot be used, use the following guidelines for DC<br />

Bus cables:<br />

– Cable should be twisted where possible, approximately 1 twist per<br />

inch.<br />

– Cable rated for the equivalent AC voltage rating should be used. The<br />

peak AC voltage is equivalent to the DC voltage. For example, the<br />

peak AC voltage on a 480V AC system no load is 480 x 1.414 = 679<br />

Volts peak. The 679 Volts peak corresponds to 679 Volts DC at no<br />

load.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


2-20 Power Distribution<br />

Braking Chopper<br />

Connection of the brake unit should be closest to the largest drive. If all are<br />

the same rating, then closest to the drive that regenerates the most.<br />

In general, brake units should be mounted within 3 meters (10 feet) of the<br />

drive. Resistors for use with chopper modules must be located within 30<br />

meters (100 feet) of the chopper module. Refer to the respective braking<br />

product documentation for details.<br />

An RC snubber circuit is required when using the 1336-WA, WB or WC<br />

Brake Chopper in the configurations listed below:<br />

1. A non-regenerative bus supply configuration using a PowerFlex Diode<br />

Bus Supply.<br />

2. A shared AC/DC Bus configuration containing a PowerFlex 700/700S<br />

Frame 0…4 drive or PowerFlex 40P drive.<br />

3. A shared DC Bus (Piggy Back) configuration when the main drive is a<br />

PowerFlex 700/700S Frame 0 to 4 or PowerFlex 40P drive.<br />

The RC snubber circuit is required to prevent the DC bus voltage from<br />

exceeding the 1200V maximum Brake Chopper IGBT voltage. The 1336<br />

Brake Chopper power-up delay time is 80 milliseconds. During this time,<br />

the IGBT will not turn on. The RC snubber circuit must always be<br />

connected to the DC bus (located close to the braking chopper) to absorb the<br />

power-on voltage overshoot (see Figure 2.3).<br />

The specifications for the RC snubber are:<br />

R = 10 ohm, 100 W, low inductance (less than 50 µH)<br />

C = 20 µF, 2000V<br />

Figure 2.3 Configuration Example of Diode Bus Supply w/PowerFlex 700 Frame 0…4,<br />

PowerFlex 40P, 1336-W Braking Chopper and RC Snubber Circuit.<br />

3-Phase<br />

Source<br />

3-Phase<br />

Reactor<br />

Diode<br />

Bus Supply<br />

L1<br />

DC+<br />

L2<br />

DC-<br />

L3<br />

PowerFlex<br />

DC+<br />

DC-<br />

DC+ BR1 BR2 DC-<br />

DC+ BR1 BR2 DC-<br />

DC+ BR+ BR- DC-<br />

DC+ BR+ BR- DC-<br />

Braking Unit<br />

1336-W*<br />

Frame 0-4 Frame 0-4<br />

L1<br />

L1<br />

L2<br />

L2<br />

L3<br />

L3<br />

L1<br />

L2<br />

L3<br />

PowerFlex 40P<br />

L1<br />

L2<br />

L3<br />

PowerFlex 40P<br />

BR1<br />

BR2<br />

PowerFlex 700<br />

PowerFlex 700<br />

BR<br />

M1<br />

M2<br />

M3<br />

M4<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Chapter 3<br />

Grounding<br />

This chapter discusses various grounding schemes for safety and noise<br />

reduction.<br />

An effectively grounded scheme or product is one that is “intentionally<br />

connected to earth through a ground connection or connections of<br />

sufficiently low impedance and having sufficient current-carrying capacity<br />

to prevent the buildup of voltages which may result in undue hazard to<br />

connected equipment or to persons” (as defined by the US National Electric<br />

Code NFPA70, Article 100B). Grounding of a drive or drive system is done<br />

for 2 basic reasons: safety (defined above) and noise containment or<br />

reduction. While the safety ground scheme and the noise current return<br />

circuit may sometimes share the same path and components, they should be<br />

considered different circuits with different requirements.<br />

Grounding Safety Grounds<br />

The object of safety grounding is to ensure that all metalwork is at the same<br />

ground (or Earth) potential at power frequencies. Impedance between the<br />

drive and the building scheme ground must conform to the requirements of<br />

national and local industrial safety regulations or electrical codes. These<br />

will vary based on country, type of distribution system and other factors.<br />

Periodically check the integrity of all ground connections.<br />

General safety dictates that all metal parts are connected to earth with<br />

separate copper wire or wires of the appropriate gauge. Most equipment has<br />

specific provisions to connect a safety ground or PE (protective earth)<br />

directly to it.<br />

Building Steel<br />

If intentionally bonded at the service entrance, the incoming supply neutral<br />

or ground will be bonded to the building ground. Building steel is judged to<br />

be the best representation of ground or earth. The structural steel of a<br />

building is generally bonded together to provide a consistent ground<br />

potential. If other means of grounding are used, such as ground rods, the<br />

user should understand the voltage potential, between ground rods in<br />

different areas of the installation. Type of soil, ground water level and other<br />

environmental factors can greatly affect the voltage potential between<br />

ground points if they are not bonded to each other.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


3-2 Grounding<br />

Grounding PE or Ground<br />

The drive safety ground - PE must be connected to scheme or earth ground.<br />

This is the safety ground for the drive that is required by code. This point<br />

must be connected to adjacent building steel (girder, joist), a floor ground<br />

rod, bus bar or building ground grid. Grounding points must comply with<br />

national and local industrial safety regulations or electrical codes. Some<br />

codes may require redundant ground paths and periodic examination of<br />

connection integrity. Global Drive Systems requires the PE ground to be<br />

connected to the transformer ground feeding the drive system.<br />

RFI Filter Grounding<br />

Using an optional RFI filter may result in relatively high ground leakage<br />

currents. Therefore, the filter must only be used in installations with<br />

grounded AC supply systems and be permanently installed and solidly<br />

grounded to the building power distribution ground. Ensure the incoming<br />

supply neutral is solidly connected to the same building power distribution<br />

ground. Grounding must not rely on flexible cables or any plug or socket<br />

that may be accidentally disconnected. Some codes may require redundant<br />

ground connections. Periodically check the integrity of all connections.<br />

Refer to the instructions supplied with the filter.<br />

Grounding Motors<br />

The motor frame or stator core must be connected directly to the drive PE<br />

connection with a separate ground conductor. It is recommended that each<br />

motor frame be grounded to building steel at the motor. Refer to Cable<br />

Trays in Chapter 4 for more information.<br />

Grounding and TN-S Five-Wire Systems<br />

Do not connect ground to neutral within a system cabinet, when using a<br />

TN-S five-wire distribution system. The neutral wire is a current conducting<br />

wire. There is a single connection between ground and neutral, typically in<br />

the distribution system.<br />

TN-S five-wire distribution systems are common throughout Europe, with<br />

the exception of the United Kingdom and Germany. Leg to leg voltage<br />

(commonly at 400V) powers three-phase loads. Leg to neutral voltage<br />

(commonly at 230V) powers single-phase loads.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Grounding 3-3<br />

Input Transformer<br />

Figure 3.1 Cabinet Grounding with a TN-S Five-Wire System<br />

L1<br />

System Cabinet<br />

L2<br />

L3<br />

PEN or N<br />

PE<br />

AC Drive<br />

R<br />

R<br />

S<br />

S<br />

T<br />

T<br />

PE PE<br />

PE<br />

Single-<br />

-Phase<br />

Device<br />

Cabinet Ground Bus<br />

Noise Related Grounds<br />

It is important to take care when installing PWM AC drives because output<br />

can produce high frequency common mode (coupled from output to ground)<br />

noise currents. These currents cause sensitive equipment to malfunction if<br />

they are allowed to propagate.<br />

INPUT TRANSFORMER<br />

AC DRIVE<br />

Path for Common<br />

Mode Current<br />

MOTOR FRAME<br />

PE<br />

X 0<br />

A<br />

B<br />

C<br />

R<br />

S<br />

T<br />

U<br />

V<br />

W<br />

PE<br />

MOTOR<br />

C lg-m<br />

Feed-<br />

-back<br />

Device<br />

Path for Common<br />

Mode Current<br />

Path for Common<br />

Mode Current<br />

C lg-c<br />

Path for Common<br />

Mode Current<br />

V ng<br />

SYSTEM GROUND<br />

Path for Common<br />

Mode Current<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


3-4 Grounding<br />

The grounding scheme can greatly affect the amount of noise and its impact<br />

on sensitive equipment. The power scheme is likely to be one of three types:<br />

• Ungrounded Scheme<br />

• Scheme with High Resistance Ground<br />

• Fully Grounded Scheme<br />

An ungrounded scheme, as shown in Figure 3.2, does not provide a direct<br />

path for the common mode noise current, causing it to seek other<br />

uncontrolled paths. This causes related noise issues.<br />

Figure 3.2 Ungrounded Scheme<br />

Earth Ground Potential<br />

A scheme with a high resistance ground, shown in Figure 3.3, provides a<br />

direct path for common mode noise current, like a fully grounded scheme.<br />

Designers, who are concerned with minimizing ground fault currents,<br />

commonly choose high resistance ground schemes.<br />

Figure 3.3 Scheme with High Resistance Ground<br />

Earth Ground Potential<br />

A fully grounded scheme, shown in Figure 3.4, provides a direct path for<br />

common mode noise currents. The use of grounded neutral systems is<br />

recommended for the following reasons:<br />

– Controlled path for common mode noise current<br />

– Consistent line to ground voltage reference, which minimizes<br />

insulation stress<br />

– Accommodation for system surge protection schemes<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Grounding 3-5<br />

Figure 3.4 Fully Grounded Scheme<br />

Earth Ground Potential<br />

The installation and grounding practices to reduce common mode noise<br />

issues can be categorized into three ratings. The scheme used must weigh<br />

additional costs against the operating integrity of all scheme components. If<br />

no sensitive equipment is present and noise is not be an issue, the added cost<br />

of shielded cable and other components may not be justified.<br />

Acceptable Grounding Practices<br />

The scheme shown below is an acceptable ground layout for a single drive<br />

installation. However, conduit may not offer the lowest impedance path for<br />

any high frequency noise. If the conduit is mounted so that it contacts the<br />

building steel, it is likely that the building steel will offer a lower impedance<br />

path and allow noise to inhabit the ground grid.<br />

Connection to Drive Structure<br />

or Optional Cabinet<br />

Via Conduit Connector<br />

MOTOR FRAME<br />

INPUT TRANSFORMER<br />

AC DRIVE<br />

CONDUIT<br />

A<br />

R<br />

U<br />

S<br />

T<br />

R<br />

AP<br />

X 0<br />

B<br />

S<br />

V<br />

MOTOR<br />

PE<br />

C<br />

T<br />

W<br />

PE PE<br />

Connection to<br />

Ground Grid,<br />

Girder or<br />

Ground Rod<br />

Connection to<br />

Cabinet Ground Bus<br />

or Directly to<br />

Drive PE Terminal<br />

Panel Ground Bus<br />

(OPTIONAL ENCLOSURE)<br />

BUILDING GROUND POTENTIAL<br />

Incidental Contact<br />

of Conduit Strap<br />

Motor<br />

Frame<br />

Ground<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


3-6 Grounding<br />

Effective Grounding Practices<br />

This scheme replaces the conduit with shielded or armored cable that has a<br />

PVC exterior jacket. This PVC jacket prevents accidental contact with<br />

building steel and reduces the possibility that noise will enter the ground<br />

grid.<br />

INPUT TRANSFORMER<br />

AC DRIVE<br />

Shielded or<br />

Armored Cable<br />

with PVC Jacket<br />

MOTOR FRAME<br />

A<br />

R<br />

U<br />

PE<br />

X 0<br />

B<br />

C<br />

S<br />

T<br />

V<br />

W<br />

PE PE<br />

P<br />

V<br />

C<br />

MOTOR<br />

Connection to<br />

Ground Grid,<br />

Girder or<br />

Ground Rod<br />

Connection to<br />

Cabinet Ground Bus<br />

or Directly to<br />

Drive PE Terminal<br />

Panel Ground Bus<br />

(OPTIONAL ENCLOSURE)<br />

Connection to Drive Structure or<br />

Optional Cabinet Via Grounding<br />

Connector or Terminating<br />

Shield at PE Terminal<br />

Motor<br />

Frame<br />

Ground<br />

BUILDING GROUND POTENTIAL<br />

Optimal - Recommended Grounding Practices<br />

The fully grounded scheme provides the best containment of common mode<br />

noise. It uses PVC jacketed, shielded cable on both the input and the output<br />

to the drive. This method also provides a contained noise path to the<br />

transformer to keep the ground grid as clean as possible.<br />

INPUT TRANSFORMER<br />

Shielded or<br />

Armored Cable<br />

with PVC Jacket<br />

AC DRIVE<br />

Shielded or<br />

Armored Cable<br />

with PVC Jacket<br />

MOTOR FRAME<br />

A<br />

R<br />

U<br />

X 0<br />

B<br />

C<br />

P<br />

V<br />

C<br />

S<br />

T<br />

V<br />

W<br />

PE PE<br />

P<br />

V<br />

C<br />

MOTOR<br />

PE<br />

Connection to Ground Grid,<br />

Girder or Ground Rod<br />

Connection to Drive Structure or<br />

Optional Cabinet Via Grounding<br />

Connector or Terminating<br />

Shield at PE Terminal<br />

Connection to<br />

Cabinet Ground Bus<br />

or Directly to<br />

Drive PE Terminal<br />

Panel Ground Bus<br />

(OPTIONAL ENCLOSURE)<br />

Connection to Drive Structure or<br />

Optional Cabinet Via Grounding<br />

Connector or Terminating<br />

Shield at PE Terminal<br />

Motor<br />

Frame<br />

Ground<br />

BUILDING GROUND POTENTIAL<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Grounding 3-7<br />

Cable Shields<br />

Motor and Input Cables<br />

Shields of motor and input cables must be bonded at both ends to provide a<br />

continuous path for common mode noise current.<br />

Control and Signal Cables<br />

Shields of control cables should be connected at one end only. The other<br />

end should be cut back and insulated.<br />

– The shield for a cable from one cabinet to another must be connected<br />

at the cabinet that contains the signal source.<br />

– The shield for a cable from a cabinet to an external device must be<br />

connected at the cabinet end, unless specified by the manufacturer of<br />

the external device.<br />

Never connect a shield to the common side of a logic circuit (this will<br />

introduce noise into the logic circuit). Connect the shield directly to a<br />

chassis ground.<br />

Shield Splicing<br />

Figure 3.5 Spliced Cable Using Shieldhead Connector<br />

PE<br />

If the shielded cable needs to be stripped, it should be<br />

stripped back as little as possible to ensure that continuity<br />

of the shield is not interrupted. Avoid splicing motor<br />

power cables when ever possible. Ideally, motor cables<br />

should run continuously between the drive and motor<br />

terminals. The most common reason for interrupted cable/<br />

shield is to incorporate an “at the motor” disconnect<br />

switch. In these cases, the preferred method of splicing is<br />

to use fully shielded bulkhead connectors.<br />

Single Point<br />

A single safety ground point or ground bus bar should be<br />

directly connected to the building steel for cabinet<br />

installations. All circuits including the AC input ground<br />

conductor should be grounded independently and directly<br />

to this point/bar.<br />

Isolated Inputs<br />

If the drive’s analog inputs are from isolated devices and the output signal is<br />

not referenced to the ground, the drive’s inputs do not need to be isolated.<br />

An isolated input is recommended to reduce the possibility of induced noise<br />

if the transducer’s signal is referenced to ground and the ground potentials<br />

are varied (Refer to Noise Related Grounds on page 3-3). An external<br />

isolator can be installed if the drive does not provide input isolation.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


3-8 Grounding<br />

Notes:<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Chapter 4<br />

Practices<br />

This chapter discusses various installation practices.<br />

Mounting<br />

<strong>Stand</strong>ard Installations<br />

There are many criteria in determining the appropriate enclosure. Some of<br />

these include:<br />

• Environment<br />

• EMC Compatibility/Compliance<br />

• Available Space<br />

• Access/Wiring<br />

• Safety Guidelines<br />

Grounding to the Component Mounting Panel<br />

In the example below, the drive chassis ground plane is extended to the<br />

mounting panel. The panel is made of zinc-plated steel to ensure a proper<br />

bond between chassis and panel.<br />

Figure 4.1 Drive Chassis Ground Plane Extended to the Panel<br />

Drive ground plane<br />

(chassis) bonded to panel<br />

Note: Where TE and PE terminals are provided, ground each separately to<br />

the nearest point on the panel using flat braid.<br />

In an industrial control cabinet, the equivalent to the copper ground layer of<br />

a PCB is the mounting panel. To make use of the panel as a ground plane it<br />

should be made of zinc-plated mild steel. If painted, remove the paint at<br />

each mounting and grounding point.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


4-2 Practices<br />

Zinc-plated steel is strongly recommended due to its inherent ability to bond<br />

with the drive chassis and resist corrosion. The disadvantage with painted<br />

panels, apart from the cost in labor to remove the paint, is the difficulty in<br />

making quality control checks to verify if the paint has been properly<br />

removed, and any future corrosion of the unprotected mild steel may<br />

compromise noise performance.<br />

Plain stainless steel panels are also acceptable but are inferior to zinc-plated<br />

mild steel due to their higher ohms-per-square resistance.<br />

Though not always applicable, a plated cabinet frame is also highly<br />

desirable since it makes a high frequency bond between panel and cabinet<br />

sections more reliable.<br />

Doors<br />

For doors 2 m (78 in.) in height, ground the door to the cabinet with two or<br />

three braided straps.<br />

EMC seals are not normally required for industrial systems.<br />

EMC Specific Installations<br />

A steel enclosure is recommended. A steel enclosure can help guard against<br />

radiated noise to meet EMC standards. If the enclosure door has a viewing<br />

window, it should be a laminated screen or a conductive optical substrate to<br />

block EMC.<br />

Do not rely on the hinge for electrical contact between the door and the<br />

enclosure - install a grounding wire. For doors 2 m (78 in.) in height, two or<br />

three braided grounding straps between the door and the cabinet should be<br />

used. EMC gaskets are not normally required for industrial systems.<br />

Layout<br />

Plan the cabinet layout so that drives are separated from sensitive<br />

equipment. Choose conduit entry points that allow any common mode noise<br />

to remain away from PLCs and other equipment that may be susceptible to<br />

noise. Refer to Moisture on page 4-19 for additional information.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Practices 4-3<br />

Hardware<br />

You can mount the drive and/or mounting panel with either bolts or welded<br />

studs.<br />

Mounting Bracket<br />

or Ground Bus<br />

Figure 4.2 Stud Mounting of Ground Bus or Chassis to Back Panel<br />

Welded Stud<br />

Back Panel<br />

Flat Washer<br />

Paint Free Area<br />

Nut<br />

Flat Washer<br />

Star Washer<br />

If mounting bracket is coated with a<br />

non-conductive material (anodized,<br />

painted, etc.), scrape the material off<br />

around the mounting hole.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


4-4 Practices<br />

Figure 4.3 Bolt Mounting of Ground Bus or Chassis to Back Panel<br />

Back Panel Star Washer<br />

Bolt<br />

Mounting Bracket<br />

or Ground Bus<br />

Flat Washer<br />

Nut<br />

Flat Washer<br />

Nut<br />

Star Washer<br />

Paint Free Area<br />

Star Washer<br />

If mounting bracket is coated with a<br />

non-conductive material (anodized,<br />

painted, etc.), scrape the material off<br />

around the mounting hole.<br />

If the drive chassis does not lay flat before the nuts/bolts are tightened, use<br />

additional washers as shims so that the chassis does not bend when you<br />

tighten the nuts.<br />

Conduit Entry<br />

Entry Plates<br />

In most cases, the conduit entry plate will be a paint-free conductive<br />

material. The surface of the plate should be clean of oil or contaminants. If<br />

the plate is painted, use a connector that cuts through the paint and makes a<br />

high quality connection to the plate material<br />

Or<br />

Remove the paint around the holes to the bare metal one inch in from the<br />

edge of the plate. Grind down the paint on the top and bottom surfaces. Use<br />

a high quality joint compound when reassembling to avoid corrosion.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Practices 4-5<br />

Cable Connectors/Glands<br />

Choose cable connectors or glands that offer the best cable protection,<br />

shield termination and ground contact. Refer to Shield Termination on<br />

page 4-15 for more information.<br />

Shield terminating connectors<br />

The cable connector selected must provide good 360 o contact and low<br />

transfer impedance from the shield or armor of the cable to the conduit entry<br />

plate at both the motor and the drive or drive cabinet for electrical bonding.<br />

SKINTOP ® MS-SC/MS-SCL cable grounding connectors and NPT/PG<br />

adapters from LAPPUSA are good examples of this type of shield<br />

terminating gland.<br />

Figure 4.4 Terminating the Shield with a Connector<br />

Metal connector body<br />

makes direct contact with<br />

the braid wires<br />

Braid wires pulled back in a 360° pattern<br />

around the ground cone of the connector<br />

U (T1)<br />

V (T2)<br />

W (T3)<br />

PE<br />

Ground Bushing<br />

One or More<br />

Ground Leads<br />

Metal locknut bonds the<br />

connector to the panel<br />

Drain wires pulled back in a 360° pattern<br />

around the ground cone of the connector<br />

Important: This is mandatory for CE compliant installations, to meet<br />

requirements for containing radiated electromagnetic emissions.<br />

Shield termination via Pigtail (Lead)<br />

If a shield terminating connector is not available, the ground conductors or<br />

shields must be terminated to the appropriate ground terminal. If necessary,<br />

use a compression fitting for ground conductor(s) and/or shields together as<br />

they leave the cable fitting.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


4-6 Practices<br />

Figure 4.5 Terminating the Shield with a Pigtail Lead<br />

Exposed Shield<br />

One or More<br />

Ground Leads<br />

U (T1)<br />

V (T2)<br />

W (T3)<br />

PE<br />

PE<br />

Flying Lead Soldered<br />

to Braid<br />

Important: This is an acceptable industry practice for most installations.<br />

to minimize stray common mode currents<br />

Pigtail termination is the least effective method of noise containment.<br />

It is not recommended if:<br />

• the cable length is greater than 1 m (39 in.) or extends beyond the panel<br />

• in very noisy areas<br />

• the cables are for very noise sensitive signals (for example, registration<br />

or encoder cables)<br />

• strain relief is required<br />

If a pigtail is used, pull and twist the exposed shield after separation from<br />

the conductors. Solder a flying lead to the braid to extend its length.<br />

Ground Connections<br />

Ground conductors should be connected with care to assure safe and<br />

adequate connections.<br />

For individual ground connections, star washers and ring lugs should be<br />

used to make connections to mounting plates or other flat surfaces that do<br />

not provide proper compression lugs.<br />

If a ground bus system is used in a cabinet, follow the bus bar mounting<br />

diagrams.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Practices 4-7<br />

Figure 4.6 Connections to Ground Bus<br />

Ground Bus<br />

Component<br />

Grounding<br />

Conductors<br />

Tapped Hole<br />

Ground Lug<br />

Bolt<br />

Star Washer<br />

Component<br />

Grounding<br />

Conductor<br />

Figure 4.7 Ground Connections to Enclosure Wall<br />

Star Washer<br />

Ground Lug<br />

Welded Stud<br />

Paint Free<br />

Area<br />

Bolt<br />

Ground Lug<br />

Nut<br />

Star Washer<br />

Component<br />

Ground Conductor<br />

Nut<br />

Star Washer<br />

Component<br />

Ground Conductor<br />

Star Washer<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


4-8 Practices<br />

Do not lay one ground lug directly on top of the other. This type of<br />

connection can become loose due to compression of the metal lugs.<br />

Sandwich the first lug between a star washer and a nut with another star<br />

washer following. After tightening the nut, sandwich the second lug<br />

between the first nut and a second nut with a captive star washer.<br />

Figure 4.8 Multiple Connections to Ground Stud or Bolts<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Practices 4-9<br />

Wire Routing<br />

General<br />

When routing wiring to a drive, separate high voltage power and motor<br />

leads from I/O and signal leads. To maintain separate routes, route these in<br />

separate conduit or use tray dividers.<br />

Table 4.A Cable and Wiring Recommendations<br />

Minimum Spacing (in inches) between Levels in<br />

Wiring<br />

Steel Conduits (Cable Trays)<br />

Category Level Signal Definition Signal Examples 1 2/3/4 5/6 7/8 9/10/11<br />

Power 1 AC Power (600V or greater) 2.3kV 3-Ph AC Lines 0 3 (9) 3 (9) 3 (18) Refer to<br />

Spacing<br />

Note 6<br />

2 AC Power (less than 600V) 460V 3-Ph AC Lines 3 (9) 0 3 (6) 3 (12) Refer to<br />

Spacing<br />

Note 6<br />

3 AC Power AC Motor<br />

4 Dynamic Brake Cables Refer to Spacing Note<br />

7<br />

Control 5 115V AC/DC Logic Relay Logic/PLC I/O<br />

Motor Thermostat<br />

Signal<br />

(Process)<br />

Signal<br />

(Comm)<br />

115V AC Power<br />

Power Supplies,<br />

Instruments<br />

6 24V AC/DC Logic PLC I/O<br />

7 Analog Signals, DC Supplies Reference/Feedback<br />

Signal, 5 to 24V DC<br />

Digital (<strong>Low</strong> Speed) TTK<br />

8 Digital (High Speed) I/O, Encoder, Counter<br />

Pulse Tach<br />

9 Serial Communication RS-232, 422 to<br />

Terminals/Printers<br />

11 Serial Communication<br />

(greater than 20k total)<br />

ControlNet,<br />

DeviceNet, Remote<br />

I/O, Data Highway<br />

3 (9) 3 (6) 0 3 (9) Refer to<br />

Spacing<br />

Note 6<br />

Spacing<br />

Notes<br />

Refer to<br />

Spacing<br />

Notes 1, 2<br />

and 5<br />

Refer to<br />

Spacing<br />

Notes 1, 2<br />

and 5<br />

Refer to<br />

Spacing<br />

Notes 1, 2<br />

and 5<br />

3 (18) 3 (12) 3 (9) 0 1 (3) Refer to<br />

Spacing<br />

Notes 2, 3,<br />

4 and 5<br />

Refer to Spacing Note 6 1 (3) 0<br />

Example: Spacing relationship between 480V AC incoming power leads and 24V<br />

DC logic leads.<br />

• 480V AC leads are Level 2; 24V AC leads are Level 6.<br />

• For separate steel conduits, the conduits must be 76 mm (3 in.) apart.<br />

• In a cable tray, the two groups of leads must be 152 mm (6 in.) apart.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


4-10 Practices<br />

Spacing Notes:<br />

1. Both outgoing and return current carrying conductors are pulled in the same conduit or laid<br />

adjacent in tray.<br />

2. The following cable levels can be grouped together:<br />

A. Level 1: Equal to or above 601V.<br />

B. Levels 2, 3, & 4 may have respective circuits pulled in the same conduit or layered in the same<br />

tray.<br />

C. Levels 5 & 6 may have respective circuits pulled in the same conduit or layered in the same<br />

tray. Note: Bundle may not exceed conditions of NEC 310.<br />

D. Levels 7 & 8 may have respective circuits pulled in the same conduit or layered in the same<br />

tray. Note: Encoder cables run in a bundle may experience some amount of EMI coupling. The<br />

circuit application may dictate separate spacing.<br />

E. Levels 9, 10 & 11 may have respective circuits pulled in the same conduit or layered in the<br />

same tray. Note: Communication cables run in a bundle may experience some amount of EMI<br />

coupling and corresponding communication faults. The application may dictate separate<br />

spacing.<br />

3. Level 7 through Level 11 wires must be shielded per recommendations.<br />

4. In cable trays, steel separators are advisable between the class groupings.<br />

5. If conduit is used, it must be continuous and composed of magnetic steel.<br />

6. Spacing of Communication cables Levels 2 through 6 is the following:<br />

Conduit Spacing<br />

Through Air Spacing<br />

115V = 1 inch<br />

115V = 2 inches<br />

230V = 1.5 inches<br />

230V = 4 inches<br />

460/575V = 3 inches 460/575V = 8 inches<br />

575 volts = proportional to 6 inches<br />

Per 1000V<br />

575V proportional to 12 inches<br />

Per 1000V<br />

7. If more than one brake module is required, the first module must be mounted within 3.0 m (10 ft.) of<br />

the drive. Each remaining brake module can be a maximum distance of 1.5 m (5 ft.) from the<br />

previous module. Resistors must be located within 30 m (100 ft.) of the chopper module.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Practices 4-11<br />

Within A Cabinet<br />

When multiple equipment is mounted in a common enclosure, group the<br />

input and output conduit/armor to one side of the cabinet as shown in Figure<br />

4.9. Separating any Programmable Logic Controller (PLC) or other<br />

susceptible equipment cabling to the opposite side will minimize many<br />

effects of drive induced noise currents.<br />

Figure 4.9 Separating Susceptible Circuits<br />

Programmable Logic Controller<br />

and Other Control Circuits<br />

PWM Drives<br />

Sensitive<br />

Equipment<br />

Drive Power<br />

Wiring<br />

Drive Control and<br />

Communications Wiring<br />

Ground Bus<br />

Power<br />

Distribution<br />

Terminals<br />

Common mode noise current returning on the output conduit, shielding or<br />

armor can flow into the cabinet bond and most likely exit through the<br />

adjacent input conduit/armor bond near the cabinet top, well away from<br />

sensitive equipment (such as the PLC). Common mode current on the return<br />

ground wire from the motor will flow to the copper PE bus and back up the<br />

input PE ground wire, also away from sensitive equipment (Refer to Proper<br />

Cabinet Ground - Drives & Susceptible Equipment on page 4-12). If a<br />

cabinet PE ground wire is run it should be connected from the same side of<br />

the cabinet as the conduit/armor connections. This keeps the common mode<br />

noise shunted away from the PLC backplane.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


4-12 Practices<br />

Common Mode Current on<br />

Cabinet Backplane/Subpanel<br />

Figure 4.10 Proper Cabinet Ground - Drives & Susceptible Equipment<br />

Output Conduit or Armor<br />

(Bonded to Cabinet)<br />

U V<br />

W PE<br />

U V<br />

W PE<br />

R S<br />

T PE<br />

Common Mode<br />

Current on Armor<br />

or Conduit<br />

Incoming Power<br />

Conduit/Armor<br />

Cabinet<br />

Backplane/Subpanel<br />

Within Conduit<br />

Do not route more than 3 sets of motor leads (3 drives) in the same conduit.<br />

Maintain fill rates per applicable electrical codes. Do not run power or<br />

motor cables and control or communications cables in the same conduit. If<br />

possible, avoid running incoming power leads and motor leads in the same<br />

conduit for long runs.<br />

Loops, Antennas and Noise<br />

When routing signal or communications wires, avoid routes that produce<br />

loops. Wires that form a loop can form an efficient antenna. Antennas work<br />

well in both receive and transmit modes, these loops can be responsible for<br />

noise received into the system and noise radiated from the system. Run feed<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Practices 4-13<br />

and return wires together rather than allow a loop to form. Twisting the pair<br />

together further reduces the antenna effects. Refer to Figure 4.11.<br />

Figure 4.11 Avoiding Loops in Wiring<br />

Not Recommended Good Solution Better Solution<br />

Conduit<br />

Magnetic steel conduit is preferred. This type of conduit provides the best<br />

magnetic shielding. However not all applications allow the use of magnetic<br />

steel conduit. Stainless steel or PVC may be required. Conduit other than<br />

magnetic steel will not provide the same level of shielding for magnetic<br />

fields induced by the motor and input power currents.<br />

Conduit must be installed so as to provide a continuous electrical path<br />

through the conduit itself. This path can become important in the<br />

containment of high frequency noise.<br />

To avoid nicking, use caution when pulling the wire. Insulation damage can<br />

occur when nylon coated wiring such as THHN or THWN is pulled through<br />

conduit, particularly 90°bends. Nicking can significantly reduce or remove<br />

the insulation. Use great care when pulling nylon coated. Do not use water<br />

based lubricants with nylon coated wire such as THHN.<br />

Do not route more than 3 sets of motor cables in one conduit. Maintain the<br />

proper fill rates per the applicable electrical codes.<br />

Do not rely on the conduit as the ground return for a short circuit. Route a<br />

separate ground wire inside the conduit with the motor or input power<br />

wires.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


4-14 Practices<br />

Cable Trays<br />

When laying cable in cable trays, do not randomly distribute them. Power<br />

cables for each drive should be bundled together and anchored to the tray. A<br />

minimum separation of one cable width should be maintained between<br />

bundles to reduce overheating and cross-coupling. Current flowing in one<br />

set of cables can induce a hazardous voltage and/or excessive noise on the<br />

cable set of another drive, even when no power is applied to the second<br />

drive.<br />

Figure 4.12 Recommended Cable Tray Practices<br />

Bundled and<br />

Anchored to Tray<br />

Recommended<br />

arrangements for<br />

multiple cable sets<br />

T PE<br />

R S<br />

T PE<br />

R S<br />

T PE<br />

R S<br />

R S T PE<br />

PE T S R<br />

Carefully arrange the geometry of multiple cable sets. Keep conductors<br />

within each group bundled. Arrange the order of the conductors to minimize<br />

the current which induced between sets and to balance the currents. This is<br />

critical on drives with power ratings of 200 HP (150 kW) and higher.<br />

Maintain separation between power and control cables. When laying out<br />

cable tray for large drives make sure that cable tray or conduit containing<br />

signal wiring is separated from the conduit or trays containing power or<br />

motor wiring by 3 feet or more. Electromagnetic fields from power or motor<br />

currents can induce currents in the signal cables. Dividers also provide<br />

excellent separation.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Practices 4-15<br />

Shield Termination<br />

Refer to Shield Splicing on page 3-7 to splice shielded cables. The<br />

following methods are acceptable if the shield connection to the ground is<br />

not accomplished by the gland or connector. Refer to the table associated<br />

with each type of clamp for advantages and disadvantages.<br />

Termination via circular clamp<br />

Clamp the cable to the main panel closest to the shield terminal using the<br />

circular section clamping method. The preferred method for grounding<br />

cable shields is clamping the circular section of 360°bonding, as shown in<br />

Figure 4.13. It has the advantage of covering a wide variety of cable<br />

diameters and drilling/mounting is not required. Its disadvantages are cost<br />

and availability in all areas.<br />

Figure 4.13 Commercial Cable Clamp (Heavy Duty)<br />

Plain copper saddle clamps, as shown in Figure 4.14, are sold in many areas<br />

for plumbing purposes, but are very effective and available in a range of<br />

sizes. They are low cost and offer good strain relief as well. You must drill<br />

mounting holes to use them.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


4-16 Practices<br />

Figure 4.14 Plain Copper Saddle Clamp<br />

Shield Termination via Pigtail (Lead)<br />

If a shield terminating connector is not available, the ground conductors<br />

and/or shields must be terminated to the appropriate ground terminal. If<br />

necessary, use a compression fitting on the ground conductor(s) or shield<br />

together as they leave the cable fitting.<br />

Pigtail termination is the least effective method of noise containment.<br />

It is not recommended if:<br />

• the cable length is greater than 1 m (39 in.) or extends beyond the panel.<br />

• being used in very noisy areas<br />

• the cables are for very noise sensitive signals (for example, registration<br />

or encoder cables)<br />

• strain relief is required<br />

If a pigtail is used, pull and twist the exposed shield after separation from<br />

the conductors. To extend the length, solder a flying lead to the braid.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Practices 4-17<br />

Shield Termination via Cable Clamp<br />

<strong>Stand</strong>ard Cable<br />

Grounding Cable glands are a simple and effective method for terminating<br />

shields while offering excellent strain relief. They are only applicable when<br />

entry is through a cabinet surface or bulkhead.<br />

The cable connector selected must provide good 360° contact and low<br />

transfer impedance from the shield or armor of the cable to the conduit entry<br />

plate at both the motor and the drive or drive cabinet for electrical bonding.<br />

SKINTOP® MS-SC/MS-SCL cable grounding<br />

connectors and NPT/PG adapters from LAPPUSA are<br />

good examples of standard cable clamp shield<br />

terminating gland.<br />

Armored Cable<br />

Armored cable can be terminated in a similar manner to standard cable.<br />

The Tek-Mate Fast-Fit cable clamp by O-Z/Gedney is a<br />

good example of an armored cable terminator.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


4-18 Practices<br />

Conductor Termination<br />

Terminate power, motor and control connections to the drive terminal<br />

blocks. User manuals list minimum and maximum wire gauges, tightening<br />

torque for terminals and recommended lug types if stud connections are<br />

provided. Use a connector with 3 ground bushings when using a cable with<br />

3 ground conductors. Bending radii minimums per the applicable electrical<br />

code should be followed.<br />

Power TB<br />

Power terminals are normally fixed (non-pull apart) and can be cage<br />

clamps, barrier strips or studs for ring type crimp lugs depending on the<br />

drive style and rating. Cage clamp styles may require a non-standard<br />

screwdriver. Crimp lugs will require a crimping tool. On smaller sizes, a<br />

stripping gauge may be provided on the drive to assist in the amount of<br />

insulation to remove. Normally the three phase input is not phase sensitive.<br />

That is, the sequence of A,B,C phases has no effect on the operation of the<br />

drive or the direction of motor rotation.<br />

Control TB<br />

Control terminal blocks are either pull apart or fixed (non pull apart).<br />

Terminals will be either spring clamp type or barrier strip. A stripping<br />

gauge may be provided on the drive to assist in the amount of insulation to<br />

remove. Some control connections, such as analog input and output signals,<br />

are polarity sensitive. Consult the applicable user manual for correct<br />

connection.<br />

Signal TB<br />

If an encoder or tachometer feedback is used, a separate terminal block or<br />

blocks may be provided. Consult the user manual for these phase sensitive<br />

connections. Improper wiring could lead to incorrect drive operation.<br />

Cables terminated here are typically shielded and the signals being carried<br />

are generally more sensitive to noise. Carefully check the user manual for<br />

recommendations on shield termination. Some shields can be terminated at<br />

the terminal block and others will be terminated at the entry point.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Practices 4-19<br />

Moisture<br />

Refer to NEC Article 100 for definitions of Damp, Dry and Wet locations.<br />

The U.S. NEC permits the use of heat-resistant thermoplastic wire in both<br />

dry and damp applications (Table 310-13). However, PVC insulation<br />

material is more susceptible to absorbing moisture than XLPE (Cross<br />

Linked polyethylene) insulation material (XHHW-2) identified for use in<br />

wet locations. Because the PVC insulating material absorbs moisture, the<br />

corona inception voltage (CIV) insulation capability of the “damp” or “wet”<br />

THHN was found to be less than ½ of the same wire when “dry.” For this<br />

reason, certain industries where water is prevalent in the environment have<br />

refrained from using THHN wire with IGBT drives.<br />

Based on Rockwell Automation research, tests have determined that the<br />

following cable type is superior to loose wires in dry, damp and wet<br />

applications and can significantly reduce capacitive coupling and common<br />

mode noise.<br />

• PVC jacketed, shielded type TC with XLPE conductor insulation<br />

designed to meet NEC code designation XHHW-2 (use in wet locations<br />

per the U.S. NEC, Table 310-13).<br />

Other cable types for wet locations include continuous welded armor cables<br />

or CLX designation.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


4-20 Practices<br />

Notes:<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Chapter 5<br />

Reflected Wave<br />

This chapter discusses the reflected wave phenomenon and its impact on<br />

drive systems.<br />

Description<br />

The inverter section of a drive does not produce sinusoidal voltage, but<br />

rather a series of voltage pulses created from the DC bus. These pulses<br />

travel down the motor cables to the motor. The pulses are then reflected<br />

back to the drive. The reflection is dependent on the rise time of the drive<br />

output voltage, cable characteristics, cable length and motor impedance. If<br />

the voltage reflection is combined with another, subsequent pulse, peak<br />

voltages can be at a destructive level. A single IGBT drive output may have<br />

reflected wave transient voltage stresses of up to twice (2 pu or per unit) the<br />

DC bus voltage between its own output wires. Multiple drive output wires in<br />

a single conduit or wire tray further increase output wire voltage stress<br />

between multi-drive output wires that are touching. Drive #1 may have a (+)<br />

2 pu stress while drive #2 may simultaneously have a (-) 2 pu stress.<br />

Effects On Wire Types<br />

Wires with dielectric constants greater than 4 cause the voltage stress to<br />

shift to the air gap between the wires that are barely touching. This electric<br />

field may be high enough to ionize the air surrounding the wire insulation<br />

and cause a partial discharge mechanism (corona) to occur. The electric<br />

field distribution between wires increases the possibility for corona and<br />

greater ozone production. This ozone attacks the PVC insulation and<br />

produces carbon tracking, leading to the possibility of insulation<br />

breakdown.<br />

Based on field and internal testing, Rockwell Automation/Allen-Bradley<br />

has determined conductors manufactured with Poly-Vinyl Chloride (PVC)<br />

wire insulation are subject to a variety of manufacturing inconsistencies<br />

which can lead to premature insulation degradation when used with IGBT<br />

drives. Flame-retardant heat-resistant thermoplastic insulation is the type of<br />

insulation listed in the NEC code for the THHN wire designation. This type<br />

of insulation is commonly referred to as PVC. In addition to manufacturing<br />

inconsistencies, the physical properties of the cable can change due to<br />

environment, installation and operation, which can also lead to premature<br />

insulation degradation. The following is a summary of our findings:<br />

Due to inconsistencies in manufacturing processes or wire pulling, air voids<br />

can also occur in the THHN wire between the nylon jacket and PVC<br />

insulation. Because the dielectric constant of air is much lower than the<br />

dielectric constant of the insulating material, the transient reflected wave<br />

voltage might appear across these voids. If the corona inception voltage<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


5-2 Reflected Wave<br />

(CIV) for the air void is reached, ozone is produced. Ozone attacks the PVC<br />

insulation leading to a breakdown in cable insulation.<br />

Asymmetrical construction of the insulation has also been observed for<br />

some manufacturers of PVC wire. A wire with a 15 mil specification was<br />

observed to have an insulation thickness of 10 mil at some points. The<br />

smaller the insulation thickness, the less voltage the wire can withstand.<br />

THHN jacket material has a relatively brittle nylon that lends itself to<br />

damage (i.e. nicks and cuts) when pulled through conduit on long wire runs.<br />

This issue is of even greater concern when the wire is being pulled through<br />

multiple 90°bends in the conduit. These nicks may be a starting point for<br />

CIV leading to insulation degradation.<br />

During operation, the conductor heats up and a “coldflow” condition may<br />

occur with PVC insulation at points where the unsupported weight of the<br />

wire may stretch the insulation. This has been observed at 90°bends where<br />

wire is dropped down to equipment from an above wireway. This<br />

“coldflow” condition produces thin spots in the insulation which lowers the<br />

cable's voltage withstand capability.<br />

Refer to NEC Article 100 for definitions of Damp, Dry and Wet locations.<br />

The U.S. NEC permits the use of heat-resistant thermoplastic wire in both<br />

dry and damp applications (Table 310-13). However, PVC insulation<br />

material is more susceptible to absorbing moisture than XLPE (Cross<br />

Linked polyethylene) insulation material (XHHN-2) identified for use in<br />

wet locations. Because the PVC insulating material absorbs moisture, the<br />

Corona Inception <strong>Voltage</strong> insulation capability of the “damp” or “wet”<br />

THHN was found to be less than ½ of the same wire when “dry.” For this<br />

reason, certain industries where water is prevalent in the environment have<br />

refrained from using THHN wire with IGBT drives. Rockwell Automation<br />

strongly suggests the use of XLPE insulation for wet areas.<br />

Length Restrictions For<br />

Motor Protection<br />

To protect the motor from reflected waves, limit the length of the motor<br />

cables from the drive to the motor. Each drive's user manual lists the lead<br />

length limitations based on drive size and the quality of the insulation<br />

system in the chosen motor.<br />

If the distance between drive and motor must exceed these limits, contact<br />

the local office or factory for analysis and advice. Refer to Appendix A for<br />

complete tables.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Chapter 6<br />

Electromagnetic Interference<br />

This chapter discusses types of electromagnetic interference and its impact<br />

on drive systems.<br />

What Causes Common<br />

Mode Noise<br />

Faster output dv/dt transitions of IGBT drives increase the possibility for<br />

increased Common Mode (CM) electrical noise. Common Mode Noise is a<br />

type of electrical noise induced on signals with respect to ground.<br />

INPUT TRANSFORMER<br />

AC DRIVE<br />

Path for Common<br />

Mode Current<br />

MOTOR FRAME<br />

PE<br />

X 0<br />

A<br />

B<br />

C<br />

R<br />

S<br />

T<br />

U<br />

V<br />

W<br />

PE<br />

MOTOR<br />

C lg-m<br />

Feed-<br />

-back<br />

Device<br />

Path for Common<br />

Mode Current<br />

Path for Common<br />

Mode Current<br />

C lg-c<br />

Path for Common<br />

Mode Current<br />

V ng<br />

SYSTEM GROUND<br />

Path for Common<br />

Mode Current<br />

There is a possibility for electrical noise from drive operation to interfere<br />

with adjacent sensitive electronic equipment, especially in areas where<br />

many drives are concentrated. Generating common mode currents by<br />

varying frequency inverters is similar to the common mode currents that<br />

occur with DC drives. Although AC drives produce a much higher<br />

frequency then DC drives (250 kHz - 6MHz). Inverters have a greater<br />

potential for exciting circuit resonance because of very fast turn on switches<br />

causing common mode currents to look for the lowest impedance path back<br />

to the inverter. The dv/dt and di/dt from the circulating ground currents can<br />

couple into the signal and logic circuits, causing improper operation and<br />

possible circuit damage. When conventional grounding techniques do not<br />

work you must use high frequency bonding techniques. If installers do not<br />

use these techniques, motor bearing currents increase and system circuit<br />

boards have the potential to fail prematurely. Currents in the ground system<br />

may cause problems with computer systems and distributed control<br />

systems.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


6-2 Electromagnetic Interference<br />

Containing Common Mode<br />

Noise With Cabling<br />

Cable type has a great effect on the ability to contain common mode noise<br />

in a system that incorporates a drive.<br />

Conduit<br />

The combination of a ground conductor and conduit contains most<br />

capacitive current and returns it to the drive without polluting the ground<br />

grid. A conduit may still have unintended contact with grid ground structure<br />

due to straps, support, etc. The AC resistance characteristics of earth are<br />

generally variable and unpredictable, making it difficult to predict how<br />

noise current will divide between wire, conduit or the ground grid.<br />

Shielded or Armored Power Cable<br />

The predominant return path for common mode noise is the shield/armor<br />

itself when using shielded or armored power cables. Unlike conduit, the<br />

shield/armor is isolated from accidental contact with grounds by a PVC<br />

outer coating. Making the majority of noise current flow in the controlled<br />

path and very little high frequency noise flows into the ground grid.<br />

Noise current returning on the shield or safety ground wire is routed to the<br />

drive PE terminal, down to the cabinet PE ground bus, and then directly to<br />

the grounded neutral of the drive source transformer. Take care when<br />

bonding the armor or shield to the drive PE. A low impedance cable or strap<br />

is recommended when making this connection, as opposed to the smaller<br />

gauge ground wire either supplied as part of the motor cable or supplied<br />

separately. Otherwise, the higher frequencies associated with the common<br />

mode noise will find this cable impedance higher and look for a lower<br />

impedance path. The cable’s radiated emissions are minimal because the<br />

armor completely covers the noisy power wires. Also, the armor prevents<br />

EMI coupling to other signal cables that might be routed in the same cable<br />

tray.<br />

Another effective method of reducing common mode noise is to attenuate it<br />

before it can reach the ground grid. Installing a common mode ferrite core<br />

on the output cables can reduce the amplitude of the noise to a level that<br />

makes it relatively harmless to sensitive equipment or circuits. Common<br />

mode cores are most effective when multiple drives are located in a<br />

relatively small area. For more information see the 1321-M Common Mode<br />

Chokes Instructions, publication 1321-5.0.<br />

As a general rule:<br />

IF the distance between the drive and motor or the distance between drive<br />

and input transformer is greater than 75 feet.<br />

AND<br />

IF sensitive circuits with leads greater then 75 feet such as: encoders,<br />

analog, or capacitive sensors are routed, in or out of the cabinet, near the<br />

drive or transformer<br />

THEN<br />

Common mode chokes should be installed.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Electromagnetic Interference 6-3<br />

How Electromechanical<br />

Switches Cause Transient<br />

Interference<br />

Electromechanical contacts cause transient interference when switching<br />

inductive loads such as relays, solenoids, motor starters, or motors. Drives,<br />

as well as other devices having electronic logic circuits, are susceptible to<br />

this type of interference.<br />

Examine the following circuit model for a switch controlling an inductive<br />

load. Both the load and the wiring have inductance, which prevents the<br />

current from stopping instantly when the switch contacts open. There is also<br />

stray capacitance in the wiring.<br />

V C<br />

Power<br />

Wiring<br />

Capacitance<br />

Load<br />

Inductance<br />

Load<br />

Wiring Inductance<br />

Interference occurs when the switch opens while it is carrying current. Load<br />

and cable inductance prevents the current from immediately stopping. The<br />

current continues to flow, and charges the capacitance in the circuit. The<br />

voltage across the switch contacts (VC) rises, as the capacitance charges.<br />

This voltage can reach very high levels. When the voltage exceeds the<br />

breakdown voltage for the space between the contacts, an arc occurs and the<br />

voltage returns to zero. Charging and arcing continues until the distance<br />

between the contacts is sufficient to provide insulation. The arcing radiates<br />

noise at an energy levels and frequencies that disturb logic and<br />

communication circuits.<br />

If the power source is periodic (like AC power), you can reduce the<br />

interference by opening the contact when the current waveform crosses<br />

zero. Opening the circuit farther from zero elevates the energy level and<br />

creates more interference.<br />

How to Prevent or Mitigate<br />

Transient Interference from<br />

Electromechanical Switches<br />

The most effective way to avoid this type of transient interference, is to use<br />

a device like an Allen-Bradley Bulletin 156 contactor to switch inductive<br />

AC loads. These devices feature “zero cross” switching.<br />

A1<br />

A2<br />

L1<br />

T1<br />

AC<br />

Bulletin 156<br />

Contactor<br />

Load<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


6-4 Electromagnetic Interference<br />

Putting Resistive-Capacitive (RC) networks or <strong>Voltage</strong> Dependant Resistors<br />

(Varistors) across contacts will mitigate transient interference. Make sure to<br />

select components rated to withstand the voltage, power and frequency of<br />

switching for your application.<br />

AC<br />

Load<br />

AC<br />

Load<br />

A common method for mitigating transient interference is to put a diode in<br />

parallel with an inductive DC load or a suppressor in parallel with an<br />

inductive AC load. Again, make sure to select components rated to<br />

withstand the voltage, power and frequency of switching for your<br />

application. These methods are not totally effective, because they do not<br />

entirely eliminate arcing at the contacts.<br />

+<br />

DC<br />

Load<br />

-<br />

AC<br />

Load<br />

AC<br />

Load<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Electromagnetic Interference 6-5<br />

The following table contains examples which illustrate methods for<br />

mitigating transient interference.<br />

Examples of Transient Interference Mitigation<br />

digital contact output<br />

V DC<br />

1CR<br />

Example 1:<br />

A contact output controls a DC<br />

control relay.<br />

The relay coil requires a suppressor<br />

(blocking diode) because it is an<br />

inductive device controlled by a dry<br />

contact.<br />

digital DC output<br />

solid-state<br />

switch<br />

digital AC output<br />

solid-state<br />

switch<br />

L1<br />

1MS<br />

L1<br />

L2<br />

L1<br />

L2<br />

L1<br />

1CR<br />

1MS<br />

1MS<br />

1MS<br />

suppressor<br />

suppressor<br />

1CR<br />

suppressor<br />

1S<br />

suppressor<br />

suppressor<br />

L2<br />

1M<br />

Example 2:<br />

An AC output controls a motor<br />

starter, contacts on the starter control<br />

a motor.<br />

The contacts require RC networks or<br />

Varistors.<br />

The motor requires suppressors<br />

because it is an inductive device.<br />

An inductive device controlled by a<br />

solid state switching device (like the<br />

starter coil in this example) typically<br />

does not require a suppressor.<br />

Example 3:<br />

An AC output controls an interposing<br />

relay, but the circuit can be opened by<br />

dry contacts. Relay contacts control a<br />

solenoid coil.<br />

The contacts require RC networks or<br />

Varistors.<br />

The relay coil requires a suppressor<br />

because it is an inductive device<br />

controlled by dry contacts.<br />

The solenoid coil also requires a<br />

suppressor because it is an inductive<br />

device controlled by dry contacts.<br />

digital contact output L1<br />

pilot light with built-in<br />

L2<br />

step-down transformer<br />

Example 4:<br />

A contact output controls a pilot light<br />

with a built in step-down transformer.<br />

The pilot light requires a suppressor<br />

because its transformer is an<br />

inductive device controlled by a dry<br />

contact.<br />

suppressor<br />

digital contact output<br />

115V AC<br />

1CR<br />

suppressor<br />

1CR<br />

480V AC<br />

brake solenoid<br />

1CR<br />

Example 5:<br />

A contact output controls a relay,<br />

which controls a brake solenoid.<br />

The contacts require RC networks or<br />

Varistors.<br />

Both the relay and the brake solenoid<br />

require suppressors because they<br />

are both inductive devices controlled<br />

by dry contacts.<br />

suppressor<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


6-6 Electromagnetic Interference<br />

Enclosure Lighting<br />

Fluorescent lamps are also sources of EMI. If you must use fluorescent<br />

lamps inside an enclosure, the following precautions may help guard against<br />

EMI problems from this source as shown in the figure below:<br />

• install a shielding grid over the lamp<br />

• use shielded cable between the lamp and its switch<br />

• use a metal-encased switch<br />

• install a filter between the switch and the power line, or shield the<br />

power-line cable<br />

Filter<br />

AC power<br />

Shielding-grid<br />

over lamp<br />

Shielded<br />

cable<br />

Metel-encased<br />

switch<br />

Line-filter or<br />

shielded<br />

power line<br />

Bearing Current<br />

The application of pulse-width modulated (PWM) inverters has led to<br />

significant advantages in terms of the performance, size, and efficiency of<br />

variable speed motor controls. However, the high switching rates used to<br />

obtain these advantages can also contribute to motor bearing damage due to<br />

bearing currents and Electric Discharge Machining (EDM). Bearing<br />

damage on motors supplied by PWM inverters is more likely to occur in<br />

applications where the coupling between the motor and load is not<br />

electrically conductive (such as belted loads), when the motor is lightly<br />

loaded, or when the motor is in an environment with ionized air. Other<br />

factors, such as the type of grease and the type of bearings used may also<br />

affect the longevity of motor bearings. Motor manufacturers that design and<br />

manufacture motors for use with variable frequency drives can offer<br />

solutions to help mitigate these potential problems.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Appendix A<br />

Motor Cable Length Restrictions Tables<br />

The distances listed in each table are valid only for specific cable<br />

constructions and may not be accurate for lesser cable designs, particularly<br />

if the length restriction is due to cable charging current (indicated in tables<br />

by shading). When choosing the proper cable, note the following<br />

definitions:<br />

Unshielded Cable<br />

• Tray cable - fixed geometry without foil or braided shield but including an exterior cover<br />

• Individual wires not routed in metallic conduit<br />

Shielded Cable<br />

• Individual conductors routed in metallic conduit<br />

• Fixed geometry cables with foil or braided shield of at least 75% coverage<br />

• Continuous weld or interlocked armored cables with no twist in the conductors (may<br />

have and optional foil shield)<br />

Important:<br />

Certain shielded cable constructions may cause excessive cable charging<br />

currents and may interfere with proper application performance, particularly<br />

on smaller drive ratings. Shielded cables that do not maintain a fixed<br />

geometry, but rather twist the conductors and tightly wrap the bundle with a<br />

foil shield may cause unnecessary drive tripping. Unless specifically stated in<br />

the table, the distances listed ARE NOT applicable to this type of cable.<br />

Actual distances for this cable type may be considerably less.<br />

Type A Motor<br />

• No phase paper or misplaced phase paper<br />

• <strong>Low</strong>er quality insulation systems<br />

• Corona inception voltages between 850 and 1000 volts<br />

Type B Motor<br />

• Properly placed phase paper<br />

• Medium quality insulation systems<br />

• Corona inception voltages between 1000 and 1200 volts<br />

1488V Motor<br />

• Meets NEMA MG 1-1998 section 31 standard<br />

• Insulation can withstand voltage spikes of 3.1 times rated motor voltage due to inverter<br />

operation.<br />

1329 R/L Motor<br />

• AC variable speed motors are “Control-Matched” for use with Allen-Bradley drives.<br />

• Motor designed to meet or exceed the requirements of the Federal Energy Act of 1992.<br />

• Optimized for variable speed operation and include premium inverter grade insulation<br />

systems, which meet or exceed NEMA MG1 (Part 31.40.4.2).<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-2 Motor Cable Length Restrictions Tables<br />

In the following tables, a “●” in any of the latter columns will indicate that<br />

this drive rating can be used with an Allen-Bradley Terminator<br />

(1204-TFA1/1204-TFB2) and/or Reflected Wave Reduction Device with<br />

Common Mode Choke (1204-RWC-17) or without choke (1204-RWR2).<br />

• For the Terminator, the maximum cable length is 182.9 meters (600 feet)<br />

for 400/480/600V drives (not 690V). The PWM frequency must be 2<br />

kHz. The 1204-TFA1 can be used only on low HP (5 HP & below), while<br />

the 1204-TFB2 can be used from 2-800 HP.<br />

• 1204 Reflected Wave Reduction Device (all motor insulation classes):<br />

– 1204-RWR2-09<br />

2 kHz: 182.9m (600 ft.) at 400/480V and 121.9m (400 ft.) at 600V.<br />

4 kHz: 91.4m (300 ft.) at 400/480V and 61.0m (200 ft.) at 600V.<br />

– 1204-RWC-17<br />

2 kHz: 365.8m (1200 ft.) at 400/480/600V.<br />

4 kHz: 243.8m (800 ft.) at 400/480V and 121.9m (400 ft.) at 600V.<br />

For both devices, power dissipation in the damping resistor limits<br />

maximum cable length.<br />

The 1321-RWR is a complete reflected wave reduction solution available<br />

for many of the PowerFlex drives. If available, a 1321-RWR catalog number<br />

will be indicated in the “Reactor/RWR” column. When not available, use<br />

the reactor and resistor information provided to build a solution.<br />

For Further Information on … see Publication …<br />

1321-RWR<br />

1321-TD<strong>001</strong><br />

1204-RWR2 1204-5.1<br />

1204-RWC<br />

1204-IN<strong>001</strong><br />

1204-TFxx<br />

1204-IN002<br />

Table Cross Reference<br />

Drive <strong>Voltage</strong> Table Page Drive <strong>Voltage</strong> Table Page<br />

PowerFlex 4 400 A.A A-3 PowerFlex 700L with<br />

400 A.V A-17<br />

480 A.B A-3 PowerFlex 700S Control<br />

480 A.W A-17<br />

PowerFlex 4M 400 A.C A-4 600 A.X A-18<br />

480 A.D A-4 690 A.Y A-18<br />

PowerFlex 40 400 A.E A-5 PowerFlex 700S 400 A.Z A-18<br />

480 A.F A-5 480 A.AA A-20<br />

600 A.G A-5 600 A.AB A-21<br />

PowerFlex 400 400 A.H A-6 690 A.AC A-22<br />

480 A.I A-7 PowerFlex 753<br />

400 A.AD A-23<br />

PowerFlex 70 (<strong>Stand</strong>ard/Enhanced) 400 A.J A-8 PowerFlex 755<br />

480 A.AE A-24<br />

PowerFlex 700 (<strong>Stand</strong>ard/Vector) 480 A.K A-10 1336 PLUS II<br />

380…480 A.AF A-26<br />

600 A.L A-12 1336 IMPACT<br />

600 A.AG A-27<br />

PowerFlex 700 (<strong>Stand</strong>ard/Vector) 690 A.M A-12 1305 (No External Devices) 480 A.AH A-28<br />

PowerFlex 700H 400 A.N A-13 1305 (External Devices at Motor) 480 A.AI A-28<br />

480 A.O A-14 160 480 A.AJ A-28<br />

600 A.P A-14 160 (Cable Charging Current) 240 & 480 A.AK A-29<br />

690 A.Q A-15<br />

PowerFlex 700L with<br />

400 A.R A-16<br />

PowerFlex 700VC Control<br />

480 A.S A-16<br />

600 A.T A-16<br />

690 A.U A-17<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-3<br />

PowerFlex 4 Drives<br />

Table A.A PowerFlex 4, 400V Shielded/Unshielded Cable - Meters (Feet)<br />

Rating No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

0.4 2/4 7.6 53.3 53.3 53.3 91.4 121.9 121.9 121.9 121.9 121.9 121.9 121.9<br />

● ● ●<br />

(25) (175) (175) (175) (300) (400) (400) (400) (400) (400) (400) (400)<br />

0.75 2/4 7.6 83.8 83.8 83.8 91.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(25) (275) (275) (275) (300) (500) (500) (500) (500) (500) (500) (500)<br />

1.5 2/4 7.6 83.8 83.8 83.8 91.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ● ●<br />

(25) (275) (275) (275) (300) (500) (500) (500) (500) (500) (500) (500)<br />

2.2 2/4 7.6 137.2 182.9 182.9 91.4 182.9 182.9 182.9 182.9 182.9 182.9 182.9 1321-RWR8-DP ● ● ● ●<br />

(25) (450) (600) (600) (300) (600) (600) (600) (600) (600) (600) (600)<br />

3.7 2/4 7.6 137.2 243.8 243.8 91.4 243.8 243.8 243.8 243.8 243.8 243.8 243.8 1321-RWR12-DP ● ● ● ●<br />

(25) (450) (800) (800) (300) (800) (800) (800) (800) (800) (800) (800)<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Table A.B PowerFlex 4, 480V Shielded/Unshielded Cable - Meters (Feet)<br />

Rating No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

Hp kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

0.5 2/4 7.6 12.2 53.3 53.3 7.6 91.4 121.9 121.9 121.9 121.9 121.9 121.9<br />

● ● ●<br />

(25) (40) (175) (175) (25) (300) (400) (400) (400) (400) (400) (400)<br />

1 2/4 7.6 12.2 83.8 83.8 7.6 91.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(25) (40) (275) (275) (25) (300) (500) (500) (500) (500) (500) (500)<br />

2 2/4 7.6 12.2 83.8 83.8 7.6 91.4 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (40) (275) (275) (25) (300) (600) (600) (600) (600) (600) (600)<br />

3 2/4 7.6 12.2 129.5 129.5 7.6 91.4 182.9 182.9 182.9 182.9 182.9 182.9 1321-RWR8-DP ● ● ● ●<br />

(25) (40) (425) (425) (25) (300) (600) (600) (600) (600) (600) (600)<br />

5 2/4 7.6 12.2 137.2 182.9 7.6 91.4 243.8 243.8 182.9 243.8 243.8 243.8 1321-RWR12-DP ● ● ● ●<br />

(25) (40) (450) (600) (25) (300) (800) (800) (600) (800) (800) (800)<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-4 Motor Cable Length Restrictions Tables<br />

PowerFlex 4M Drives<br />

Table A.C PowerFlex 4M, 400V Shielded/Unshielded Cable - Meters (Feet)<br />

Rating No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

0.4 2/4 7.6 53.3 53.3 53.3 91.4 121.9 121.9 121.9 121.9 121.9 121.9 121.9<br />

● ● ●<br />

(25) (175) (175) (175) (300) (400) (400) (400) (400) (400) (400) (400)<br />

0.75 2/4 7.6 83.8 83.8 83.8 91.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(25) (275) (275) (275) (300) (500) (500) (500) (500) (500) (500) (500)<br />

1.5 2/4 7.6 83.8 83.8 83.8 91.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ● ●<br />

(25) (275) (275) (275) (300) (500) (500) (500) (500) (500) (500) (500)<br />

2.2 2/4 7.6 137.2 182.9 182.9 91.4 182.9 182.9 182.9 182.9 182.9 182.9 182.9 1321-RWR8-DP ● ● ● ●<br />

(25) (450) (600) (600) (300) (600) (600) (600) (600) (600) (600) (600)<br />

3.7 2/4 7.6 137.2 243.8 243.8 91.4 243.8 243.8 243.8 243.8 243.8 243.8 243.8 1321-RWR12-DP ● ● ● ●<br />

(25) (450) (800) (800) (300) (800) (800) (800) (800) (800) (800) (800)<br />

5.5 2/4 7.6 137.2 304.8 304.8 91.4 304.8 304.8 304.8 304.8 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(25) (450) (1000) (1000) (300) (1000) (1000) (1000) (1000) (1000) (1000) (1000)<br />

7.5 2/4 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

11 2/4 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Table A.D PowerFlex 4M, 480V Shielded/Unshielded Cable - Meters (Feet)<br />

Rating No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

Hp kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

0.5 2/4 7.6 12.2 53.3 53.3 7.6 91.4 121.9 121.9 121.9 121.9 121.9 121.9<br />

● ● ●<br />

(25) (40) (175) (175) (25) (300) (400) (400) (400) (400) (400) (400)<br />

1 2/4 7.6 12.2 83.8 83.8 7.6 91.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(25) (40) (275) (275) (25) (300) (500) (500) (500) (500) (500) (500)<br />

2 2/4 7.6 12.2 83.8 83.8 7.6 91.4 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (40) (275) (275) (25) (300) (600) (600) (600) (600) (600) (600)<br />

3 2/4 7.6 12.2 129.5 129.5 7.6 91.4 182.9 182.9 182.9 182.9 182.9 182.9 1321-RWR8-DP ● ● ● ●<br />

(25) (40) (425) (425) (25) (300) (600) (600) (600) (600) (600) (600)<br />

5 2/4 7.6 12.2 137.2 182.9 7.6 91.4 243.8 243.8 182.9 243.8 243.8 243.8 1321-RWR12-DP ● ● ● ●<br />

(25) (40) (450) (600) (25) (300) (800) (800) (600) (800) (800) (800)<br />

7.5 2/4 7.6 12.2 137.2 182.9 7.6 91.4 304.8 304.8 182.9 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(25) (40) (450) (600) (25) (300) (1000) (1000) (600) (1000) (1000) (1000)<br />

10 2/4 7.6 12.2 137.2 182.9 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (40) (450) (600) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

15 2/4 7.6 12.2 137.2 182.9 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (40) (450) (600) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-5<br />

PowerFlex 40 Drives<br />

Table A.E PowerFlex 40, 400V Shielded/Unshielded Cable - Meters (Feet)<br />

Rating No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

0.4 2/4 7.6 53.3 53.3 53.3 91.4 121.9 121.9 121.9 121.9 121.9 121.9 121.9<br />

● ● ●<br />

(25) (175) (175) (175) (300) (400) (400) (400) (400) (400) (400) (400)<br />

0.75 2/4 7.6 83.8 83.8 83.8 91.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(25) (275) (275) (275) (300) (500) (500) (500) (500) (500) (500) (500)<br />

1.5 2/4 7.6 83.8 83.8 83.8 91.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ● ●<br />

(25) (275) (275) (275) (300) (500) (500) (500) (500) (500) (500) (500)<br />

2.2 2/4 7.6 137.2 182.9 182.9 91.4 182.9 182.9 182.9 182.9 182.9 182.9 182.9 1321-RWR8-DP ● ● ● ●<br />

(25) (450) (600) (600) (300) (600) (600) (600) (600) (600) (600) (600)<br />

4 2/4 7.6 137.2 243.8 243.8 91.4 243.8 243.8 243.8 243.8 243.8 243.8 243.8 1321-RWR12-DP ● ● ●<br />

(25) (450) (800) (800) (300) (800) (800) (800) (800) (800) (800) (800)<br />

5.5 2/4 7.6 137.2 304.8 304.8 91.4 304.8 304.8 304.8 304.8 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(25) (450) (1000) (1000) (300) (1000) (1000) (1000) (1000) (1000) (1000) (1000)<br />

7.5 2/4 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

11 2/4 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Table A.F PowerFlex 40, 480V Shielded/Unshielded Cable - Meters (Feet)<br />

Rating No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

Hp kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

0.5 2/4 7.6 12.2 53.3 53.3 7.6 91.4 121.9 121.9 121.9 121.9 121.9 121.9<br />

● ● ●<br />

(25) (40) (175) (175) (25) (300) (400) (400) (400) (400) (400) (400)<br />

1 2/4 7.6 12.2 83.8 83.8 7.6 91.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(25) (40) (275) (275) (25) (300) (500) (500) (500) (500) (500) (500)<br />

2 2/4 7.6 12.2 83.8 83.8 7.6 91.4 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (40) (275) (275) (25) (300) (600) (600) (600) (600) (600) (600)<br />

3 2/4 7.6 12.2 129.5 129.5 7.6 91.4 182.9 182.9 182.9 182.9 182.9 182.9 1321-RWR8-DP ● ● ● ●<br />

(25) (40) (425) (425) (25) (300) (600) (600) (600) (600) (600) (600)<br />

5 2/4 7.6 12.2 137.2 182.9 7.6 91.4 243.8 243.8 243.8 243.8 243.8 243.8 1321-RWR12-DP ● ● ●<br />

(25) (40) (450) (600) (25) (300) (800) (800) (800) (800) (800) (800)<br />

7.5 2/4 7.6 12.2 137.2 182.9 7.6 91.4 304.8 304.8 182.9 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(25) (40) (450) (600) (25) (300) (1000) (1000) (600) (1000) (1000) (1000)<br />

10 2/4 7.6 12.2 137.2 182.9 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (40) (450) (600) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

15 2/4 7.6 12.2 137.2 182.9 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (40) (450) (600) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Table A.G PowerFlex 40, 600V Shielded/Unshielded Cable - Meters (Feet)<br />

Rating No Solution Reactor Only<br />

Reactor +<br />

Damping<br />

Resistor<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

Hp kHz 1488V 1850V 1488V 1600V 1488V 1600V Cat. No. Ohms Watts<br />

1 2/4 42.7 121.9 121.9 121.9 121.9 121.9<br />

● ● ●<br />

(140) (400) (400) (400) (400) (400)<br />

2 2/4 42.7 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(140) (500) (500) (500) (500) (500)<br />

3 2/4 42.7 152.4 152.4 152.4 182.9 182.9<br />

● ● ●<br />

(140) (500) (500) (500) (600) (600)<br />

5 2/4 42.7 152.4 152.4 243.8 243.8 243.8 1321-RWR8-DP ● ● ● ●<br />

(140) (500) (500) (800) (800) (800)<br />

7.5 2/4 42.7 182.9 152.4 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(140) (600) (500) (1000) (1000) (1000)<br />

10 2/4 42.7 182.9 152.4 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(140) (600) (500) (1200) (1200) (1200)<br />

15 2/4 42.7 182.9 152.4 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(140) (600) (500) (1200) (1200) (1200)<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-6 Motor Cable Length Restrictions Tables<br />

PowerFlex 400 Drives<br />

Table A.H PowerFlex 400, 400V Shielded/Unshielded Cable - Meters (Feet)<br />

Rating No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

2.2 2, 4 7.6 106.7 182.9 182.9 91.4 182.9 182.9 182.9 182.9 182.9 182.9 182.9 1321-RWR8-DP ● ● ● ●<br />

(25) (350) (600) (600) (300) (600) (600) (600) (600) (600) (600) (600)<br />

4 2, 4 7.6 106.7 243.8 243.8 91.4 243.8 243.8 243.8 243.8 243.8 243.8 243.8 1321-RWR12-DP ● ● ●<br />

(25) (350) (800) (800) (300) (800) (800) (800) (800) (800) (800) (800)<br />

5.5 2, 4 7.6 106.7 274.3 304.8 91.4 274.3 304.8 304.8 304.8 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(25) (350) (900) (1000) (300) (900) (1000) (1000) (1000) (1000) (1000) (1000)<br />

7.5 2, 4 7.6 106.7 274.3 365.8 91.4 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (350) (900) (1200) (300) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

11 2, 4 7.6 106.7 274.3 365.8 76.2 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (350) (900) (1200) (250) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

15 2, 4 7.6 106.7 274.3 365.8 76.2 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (350) (900) (1200) (250) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

18.5 2, 4 7.6 106.7 274.3 365.8 76.2 243.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR45-DP<br />

●<br />

(25) (350) (900) (1200) (250) (800) (1200) (1200) (1200) (1200) (1200) (1200)<br />

22 2, 4 7.6 106.7 274.3 365.8 76.2 213.4 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR45-DP<br />

●<br />

(25) (350) (900) (1200) (250) (700) (1200) (1200) (1200) (1200) (1200) (1200)<br />

30 2, 4 7.6 106.7 274.3 365.8 76.2 213.4 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR55-DP<br />

●<br />

(25) (350) (900) (1200) (250) (700) (1200) (1200) (1200) (1200) (1200) (1200)<br />

37 2, 4 12.2 106.7 274.3 365.8 76.2 182.9 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (350) (900) (1200) (250) (600) (1200) (1200) (1200) (1200) (1200) (1200)<br />

45 2, 4 12.2 106.7 274.3 365.8 61.0 182.9 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR100-DP<br />

●<br />

(40) (350) (900) (1200) (200) (600) (1200) (1200) (1200) (1200) (1200) (1200)<br />

55 2, 4 12.2 106.7 213.4 365.8 61.0 152.4 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR100-DP<br />

●<br />

(40) (350) (700) (1200) (200) (500) (1200) (1200) (1200) (1200) (1200) (1200)<br />

75 2, 4 12.2 91.4 213.4 365.8 61.0 152.4 365.8 365.8 304.8 365.8 365.8 365.8 1321-RWR160-DP<br />

●<br />

(40) (300) (700) (1200) (200) (500) (1200) (1200) (1000) (1200) (1200) (1200)<br />

90 2, 4 18.3 91.4 213.4 304.8 61.0 152.4 365.8 365.8 304.8 365.8 365.8 365.8 1321-RWR200-DP<br />

●<br />

(60) (300) (700) (1000) (200) (500) (1200) (1200) (1000) (1200) (1200) (1200)<br />

110 2, 4 24.4 91.4 213.4 274.3 61.0 152.4 365.8 365.8 274.3 365.8 365.8 365.8 1321-RWR200-DP<br />

●<br />

(80) (300) (700) (900) (200) (500) (1200) (1200) (900) (1200) (1200) (1200)<br />

132 2, 4 24.4 91.4 182.9 274.3 61.0 152.4 365.8 365.8 243.8 365.8 365.8 365.8 1321-RWR250-DP<br />

●<br />

(80) (300) (600) (900) (200) (500) (1200) (1200) (800) (1200) (1200) (1200)<br />

160 2, 4 24.4 91.4 182.9 274.3 45.7 121.9 304.8 365.8 243.8 365.8 365.8 365.8 1321-RWR320-DP<br />

●<br />

(80) (300) (600) (900) (150) (400) (1000) (1200) (800) (1200) (1200) (1200)<br />

200 2, 4 24.4 91.4 167.6 274.3 45.7 121.9 304.8 365.8 243.8 365.8 365.8 365.8 1321-3RB400-B 20 495 ●<br />

(80) (300) (550) (900) (150) (400) (1000) (1200) (800) (1200) (1200) (1200)<br />

250 2, 4 24.4 91.4 167.6 274.3 45.7 121.9 304.8 365.8 243.8 365.8 365.8 365.8 1321-3R500-B 20 495 ●<br />

(80) (300) (550) (900) (150) (400) (1000) (1200) (800) (1200) (1200) (1200)<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-7<br />

Table A.I PowerFlex 400, 480V Shielded/Unshielded Cable - Meters (Feet)<br />

Rating No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

Hp kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

3 2, 4 7.6 12.2 121.9 121.9 12.2 91.4 182.9 182.9 152.4 182.9 182.9 182.9 1321-RWR8-DP ● ● ● ●<br />

(25) (40) (400) (400) (40) (300) (600) (600) (500) (600) (600) (600)<br />

5 2, 4 7.6 12.2 137.2 182.9 12.2 91.4 243.8 243.8 152.4 243.8 243.8 243.8 1321-RWR12-DP ● ● ●<br />

(25) (40) (450) (600) (40) (300) (800) (800) (500) (800) (800) (800)<br />

7.5 2, 4 7.6 12.2 137.2 182.9 12.2 91.4 304.8 304.8 152.4 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(25) (40) (450) (600) (40) (300) (1000) (1000) (500) (1000) (1000) (1000)<br />

10 2, 4 7.6 12.2 137.2 182.9 12.2 91.4 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (40) (450) (600) (40) (300) (1200) (1200) (500) (1200) (1200) (1200)<br />

15 2, 4 7.6 12.2 137.2 182.9 12.2 76.2 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (40) (450) (600) (40) (250) (1200) (1200) (500) (1200) (1200) (1200)<br />

20 2, 4 7.6 12.2 137.2 182.9 12.2 76.2 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (40) (450) (600) (40) (250) (1200) (1200) (500) (1200) (1200) (1200)<br />

25 2, 4 7.6 12.2 137.2 182.9 12.2 76.2 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR45-DP<br />

●<br />

(25) (40) (450) (600) (40) (250) (1200) (1200) (500) (1200) (1200) (1200)<br />

30 2, 4 7.6 12.2 137.2 182.9 12.2 76.2 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR45-DP<br />

●<br />

(25) (40) (450) (600) (40) (250) (1200) (1200) (500) (1200) (1200) (1200)<br />

40 2, 4 7.6 12.2 137.2 182.9 12.2 76.2 365.8 365.8 121.9 365.8 365.8 365.8 1321-RWR55-DP<br />

●<br />

(25) (40) (450) (600) (40) (250) (1200) (1200) (400) (1200) (1200) (1200)<br />

50 2, 4 12.2 18.3 137.2 182.9 12.2 61.0 304.8 365.8 121.9 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (60) (450) (600) (40) (200) (1000) (1200) (400) (1200) (1200) (1200)<br />

60 2, 4 12.2 18.3 137.2 182.9 12.2 61.0 304.8 365.8 91.4 365.8 365.8 365.8 1321-RWR100-DP<br />

●<br />

(40) (60) (450) (600) (40) (200) (1000) (1200) (300) (1200) (1200) (1200)<br />

75 2, 4 12.2 18.3 137.2 182.9 12.2 61.0 304.8 365.8 91.4 365.8 365.8 365.8 1321-RWR100-DP<br />

●<br />

(40) (60) (450) (600) (40) (200) (1000) (1200) (300) (1200) (1200) (1200)<br />

100 2, 4 12.2 24.4 137.2 167.6 12.2 61.0 243.8 365.8 91.4 365.8 365.8 365.8 1321-RWR160-DP<br />

●<br />

(40) (80) (450) (550) (40) (200) (800) (1200) (300) (1200) (1200) (1200)<br />

125 2, 4 12.2 24.4 137.2 167.6 12.2 61.0 243.8 365.8 76.2 304.8 365.8 365.8 1321-RWR200-DP<br />

●<br />

(40) (80) (450) (550) (40) (200) (800) (1200) (250) (1000) (1200) (1200)<br />

150 2, 4 12.2 24.4 137.2 167.6 12.2 61.0 213.4 304.8 76.2 304.8 365.8 365.8 1321-RWR200-DP<br />

●<br />

(40) (80) (450) (550) (40) (200) (700) (1000) (250) (1000) (1200) (1200)<br />

200 2, 4 12.2 30.5 121.9 152.4 12.2 61.0 152.4 243.8 61.0 274.3 365.8 365.8 1321-RWR250-DP<br />

●<br />

(40) (100) (400) (500) (40) (200) (500) (800) (200) (900) (1200) (1200)<br />

250 2, 4 12.2 30.5 121.9 152.4 12.2 45.7 152.4 213.4 61.0 274.3 365.8 365.8 1321-RWR320-DP<br />

●<br />

(40) (100) (400) (500) (40) (150) (500) (700) (200) (900) (1200) (1200)<br />

300 2, 4 12.2 30.5 106.7 137.2 12.2 30.5 121.9 152.4 61.0 243.8 304.8 365.8 1321-3RB400-B 20 495 ●<br />

(40) (100) (350) (450) (40) (100) (400) (500) (200) (800) (1000) (1200)<br />

350 2, 4 12.2 30.5 106.7 137.2 12.2 30.5 121.9 152.4 61.0 243.8 304.8 365.8 1321-3R500-B 20 495 ●<br />

(40) (100) (350) (450) (40) (100) (400) (500) (200) (800) (1000) (1200)<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-8 Motor Cable Length Restrictions Tables<br />

PowerFlex 70 & 700 Drives<br />

Table A.J PowerFlex 70 (<strong>Stand</strong>ard/Enhanced) & 700 (<strong>Stand</strong>ard/Vector), 400V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive<br />

Frame Rating No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

70<br />

700<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

A 0 0.37 2 7.6 53.3 53.3 53.3 91.4 121.9 121.9 121.9 121.9 121.9 121.9 121.9<br />

● ● ●<br />

(25) (175) (175) (175) (300) (400) (400) (400) (400) (400) (400) (400)<br />

4 7.6 53.3 53.3 53.3 18.3 91.4 121.9 121.9 121.9 121.9 121.9 121.9<br />

● ●<br />

(25) (175) (175) (175) (60) (300) (400) (400) (400) (400) (400) (400)<br />

0.75 2 7.6 83.8 83.8 83.8 91.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(25) (275) (275) (275) (300) (500) (500) (500) (500) (500) (500) (500)<br />

4 7.6 76.2 76.2 76.2 18.3 91.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ●<br />

(25) (250) (250) (250) (60) (300) (500) (500) (500) (500) (500) (500)<br />

1.5 2 7.6 83.8 83.8 83.8 91.4 182.9 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (275) (275) (275) (300) (600) (600) (600) (600) (600) (600) (600)<br />

4 7.6 76.2 76.2 76.2 18.3 91.4 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ●<br />

(25) (250) (250) (250) (60) (300) (600) (600) (600) (600) (600) (600)<br />

B 2.2 2 7.6 137.2 182.9 182.9 91.4 182.9 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (450) (600) (600) (300) (600) (600) (600) (600) (600) (600) (600)<br />

4 7.6 91.4 152.4 182.9 18.3 91.4 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ●<br />

(25) (300) (500) (600) (60) (300) (600) (600) (600) (600) (600) (600)<br />

4 2 7.6 137.2 243.8 243.8 91.4 243.8 243.8 243.8 243.8 243.8 243.8 243.8 1321-RWR8-DP ● ●<br />

(25) (450) (800) (800) (300) (800) (800) (800) (800) (800) (800) (800)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 243.8 243.8 182.9 243.8 243.8 243.8 1321-RWR8-DP<br />

●<br />

(25) (300) (500) (700) (60) (300) (800) (800) (600) (800) (800) (800)<br />

C 5.5 2 7.6 137.2 304.8 304.8 91.4 304.8 304.8 304.8 304.8 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(25) (450) (1000) (1000) (300) (1000) (1000) (1000) (1000) (1000) (1000) (1000)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 304.8 304.8 182.9 304.8 304.8 304.8 1321-RWR12-DP<br />

●<br />

(25) (300) (500) (700) (60) (300) (1000) (1000) (600) (1000) (1000) (1000)<br />

1 7.5 2 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR18-DP<br />

●<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

D 11 2 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR25-DP<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

2 15 2 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR35-DP<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

D 18.5 2 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR35-DP<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

D 3 22 2 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR45-DP<br />

●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR45-DP<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

E 30 2 7.6 137.2 304.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR55-DP<br />

●<br />

(25) (450) (1000) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR55-DP<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

37 2 12.2 137.2 304.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (450) (1000) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 12.2 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR80-DP<br />

(40) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

4 45 2 12.2 137.2 304.8 365.8 91.4 304.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (450) (1000) (1200) (300) (1000) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 12.2 91.4 152.4 213.4 24.4 91.4 365.8 365.8 152.4 304.8 365.8 365.8 1321-RWR80-DP<br />

(40) (300) (500) (700) (80) (300) (1200) (1200) (500) (1000) (1200) (1200)<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-9<br />

Drive<br />

Frame Rating No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

70<br />

700<br />

kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

5 55 2 12.2 137.2 304.8 365.8 91.4 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR100-DP<br />

●<br />

(40) (450) (1000) (1200) (300) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 12.2 91.4 152.4 213.4 24.4 91.4 365.8 365.8 152.4 304.8 365.8 365.8 1321-RWR100-DP<br />

(40) (300) (500) (700) (80) (300) (1200) (1200) (500) (1000) (1200) (1200)<br />

75 2 18.3 137.2 304.8 365.8 91.4 213.4 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR130-DP<br />

●<br />

(60) (450) (1000) (1200) (300) (700) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 18.3 91.4 152.4 213.4 30.5 91.4 304.8 365.8 152.4 304.8 365.8 365.8 1321-RWR130-DP<br />

(60) (300) (500) (700) (100) (300) (1000) (1200) (500) (1000) (1200) (1200)<br />

6 90 2 18.3 137.2 304.8 365.8 91.4 213.4 365.8 365.8 304.8 365.8 365.8 365.8 1321-RWR160-DP<br />

●<br />

(60) (450) (1000) (1200) (300) (700) (1200) (1200) (1000) (1200) (1200) (1200)<br />

4 18.3 91.4 152.4 213.4 30.5 91.4 365.8 365.8 121.9 243.8 365.8 365.8 1321-RWR160-DP<br />

(60) (300) (500) (700) (100) (300) (1200) (1200) (400) (800) (1200) (1200)<br />

110 2 24.4 137.2 274.3 365.8 76.2 198.1 365.8 365.8 274.3 365.8 365.8 365.8 1321-RWR200-DP<br />

●<br />

(80) (450) (900) (1200) (250) (650) (1200) (1200) (900) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 213.4 36.6 91.4 365.8 365.8 121.9 213.4 365.8 365.8 1321-RWR200-DP<br />

(80) (300) (500) (700) (120) (300) (1200) (1200) (400) (700) (1200) (1200)<br />

132 2 24.4 137.2 274.3 365.8 61.0 182.9 365.8 365.8 243.8 365.8 365.8 365.8 1321-RWR250-DP<br />

●<br />

(80) (450) (900) (1200) (200) (600) (1200) (1200) (800) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 213.4 36.6 91.4 365.8 365.8 91.4 182.9 365.8 365.8 1321-RWR250-DP<br />

(80) (300) (500) (700) (120) (300) (1200) (1200) (300) (600) (1200) (1200)<br />

7 160 2 24.4 121.9 243.8 365.8 61.0 152.4 304.8 365.8 243.8 365.8 365.8 365.8 1321-3RB320-B 50 225 ●<br />

(80) (400) (800) (1200) (200) (500) (1000) (1200) (800) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 182.9 274.3 91.4 182.9 365.8 365.8 1321-3RB320-B 50 450<br />

(80) (300) (500) (600) (120) (300) (600) (900) (300) (600) (1200) (1200)<br />

180 2 24.4 121.9 243.8 365.8 61.0 152.4 304.8 365.8 243.8 365.8 365.8 365.8 1321-3RB320-B 50 225 ●<br />

(80) (400) (800) (1200) (200) (500) (1000) (1200) (800) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 182.9 274.3 91.4 182.9 365.8 365.8 1321-3RB320-B 50 450<br />

(80) (300) (500) (600) (120) (300) (600) (900) (300) (600) (1200) (1200)<br />

8 200 2 24.4 121.9 243.8 365.8 61.0 152.4 304.8 365.8 243.8 365.8 365.8 365.8 1321-3RB400-B (1) 20 495 ●<br />

(80) (400) (800) (1200) (200) (500) (1000) (1200) (800) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 182.9 228.6 91.4 182.9 304.8 365.8 1321-3RB400-B (1) 20 990<br />

(80) (300) (500) (600) (120) (300) (600) (750) (300) (600) (1000) (1200)<br />

240 2 24.4 121.9 243.8 365.8 61.0 152.4 304.8 365.8 243.8 365.8 365.8 365.8 1321-3R400-B (1) 20 495 ●<br />

(80) (400) (800) (1200) (200) (500) (1000) (1200) (800) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 167.6 213.4 91.4 182.9 304.8 365.8 1321-3RB400-B (1) 20 990<br />

(80) (300) (500) (600) (120) (300) (550) (700) (300) (600) (1000) (1200)<br />

280 2 24.4 121.9 213.4 304.8 45.7 121.9 304.8 365.8 228.6 365.8 365.8 365.8 1321-3R500-B (1) 20 495 ●<br />

(80) (400) (700) (1000) (150) (400) (1000) (1200) (750) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 167.6 213.4 91.4 182.9 304.8 365.8 1321-3R500-B (1) 20 990<br />

(80) (300) (500) (600) (120) (300) (550) (700) (300) (600) (1000) (1200)<br />

300 2 24.4 121.9 213.4 259.1 45.7 121.9 304.8 365.8 228.6 365.8 365.8 365.8 1321-3R600-B (1) 20 495 ●<br />

(80) (400) (700) (850) (150) (400) (1000) (1200) (750) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 167.6 213.4 91.4 182.9 304.8 365.8 1321-3R600-B (1) 20 990<br />

(80) (300) (500) (600) (120) (300) (550) (700) (300) (600) (1000) (1200)<br />

350 2 24.4 121.9 213.4 259.1 45.7 121.9 304.8 365.8 228.6 304.8 365.8 365.8 1321-3R600-B (1) 20 495 ●<br />

(80) (400) (700) (850) (150) (400) (1000) (1200) (750) (1000) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 167.6 213.4 91.4 182.9 304.8 365.8 1321-3R600-B (1) 20 990<br />

(80) (300) (500) (600) (120) (300) (550) (700) (300) (600) (1000) (1200)<br />

9 400 2 24.4 91.4 152.4 213.4 36.6 91.4 304.8 365.8 198.1 274.3 365.8 365.8 1321-3R750-B (2) 20 735 ●<br />

(80) (300) (500) (700) (120) (300) (1000) (1200) (650) (900) (1200) (1200)<br />

4 24.4 91.4 137.2 167.6 36.6 91.4 152.4 182.9 76.2 137.2 274.3 365.8 1321-3R750-B (2) 20 1470<br />

(80) (300) (450) (550) (120) (300) (500) (600) (250) (450) (900) (1200)<br />

10 500 2 24.4 91.4 152.4 213.4 36.6 91.4 304.8 365.8 198.1 274.3 365.8 365.8 1321-3R850-B (2) 20 735 ●<br />

(80) (300) (500) (700) (120) (300) (1000) (1200) (650) (900) (1200) (1200)<br />

4 24.4<br />

(80)<br />

91.4<br />

(300)<br />

137.2<br />

(450)<br />

167.6<br />

(550)<br />

36.6<br />

(120)<br />

91.4<br />

(300)<br />

152.4<br />

(500)<br />

182.9<br />

(600)<br />

76.2<br />

(250)<br />

137.2<br />

(450)<br />

274.3<br />

(900)<br />

365.8<br />

(1200)<br />

1321-3R850-B (2) 20 1470<br />

(1) Requires two parallel cables.<br />

(2)<br />

Requires three parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-10 Motor Cable Length Restrictions Tables<br />

Table A.K PowerFlex 70 (<strong>Stand</strong>ard/Enhanced) & 700 (<strong>Stand</strong>ard/Vector), 480V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive<br />

Frame Rating No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

HP kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

A 0 0.5 2 7.6 12.2 53.3 53.3 7.6 91.4 121.9 121.9 121.9 121.9 121.9 121.9<br />

● ● ●<br />

(25) (40) (175) (175) (25) (300) (400) (400) (400) (400) (400) (400)<br />

4 7.6 12.2 53.3 53.3 7.6 12.2 121.9 121.9 121.9 121.9 121.9 121.9<br />

● ●<br />

(25) (40) (175) (175) (25) (40) (400) (400) (400) (400) (400) (400)<br />

1 2 7.6 12.2 83.8 83.8 7.6 91.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(25) (40) (275) (275) (25) (300) (500) (500) (500) (500) (500) (500)<br />

4 7.6 12.2 76.2 76.2 7.6 12.2 121.9 152.4 152.4 152.4 152.4 152.4<br />

● ●<br />

(25) (40) (250) (250) (25) (40) (400) (500) (500) (500) (500) (500)<br />

2 2 7.6 12.2 83.8 83.8 7.6 91.4 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (40) (275) (275) (25) (300) (600) (600) (600) (600) (600) (600)<br />

4 7.6 12.2 76.2 76.2 7.6 12.2 121.9 182.9 182.9 182.9 182.9 182.9<br />

● ●<br />

(25) (40) (250) (250) (25) (40) (400) (600) (600) (600) (600) (600)<br />

B 3 2 7.6 12.2 129.5 129.5 7.6 91.4 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (40) (425) (425) (25) (300) (600) (600) (600) (600) (600) (600)<br />

4 7.6 12.2 121.9 121.9 7.6 12.2 121.9 182.9 182.9 182.9 182.9 182.9<br />

● ●<br />

(25) (40) (400) (400) (25) (40) (400) (600) (600) (600) (600) (600)<br />

5 2 7.6 12.2 137.2 182.9 7.6 91.4 243.8 243.8 182.9 243.8 243.8 243.8 1321-RWR8-DP ● ● ● ●<br />

(25) (40) (450) (600) (25) (300) (800) (800) (600) (800) (800) (800)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 243.8 182.9 243.8 243.8 243.8 1321-RWR8-DP ● ●<br />

(25) (40) (400) (600) (25) (40) (400) (800) (600) (800) (800) (800)<br />

C 7.5 2 7.6 12.2 137.2 182.9 7.6 91.4 304.8 304.8 182.9 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(25) (40) (450) (600) (25) (300) (1000) (1000) (600) (1000) (1000) (1000)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 304.8 182.9 304.8 304.8 304.8 1321-RWR12-DP<br />

●<br />

(25) (40) (400) (600) (25) (40) (400) (1000) (600) (1000) (1000) (1000)<br />

1 10 2 7.6 12.2 137.2 182.9 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (40) (450) (600) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 304.8 182.9 304.8 365.8 365.8 1321-RWR18-DP<br />

●<br />

(25) (40) (400) (600) (25) (40) (400) (1000) (600) (1000) (1200) (1200)<br />

D 15 2 7.6 12.2 137.2 182.9 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (40) (450) (600) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 304.8 182.9 304.8 365.8 365.8 1321-RWR25-DP<br />

(25) (40) (400) (600) (25) (40) (400) (1000) (600) (1000) (1200) (1200)<br />

2 20 2 7.6 12.2 137.2 182.9 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (40) (450) (600) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 304.8 182.9 304.8 365.8 365.8 1321-RWR35-DP<br />

(25) (40) (400) (600) (25) (40) (400) (1000) (600) (1000) (1200) (1200)<br />

25 2 7.6 12.2 137.2 182.9 7.6 76.2 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (40) (450) (600) (25) (250) (1200) (1200) (600) (1200) (1200) (1200)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 274.3 152.4 304.8 365.8 365.8 1321-RWR35-DP<br />

(25) (40) (400) (600) (25) (40) (400) (900) (500) (1000) (1200) (1200)<br />

3 30 2 7.6 12.2 137.2 182.9 7.6 76.2 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR45-DP<br />

●<br />

(25) (40) (450) (600) (25) (250) (1200) (1200) (600) (1200) (1200) (1200)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 243.8 152.4 304.8 365.8 365.8 1321-RWR45-DP<br />

(25) (40) (400) (600) (25) (40) (400) (800) (500) (1000) (1200) (1200)<br />

E 40 2 7.6 12.2 137.2 182.9 7.6 76.2 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR55-DP<br />

●<br />

(25) (40) (450) (600) (25) (250) (1200) (1200) (500) (1200) (1200) (1200)<br />

4 7.6 12.2 106.7 152.4 7.6 12.2 106.7 228.6 121.9 243.8 365.8 365.8 1321-RWR55-DP<br />

(25) (40) (350) (500) (25) (40) (350) (750) (400) (800) (1200) (1200)<br />

3 50 2 12.2 18.3 137.2 182.9 12.2 61.0 304.8 365.8 152.4 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (60) (450) (600) (40) (200) (1000) (1200) (500) (1200) (1200) (1200)<br />

4 7.6 12.2 91.4 152.4 12.2 18.3 106.7 228.6 91.4 243.8 365.8 365.8 1321-RWR80-DP<br />

(25) (40) (300) (500) (40) (60) (350) (750) (300) (800) (1200) (1200)<br />

4 60 2 12.2 18.3 137.2 182.9 12.2 61.0 304.8 365.8 137.2 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (60) (450) (600) (40) (200) (1000) (1200) (450) (1200) (1200) (1200)<br />

4 7.6 12.2 91.4 152.4 12.2 24.4 91.4 228.6 76.2 213.4 365.8 365.8 1321-RWR80-DP<br />

(25) (40) (300) (500) (40) (80) (300) (750) (250) (700) (1200) (1200)<br />

5 75 2 12.2 18.3 137.2 182.9 12.2 61.0 274.3 365.8 137.2 365.8 365.8 365.8 1321-RWR100-DP<br />

●<br />

(40) (60) (450) (600) (40) (200) (900) (1200) (450) (1200) (1200) (1200)<br />

4 7.6 12.2 91.4 152.4 12.2 24.4 91.4 182.9 76.2 182.9 365.8 365.8 1321-RWR100-DP<br />

(25) (40) (300) (500) (40) (80) (300) (600) (250) (600) (1200) (1200)<br />

100 2 12.2 24.4 137.2 182.9 12.2 61.0 243.8 365.8 137.2 365.8 365.8 365.8 1321-RWR130-DP<br />

●<br />

(40) (80) (450) (600) (40) (200) (800) (1200) (450) (1200) (1200) (1200)<br />

4 7.6 18.3 91.4 152.4 12.2 30.5 91.4 152.4 61.0 137.2 304.8 304.8 1321-RWR130-DP<br />

(25) (60) (300) (500) (40) (100) (300) (500) (200) (450) (1000) (1000)<br />

70<br />

700<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-11<br />

Drive<br />

Frame Rating No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

70<br />

700<br />

HP kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

6 125 2 12.2 24.4 137.2 182.9 12.2 61.0 243.8 365.8 121.9 304.8 365.8 365.8 1321-RWR160-DP<br />

●<br />

(40) (80) (450) (600) (40) (200) (800) (1200) (400) (1000) (1200) (1200)<br />

4 7.6 18.3 91.4 152.4 12.2 30.5 91.4 152.4 61.0 106.7 243.8 274.3 1321-RWR160-DP<br />

(25) (60) (300) (500) (40) (100) (300) (500) (200) (350) (800) (900)<br />

150 2 12.2 24.4 137.2 182.9 12.2 61.0 243.8 304.8 91.4 274.3 365.8 365.8 1321-RWR200-DP<br />

●<br />

(40) (80) (450) (600) (40) (200) (800) (1000) (300) (900) (1200) (1200)<br />

4 7.6 24.4 91.4 152.4 12.2 30.5 91.4 152.4 45.7 76.2 243.8 274.3 1321-RWR200-DP<br />

(25) (80) (300) (500) (40) (100) (300) (500) (150) (250) (800) (900)<br />

200 2 12.2 30.5 137.2 182.9 12.2 61.0 243.8 304.8 76.2 274.3 365.8 365.8 1321-RWR250-DP<br />

●<br />

(40) (100) (450) (600) (40) (200) (800) (1000) (250) (900) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 36.6 91.4 121.9 45.7 76.2 213.4 274.3 1321-RWR250-DP<br />

(25) (80) (300) (400) (40) (120) (300) (400) (150) (250) (700) (900)<br />

7 250 2 12.2 30.5 137.2 167.6 12.2 61.0 198.1 259.1 76.2 243.8 365.8 365.8 1321-3RB320-B 50 225 ●<br />

(40) (100) (450) (550) (40) (200) (650) (850) (250) (800) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 213.4 274.3 1321-3RB320-B 50 450<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (700) (900)<br />

250 2 12.2 30.5 137.2 167.6 12.2 61.0 198.1 259.1 76.2 243.8 365.8 365.8 1321-3RB320-B 50 225 ●<br />

(40) (100) (450) (550) (40) (200) (650) (850) (250) (800) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 213.4 274.3 1321-3RB320-B 50 450<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (700) (900)<br />

8 300 2 12.2 30.5 106.7 152.4 12.2 45.7 137.2 198.1 61.0 243.8 365.8 365.8 1321-3RB400-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (450) (650) (200) (800) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 213.4 274.3 1321-3RB400-B (1) 20 990<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (700) (900)<br />

350 2 12.2 30.5 106.7 152.4 12.2 45.7 137.2 198.1 61.0 243.8 365.8 365.8 1321-3R400-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (450) (650) (200) (800) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 167.6 259.1 1321-3RB400-B (1) 20 990<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (550) (850)<br />

400 2 12.2 30.5 106.7 152.4 12.2 45.7 137.2 182.9 61.0 213.4 365.8 365.8 1321-3R500-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (450) (600) (200) (700) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 167.6 259.1 1321-3R500-B (1) 20 990<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (550) (850)<br />

450 2 12.2 30.5 106.7 152.4 12.2 45.7 137.2 182.9 61.0 213.4 365.8 365.8 1321-3R600-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (450) (600) (200) (700) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 167.6 259.1 1321-3R600-B (1) 20 990<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (550) (850)<br />

500 2 12.2 30.5 106.7 152.4 12.2 45.7 121.9 152.4 61.0 182.9 304.8 365.8 1321-3R600-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (400) (500) (200) (600) (1000) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 167.6 243.8 1321-3R600-B (1) 20 990<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (550) (800)<br />

9 600 2 12.2 30.5 91.4 121.9 12.2 45.7 106.7 137.2 61.0 152.4 274.3 365.8 1321-3R750-B (2) 20 735 ●<br />

(40) (100) (300) (400) (40) (150) (350) (450) (200) (500) (900) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 61.0 152.4 213.4 1321-3R750-B (2) 20 1470<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (200) (500) (700)<br />

10 700 2 12.2 30.5 91.4 121.9 12.2 45.7 106.7 137.2 61.0 152.4 274.3 365.8 1321-3R850-B (2) 20 735 ●<br />

(40) (100) (300) (400) (40) (150) (350) (450) (200) (500) (900) (1200)<br />

4 7.6<br />

(25)<br />

24.4<br />

(80)<br />

91.4<br />

(300)<br />

121.9<br />

(400)<br />

12.2<br />

(40)<br />

30.5<br />

(100)<br />

91.4<br />

(300)<br />

121.9<br />

(400)<br />

30.5<br />

(100)<br />

61.0<br />

(200)<br />

152.4<br />

(500)<br />

213.4<br />

(700)<br />

1321-3R850-B (2) 20 1470<br />

(1) Requires two parallel cables.<br />

(2) Requires three parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-12 Motor Cable Length Restrictions Tables<br />

Table A.L PowerFlex 70 (<strong>Stand</strong>ard/Enhanced) & 700 (<strong>Stand</strong>ard/Vector), 600V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive<br />

Frame Rating No Solution Reactor Only 1321-RWR<br />

RWR<br />

(see page A-30)<br />

Available Options<br />

HP kHz 1488V 1850V 1488V 1850V 1488V 1850V Cat. No.<br />

A 0 1 2 42.7 (140) 121.9 (400) 121.9 (400) 121.9 (400) 121.9 (400) 121.9 (400) ● ● ●<br />

4 30.5 (100) 121.9 (400) 30.5 (100) 121.9 (400) 121.9 (400) 121.9 (400) ● ●<br />

2 2 42.7 (140) 152.4 (500) 152.4 (500) 152.4 (500) 152.4 (500) 152.4 (500) ● ● ●<br />

4 30.5 (100) 137.2 (450) 30.5 (100) 152.4 (500) 152.4 (500) 152.4 (500) ● ●<br />

B 3 2 42.7 (140) 152.4 (500) 152.4 (500) 182.9 (600) 182.9 (600) 182.9 (600) ● ● ●<br />

4 30.5 (100) 137.2 (450) 30.5 (100) 152.4 (500) 182.9 (600) 182.9 (600) ● ●<br />

5 2 42.7 (140) 152.4 (500) 152.4 (500) 243.8 (800) 243.8 (800) 243.8 (800) 1321-RWR8-EP ● ● ●<br />

4 30.5 (100) 137.2 (450) 30.5 (100) 152.4 (500) 243.8 (800) 243.8 (800) 1321-RWR8-EP ● ●<br />

C 7.5 2 42.7 (140) 152.4 (500) 152.4 (500) 304.8 (1000) 304.8 (1000) 304.8 (1000) 1321-RWR12-EP ●<br />

4 30.5 (100) 137.2 (450) 30.5 (100) 152.4 (500) 304.8 (1000) 304.8 (1000) 1321-RWR12-EP ●<br />

1 10 2 42.7 (140) 182.9 (600) 152.4 (500) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR12-EP ●<br />

4 30.5 (100) 137.2 (450) 30.5 (100) 152.4 (500) 304.8 (1000) 365.8 (1200) 1321-RWR12-EP ●<br />

D 15 2 42.7 (140) 182.9 (600) 152.4 (500) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR18-EP<br />

4 30.5 (100) 137.2 (450) 30.5 (100) 152.4 (500) 304.8 (1000) 365.8 (1200) 1321-RWR18-EP<br />

2 20 2 42.7 (140) 182.9 (600) 152.4 (500) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR25-EP ●<br />

4 30.5 (100) 137.2 (450) 30.5 (100) 152.4 (500) 304.8 (1000) 365.8 (1200) 1321-RWR25-EP<br />

25 2 42.7 (140) 182.9 (600) 152.4 (500) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR35-EP ●<br />

4 30.5 (100) 137.2 (450) 30.5 (100) 152.4 (500) 304.8 (1000) 365.8 (1200) 1321-RWR35-EP<br />

3 30 2 42.7 (140) 182.9 (600) 152.4 (500) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR35-EP ●<br />

4 30.5 (100) 137.2 (450) 36.6 (120) 152.4 (500) 304.8 (1000) 365.8 (1200) 1321-RWR35-EP<br />

E 40 2 42.7 (140) 182.9 (600) 152.4 (500) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR45-EP ●<br />

4 30.5 (100) 137.2 (450) 36.6 (120) 152.4 (500) 304.8 (1000) 365.8 (1200) 1321-RWR45-EP<br />

50 2 42.7 (140) 182.9 (600) 152.4 (500) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR55-EP ●<br />

4 36.6 (120) 137.2 (450) 45.7 (150) 152.4 (500) 304.8 (1000) 365.8 (1200) 1321-RWR55-EP<br />

4 60 2 42.7 (140) 182.9 (600) 152.4 (500) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR80-EP ●<br />

4 36.6 (120) 137.2 (450) 45.7 (150) 152.4 (500) 274.3 (900) 365.8 (1200) 1321-RWR80-EP<br />

5 75 2 42.7 (140) 182.9 (600) 152.4 (500) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR80-EP ●<br />

4 36.6 (120) 137.2 (450) 45.7 (150) 152.4 (500) 274.3 (900) 365.8 (1200) 1321-RWR80-EP<br />

100 2 42.7 (140) 182.9 (600) 152.4 (500) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-RWR100-EP ●<br />

4 42.7 (140) 137.2 (450) 45.7 (150) 152.4 (500) 274.3 (900) 365.8 (1200) 1321-RWR100-EP<br />

6 125 2 42.7 (140) 182.9 (600) 121.9 (400) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-RWR130-EP ●<br />

4 42.7 (140) 137.2 (450) 45.7 (150) 152.4 (500) 228.6 (750) 365.8 (1200) 1321-RWR130-EP<br />

150 2 42.7 (140) 182.9 (600) 121.9 (400) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-RWR160-EP ●<br />

4 42.7 (140) 137.2 (450) 45.7 (150) 152.4 (500) 198.1 (650) 365.8 (1200) 1321-RWR160-EP<br />

70<br />

700<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Table A.M PowerFlex 700 (<strong>Stand</strong>ard/Vector), 690V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

Frame kW kHz 1850V 2000V 1850V 2000V 1850V 2000V Cat. No. Ohms Watts<br />

4 45 2 30.5 (100) 106.9 (350) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R80-C 50 345<br />

4 24.4 (80) 76.2 (250) 36.6 (120) 121.9 (400) 213.4 (700) 274.3 (900) 1321-3R80-C 50 690<br />

55 2 30.5 (100) 106.9 (350) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R80-C 50 345<br />

4 24.4 (80) 76.2 (250) 36.6 (120) 106.9 (350) 213.4 (700) 274.3 (900) 1321-3R80-C 50 690<br />

5 75 2 30.5 (100) 106.9 (350) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R100-C 50 345<br />

4 30.5 (100) 76.2 (250) 36.6 (120) 106.9 (350) 213.4 (700) 274.3 (900) 1321-3R100-C 50 690<br />

90 2 30.5 (100) 106.9 (350) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R130-C 50 375<br />

4 30.5 (100) 76.2 (250) 36.6 (120) 106.9 (350) 182.9 (600) 274.3 (900) 1321-3R130-C 50 750<br />

6 110 2 30.5 (100) 106.9 (350) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R160-C 50 375<br />

4 30.5 (100) 76.2 (250) 36.6 (120) 99.1 (325) 152.4 (500) 274.3 (900) 1321-3R160-C 50 750<br />

132 2 30.5 (100) 106.9 (350) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R200-C 50 375<br />

4 30.5 (100) 76.2 (250) 36.6 (120) 83.8 (275) 152.4 (500) 274.3 (900) 1321-3R200-C 50 750<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-13<br />

PowerFlex 700H<br />

Table A.N PowerFlex 700H, 400V Shielded/Unshielded Cable – Meters (Feet)<br />

Drive No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

(1) Frame 12 drives have dual inverters and require two output reactors. The resistor ratings are per phase values for each reactor.<br />

(2)<br />

Some Frame 13 drives require two output reactors to match drive amp rating. The resistor ratings are per phase values for each reactor.<br />

(3) Resistor specification is based on two cables per phase.<br />

(4) Resistor specification is based on three cables per phase.<br />

(5)<br />

Resistor specification is based on four cables per phase.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

9 132 2 24.4 48.8 76.2 137.2 24.4 48.8 365.8 365.8 121.9 274.3 365.8 365.8 1321-RWR320-DP<br />

●<br />

(80) (160) (250) (450) (80) (160) (1200) (1200) (400) (900) (1200) (1200)<br />

160 2 24.4 48.8 76.2 137.2 24.4 48.8 365.8 365.8 121.9 274.3 365.8 365.8 1321-RWR320-DP<br />

●<br />

(80) (160) (250) (450) (80) (160) (1200) (1200) (400) (900) (1200) (1200)<br />

10 200 2 24.4 48.8 76.2 121.9 24.4 48.8 365.8 365.8 121.9 274.3 365.8 365.8 1321-3R500-B 20 495 (3) ●<br />

(80) (160) (250) (400) (80) (160) (1200) (1200) (400) (900) (1200) (1200)<br />

250 2 24.4 48.8 61.0 121.9 24.4 48.8 365.8 365.8 121.9 274.3 365.8 365.8 1321-3R500-B 20 495 (3) ●<br />

(80) (160) (200) (400) (80) (160) (1200) (1200) (400) (900) (1200) (1200)<br />

11 315 2 18.3 42.7 61.0 121.9 18.3 42.7 365.8 365.8 121.9 243.8 365.8 365.8 1321-3R600-B 20 495 (3) ●<br />

(60) (140) (200) (400) (60) (140) (1200) (1200) (400) (800) (1200) (1200)<br />

355 2 18.3 42.7 61.0 121.9 18.3 42.7 304.8 365.8 121.9 243.8 365.8 365.8 1321-3R750-B 20 495 (3) ●<br />

(60) (140) (200) (400) (60) (140) (1000) (1200) (400) (800) (1200) (1200)<br />

400 2 18.3 42.7 61.0 121.9 18.3 42.7 274.3 365.8 121.9 243.8 365.8 365.8 1321-3R750-B 20 735 (4) ●<br />

(60) (140) (200) (400) (60) (140) (900) (1200) (400) (800) (1200) (1200)<br />

12 (1) 450 2 18.3 42.7 61.0 121.9 18.3 42.7 243.8 365.8 121.9 243.8 365.8 365.8 2 x<br />

40 375 (4) ●<br />

(60) (140) (200) (400) (60) (140) (800) (1200) (400) (800) (1200) (1200) 1321-3RB400-B<br />

500 2 12.2 42.7 61.0 121.9 18.3 42.7 243.8 365.8 121.9 243.8 365.8 365.8 2 x<br />

40 375 (4) ●<br />

(40) (140) (200) (400) (60) (140) (800) (1200) (400) (800) (1200) (1200) 1321-3R500-B<br />

560 2 12.2 42.7 61.0 121.9 18.3 42.7 243.8 365.8 121.9 243.8 365.8 365.8 2 x<br />

20 525 (5)<br />

(40) (140) (200) (400) (60) (140) (800) (1200) (400) (800) (1200) (1200) 1321-3R500-B<br />

13 630 (2) 2 12.2 61.0 99.1 167.6 36.6 61.0 304.8 365.8 198.1 274.3 365.8 365.8 2 x<br />

20 525 (5)<br />

(40) (200) (325) (550) (120) (200) (1000) (1200) (650) (900) (1200) (1200) 1321-3R600-B<br />

710 (2) 2 12.2 61.0 99.1 167.6 36.6 61.0 304.8 365.8 198.1 274.3 365.8 365.8 2 x<br />

20 525 (5)<br />

(40) (200) (325) (550) (120) (200) (1000) (1200) (650) (900) (1200) (1200) 1321-3R750-B<br />

800 (2) 2 12.2 61.0 99.1 167.6 36.6 61.0 304.8 365.8 198.1 274.3 365.8 365.8 2 x<br />

20 525 (5)<br />

(40) (200) (325) (550) (120) (200) (1000) (1200) (650) (900) (1200) (1200) 1321-3R750-B<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-14 Motor Cable Length Restrictions Tables<br />

Table A.O PowerFlex 700H, 480V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30)<br />

Resistor<br />

Available<br />

Options<br />

(1) Frame 12 drives have dual inverters and require two output reactors. The resistor ratings are per phase values for each reactor.<br />

(2)<br />

Some Frame 13 drives require two output reactors to match drive amp rating. The resistor ratings are per phase values for each reactor.<br />

(3) Resistor specification is based on two cables per phase.<br />

(4) Resistor specification is based on three cables per phase.<br />

(5)<br />

Resistor specification is based on four cables per phase.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame HP kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

9 200 2 12.2 24.4 42.7 76.2 12.2 24.4 106.9 152.4 61.0 167.6 304.8 365.8 1321-RWR320-DP<br />

●<br />

(40) (80) (140) (250) (40) (80) (350) (500) (200) (550) (1000) (1200)<br />

250 2 12.2 24.4 42.7 76.2 12.2 24.4 91.4 121.9 61.0 152.4 304.8 365.8 1321-RWR320-DP<br />

●<br />

(40) (80) (140) (250) (40) (80) (300) (400) (200) (500) (1000) (1200)<br />

10 300 2 12.2 24.4 42.7 76.2 12.2 24.4 76.2 91.4 61.0 121.9 304.8 365.8 1321-3RB400-B 20 495 (3) ●<br />

(40) (80) (140) (250) (40) (80) (250) (300) (200) (400) (1000) (1200)<br />

350 2 12.2 24.4 42.7 76.2 12.2 24.4 76.2 91.4 61.0 121.9 304.8 365.8 1321-3R500-B 20 495 (3) ●<br />

(40) (80) (140) (250) (40) (80) (250) (300) (200) (400) (1000) (1200)<br />

450 2 12.2 24.4 36.6 61.0 12.2 24.4 61.0 91.4 61.0 121.9 274.3 365.8 1321-3R500-B 20 495 (3) ●<br />

(40) (80) (120) (200) (40) (80) (200) (300) (200) (400) (900) (1200)<br />

11 500 2 12.2 24.4 36.6 61.0 12.2 24.4 61.0 91.4 61.0 121.9 243.8 365.8 1321-3R750-B 20 495 (3) ●<br />

(40) (80) (120) (200) (40) (80) (200) (300) (200) (400) (800) (1200)<br />

600 2 12.2 24.4 36.6 61.0 12.2 24.4 45.7 91.4 45.7 121.9 243.8 365.8 1321-3R750-B 20 735 (4) ●<br />

(40) (80) (120) (200) (40) (80) (150) (300) (150) (400) (800) (1200)<br />

12 (1) 700 2 12.2 24.4 36.6 61.0 12.2 24.4 45.7 91.4 45.7 106.9 243.8 365.8 2 x<br />

40 375 (4) ●<br />

(40) (80) (120) (200) (40) (80) (150) (300) (150) (350) (800) (1200) 1321-3RB400-B<br />

800 2 12.2 24.4 36.6 61.0 12.2 24.4 45.7 91.4 45.7 106.9 243.8 365.8 2 x<br />

40 375 (4) ●<br />

(40) (80) (120) (200) (40) (80) (150) (300) (150) (350) (800) (1200) 1321-3R500-B<br />

900 2 12.2 24.4 36.6 61.0 12.2 24.4 45.7 91.4 45.7 106.9 243.8 365.8 2 x<br />

20 525 (5)<br />

(40) (80) (120) (200) (40) (80) (150) (300) (150) (350) (800) (1200) 1321-3R500-B<br />

13 1000 (2) 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 152.4 304.8 365.8 2 x<br />

20 525 (5)<br />

(40) (100) (200) (400) (40) (150) (200) (400) (150) (500) (1000) (1200) 1321-3R600-B<br />

1200 (2) 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 152.4 304.8 365.8 2 x<br />

20 525 (5)<br />

(40) (100) (200) (400) (40) (150) (200) (400) (150) (500) (1000) (1200) 1321-3R750-B<br />

1250 (2) 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 152.4 304.8 365.8 2 x<br />

20 525 (5)<br />

(40) (100) (200) (400) (40) (150) (200) (400) (150) (500) (1000) (1200) 1321-3R750-B<br />

Table A.P PowerFlex 700H, 600V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

Frame HP kHz 1488V 1850V 1488V 1850V 1488V 1850V Cat. No. Ohms Watts<br />

9 150 2 30.5 (100) 54.9 (180) 36.6 (120) 152.4 (500) 213.4 (700) 365.8 (1200) 1321-RWR200-EP ●<br />

200 2 30.5 (100) 54.9 (180) 36.6 (120) 121.9 (400) 182.9 (600) 365.8 (1200) 1321-RWR250-EP ●<br />

10 250 2 30.5 (100) 54.9 (180) 36.6 (120) 91.4 (300) 182.9 (600) 365.8 (1200) 1321-3RB250-B 50 315 ●<br />

350 2 30.5 (100) 45.7 (150) 30.5 (100) 76.2 (250) 167.6 (550) 365.8 (1200) 1321-3RB320-B 20 585 (3) ●<br />

400 2 30.5 (100) 45.7 (150) 30.5 (100) 61.0 (200) 167.6 (550) 365.8 (1200) 1321-3RB400-B 20 585 (3) ●<br />

450 2 30.5 (100) 45.7 (150) 30.5 (100) 61.0 (200) 152.4 (500) 365.8 (1200) 1321-3R500-B 20 585 (3) ●<br />

11 500 2 30.5 (100) 45.7 (150) 30.5 (100) 45.7 (150) 152.4 (500) 365.8 (1200) 1321-3R500-B 20 585 (3) ●<br />

600 2 30.5 (100) 45.7 (150) 30.5 (100) 45.7 (150) 152.4 (500) 365.8 (1200) 1321-3R600-B 20 585 (3) ●<br />

12 (1) 700 2 30.5 (100) 45.7 (150) 30.5 (100) 45.7 (150) 152.4 (500) 365.8 (1200) 2 x 1321-3RB320-B 40 300 (3) ●<br />

800 2 30.5 (100) 45.7 (150) 30.5 (100) 45.7 (150) 137.2 (450) 365.8 (1200) 2 x 1321-3RB400-C 40 480 (4) ●<br />

900 2 30.5 (100) 45.7 (150) 30.5 (100) 45.7 (150) 121.9 (400) 365.8 (1200) 2 x 1321-3R400-B 40 480 (4)<br />

13 1000 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-3R1000-C 20 960 (4)<br />

1100 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-3R1000-B 10 1440 (5)<br />

1300 (2) 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 2 x 1321-3R600-B 20 720 (5)<br />

(1) Frame 12 drives have dual inverters and require two output reactors. The resistor ratings are per phase values for each reactor.<br />

(2) Some Frame 13 drives require two output reactors to match drive amp rating. The resistor ratings are per phase values for each reactor.<br />

(3)<br />

Resistor specification is based on two cables per phase.<br />

(4) Resistor specification is based on three cables per phase.<br />

(5) Resistor specification is based on four cables per phase.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-15<br />

Table A.Q PowerFlex 700H, 690V Shielded/Unshielded Cable – Meters (Feet)<br />

Drive No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

Frame kW kHz 1850V 2000V 1850V 2000V 1850V 2000V Cat. No. Ohms Watts<br />

9 160 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 243.8 (800) 304.8 (1000) 1321-3RB250-C 50 480<br />

200 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 243.8 (800) 304.8 (1000) 1321-3RB250-C 50 480<br />

10 250 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 243.8 (800) 304.8 (1000) 1321-3RB320-C 50 480<br />

315 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 213.4 (700) 304.8 (1000) 1321-3RB400-C 20 945 (3)<br />

355 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 213.4 (700) 304.8 (1000) 1321-3R500-C 20 945 (3)<br />

400 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 213.4 (700) 304.8 (1000) 1321-3R500-C 20 945 (3)<br />

11 450 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 213.4 (700) 304.8 (1000) 1321-3R600-C 20 945 (3)<br />

500 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 213.4 (700) 304.8 (1000) 1321-3R600-C 20 945 (3)<br />

560 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 182.9 (600) 304.8 (1000) 1321-3R750-C 20 945 (3)<br />

12 (1) 630 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 182.9 (600) 304.8 (1000) 2 x1321-3RB400-C 40 480 (3)<br />

710 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 182.9 (600) 304.8 (1000) 2 x1321-3R500-C 40 645 (4)<br />

800 2 15.2 (50) 30.5 (100) 15.2 (50) 30.5 (100) 182.9 (600) 304.8 (1000) 2 x1321-3R500-C 40 645 (4)<br />

13 900 (2) 2 30.5 (100) 68.6 (225) 61.0 (200) 91.4 (300) 243.8 (800) 304.8 (1000) 2 x1321-3R600-C 40 645 (4)<br />

1000 (2) 2 30.5 (100) 68.6 (225) 48.8 (160) 91.4 (300) 243.8 (800) 304.8 (1000) 2 x1321-3R600-C 20 840 (5)<br />

1100 (2) 2 30.5 (100) 68.6 (225) 48.8 (160) 91.4 (300) 243.8 (800) 304.8 (1000) 2 x1321-3R750-C 20 840 (5)<br />

(1)<br />

Frame 12 drives have dual inverters and require two output reactors. The resistor ratings are per phase values for each reactor.<br />

(2) Some Frame 13 drives require two output reactors to match drive amp rating. The resistor ratings are per phase values for each reactor.<br />

(3) Resistor specification is based on two cables per phase.<br />

(4) Resistor specification is based on three cables per phase.<br />

(5)<br />

Resistor specification is based on four cables per phase.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-16 Motor Cable Length Restrictions Tables<br />

PowerFlex 700L<br />

Table A.R PowerFlex 700L w/700VC Control, 400V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

(1)<br />

Requires two parallel cables.<br />

(2) Requires four parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

2 200 2 24.4 91.4 152.4 213.4 30.5 76.2 228.6 365.8 152.4 274.3 365.8 365.8 1321-3R400-B (1) 20 495 ●<br />

(80) (300) (500) (700) (100) (250) (750) (1200) (500) (900) (1200) (1200)<br />

4 24.4 91.4 121.9 152.4 18.3 76.2 137.2 182.9 76.2 137.2 274.3 365.8 1321-3R400-B (1) 20 990<br />

(80) (300) (400) (500) (60) (250) (450) (600) (250) (450) (900) (1200)<br />

3A 370 2 24.4 91.4 152.4 213.4 30.5 76.2 228.6 365.8 152.4 274.3 365.8 365.8 1321-3R750-B (1) 20 735 ●<br />

(80) (300) (500) (700) (100) (250) (750) (1200) (500) (900) (1200) (1200)<br />

4 24.4 91.4 121.9 152.4 18.3 76.2 137.2 182.9 76.2 137.2 274.3 365.8 1321-3R750-B (1) 20 1470<br />

(80) (300) (400) (500) (60) (250) (450) (600) (250) (450) (900) (1200)<br />

3B 715 2 24.4 76.2 129.5 160.0 91.4 76.2 152.4 228.6 152.4 274.3 365.8 365.8 2 x<br />

20 525<br />

(80) (250) (425) (525) (80) (250) (500) (750) (500) (900) (1200) (1200) 1321-3R600-B (2)<br />

4 18.3 76.2 121.9 152.4 18.3 76.2 121.9 152.4 76.2 137.2 274.3 365.8 2 x<br />

20 1050<br />

(60) (250) (400) (500) (60) (250) (400) (500) (250) (450) (900) (1200) 1321-3R600-B (2)<br />

Table A.S PowerFlex 700L w/700VC Control, 480V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

(1) Requires two parallel cables.<br />

(2)<br />

Requires four parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame HP kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

2 300 2 12.2 30.5 91.4 121.9 12.2 36.6 99.1 137.2 61.0 137.2 274.3 365.8 1321-3R400-B (1) 20 495 ●<br />

(40) (100) (300) (400) (40) (120) (325) (450) (200) (450) (900) (1200)<br />

4 7.6 24.4 83.8 114.3 7.6 24.4 83.8 114.3 30.5 61.0 152.4 213.4 1321-3R400-B (1) 20 990<br />

(25) (80) (275) (375) (25) (80) (275) (375) (100) (200) (500) (700)<br />

3A 600 2 12.2 30.5 91.4 121.9 12.2 36.6 99.1 137.2 61.0 137.2 274.3 365.8 1321-3R750-B (1) 20 735 ●<br />

(40) (100) (300) (400) (40) (120) (325) (450) (200) (450) (900) (1200)<br />

4 7.6 24.4 83.8 114.3 7.6 24.4 83.8 114.3 30.5 61.0 152.4 213.4 1321-3R750-B (1) 20 1470<br />

(25) (80) (275) (375) (25) (80) (275) (375) (100) (200) (500) (700)<br />

3B 1150 2 12.2 24.4 83.8 114.3 12.2 30.5 91.4 121.9 61.0 137.2 274.3 365.8 2 x<br />

20 525<br />

(40) (80) (275) (375) (40) (100) (300) (400) (200) (450) (900) (1200) 1321-3R600-B (2)<br />

4 7.6 24.4 83.8 114.3 7.6 24.4 83.8 114.3 30.5 61.0 152.4 213.4 2 x<br />

20 1050<br />

(25) (80) (275) (375) (25) (80) (275) (375) (100) (200) (500) (700) 1321-3R600-B (2)<br />

Table A.T PowerFlex 700L w/700VC Control, 600V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only<br />

Reactor +<br />

Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

(1) Requires two parallel cables.<br />

(2)<br />

Requires three parallel cables.<br />

(3) Requires four parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame HP kHz 1488V 1850V 1488V 1850V 1488V 1850V Cat. No. Ohms Watts<br />

3A 465 2 24.4 106.7 24.4 365.8 182.9 365.8 1321-3R500-B (1) 20 585 ●<br />

(80) (350) (80) (350) (600) (1200)<br />

4 18.3 61.0 18.3 61.0 76.2 190.5 1321-3R500-B (1) 20 1170<br />

(60) (200) (60) (200) (250) (625)<br />

3B 870 2 18.3 91.4 18.3 91.4 152.4 274.3 1321-3R850-B (2) 20 960<br />

(60) (300) (60) (300) (500) (900)<br />

4 18.3 61.0 18.3 61.0 53.3 137.2 1321-3R850-B (2) 20 1920<br />

(60) (200) (60) (200) (175) (450)<br />

3B 1275 2 18.3 83.8 18.3 83.8 137.2 274.3 2 x<br />

20 720<br />

(60) (275) (60) (275) (450) (900) 1321-3R600-B (3)<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-17<br />

Table A.U PowerFlex 700L w/700VC Control, 690V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only<br />

Reactor +<br />

Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

(1) Requires two parallel cables.<br />

(2) Requires three parallel cables.<br />

(3)<br />

Requires four parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame kW kHz 1488V 1850V 1488V 1850V 1488V 1850V Cat. No. Ohms Watts<br />

3A 355 2 24.4 45.7 24.4 45.7 228.6 304.8 1321-3R500-C (1) 20 960 ●<br />

(80) (150) (80) (150) (750) (1000)<br />

4 24.4 45.7 24.4 45.7 76.2 121.9 1321-3R500-C (1) 20 1920<br />

(80) (150) (80) (150) (250) (400)<br />

3B 657 2 24.4 45.7 24.4 45.7 182.9 228.6 1321-3R850-C (2) 20 1290<br />

(80) (150) (80) (150) (600) (750)<br />

4 24.4 45.7 24.4 45.7 76.2 121.9 1321-3R850-C (2) 20 2580<br />

(80) (150) (80) (150) (250) (400)<br />

3B 980 2 24.4 45.7 24.4 45.7 182.9 228.6 2 x<br />

20 840<br />

(80) (150) (80) (150) (600) (750) 1321-3R600-C (3)<br />

Table A.V PowerFlex 700L w/700S Control, 400V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

(1) Requires two parallel cables.<br />

(2)<br />

Requires four parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

2 200 2 18.3 68.6 99.1 167.6 36.6 68.6 274.3 335.3 152.4 274.3 365.8 365.8 1321-3R400-B (1) 20 495 ●<br />

(60) (225) (325) (550) (120) (225) (900) (1100) (500) (900) (1200) (1200)<br />

4 18.3 68.6 99.1 167.6 36.6 68.6 274.3 335.3 152.4 274.3 365.8 365.8 1321-3R400-B (1) 20 990<br />

(60) (225) (325) (550) (120) (225) (900) (1100) (500) (900) (1200) (1200)<br />

3A 370 2 18.3 68.6 99.1 167.6 36.6 68.6 274.3 335.3 152.4 274.3 365.8 365.8 1321-3R750-B (1) 20 735 ●<br />

(60) (225) (325) (550) (120) (225) (900) (1100) (500) (900) (1200) (1200)<br />

4 18.3 68.6 99.1 167.6 36.6 68.6 274.3 335.3 152.4 274.3 365.8 365.8 1321-3R750-B (1) 20 1470<br />

(60) (225) (325) (550) (120) (225) (900) (1100) (500) (900) (1200) (1200)<br />

3B 715 2 12.2 68.6 99.1 167.6 36.6 68.6 274.3 335.3 152.4 274.3 365.8 365.8 2 x<br />

20 525<br />

(40) (225) (325) (550) (120) (225) (900) (1100) (500) (900) (1200) (1200) 1321-3R600-B (2)<br />

4 12.2 68.6 99.1 167.6 36.6 68.6 274.3 335.3 152.4 274.3 365.8 365.8 2 x<br />

20 1050<br />

(40) (225) (325) (550) (120) (225) (900) (1100) (500) (900) (1200) (1200) 1321-3R600-B (2)<br />

Table A.W PowerFlex 700L w/700S Control, 480V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

(1) Requires two parallel cables.<br />

(2) Requires four parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame HP kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

2 300 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 61.0 213.4 304.8 365.8 1321-3R400-B (1) 20 495 ●<br />

(40) (100) (200) (400) (40) (150) (200) (400) (200) (700) (1000) (1200)<br />

4 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 61.0 213.4 304.8 365.8 1321-3R400-B (1) 20 990<br />

(40) (100) (200) (400) (40) (150) (200) (400) (200) (700) (1000) (1200)<br />

3A 600 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 61.0 213.4 304.8 365.8 1321-3R750-B (1) 20 735 ●<br />

(40) (100) (200) (400) (40) (150) (200) (400) (200) (700) (1000) (1200)<br />

4 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 61.0 213.4 304.8 365.8 1321-3R750-B (1) 20 1470<br />

(40) (100) (200) (400) (40) (150) (200) (400) (200) (700) (1000) (1200)<br />

3B 1150 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 152.4 304.8 365.8 2 x<br />

20 525<br />

(40) (100) (200) (400) (40) (150) (200) (400) (150) (500) (1000) (1200) 1321-3R600-B (2)<br />

4 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 152.4 304.8 365.8 2 x<br />

20 1050<br />

(40) (100) (200) (400) (40) (150) (200) (400) (150) (500) (1000) (1200) 1321-3R600-B (2)<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-18 Motor Cable Length Restrictions Tables<br />

Table A.X PowerFlex 700L w/700S Control, 600V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only<br />

Reactor +<br />

Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

(1)<br />

Requires two parallel cables.<br />

(2) Requires three parallel cables.<br />

(3) Requires four parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame HP kHz 1488V 1850V 1488V 1850V 1488V 1850V Cat. No. Ohms Watts<br />

3A 465 2 18.3 76.2 18.3 76.2 182.9 304.8 1321-3R500-B (1) 20 585 ●<br />

(60) (250) (60) (250) (600) (1000)<br />

4 18.3 76.2 18.3 76.2 182.9 304.8 1321-3R500-B (1) 20 1170<br />

(60) (250) (60) (250) (600) (1000)<br />

3B 870 2 18.3 61.0 18.3 61.0 152.4 228.6 1321-3R850-B (2) 20 960<br />

(60) (200) (60) (200) (500) (750)<br />

4 18.3 61.0 18.3 61.0 152.4 228.6 1321-3R850-B (2) 20 1920<br />

(60) (200) (60) (200) (500) (750)<br />

3B 1275 2 12.2 45.7 12.2 45.7 121.9 228.6 2 x<br />

20 720<br />

(40) (150) (40) (150) (400) (750) 1321-3R600-B (3)<br />

Table A.Y PowerFlex 700L w/700S Control, 690V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only<br />

Reactor +<br />

Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

(1) Requires two parallel cables.<br />

(2) Requires three parallel cables.<br />

(3)<br />

Requires four parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame kW kHz 1488V 1850V 1488V 1850V 1488V 1850V Cat. No. Ohms Watts<br />

3A 355 2 24.4 45.7 24.4 45.7 228.6 304.8 1321-3R500-C (1) 20 960 ●<br />

(80) (150) (80) (150) (750) (1000)<br />

4 24.4 45.7 24.4 45.7 182.9 228.6 1321-3R500-C (1) 20 1920<br />

(80) (150) (80) (150) (600) (750)<br />

3B 657 2 24.4 45.7 24.4 45.7 182.9 228.6 1321-3R850-C (2) 20 1290<br />

(80) (150) (80) (150) (600) (750)<br />

4 24.4 45.7 24.4 45.7 182.9 228.6 1321-3R850-C (2) 20 2580<br />

(80) (150) (80) (150) (600) (750)<br />

3B 980 2 24.4 45.7 24.4 45.7 182.9 228.6 2 x<br />

20 840<br />

(80) (150) (80) (150) (600) (750) 1321-3R600-C (3)<br />

PowerFlex 700S<br />

Table A.Z PowerFlex 700S, 400V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

1 0.75 2/4 7.6 83.8 83.8 83.8 91.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(25) (275) (275) (275) (300) (500) (500) (500) (500) (500) (500) (500)<br />

1.5 2/4 7.6 106.9 182.9 182.9 91.4 182.9 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (350) (600) (600) (300) (600) (600) (600) (600) (600) (600) (600)<br />

2.2 2/4 7.6 106.9 182.9 182.9 91.4 182.9 182.9 182.9 182.9 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (350) (600) (600) (300) (600) (600) (600) (600) (600) (600) (600)<br />

4 2/4 7.6 106.9 243.8 243.8 91.4 243.8 243.8 243.8 243.8 243.8 243.8 243.8 1321-RWR8-DP ● ●<br />

(25) (350) (800) (800) (300) (800) (800) (800) (800) (800) (800) (800)<br />

5.5 2/4 7.6 106.9 274.3 304.8 91.4 274.3 304.8 304.8 304.8 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(25) (350) (900) (1000) (300) (900) (1000) (1000) (1000) (1000) (1000) (1000)<br />

7.5 2/4 7.6 106.9 274.3 365.8 91.4 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (350) (900) (1200) (300) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

11 2/4 7.6 106.9 274.3 365.8 91.4 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (350) (900) (1200) (300) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-19<br />

Drive No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

Frame kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

2 15 2/4 7.6 106.9 274.3 365.8 91.4 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (350) (900) (1200) (300) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

18.5 2/4 7.6 106.9 274.3 365.8 91.4 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (350) (900) (1200) (300) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

3 22 2/4 7.6 106.9 274.3 365.8 91.4 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR45-DP<br />

●<br />

(25) (350) (900) (1200) (300) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

30 2/4 7.6 106.9 274.3 365.8 91.4 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR55-DP<br />

●<br />

(25) (350) (900) (1200) (300) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

37 2/4 12.2 91.4 274.3 365.8 76.2 243.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (300) (900) (1200) (250) (800) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 45 2/4 12.2 106.9 274.3 365.8 76.2 304.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (350) (900) (1200) (250) (1000) (1200) (1200) (1200) (1200) (1200) (1200)<br />

5 55 2/4 12.2 106.9 274.3 365.8 61.0 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR100-DP<br />

●<br />

(40) (350) (900) (1200) (200) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

75 2/4 18.3 91.4 213.4 304.8 45.7 243.8 365.8 365.8 304.8 365.8 365.8 365.8 1321-RWR130-DP<br />

●<br />

(60) (300) (700) (1000) (150) (800) (1200) (1200) (1000) (1200) (1200) (1200)<br />

6 90 2/4 18.3 91.4 213.4 304.8 45.7 213.4 365.8 365.8 304.8 365.8 365.8 365.8 1321-RWR160-DP<br />

●<br />

(60) (300) (700) (1000) (150) (700) (1200) (1200) (1000) (1200) (1200) (1200)<br />

110 2/4 24.4 91.4 213.4 274.3 45.7 182.9 365.8 365.8 274.3 365.8 365.8 365.8 1321-RWR200-DP<br />

●<br />

(80) (300) (700) (900) (150) (600) (1200) (1200) (900) (1200) (1200) (1200)<br />

132 2/4 24.4 91.4 182.9 243.8 45.7 152.4 365.8 365.8 243.8 365.8 365.8 365.8 1321-RWR250-DP<br />

●<br />

(80) (300) (600) (800) (150) (500) (1200) (1200) (800) (1200) (1200) (1200)<br />

9 132 2 24.4 91.4 182.9 243.8 45.7 152.4 365.8 365.8 243.8 365.8 365.8 365.8 1321-RWR320-DP<br />

●<br />

(80) (300) (600) (800) (150) (500) (1200) (1200) (800) (1200) (1200) (1200)<br />

160 2 24.4 91.4 152.4 213.4 45.7 121.9 365.8 365.8 243.8 365.8 365.8 365.8 1321-RWR320-DP<br />

●<br />

(80) (300) (500) (700) (150) (400) (1200) (1200) (800) (1200) (1200) (1200)<br />

10 200 2 24.4 76.2 121.9 182.9 36.6 91.4 304.8 365.8 243.8 365.8 365.8 365.8 1321-3R500-B 20 495 (3) ●<br />

(80) (250) (400) (600) (120) (300) (1000) (1200) (800) (1200) (1200) (1200)<br />

250 2 24.4 76.2 99.1 167.6 36.6 76.2 304.8 365.8 228.6 335.3 365.8 365.8 1321-3R500-B 20 495 (3) ●<br />

(80) (250) (325) (550) (120) (250) (1000) (1200) (750) (1100) (1200) (1200)<br />

11 315 2 18.3 68.6 99.1 167.6 36.6 68.6 304.8 365.8 228.6 335.3 365.8 365.8 1321-3R600-B 20 495 (3) ●<br />

(60) (225) (325) (550) (120) (225) (1000) (1200) (750) (1100) (1200) (1200)<br />

355 2 18.3 68.6 99.1 167.6 36.6 68.6 304.8 365.8 228.6 274.3 365.8 365.8 1321-3R750-B 20 495 (3) ●<br />

(60) (225) (325) (550) (120) (225) (1000) (1200) (750) (900) (1200) (1200)<br />

400 2 18.3 68.6 99.1 167.6 36.6 68.6 304.8 365.8 228.6 274.3 365.8 365.8 1321-3R750-B 20 735 (4) ●<br />

(60) (225) (325) (550) (120) (225) (1000) (1200) (750) (900) (1200) (1200)<br />

12 (1) 450 2 18.3 68.6 99.1 167.6 36.6 68.6 304.8 365.8 228.6 274.3 365.8 365.8 2 x<br />

40 375 (4) ●<br />

(60) (225) (325) (550) (120) (225) (1000) (1200) (750) (900) (1200) (1200) 1321-3RB400-B<br />

500 2 12.2 68.6 99.1 167.6 36.6 68.6 304.8 365.8 198.1 274.3 365.8 365.8 2 x<br />

40 375 (4) ●<br />

(40) (225) (325) (550) (120) (225) (1000) (1200) (650) (900) (1200) (1200) 1321-3R500-B<br />

560 2 12.2 68.6 99.1 167.6 36.6 68.6 304.8 365.8 198.1 274.3 365.8 365.8 2 x<br />

20 525 (5)<br />

(40) (225) (325) (550) (120) (225) (1000) (1200) (650) (900) (1200) (1200) 1321-3R500-B<br />

13 630 (2) 2 12.2 61.0 99.1 167.6 36.6 61.0 304.8 365.8 198.1 274.3 365.8 365.8 2 x<br />

20 525 (5)<br />

(40) (200) (325) (550) (120) (200) (1000) (1200) (650) (900) (1200) (1200) 1321-3R600-B<br />

710 (2) 2 12.2 61.0 99.1 167.6 36.6 61.0 304.8 365.8 198.1 274.3 365.8 365.8 2 x<br />

20 525 (5)<br />

(40) (200) (325) (550) (120) (200) (1000) (1200) (650) (900) (1200) (1200) 1321-3R750-B<br />

800 (2) 2 12.2<br />

(40)<br />

61.0<br />

(200)<br />

99.1<br />

(325)<br />

167.6<br />

(550)<br />

36.6<br />

(120)<br />

61.0<br />

(200)<br />

304.8<br />

(1000)<br />

365.8<br />

(1200)<br />

198.1<br />

(650)<br />

274.3<br />

(900)<br />

365.8<br />

(1200)<br />

365.8<br />

(1200)<br />

2 x<br />

1321-3R750-B<br />

20 525 (5)<br />

(1) Frame 12 drives have dual inverters and require two output reactors. The resistor ratings are per phase values for each reactor.<br />

(2)<br />

Some Frame 13 drives require two output reactors to match drive amp rating. The resistor ratings are per phase values for each reactor.<br />

(3) Resistor specification is based on two cables per phase.<br />

(4) Resistor specification is based on three cables per phase.<br />

(5)<br />

Resistor specification is based on four cables per phase.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-20 Motor Cable Length Restrictions Tables<br />

Table A.AA PowerFlex 700S, 480V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

(1)<br />

(2)<br />

(3)<br />

(4)<br />

(5)<br />

Frame 12 drives have dual inverters and require two output reactors. The resistor ratings are per phase values for each reactor.<br />

Some Frame 13 drives require two output reactors to match drive amp rating. The resistor ratings are per phase values for each reactor.<br />

Resistor specification is based on two cables per phase.<br />

Resistor specification is based on three cables per phase.<br />

Resistor specification is based on four cables per phase.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame HP kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

1 1 2/4 7.6 12.2 83.8 83.8 7.6 91.4 152.4 152.4 152.4 152.4 152.4 152.4<br />

● ● ●<br />

(25) (40) (275) (275) (25) (300) (500) (500) (500) (500) (500) (500)<br />

2 2/4 7.6 12.2 83.8 83.8 7.6 91.4 182.9 182.9 152.4 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (40) (275) (275) (25) (300) (600) (600) (500) (600) (600) (600)<br />

3 2/4 7.6 12.2 106.9 152.4 7.6 91.4 182.9 182.9 152.4 182.9 182.9 182.9<br />

● ● ● ●<br />

(25) (40) (350) (500) (25) (300) (600) (600) (500) (600) (600) (600)<br />

5 2/4 7.6 12.2 106.9 152.4 7.6 91.4 243.8 243.8 152.4 243.8 243.8 243.8 1321-RWR8-DP ● ● ● ●<br />

(25) (40) (350) (500) (25) (300) (800) (800) (500) (800) (800) (800)<br />

7.5 2/4 7.6 12.2 106.9 152.4 7.6 91.4 304.8 304.8 152.4 304.8 304.8 304.8 1321-RWR12-DP ● ●<br />

(25) (40) (350) (500) (25) (300) (1000) (1000) (500) (1000) (1000) (1000)<br />

10 2/4 7.6 12.2 106.9 152.4 7.6 91.4 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (40) (350) (500) (25) (300) (1200) (1200) (500) (1200) (1200) (1200)<br />

15 2/4 7.6 12.2 106.9 152.4 7.6 91.4 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (40) (350) (500) (25) (300) (1200) (1200) (500) (1200) (1200) (1200)<br />

2 20 2/4 7.6 12.2 106.9 152.4 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (40) (350) (500) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

25 2/4 7.6 12.2 106.9 152.4 7.6 76.2 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (40) (350) (500) (25) (250) (1200) (1200) (500) (1200) (1200) (1200)<br />

3 30 2/4 7.6 12.2 106.9 152.4 7.6 76.2 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR45-DP<br />

●<br />

(25) (40) (350) (500) (25) (250) (1200) (1200) (500) (1200) (1200) (1200)<br />

40 2/4 7.6 12.2 106.9 152.4 7.6 76.2 365.8 365.8 121.9 365.8 365.8 365.8 1321-RWR55-DP<br />

●<br />

(25) (40) (350) (500) (25) (250) (1200) (1200) (400) (1200) (1200) (1200)<br />

50 2/4 12.2 18.3 106.9 152.4 12.2 61.0 304.8 365.8 121.9 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (60) (350) (500) (40) (200) (1000) (1200) (400) (1200) (1200) (1200)<br />

4 60 2/4 12.2 18.3 91.4 152.4 12.2 61.0 304.8 365.8 91.4 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (60) (300) (500) (40) (200) (1000) (1200) (300) (1200) (1200) (1200)<br />

5 75 2/4 12.2 18.3 91.4 152.4 12.2 61.0 274.3 365.8 91.4 365.8 365.8 365.8 1321-RWR100-DP<br />

●<br />

(40) (60) (300) (500) (40) (200) (900) (1200) (300) (1200) (1200) (1200)<br />

100 2/4 12.2 24.4 91.4 137.2 12.2 61.0 243.8 365.8 91.4 365.8 365.8 365.8 1321-RWR130-DP<br />

●<br />

(40) (80) (300) (450) (40) (200) (800) (1200) (300) (1200) (1200) (1200)<br />

6 125 2/4 12.2 24.4 91.4 137.2 12.2 61.0 243.8 365.8 76.2 304.8 365.8 365.8 1321-RWR160-DP<br />

●<br />

(40) (80) (300) (450) (40) (200) (800) (1200) (250) (1000) (1200) (1200)<br />

150 2/4 12.2 24.4 91.4 137.2 12.2 61.0 243.8 304.8 76.2 274.3 365.8 365.8 1321-RWR200-DP<br />

●<br />

(40) (80) (300) (450) (40) (200) (800) (1000) (250) (900) (1200) (1200)<br />

200 2/4 12.2 30.5 91.4 137.2 12.2 61.0 243.8 304.8 61.0 274.3 365.8 365.8 1321-RWR250-DP<br />

●<br />

(40) (100) (300) (450) (40) (200) (800) (1000) (200) (900) (1200) (1200)<br />

9 200 2 12.2 30.5 91.4 152.4 12.2 45.7 152.4 228.6 61.0 274.3 365.8 365.8 1321-RWR320-DP<br />

●<br />

(40) (100) (300) (500) (40) (150) (500) (750) (200) (900) (1200) (1200)<br />

250 2 12.2 30.5 91.4 152.4 12.2 45.7 121.9 182.9 61.0 243.8 365.8 365.8 1321-RWR320-DP<br />

●<br />

(40) (100) (300) (500) (40) (150) (400) (600) (200) (800) (1200) (1200)<br />

10 300 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 61.0 243.8 304.8 365.8 1321-3RB400-B 20 495 (3) ●<br />

(40) (100) (200) (400) (40) (150) (200) (400) (200) (800) (1000) (1200)<br />

350 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 61.0 243.8 304.8 365.8 1321-3R500-B 20 495 (3) ●<br />

(40) (100) (200) (400) (40) (150) (200) (400) (200) (800) (1000) (1200)<br />

450 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 61.0 213.4 304.8 365.8 1321-3R500-B 20 495 (3) ●<br />

(40) (100) (200) (400) (40) (150) (200) (400) (200) (700) (1000) (1200)<br />

11 500 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 61.0 213.4 304.8 365.8 1321-3R750-B 20 495 (3) ●<br />

(40) (100) (200) (400) (40) (150) (200) (400) (200) (700) (1000) (1200)<br />

600 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 61.0 213.4 304.8 365.8 1321-3R750-B 20 735 (4) ●<br />

(40) (100) (200) (400) (40) (150) (200) (400) (200) (700) (1000) (1200)<br />

12 (1) 700 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 182.9 304.8 365.8 2 x<br />

40 375 (4) ●<br />

(40) (100) (200) (400) (40) (150) (200) (400) (150) (600) (1000) (1200) 1321-3RB400-B<br />

800 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 182.9 304.8 365.8 2 x<br />

40 375 (4) ●<br />

(40) (100) (200) (400) (40) (150) (200) (400) (150) (600) (1000) (1200) 1321-3R500-B<br />

900 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 182.9 304.8 365.8 2 x<br />

20 525 (5)<br />

(40) (100) (200) (400) (40) (150) (200) (400) (150) (600) (1000) (1200) 1321-3R500-B<br />

13 1000 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 152.4 304.8 365.8 2 x<br />

20<br />

(2) (40) (100) (200) (400) (40) (150) (200) (400) (150) (500) (1000) (1200) 1321-3R600-B<br />

525 (5)<br />

1200 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 152.4 304.8 365.8 2 x<br />

20<br />

(2) (40) (100) (200) (400) (40) (150) (200) (400) (150) (500) (1000) (1200) 1321-3R750-B<br />

525 (5)<br />

1250 2 12.2 30.5 61.0 121.9 12.2 45.7 61.0 121.9 45.7 152.4 304.8 365.8 2 x<br />

20<br />

(2)<br />

(40) (100) (200) (400) (40) (150) (200) (400) (150) (500) (1000) (1200) 1321-3R750-B<br />

525 (5)<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-21<br />

Table A.AB PowerFlex 700S, 600V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame HP kHz 1488V 1850V 1488V 1850V 1488V 1850V Cat. No. Ohms Watts<br />

1 1 2/4 30.5 (100) 121.9 (400) 121.9 (400) 121.9 (400) 121.9 (400) 121.9 (400) ● ● ●<br />

2 2/4 30.5 (100) 152.4 (500) 121.9 (400) 152.4 (500) 152.4 (500) 152.4 (500) ● ● ● ●<br />

3 2/4 30.5 (100) 152.4 (500) 121.9 (400) 182.9 (600) 182.9 (600) 182.9 (600) ● ● ● ●<br />

5 2/4 30.5 (100) 152.4 (500) 121.9 (400) 243.8 (800) 243.8 (800) 243.8 (800) 1321-RWR8-EP ● ● ● ●<br />

7.5 2/4 30.5 (100) 152.4 (500) 121.9 (400) 304.8 (1000) 304.8 (1000) 304.8 (1000) 1321-RWR8-EP ● ●<br />

10 2/4 30.5 (100) 152.4 (500) 121.9 (400) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR12-EP ● ●<br />

15 2/4 30.5 (100) 152.4 (500) 121.9 (400) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR18-EP ●<br />

2 20 2/4 30.5 (100) 152.4 (500) 121.9 (400) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR25-EP ●<br />

25 2/4 30.5 (100) 152.4 (500) 121.9 (400) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR25-EP ●<br />

3 30 2/4 30.5 (100) 152.4 (500) 121.9 (400) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR35-EP ●<br />

40 2/4 30.5 (100) 152.4 (500) 121.9 (400) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR45-EP ●<br />

50 2/4 36.6 (120) 152.4 (500) 121.9 (400) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR55-EP ●<br />

4 60 2/4 36.6 (120) 152.4 (500) 121.9 (400) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR80-EP ●<br />

5 75 2/4 36.6 (120) 152.4 (500) 121.9 (400) 365.8 (1200) 365.8 (1200) 365.8 (1200) 1321-RWR80-EP ●<br />

100 2/4 42.7 (140) 152.4 (500) 121.9 (400) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-RWR100-EP ●<br />

6 125 2/4 42.7 (140) 152.4 (500) 121.9 (400) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-RWR130-EP ●<br />

150 2/4 42.7 (140) 152.4 (500) 121.9 (400) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-RWR160-EP ●<br />

9 150 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-RWR200-EP ●<br />

200 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-RWR250-EP ●<br />

10 250 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-3RB250-B 50 315 ●<br />

350 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-3RB350-B 20 585 (3) ●<br />

400 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-3RB400-B 20 585 (3) ●<br />

450 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-3R500-B 20 585 (3) ●<br />

11 500 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-3R500-B 20 585 (3) ●<br />

600 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-3R600-B 20 585 (3) ●<br />

12 (1) 700 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 2 X 1321-3RB320-B 40 300 (3) ●<br />

800 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 2 X 1321-3RB400-C 40 480 (4) ●<br />

900 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 2 X 1321-3R400-B 40 480 (4)<br />

13 1000 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-3R1000-C 20 960 (4)<br />

1100 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 1321-3R1000-B 10 1440 (5)<br />

1300 (2) 2 42.7 (140) 152.4 (500) 61.0 (200) 304.8 (1000) 365.8 (1200) 365.8 (1200) 2 X 1321-3R600-B 20 720 (5)<br />

(1) Frame 12 drives have dual inverters and require two output reactors. The resistor ratings are per phase values for each reactor.<br />

(2)<br />

Some Frame 13 drives require two output reactors to match drive amp rating. The resistor ratings are per phase values for each reactor.<br />

(3) Resistor specification is based on two cables per phase.<br />

(4) Resistor specification is based on three cables per phase.<br />

(5)<br />

Resistor specification is based on four cables per phase.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-22 Motor Cable Length Restrictions Tables<br />

Table A.AC PowerFlex 700S, 690V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive No Solution Reactor Only Reactor + Damping Resistor<br />

Reactor<br />

(see page A-30) Resistor Available Options<br />

Frame kW kHz 1850V 2000V 1850V 2000V 1850V 2000V Cat. No. Ohms Watts<br />

5 45 2/4 30.5 (100) 76.2 (250) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R80-C 50 345/690<br />

55 2/4 30.5 (100) 76.2 (250) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R80-C 50 345/690<br />

75 2/4 30.5 (100) 76.2 (250) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R100-C 50 345/690<br />

90 2/4 30.5 (100) 76.2 (250) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R130-C 50 375/750<br />

6 110 2/4 30.5 (100) 76.2 (250) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R160-C 50 375/750<br />

132 2/4 30.5 (100) 76.2 (250) 91.4 (300) 152.4 (500) 365.8 (1200) 365.8 (1200) 1321-3R200-C 50 375/750<br />

9 160 2 30.5 (100) 68.6 (225) 91.4 (300) 152.4 (500) 274.3 (900) 365.8 (1200) 1321-3RB250-C 50 480<br />

200 2 30.5 (100) 68.6 (225) 91.4 (300) 152.4 (500) 274.3 (900) 365.8 (1200) 1321-3RB250-C 50 480<br />

10 250 2 30.5 (100) 68.6 (225) 76.2 (250) 121.9 (400) 274.3 (900) 365.8 (1200) 1321-3RB320-C 50 480<br />

315 2 30.5 (100) 68.6 (225) 76.2 (250) 121.9 (400) 274.3 (900) 365.8 (1200) 1321-3RB400-C 20 945 (3)<br />

355 2 30.5 (100) 68.6 (225) 76.2 (250) 121.9 (400) 274.3 (900) 365.8 (1200) 1321-3R500-C 20 945 (3)<br />

400 2 30.5 (100) 68.6 (225) 76.2 (250) 121.9 (400) 243.8 (800) 304.8 (1000) 1321-3R500-C 20 945 (3)<br />

11 450 2 30.5 (100) 68.6 (225) 76.2 (250) 121.9 (400) 243.8 (800) 304.8 (1000) 1321-3R600-C 20 945 (3)<br />

500 2 30.5 (100) 68.6 (225) 76.2 (250) 121.9 (400) 243.8 (800) 304.8 (1000) 1321-3R600-C 20 945 (3)<br />

560 2 30.5 (100) 68.6 (225) 61.0 (200) 91.4 (300) 243.8 (800) 304.8 (1000) 1321-3R750-C 20 945 (3)<br />

12 (1) 630 2 30.5 (100) 68.6 (225) 61.0 (200) 91.4 (300) 243.8 (800) 304.8 (1000) 2 X 1321-3RB400-C 40 480 (3)<br />

710 2 30.5 (100) 68.6 (225) 61.0 (200) 91.4 (300) 243.8 (800) 304.8 (1000) 2 X 1321-3R500-C 40 645 (4)<br />

800 2 30.5 (100) 68.6 (225) 61.0 (200) 91.4 (300) 243.8 (800) 304.8 (1000) 2 X 1321-3R500-C 40 645 (4)<br />

13 900 (2) 2 30.5 (100) 68.6 (225) 61.0 (200) 91.4 (300) 243.8 (800) 304.8 (1000) 2 X 1321-3R600-C 40 645 (4)<br />

1000 (2) 2 30.5 (100) 68.6 (225) 48.8 (160) 91.4 (300) 243.8 (800) 304.8 (1000) 2 X 1321-3R600-C 20 840 (5)<br />

1100 (2) 2 30.5 (100) 68.6 (225) 48.8 (160) 91.4 (300) 243.8 (800) 304.8 (1000) 2 X 1321-3R750-C 20 840 (5)<br />

(1) Frame 12 drives have dual inverters and require two output reactors. The resistor ratings are per phase values for each reactor.<br />

(2)<br />

Some Frame 13 drives require two output reactors to match drive amp rating. The resistor ratings are per phase values for each reactor.<br />

(3) Resistor specification is based on two cables per phase.<br />

(4) Resistor specification is based on three cables per phase.<br />

(5)<br />

Resistor specification is based on four cables per phase.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-23<br />

PowerFlex 753 & 755 Drives<br />

Table A.AD PowerFlex 753 & 755, 400V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive Rating No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Frame kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

2 7.5 2 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR18-DP<br />

●<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

11 2 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR25-DP<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

3 15 2 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR35-DP<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

18.5 2 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR35-DP<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

22 2 7.6 137.2 365.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR45-DP<br />

●<br />

(25) (450) (1200) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR45-DP<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

4 30 2 7.6 137.2 304.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR55-DP<br />

●<br />

(25) (450) (1000) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 7.6 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR55-DP<br />

(25) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

37 2 12.2 137.2 304.8 365.8 91.4 365.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (450) (1000) (1200) (300) (1200) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 12.2 91.4 152.4 213.4 18.3 91.4 365.8 365.8 182.9 304.8 365.8 365.8 1321-RWR80-DP<br />

(40) (300) (500) (700) (60) (300) (1200) (1200) (600) (1000) (1200) (1200)<br />

5 45 2 12.2 137.2 304.8 365.8 91.4 304.8 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (450) (1000) (1200) (300) (1000) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 12.2 91.4 152.4 213.4 24.4 91.4 365.8 365.8 152.4 304.8 365.8 365.8 1321-RWR80-DP<br />

(40) (300) (500) (700) (80) (300) (1200) (1200) (500) (1000) (1200) (1200)<br />

55 2 12.2 137.2 304.8 365.8 91.4 274.3 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR100-DP<br />

●<br />

(40) (450) (1000) (1200) (300) (900) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 12.2 91.4 152.4 213.4 24.4 91.4 365.8 365.8 152.4 304.8 365.8 365.8 1321-RWR100-DP<br />

(40) (300) (500) (700) (80) (300) (1200) (1200) (500) (1000) (1200) (1200)<br />

6 75 2 18.3 137.2 304.8 365.8 91.4 213.4 365.8 365.8 365.8 365.8 365.8 365.8 1321-RWR130-DP<br />

●<br />

(60) (450) (1000) (1200) (300) (700) (1200) (1200) (1200) (1200) (1200) (1200)<br />

4 18.3 91.4 152.4 213.4 30.5 91.4 304.8 365.8 152.4 304.8 365.8 365.8 1321-RWR130-DP<br />

(60) (300) (500) (700) (100) (300) (1000) (1200) (500) (1000) (1200) (1200)<br />

90 2 18.3 137.2 304.8 365.8 91.4 213.4 365.8 365.8 304.8 365.8 365.8 365.8 1321-RWR160-DP<br />

●<br />

(60) (450) (1000) (1200) (300) (700) (1200) (1200) (1000) (1200) (1200) (1200)<br />

4 18.3 91.4 152.4 213.4 30.5 91.4 365.8 365.8 121.9 243.8 365.8 365.8 1321-RWR160-DP<br />

(60) (300) (500) (700) (100) (300) (1200) (1200) (400) (800) (1200) (1200)<br />

110 2 24.4 137.2 274.3 365.8 76.2 198.1 365.8 365.8 274.3 365.8 365.8 365.8 1321-RWR200-DP<br />

●<br />

(80) (450) (900) (1200) (250) (650) (1200) (1200) (900) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 213.4 36.6 91.4 365.8 365.8 121.9 213.4 365.8 365.8 1321-RWR200-DP<br />

(80) (300) (500) (700) (120) (300) (1200) (1200) (400) (700) (1200) (1200)<br />

7 132 2 24.4 137.2 274.3 365.8 61.0 182.9 365.8 365.8 243.8 365.8 365.8 365.8 1321-RWR250-DP<br />

●<br />

(80) (450) (900) (1200) (200) (600) (1200) (1200) (800) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 213.4 36.6 91.4 365.8 365.8 91.4 182.9 365.8 365.8 1321-RWR250-DP<br />

(80) (300) (500) (700) (120) (300) (1200) (1200) (300) (600) (1200) (1200)<br />

160 2 24.4 121.9 243.8 365.8 61.0 152.4 304.8 365.8 243.8 365.8 365.8 365.8 1321-3RB320-B 50 225 ●<br />

(80) (400) (800) (1200) (200) (500) (1000) (1200) (800) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 182.9 274.3 91.4 182.9 365.8 365.8 1321-3RB320-B 50 450<br />

(80) (300) (500) (600) (120) (300) (600) (900) (300) (600) (1200) (1200)<br />

200 2 24.4 121.9 243.8 365.8 61.0 152.4 304.8 365.8 243.8 365.8 365.8 365.8 1321-3RB400-B (1) 20 495 ●<br />

(80) (400) (800) (1200) (200) (500) (1000) (1200) (800) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 182.9 228.6 91.4 182.9 304.8 365.8 1321-3RB400-B (1) 20 990<br />

(80) (300) (500) (600) (120) (300) (600) (750) (300) (600) (1000) (1200)<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-24 Motor Cable Length Restrictions Tables<br />

Drive Rating No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

Frame kW kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

7 250 2 24.4 121.9 213.4 304.8 45.7 121.9 304.8 365.8 228.6 365.8 365.8 365.8 1321-3R500-B (1) 20 495 ●<br />

(cont.)<br />

(80) (400) (700) (1000) (150) (400) (1000) (1200) (750) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 167.6 213.4 91.4 182.9 304.8 365.8 1321-3R500-B (1) 20 990 ●<br />

(80) (300) (500) (600) (120) (300) (550) (700) (300) (600) (1000) (1200)<br />

315 2 24.4 121.9 213.4 259.1 45.7 121.9 304.8 365.8 228.6 365.8 365.8 365.8 1321-3R600-B (1) 20 495 ●<br />

(80) (400) (700) (850) (150) (400) (1000) (1200) (750) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 167.6 213.4 91.4 182.9 304.8 365.8 1321-3R600-B (1) 20 990 ●<br />

(80) (300) (500) (600) (120) (300) (550) (700) (300) (600) (1000) (1200)<br />

8 250 2 24.4 121.9 213.4 304.8 45.7 121.9 304.8 365.8 228.6 365.8 365.8 365.8 1321-3R500-B (1) 20 495 ●<br />

(80) (400) (700) (1000) (150) (400) (1000) (1200) (750) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 167.6 213.4 91.4 182.9 304.8 365.8 1321-3R500-B (1) 20 990 ●<br />

(80) (300) (500) (600) (120) (300) (550) (700) (300) (600) (1000) (1200)<br />

315 2 24.4 121.9 213.4 259.1 45.7 121.9 304.8 365.8 228.6 365.8 365.8 365.8 1321-3R600-B (1) 20 495 ●<br />

(80) (400) (700) (850) (150) (400) (1000) (1200) (750) (1200) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 167.6 213.4 91.4 182.9 304.8 365.8 1321-3R600-B (1) 20 990 ●<br />

(80) (300) (500) (600) (120) (300) (550) (700) (300) (600) (1000) (1200)<br />

355 2 24.4 121.9 213.4 259.1 45.7 121.9 304.8 365.8 228.6 304.8 365.8 365.8 1321-3R750-B (1) 20 495 ●<br />

(80) (400) (700) (850) (150) (400) (1000) (1200) (750) (1000) (1200) (1200)<br />

4 24.4 91.4 152.4 182.9 36.6 91.4 167.6 213.4 91.4 182.9 304.8 365.8 1321-3R750-B (1) 20 990 ●<br />

(80) (300) (500) (600) (120) (300) (550) (700) (300) (600) (1000) (1200)<br />

400 2 24.4<br />

(80)<br />

91.4<br />

(300)<br />

152.4<br />

(500)<br />

213.4<br />

(700)<br />

36.6<br />

(120)<br />

91.4<br />

(300)<br />

304.8<br />

(1000)<br />

365.8<br />

(1200)<br />

198.1<br />

(650)<br />

274.3<br />

(900)<br />

304.8<br />

(1000)<br />

365.8<br />

(1200)<br />

1321-3R850-B (2) 20 735 ●<br />

4 24.4<br />

(80)<br />

91.4<br />

(300)<br />

(1) Requires two parallel cables.<br />

(2)<br />

Requires three parallel cables.<br />

137.2<br />

(450)<br />

167.6<br />

(550)<br />

36.6<br />

(120)<br />

91.4<br />

(300)<br />

152.4<br />

(500)<br />

182.9<br />

(600)<br />

76.2<br />

(250)<br />

137.2<br />

(450)<br />

274.3<br />

(900)<br />

365.8<br />

(1200)<br />

1321-3R850-B (2) 20 1470 ●<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Table A.AE PowerFlex 753 & 755, 480V Shielded/Unshielded Cable - Meters (Feet)<br />

Drive Rating No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

Frame HP kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

2 10 2 7.6 12.2 137.2 182.9 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR18-DP ● ●<br />

(25) (40) (450) (600) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 304.8 182.9 304.8 365.8 365.8 1321-RWR18-DP<br />

●<br />

(25) (40) (400) (600) (25) (40) (400) (1000) (600) (1000) (1200) (1200)<br />

15 2 7.6 12.2 137.2 182.9 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR25-DP<br />

●<br />

(25) (40) (450) (600) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 304.8 182.9 304.8 365.8 365.8 1321-RWR25-DP<br />

(25) (40) (400) (600) (25) (40) (400) (1000) (600) (1000) (1200) (1200)<br />

3 20 2 7.6 12.2 137.2 182.9 7.6 91.4 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (40) (450) (600) (25) (300) (1200) (1200) (600) (1200) (1200) (1200)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 304.8 182.9 304.8 365.8 365.8 1321-RWR35-DP<br />

(25) (40) (400) (600) (25) (40) (400) (1000) (600) (1000) (1200) (1200)<br />

25 2 7.6 12.2 137.2 182.9 7.6 76.2 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR35-DP<br />

●<br />

(25) (40) (450) (600) (25) (250) (1200) (1200) (600) (1200) (1200) (1200)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 274.3 152.4 304.8 365.8 365.8 1321-RWR35-DP<br />

(25) (40) (400) (600) (25) (40) (400) (900) (500) (1000) (1200) (1200)<br />

30 2 7.6 12.2 137.2 182.9 7.6 76.2 365.8 365.8 182.9 365.8 365.8 365.8 1321-RWR45-DP<br />

●<br />

(25) (40) (450) (600) (25) (250) (1200) (1200) (600) (1200) (1200) (1200)<br />

4 7.6 12.2 121.9 182.9 7.6 12.2 121.9 243.8 152.4 304.8 365.8 365.8 1321-RWR45-DP<br />

(25) (40) (400) (600) (25) (40) (400) (800) (500) (1000) (1200) (1200)<br />

4 40 2 7.6 12.2 137.2 182.9 7.6 76.2 365.8 365.8 152.4 365.8 365.8 365.8 1321-RWR55-DP<br />

●<br />

(25) (40) (450) (600) (25) (250) (1200) (1200) (500) (1200) (1200) (1200)<br />

4 7.6 12.2 106.7 152.4 7.6 12.2 106.7 228.6 121.9 243.8 365.8 365.8 1321-RWR55-DP<br />

(25) (40) (350) (500) (25) (40) (350) (750) (400) (800) (1200) (1200)<br />

50 2 12.2 18.3 137.2 182.9 12.2 61.0 304.8 365.8 152.4 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (60) (450) (600) (40) (200) (1000) (1200) (500) (1200) (1200) (1200)<br />

4 7.6 12.2 91.4 152.4 12.2 18.3 106.7 228.6 91.4 243.8 365.8 365.8 1321-RWR80-DP<br />

(25) (40) (300) (500) (40) (60) (350) (750) (300) (800) (1200) (1200)<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-25<br />

Drive Rating No Solution Reactor Only<br />

Reactor + Damping Resistor<br />

or 1321-RWR<br />

Reactor/RWR<br />

(see page A-30) Resistor Available Options<br />

Frame HP kHz 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V 1000V 1200V 1488V 1600V Cat. No. Ohms Watts<br />

5 60 2 12.2 18.3 137.2 182.9 12.2 61.0 304.8 365.8 137.2 365.8 365.8 365.8 1321-RWR80-DP<br />

●<br />

(40) (60) (450) (600) (40) (200) (1000) (1200) (450) (1200) (1200) (1200)<br />

4 7.6 12.2 91.4 152.4 12.2 24.4 91.4 228.6 76.2 213.4 365.8 365.8 1321-RWR80-DP<br />

(25) (40) (300) (500) (40) (80) (300) (750) (250) (700) (1200) (1200)<br />

75 2 12.2 18.3 137.2 182.9 12.2 61.0 274.3 365.8 137.2 365.8 365.8 365.8 1321-RWR100-DP<br />

●<br />

(40) (60) (450) (600) (40) (200) (900) (1200) (450) (1200) (1200) (1200)<br />

4 7.6 12.2 91.4 152.4 12.2 24.4 91.4 182.9 76.2 182.9 365.8 365.8 1321-RWR100-DP<br />

(25) (40) (300) (500) (40) (80) (300) (600) (250) (600) (1200) (1200)<br />

6 100 2 12.2 24.4 137.2 182.9 12.2 61.0 243.8 365.8 137.2 365.8 365.8 365.8 1321-RWR130-DP<br />

●<br />

(40) (80) (450) (600) (40) (200) (800) (1200) (450) (1200) (1200) (1200)<br />

4 7.6 18.3 91.4 152.4 12.2 30.5 91.4 152.4 61.0 137.2 304.8 304.8 1321-RWR130-DP<br />

(25) (60) (300) (500) (40) (100) (300) (500) (200) (450) (1000) (1000)<br />

125 2 12.2 24.4 137.2 182.9 12.2 61.0 243.8 365.8 121.9 304.8 365.8 365.8 1321-RWR160-DP<br />

●<br />

(40) (80) (450) (600) (40) (200) (800) (1200) (400) (1000) (1200) (1200)<br />

4 7.6 18.3 91.4 152.4 12.2 30.5 91.4 152.4 61.0 106.7 243.8 274.3 1321-RWR160-DP<br />

(25) (60) (300) (500) (40) (100) (300) (500) (200) (350) (800) (900)<br />

150 2 12.2 24.4 137.2 182.9 12.2 61.0 243.8 304.8 91.4 274.3 365.8 365.8 1321-RWR200-DP<br />

●<br />

(40) (80) (450) (600) (40) (200) (800) (1000) (300) (900) (1200) (1200)<br />

4 7.6 24.4 91.4 152.4 12.2 30.5 91.4 152.4 45.7 76.2 243.8 274.3 1321-RWR200-DP<br />

(25) (80) (300) (500) (40) (100) (300) (500) (150) (250) (800) (900)<br />

7 200 2 12.2 30.5 137.2 182.9 12.2 61.0 243.8 304.8 76.2 274.3 365.8 365.8 1321-RWR250-DP<br />

●<br />

(40) (100) (450) (600) (40) (200) (800) (1000) (250) (900) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 36.6 91.4 121.9 45.7 76.2 213.4 274.3 1321-RWR250-DP<br />

(25) (80) (300) (400) (40) (120) (300) (400) (150) (250) (700) (900)<br />

250 2 12.2 30.5 137.2 167.6 12.2 61.0 198.1 259.1 76.2 243.8 365.8 365.8 1321-3RB320-B 50 225 ●<br />

(40) (100) (450) (550) (40) (200) (650) (850) (250) (800) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 213.4 274.3 1321-3RB320-B 50 450<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (700) (900)<br />

300 2 12.2 30.5 106.7 152.4 12.2 45.7 137.2 198.1 61.0 243.8 365.8 365.8 1321-3RB400-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (450) (650) (200) (800) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 213.4 274.3 1321-3RB400-B (1) 20 990<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (700) (900)<br />

350 2 12.2 30.5 106.7 152.4 12.2 45.7 137.2 198.1 61.0 243.8 365.8 365.8 1321-3R400-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (450) (650) (200) (800) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 167.6 259.1 1321-3RB400-B (1) 20 990<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (550) (850)<br />

400 2 12.2 30.5 106.7 152.4 12.2 45.7 137.2 182.9 61.0 213.4 365.8 365.8 1321-3R500-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (450) (600) (200) (700) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 167.6 259.1 1321-3R500-B (1) 20 990<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (550) (850)<br />

8 350 2 12.2 30.5 106.7 152.4 12.2 45.7 137.2 198.1 61.0 243.8 365.8 365.8 1321-3R500-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (450) (650) (200) (800) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 167.6 259.1 1321-3R500-B (1) 20 990 ●<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (550) (800)<br />

400 2 12.2 30.5 106.7 152.4 12.2 45.7 137.2 182.9 61.0 213.4 365.8 365.8 1321-3R500-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (450) (600) (200) (700) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 167.6 259.1 1321-3R500-B (1) 20 990 ●<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (550) (850)<br />

450 2 12.2 30.5 106.7 152.4 12.2 45.7 137.2 182.9 61.0 213.4 365.8 365.8 1321-3R600-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (450) (600) (200) (700) (1200) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 167.6 259.1 1321-3R600-B (1) 20 990 ●<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (550) (850)<br />

500 2 12.2 30.5 106.7 152.4 12.2 45.7 121.9 152.4 61.0 182.9 304.8 365.8 1321-3R750-B (1) 20 495 ●<br />

(40) (100) (350) (500) (40) (150) (400) (500) (200) (600) (1000) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 76.2 167.6 243.8 1321-3R750-B (1) 20 990 ●<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (250) (550) (800)<br />

600 2 12.2 30.5 91.4 121.9 12.2 45.7 106.7 137.2 61.0 152.4 274.3 365.8 1321-3R750-B (2) 20 735 ●<br />

(40) (100) (300) (400) (40) (150) (350) (450) (200) (500) (900) (1200)<br />

4 7.6 24.4 91.4 121.9 12.2 30.5 91.4 121.9 45.7 61.0 152.4 213.4 1321-3R750-B (2) 20 1470 ●<br />

(25) (80) (300) (400) (40) (100) (300) (400) (150) (200) (500) (700)<br />

650 2 12.2 30.5 91.4 121.9 12.2 45.7 106.7 137.2 61.0 152.4 274.3 365.8 1321-3R850-B (2) 20 735 ●<br />

(40) (100) (300) (400) (40) (150) (350) (450) (200) (500) (900) (1200)<br />

4 7.6<br />

(25)<br />

24.4<br />

(80)<br />

91.4<br />

(300)<br />

121.9<br />

(400)<br />

12.2<br />

(40)<br />

30.5<br />

(100)<br />

91.4<br />

(300)<br />

121.9<br />

(400)<br />

45.7<br />

(150)<br />

61.0<br />

(200)<br />

152.4<br />

(500)<br />

213.4<br />

(700)<br />

1321-3R850-B (2) 20 1470 ●<br />

(1)<br />

Requires two parallel cables.<br />

(2) Requires three parallel cables.<br />

TFA1<br />

TFB2<br />

RWR2<br />

RWC<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-26 Motor Cable Length Restrictions Tables<br />

1336 PLUS II and IMPACT To increase the distance between the drive and the motor, some device<br />

(RWR or Terminator) needs to be added to the system. Shaded distances are<br />

restricted by cable capacitance charging current.<br />

Table A.AF 1336 PLUS II/IMPACT Drive, 380-480V - Meters (Feet)<br />

No External Devices (1)<br />

w/1204-TFB2 Term. (1) w/1204-TFA1 Terminator (1) Reactor at Drive (1)(4)<br />

Motor Motor Motor Motor<br />

A B 1329 1329R/L (1600V) A or B 1329 A B 1329 A B or 1329<br />

Drive Drive kW Motor Any Any Any Any<br />

Cable Type<br />

Any<br />

Cable Type Cable Type<br />

Any Any Any<br />

Frame (HP) kW (HP) Cable Cable Cable Cable (2) Shld (3) Unshld Cable Shld .(3) Unshld Shld .(3) Unshld Cable Cable Cable<br />

A1 0.37 (0.5) 0.37 (0.5) 12.2 33.5 91.4 91.4<br />

30.5 61.0 30.5 61.0 91.4 22.9 182.9 (600)<br />

(40) (110) (300) (300)<br />

(100) (200) (100) (200) (300) (75)<br />

0.75 (1) 0.75 (1) 12.2 33.5 91.4 91.4<br />

30.5 30.5 30.5 30.5 91.4 22.9 182.9 (600)<br />

(40) (110) (300) (300)<br />

(100) (100) (100) (100) (300) (75)<br />

0.37 (0.5) 12.2 33.5 91.4 91.4<br />

30.5 61.0 30.5 61.0 91.4 22.9 182.9 (600)<br />

(40) (110) (300) (300)<br />

(100) (200) (100) (200) (300) (75)<br />

Use 1204-TFA1<br />

1.2 (1.5) 1.2 (1.5) 12.2 33.5 91.4 91.4<br />

30.5 30.5 61.0 61.0 91.4 22.9 182.9 (600)<br />

(40) (110) (300) (300)<br />

(100) (100) (200) (200) (300) (75)<br />

0.75 (1) 12.2 33.5 91.4 91.4<br />

30.5 30.5 61.0 61.0 91.4 22.9 182.9 (600)<br />

(40) (110) (300) (300)<br />

(100) (100) (200) (200) (300) (75)<br />

0.37 (0.5) 12.2 33.5 114.3 121.9<br />

30.5 30.5 61.0 61.0 121.9 22.9 182.9 (600)<br />

(40) (110) (375) (400)<br />

(100) (100) (200) (200) (400) (75)<br />

A2 1.5 (2) 1.5 (2) 7.6 12.2 91.4 91.4<br />

91.4 91.4 91.4 30.5 30.5 91.4 61.0 91.4 22.9 182.9 (600)<br />

(25) (40) (300) (300)<br />

(300) (300) (300) (100) (100) (300) (200) (300) (75)<br />

1.2 (1.5) 7.6 12.2 114.3 182.9<br />

91.4 182.9 182.9 30.5 30.5 91.4 61.0 182.9 22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(300) (600) (600) (100) (100) (300) (200) (600) (75)<br />

0.75 (1) 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9 30.5 30.5 91.4 61.0 182.9 22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(600) (600) (600) (100) (100) (300) (200) (600) (75)<br />

0.37 (0.5) 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9 30.5 30.5 91.4 61.0 182.9 22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(600) (600) (600) (100) (100) (300) (200) (600) (75)<br />

2.2 (3) 2.2 (3) 7.6 12.2 91.4 91.4<br />

182.9 182.9 182.9<br />

22.9 182.9 (600)<br />

(25) (40) (300) (300)<br />

(600) (600) (600)<br />

(75)<br />

1.5 (2) 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(600) (600) (600)<br />

(75)<br />

0.75 (1) 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(600) (600) (600)<br />

(75)<br />

0.37 (0.5) 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(600) (600) (600)<br />

(75)<br />

A3 3.7 (5) 3.7 (5) 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(600) (600) (600)<br />

(75)<br />

2.2 (3) 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(600) (600) (600)<br />

(75)<br />

1.5 (2) 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(600) (600) (600)<br />

(75)<br />

0.75 (1) 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(600) (600) (600)<br />

(75)<br />

Use 1204-TFB2<br />

0.37 (0.5) 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

22.9 182.9 (600)<br />

(25) (40) (375) (600)<br />

(600) (600) (600)<br />

(75)<br />

A4 5.5-15 5.5-15 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

24.4 182.9 (600)<br />

(7.5-20) (7.5-20) (25) (40) (375) (600)<br />

(600) (600) (600)<br />

(80)<br />

B 11-22 11-22 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

24.4 182.9 (600)<br />

(15-30) (15-30) (25) (40) (375) (600)<br />

(600) (600) (600)<br />

(80)<br />

C 30-45 30-45 7.6 12.2 114.3 182.9<br />

182.9 182.9 182.9<br />

76.2 182.9 (600)<br />

(X40-X60) (40-60) (25) (40) (375) (600)<br />

(600) (600) (600)<br />

(250)<br />

D 45-112<br />

(60-X150)<br />

45-112<br />

(60-150)<br />

12.2<br />

(40)<br />

30.5<br />

(100)<br />

114.3<br />

(375)<br />

182.9<br />

(600)<br />

182.9<br />

(600)<br />

182.9<br />

(600)<br />

182.9<br />

(600)<br />

61.0<br />

(200)<br />

91.4<br />

(300)<br />

E 112-187 112-187 12.2 53.3 114.3 182.9<br />

182.9 182.9 182.9<br />

182.9 182.9 (600)<br />

(150-250) (150-250) (40) (175) (375) (600)<br />

(600) (600) (600)<br />

(600)<br />

F 187-336 187-336 18.3 53.3 114.3 182.9<br />

182.9 182.9 182.9<br />

182.9 182.9 (600)<br />

(250-450) (250-450) (60) (175) (375) (600)<br />

(600) (600) (600)<br />

(600)<br />

G 187-448<br />

(X250-600)<br />

187-448<br />

(250-600)<br />

18.3<br />

(60)<br />

53.3<br />

(175)<br />

114.3<br />

(375)<br />

182.9<br />

(600)<br />

182.9<br />

(600)<br />

182.9<br />

(600)<br />

182.9<br />

(600)<br />

182.9<br />

(600)<br />

182.9 (600)<br />

(1) Values shown are for nominal input voltage, drive carrier frequency of 2 kHz or as shown and surrounding air temperature at the motor of 40o C. Consult factory<br />

regarding operation at carrier frequencies above 2 kHz. Multiply values by 0.85 for high line conditions. For input voltages of 380, 400 or 415V AC, multiply the table<br />

values by 1.25, 1.20 or 1.15, respectively.<br />

(2) These distance restrictions are due to charging of cable capacitance and may vary from application to application.<br />

(3)<br />

Includes wire in conduit.<br />

(4) A 3% reactor reduces motor and cable stress but may cause a degradation of motor waveform quality. Reactors must have a turn-turn insulation rating of 2100 Volts<br />

or higher.<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-27<br />

Table A.AG 1336 PLUS II/IMPACT Drive, 600V - Meters (Feet)<br />

No External Devices (1) w/1204-TFB2 Terminator (1) w/1204-TFA1 Terminator (1) (1) (3)<br />

Reactor at Drive<br />

Motor Motor Motor Motor<br />

A B 1329R/L (2) A B 1329R/L (2) A B 1329R/L (2) A B 1329R/L (2)<br />

Drive<br />

Frame<br />

Drive kW<br />

(HP)<br />

Motor kW<br />

(HP)<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

Any<br />

Cable<br />

A4 0.75 (1) 0.75 (1) NR NR NA NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

0.37 (0.5) NR NR NA NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

1.5 (2) 1.5 (2) NR NR NA NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

1.2 (1.5) NR NR NA NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

0.75 (1) NR NR 182.9 (600) NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

0.37 (0.5) NR NR 182.9 (600) NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

2.2 (3) 2.2 (3) NR NR NA NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

1.5 (2) NR NR NA NR 182.9 335.3 NR 61.0 182.9 (600)<br />

Not<br />

(600) (1100)<br />

(200)<br />

Recommended<br />

0.75 (1) NR NR 182.9 (600) NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

0.37 (0.5) NR NR 182.9 (600) NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

3.7 (5) 3.7 (5) NR NR NA NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

2.2 (3) NR NR NA NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

1.5 (2) NR NR 182.9 (600) NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

0.75 (1) NR NR 182.9 (600) NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

0.37 (0.5) NR NR 182.9 (600) NR 182.9 335.3 NR 61.0 182.9 (600)<br />

(600) (1100)<br />

(200)<br />

5.5-15 5.5-15 NR 9.1 182.9 (600) 91.4 182.9 182.9 (600) NR 61.0 182.9 (600) 30.5 91.4 182.9 (600)<br />

(7.5-20) (7.5-20)<br />

(30)<br />

(300) (600)<br />

(200)<br />

(100) (300)<br />

C 18.5-45 18.5-45 NR 9.1 182.9 (600) 91.4 182.9 182.9 (600) NR 61.0 182.9 (600) 30.5 91.4 182.9 (600)<br />

(25-60) (25-60)<br />

(30)<br />

(300) (600)<br />

(200)<br />

(100) (300)<br />

D 56-93 56-93 NR 9.1 182.9 (600) 91.4 182.9 182.9 (600) NR 61.0 182.9 (600) 61.0 91.4 182.9 (600)<br />

(75-125) (75-125)<br />

(30)<br />

(300) (600)<br />

(200)<br />

(200) (300)<br />

E 112-224 112-224 NR 9.1 182.9 (600) 91.4 182.9 182.9 (600) NR 61.0 182.9 (600) 182.9 182.9 182.9 (600)<br />

(150-X300) (150-X300) (30)<br />

(300) (600)<br />

(200)<br />

(600) (600)<br />

F 261-298 261-298 NR 9.1 182.9 (600) 91.4 182.9 182.9 (600) NR 61.0 182.9 (600) 182.9 182.9 182.9 (600)<br />

(350-400) (350-400)<br />

(30)<br />

(300) (600)<br />

(200)<br />

(600) (600)<br />

G 224-448 224-448 NR 9.1 182.9 (600) 91.4 182.9 182.9 (600) NR 61.0 182.9 (600) 182.9 182.9 182.9 (600)<br />

(300-600) (300-600)<br />

(30)<br />

(300) (600)<br />

(200)<br />

(600) (600)<br />

(1)<br />

Values shown are for nominal input voltage and drive carrier frequency of 2 kHz. Consult factory regarding operation at carrier frequencies above 2 kHz.<br />

(2) When used on 600V systems, 1329R/L motors have a corona inception voltage rating of approximately 1850V.<br />

(3) A 3% reactor reduces motor and cable stress but may cause a degradation of motor waveform quality. Reactors must have a turn-turn insulation rating of 2100 Volts<br />

or higher.<br />

NR = Not Recommended<br />

NA = Not Available at time of printing<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-28 Motor Cable Length Restrictions Tables<br />

1305 Table A.AH 1305 Drive, 480V, No External Devices at Motor - Meters (Feet)<br />

(480V) Using a Motor with Insulation V P-P<br />

Drive HP Motor HP Type A Type B 1329R/L<br />

(480V) (480V) Any Cable Any Cable Shielded Cable Unshielded Cable<br />

Maximum Carrier Frequency 4 kHz 4 kHz 2 kHz 2 kHz<br />

High-Line Derate Multiplier 0.85 0.85 0.55 0.55<br />

5 5 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

3 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

2 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

1 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

0.5 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

3 3 9.1 (30) 30.5 (100) 91.4 (300) 121.9 (400)<br />

2 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

1 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

0.5 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

2 2 9.1 (30) 30.5 (100) 76.2 (250) 121.9 (400)<br />

1 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

0.5 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

1 1 9.1 (30) 30.5 (100) 68.6 (225) 121.9 (400)<br />

0.5 9.1 (30) 30.5 (100) 121.9 (400) 121.9 (400)<br />

0.5 0.5 9.1 (30) 30.5 (100) 45.7 (150) 106.7 (350)<br />

Table A.AI 1305 Drive, 480V with Devices at Motor - Meters (Feet)<br />

Reactor at the Drive (1)<br />

With 1204-TFB2 Terminator With 1204-TFA1 Terminator<br />

Using a Motor with Insulation V P-P Using a Motor with Insulation V P-P Using a Motor with Insulation V P-P<br />

Drive HP<br />

Type A Type B or 1329R/L Type A or Type B Type A Type B<br />

(460V) Motor HP (460V) Any Cable Shielded Unshielded Shielded Unshielded Shielded Unshielded Shielded Unshielded<br />

Maximum Carrier Frequency 2 kHz 2 kHz 2 kHz 2 kHz 2 kHz 2 kHz 2 kHz 2 kHz 2 kHz<br />

High-Line Derating Multiplier 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85<br />

5 5 15.2 (50) 182.9 (600) 182.9 (600) NR NR 91.4 (300) 61.0 (200) 91.4 (300) 121.9 (400)<br />

3 15.2 (50) 182.9 (600) 182.9 (600) 91.4 (300) 121.9 (400) 99.1 (325) 61.0 (200) 152.4 (500) 121.9 (400)<br />

2 15.2 (50) 182.9 (600) 182.9 (600) 121.9 (400) 182.9 (600) 99.1 (325) 61.0 (200) 182.9 (600) 121.9 (400)<br />

1 15.2 (50) 182.9 (600) 182.9 (600) 121.9 (400) 182.9 (600) 99.1 (325) 61.0 (200) 182.9 (600) 121.9 (400)<br />

0.5 15.2 (50) 182.9 (600) 182.9 (600) 182.9 (600) 182.9 (600) 99.1 (325) 61.0 (200) 182.9 (600) 121.9 (400)<br />

3 3 15.2 (50) 91.4 (300) 182.9 (600) NR NR 91.4 (300) 61.0 (200) 91.4 (300) 121.9 (400)<br />

2 15.2 (50) 182.9 (600) 182.9 (600) 91.4 (300) 121.9 (400) 99.1 (325) 61.0 (200) 152.4 (500) 121.9 (400)<br />

1 15.2 (50) 182.9 (600) 182.9 (600) 91.4 (300) 182.9 (600) 99.1 (325) 61.0 (200) 182.9 (600) 121.9 (400)<br />

0.5 15.2 (50) 182.9 (600) 182.9 (600) 121.9 (400) 182.9 (600) 99.1 (325) 61.0 (200) 182.9 (600) 121.9 (400)<br />

2 2 15.2 (50) 76.2 (250) 167.6 (550) NR NR 91.4 (300) 61.0 (200) 91.4 (300) 121.9 (400)<br />

1 15.2 (50) 182.9 (600) 182.9 (600) 61.0 (200) 61.0 (200) 99.1 (325) 61.0 (200) 121.9 (400) 121.9 (400)<br />

0.5 15.2 (50) 182.9 (600) 182.9 (600) 91.4 (300) 121.9 (400) 99.1 (325) 61.0 (200) 152.4 (500) 121.9 (400)<br />

1 1 15.2 (50) 68.6 (225) 152.4 (500) NR NR 45.7 (150) 61.0 (200) 45.7 (150) 76.2 (250)<br />

0.5 15.2 (50) 182.9 (600) 182.9 (600) NR NR 76.2 (250) 61.0 (200) 76.2 (250) 121.9 (400)<br />

0.5 0.5 15.2 (50) 45.7 (150) 106.7 (350) NR NR NR NR NR NR<br />

(1) IMPORTANT: A 3% reactor reduces motor stress but may cause a degradation of motor waveform quality. Reactors must have a turn-to-turn insulating rating of 2100<br />

volts or higher. Reactors are not recommended for lightly loaded applications because over voltage trips may result at low output frequencies.<br />

NR = Not Recommended<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-29<br />

160<br />

Table A.AJ 160 Drive, 480V - Meters (Feet)<br />

380-460V<br />

Ratings<br />

4.0 kW<br />

(5 HP)<br />

2.2 kW<br />

(3 HP)<br />

1.5 kW<br />

(2 HP)<br />

0.75 kW<br />

(1 HP)<br />

0.55 kW<br />

(0.75 HP)<br />

0.37 kW<br />

(0.5 HP)<br />

Motor Insulation Motor Cable Only RWR at Drive Reactor at Motor<br />

Rating - Volts P-P Shielded Unshielded Shielded Unshielded Shielded Unshielded<br />

1000 13.7 (45) 6.1 (20) 160.0 (525) 182.9 (600) 99.1 (325) 91.4 (300)<br />

1200 27.4 (90) 12.2 (40) 160.0 (525) 182.9 (600) 160.0 (525) 129.5 (425)<br />

1600 160.0 (525) 144.8 (475) 160.0 (525) 182.9 (600) 160.0 (525) 182.9 (600)<br />

1000 12.2 (40) 12.2 (40) 160.0 (525) 182.9 (600) 68.6 (225) 76.2 (250)<br />

1200 27.4 (90) 18.3 (60) 160.0 (525) 182.9 (600) 99.1 (325) 129.5 (425)<br />

1600 160.0 (525) 152.4 (500) 160.0 (525) 182.9 (600) 160.0 (525) 182.9 (600)<br />

1000 12.2 (40) 12.2 (40) 129.5 (425) 182.9 (600) 99.1 (325) 91.4 (300)<br />

1200 27.4 (90) 18.3 (60) 129.5 (425) 182.9 (600) 129.5 (425) 137.2 (450)<br />

1600 152.4 (500) 152.4 (500) 129.5 (425) 182.9 (600) 164.6 (540) 182.9 (600)<br />

1000 16.8 (55) 12.2 (40) 99.1 (325) 182.9 (600) 99.1 (325) 106.7 (350)<br />

1200 38.1 (125) 18.3 (60) 99.1 (325) 182.9 (600) 152.4 (500) 137.2 (450)<br />

1600 152.4 (500) 152.4 (500) 99.1 (325) 182.9 (600) 152.4 (500) 182.9 (600)<br />

1000 13.7 (45) 12.2 (40) 91.4 (300) 182.9 (600) 91.4 (300) 91.4 (300)<br />

1200 38.1 (125) 18.3 (60) 91.4 (300) 182.9 (600) 152.4 (500) 152.4 (500)<br />

1600 152.4 (500) 152.4 (500) 91.4 (300) 182.9 (600) 152.4 (500) 182.9 (600)<br />

1000 13.7 (45) 27.4 (90) 91.4 (300) 129.5 (425) 91.4 (300) 129.5 (425)<br />

1200 38.1 (125) 54.9 (180) 91.4 (300) 129.5 (425) 152.4 (500) 152.4 (500)<br />

1600 152.4 (500) 152.4 (500) 91.4 (300) 129.5 (425) 152.4 (500) 152.4 (500)<br />

Table A.AK 160 Drive, 240 & 480V - Cable Charging Current - Meters (Feet)<br />

480V<br />

Ratings<br />

4.0 kW<br />

(5 HP)<br />

2.2 kW<br />

(3 HP)<br />

1.5 kW<br />

(2 HP)<br />

0.75 kW<br />

(1 HP)<br />

0.55 kW<br />

(0.75 HP)<br />

0.37 kW<br />

(0.5 HP)<br />

Motor Cable Only RWR at Drive Reactor at Motor<br />

kHz<br />

Shielded (1) Unshielded Shielded (1) Unshielded Shielded (1) Unshielded<br />

2 106.7 (350) 182.9 (600) 91.4 (300) 182.9 (600) 121.9 (400) 182.9 (600)<br />

4 129.5 (425) 182.9 (600) 106.7 (350) 182.9 (600) 137.2 (450) 182.9 (600)<br />

8 144.8 (475) 152.4 (500) NR NR 137.2 (450) 152.4 (500)<br />

2 109.7 (360) 182.9 (600) 85.3 (280) 182.9 (600) 121.9 (400) 182.9 (600)<br />

4 114.3 (375) 182.9 (600) 83.8 (275) 182.9 (600) 121.9 (400) 182.9 (600)<br />

8 121.9 (400) 152.4 (500) NR NR 121.9 (400) 152.4 (500)<br />

2 91.4 (300) 167.6 (550) 83.8 (275) 182.9 (600) 91.4 (300) 182.9 (600)<br />

4 91.4 (300) 167.6 (550) 83.8 (275) 182.9 (600) 91.4 (300) 152.4 (500)<br />

8 99.1 (325) 152.4 (500) NR NR 106.7 (350) 152.4 (500)<br />

2 61.0 (200) 114.3 (375) 61.0 (200) 129.5 (425) 68.6 (225) 121.9 (400)<br />

4 68.6 (225) 114.3 (375) 61.0 (200) 129.5 (425) 68.6 (225) 114.3 (375)<br />

8 76.2 (250) 114.3 (375) NR NR 68.6 (225) 121.9 (400)<br />

2 54.9 (180) 106.7 (350) 54.9 (180) 114.3 (375) 54.9 (180) 106.7 (350)<br />

4 54.9 (180) 106.7 (350) 54.9 (180) 114.3 (375) 54.9 (180) 106.7 (350)<br />

8 54.9 (180) 106.7 (350) NR NR 54.9 (180) 106.7 (350)<br />

2 30.5 (100) 99.1 (325) 30.5 (100) 106.7 (350) 30.5 (100) 91.4 (300)<br />

4 30.5 (100) 99.1 (325) 30.5 (100) 106.7 (350) 30.5 (100) 106.7 (350)<br />

8 30.5 (100) 99.1 (325) NR 30.5 (100) 106.7 (350)<br />

240V Ratings No Reactor RWR at Drive Reactor at Motor<br />

0.37 to 4.0 kW<br />

Shielded (1) Unshielded Shielded (1) Unshielded Shielded (1) Unshielded<br />

(0.5 to 5 HP)<br />

2 through 8 kHz<br />

160.0 (525) 182.9 (600) NR NR 160.0 (525) 182.9 (600)<br />

(1)<br />

When using shielded cable at lightly loaded conditions, cable length recommendations for drives rated 0.75 kW (1 HP) and below are 61 meters (200 feet).<br />

NR = Not Recommended<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-30 Motor Cable Length Restrictions Tables<br />

1321-RWR Guidelines • Figure A.1 shows wiring for single inverter drives (PowerFlex 70 Frames<br />

A-E, PowerFlex 700 Frames 0-6, PowerFlex 700H Frames 9-11 and<br />

PowerFlex 700S Frames 1-11 & 13).<br />

Figure A.2 describes dual inverter drives (PowerFlex 700H/700S Frame<br />

12).<br />

Figure A.3 is for single inverter drives that require parallel reactors<br />

because the drive amp rating exceeds the rating of the largest available<br />

reactor (PowerFlex 700S Frame 13).<br />

• Configurations shown in Figure A.1 and Figure A.3 can be used for<br />

single inverter drives with single or parallel cables, and single-motor or<br />

multi-motor applications.<br />

• The configuration shown in Figure A.2 is used with dual inverter drives<br />

with single or parallel cables, and single-motor or multi-motor<br />

applications.<br />

• Filter (RWR or L-R) must be connected at drive output terminals, less<br />

than 7.6 meters (25 feet) from the drive.<br />

• See the lead length tables for output reactor and resistor selection. The<br />

resistor specification is based on the number of parallel cables used.<br />

• For PowerFlex 700H & 700S Frame 12 drives and some PowerFlex 700S<br />

Frame 13 drives, two reactors are required. In this case, the resistor ohms<br />

and watts ratings are values per phase for each reactor (see lead length<br />

tables for output reactor selection).<br />

• Resistor must be connected to reactor using 150 degree C wire. Select<br />

wire gauge based on rated resistor power from the lead length tables.<br />

• Recommended cables include; XLPE, EPR and Hypalon.<br />

• Maximum total cable distance for resistor wires is 6.1 meters (20 feet) or<br />

3 meters (10 feet) per side.<br />

Figure A.1 Filter Wiring for Single Inverter Drive<br />

AC Drive<br />

1321-RWR<br />

Output Reactor<br />

U<br />

V<br />

W<br />

Cable<br />

Motor<br />

R<br />

Damping Resistor<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Motor Cable Length Restrictions Tables A-31<br />

Figure A.2 Filter Wiring for Dual Inverter Frame 12 Drive<br />

L-R Filter<br />

Output Reactor<br />

AC Drive<br />

U1<br />

R<br />

V1<br />

W1<br />

U2<br />

V2<br />

W2<br />

Damping Resistor<br />

L-R Filter<br />

Output Reactor<br />

Cable<br />

Motor<br />

R<br />

Damping Resistor<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


A-32 Motor Cable Length Restrictions Tables<br />

Figure A.3 Filter Wiring for Single Inverter Frame 13 Drive w/ Parallel Reactors<br />

L-R Filter<br />

Output Reactor<br />

R<br />

AC Drive<br />

U<br />

Damping Resistor<br />

V<br />

Cable<br />

Motor<br />

W<br />

L-R Filter<br />

Output Reactor<br />

R<br />

Damping Resistor<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Glossary<br />

Ambient Air<br />

Air around any equipment cabinet.<br />

See surrounding air for more detail.<br />

Armored<br />

A fixed geometry cable that has a protective “sheath” of continuous metal<br />

Capacitive Coupling<br />

Current or voltage that is induced on one circuit by another because of their<br />

close physical proximity. For drive installations it is generally seen in two<br />

areas:<br />

1. Coupling between motor leads of two drives, such that the operating<br />

drive induces voltage onto the motor leads (and thus the motor) of a<br />

non-operating drive.<br />

2. Coupling between the conductors /or shields of motor leads that creates a<br />

requirement for more current than the motor itself would demand.<br />

CIV (Corona Inception <strong>Voltage</strong>)<br />

The amplitude of voltage on a motor or other electrical winding that<br />

produces corona (ionization of air to ozone). CIV is increased by adding<br />

phase paper, placing windings in the proper pattern and reducing or<br />

eliminating air bubbles (voids) in the varnish applied.<br />

Common Mode Core<br />

A ferrite bead or core that can be used to pass control, communications or<br />

motor leads through to attenuate high frequency noise. Catalog Number/<br />

Part Number 1321-Mxxx<br />

Common Mode Noise<br />

Electrical noise, typically high frequency, that is imposed on the ground<br />

grid, carriers in an electrical system<br />

Conduit<br />

Conductive ferrous electrical metal tubing used to contain and protect<br />

individual wires<br />

Damp<br />

Wet locations per U.S. NEC or local code<br />

Discrete<br />

Individual, hard-wired inputs or outputs, typically used for control of the<br />

drive (Start, Stop, etc.)<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Glossary-2<br />

Dry<br />

Dry locations per Per NEC Article 100 or local code<br />

dv/dt<br />

The rate of change of voltage over time<br />

Fill Rates<br />

The maximum number of conductors allowed in a conduit, as determined by<br />

local, state or national electrical code.<br />

Fixed Geometry<br />

Cable whose construction fixes the physical position of each conductor<br />

within the overall coating, usually with filler material that prevents<br />

individual conductors from moving.<br />

IGBT<br />

Insulated Gate Bi-Polar Transistor. The typical power semi conductor<br />

device used in most PWM AC drives today<br />

mil<br />

0.<strong>001</strong> inches<br />

MOV<br />

Metal Oxide Varistor<br />

NEC<br />

United States National Electric Code NFPA70<br />

Peak Cable Charging Current<br />

The current required to charge capacitance in motor cable. This capacitance<br />

has various components:<br />

– conductor to shield or conduit<br />

– conductor to conductor<br />

– motor stator to motor frame<br />

PVC<br />

Polyvinyl Chloride (typically thermoplastic)<br />

RWR<br />

Reflected Waver Reducer, an RL network mounted at or near the drive, used<br />

to reduce the amplitude and rise time of the reflected wave pulses. Cat No<br />

1204-RWR2-09-B or 1204-RWR2-09-C<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Glossary-3<br />

Shielded<br />

Cable containing a foil or braided metal shield surrounding the conductors.<br />

Usually found in multi-conductor cable. Shield coverage should be at least<br />

75%.<br />

Signal<br />

Individual hard wired analog inputs or outputs, typically used to issue<br />

reference commands or process information to or from the drive.<br />

Surrounding Air Temperature<br />

The temperature of the air around the drive. If the drive is free standing or<br />

wall mounted, the surrounding air temperature is room temperature. If the<br />

drive is mounted inside another cabinet, the surrounding air temperature is<br />

the interior temperature of that cabinet<br />

Terminator<br />

An RC network mounted at or near the motor, used to reduce the amplitude<br />

and rise time of the reflected wave pulses. Catalog Number 1204-TFxx<br />

THHN/THWN<br />

U.S. designations for individual conductor wire, typically 75 °C or 90 °C<br />

rated and with PVC insulation and nylon coating.<br />

Unshielded<br />

Cable containing no braided or foil sheath surrounding the conductors. Can<br />

be multi-conductor cable or individual conductors.<br />

Wet<br />

Locations with moisture present - see Damp<br />

XLPE<br />

Cross Linked Polyethylene<br />

UL<br />

Underwriters Laboratories<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Glossary-4<br />

Notes:<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Index<br />

Numerics<br />

1305 Drive, A-28<br />

1305 Drive, AC Line Impedance, 2-7<br />

1336 Drive, AC Line Impedance, 2-13<br />

1336 Plus II/Impact Drive, A-26<br />

1336 PLUS II/Impact Drive, 600V, A-27<br />

160 Drive, Cable Charging Current, A-29<br />

4, PowerFlex, AC Line Impedance, 2-8<br />

40, PowerFlex, AC Line Impedance, 2-8<br />

400, PowerFlex, AC Line Impedance, 2-9<br />

70, PowerFlex, AC Line Impedance, 2-9<br />

700, PowerFlex, AC Line Impedance, 2-11<br />

A<br />

AC Line, 2-5<br />

Analog Signal Cable, 1-12<br />

Armored Cable, 1-8<br />

Containing Common Mode Noise, 6-2<br />

B<br />

Bearing Current, 6-6<br />

Brake Solenoid, Noise, 6-3<br />

C<br />

Cable<br />

Analog Signal, 1-12<br />

Armored, 1-8<br />

Connectors, 4-5<br />

Containing Common Mode Noise, 6-2<br />

Discrete Drive I/O, 1-11<br />

Encoder, 1-12<br />

European Style, 1-9<br />

Exterior Cover, 1-2<br />

Length, 1-11<br />

Material, 1-2<br />

Recommended, 1-5<br />

Shielded, 1-6<br />

Shields, 3-7<br />

Trays, 4-14<br />

Types, 1-1, 1-8<br />

Unshielded, 1-5<br />

Unshielded Definition, A-1<br />

Cable Length Restrictions, A-1<br />

Cable, Input Power, 1-10, 3-7<br />

Capacitive Current Cable Length<br />

Recommendations, A-29<br />

Capacitors, Common Mode, 2-17<br />

Clamp, Shield Termination, 4-15<br />

Common Mode Capacitors, 2-17<br />

Common Mode Chokes, 6-2<br />

Common Mode Noise<br />

Armored Cable, 6-2<br />

Causes, 6-1<br />

Conduit, 6-2<br />

Containing, 6-2<br />

Motor Cable Length, 6-2<br />

Shielded Cable, 6-2<br />

Communications, 1-12<br />

ControlNet, 1-13<br />

Data Highway, 1-14<br />

DeviceNet, 1-12<br />

Ethernet, 1-13<br />

Remote I/O, 1-14<br />

RS232/485, 1-14<br />

Serial, 1-14<br />

Concentricity, Insulation, 1-4<br />

Conductor, Termination, 4-18<br />

Conductors, 1-3<br />

Conduit, 4-13<br />

Cable Connectors, 4-5<br />

Common Mode Noise, 6-2<br />

Entry, 4-4<br />

Entry Plates, 4-4<br />

Connections, Ground, 4-6<br />

Contacts, 6-3<br />

Control Terminal, 4-18<br />

Control Wire, 1-11<br />

ControlNet, 1-13<br />

Conventions, P-2<br />

D<br />

Data Highway, 1-14<br />

DC Bus Wiring Guidelines, 2-18<br />

Delta/Delta with Grounded Leg, 2-2<br />

Delta/Wye with Grounded Wye, 2-1<br />

DeviceNet, 1-12<br />

DH+, 1-14<br />

Diode, 6-4<br />

Discrete Drive I/O, Cable, 1-11<br />

Distribution<br />

Delta/Delta with Grounded Leg, 2-2<br />

Delta/Wye with Grounded Wye, 2-1<br />

High Resistance Ground, 2-3<br />

TN-S Five-Wire System, 2-4<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Index-2<br />

Ungrounded Secondary, 2-3<br />

Documentation, P-1<br />

Drive<br />

1305, A-28<br />

1305 Drive with Line Device, A-28<br />

1305,AC Line Impedance, 2-7<br />

1336 PLUS II/Impact, A-26<br />

1336 PLUS II/Impact, 600V, A-27<br />

1336,AC Line Impedance, 2-13<br />

160, Cable Charging Current, A-29<br />

160, <strong>Voltage</strong> Peak, A-29<br />

160,AC Line Impedance, 2-7<br />

PowerFlex 4, AC Line Impedance, 2-8<br />

PowerFlex 40, AC Line Impedance, 2-8<br />

PowerFlex 400, AC Line Impedance, 2-9<br />

PowerFlex 70, AC Line Impedance, 2-9<br />

PowerFlex 700, AC Line Impedance,<br />

2-11<br />

E<br />

Electromagnetic Interference (EMI)<br />

Causes, 6-3<br />

Mitigating, 6-3<br />

Preventing, 6-3<br />

EMC, Installation, 4-2<br />

Encoder Cable, 1-12<br />

Encompass Partners, P-2<br />

Ethernet, 1-13<br />

European Style Cable, 1-9<br />

F<br />

Filter, RFI, 3-2<br />

G<br />

Gauge, 1-3<br />

Geometry, 1-4<br />

Glands, 4-5<br />

Grounded<br />

Delta/Delta, 2-2<br />

Delta/Wye, 2-1<br />

Grounding, 3-1<br />

Acceptable Practices, 3-5<br />

Building Steel, 3-1<br />

Connections, 4-6<br />

Effective Practices, 3-6<br />

Fully Grounded System, 3-5<br />

High Resistance System, 3-4<br />

Motors, 3-2<br />

Optimal Practices, 3-6<br />

PE, 3-2<br />

Practices, 3-5, 4-1<br />

RFI Filter, 3-2<br />

Safety, 3-1<br />

TN-S Five-Wire, 3-2<br />

Ungrounded, 3-4<br />

Grounding Practices, 3-6<br />

Grounds, Noise Related, 3-3<br />

I<br />

I/O Cable, Discrete Drive, 1-11<br />

Impedance, 2-5<br />

Multiple Drives, 2-15<br />

Reactor, 2-5<br />

Inductive Loads, Noise, 6-3<br />

Input Power Cables, 1-10<br />

Inputs, Isolated, 3-7<br />

Installation<br />

EMC Specific, 4-2<br />

Layout, 4-2<br />

Practices, 4-1<br />

Insulation, 1-1, 1-2, 1-4, 1-9, 1-10, 1-12,<br />

4-13, 4-18, 5-1<br />

L<br />

Layout, Installation, 4-2<br />

Length<br />

Common Mode Noise, 6-2<br />

Motor Cable, 1-11<br />

Restrictions, 5-2<br />

Length Restrictions, A-1<br />

Lighting, Noise, 6-6<br />

Line Impedance<br />

AC Line Impedance, 2-5<br />

Multiple Drives, 2-15<br />

M<br />

Manual Conventions, P-2<br />

Manual Usage, P-1<br />

Material, Cable, 1-2<br />

Mode Capacitors, Common, 2-17<br />

Moisture, 1-2, 4-19, 5-2<br />

Motor<br />

1329R/L, A-1<br />

1488V, A-1<br />

Brake Solenoid Noise, 6-3<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Index-3<br />

Grounding, 3-2<br />

Type A, A-1<br />

Type B, A-1<br />

Motor Brake Solenoid, Noise, 6-3<br />

Motor Cable Length, 1-11<br />

Motor Cable Length Restrictions, A-1<br />

Motor Starters, Noise, 6-3<br />

Motors, Noise, 6-3<br />

Mounting, 4-1<br />

MOV Surge Protection, 2-17<br />

Multiple Drives<br />

Line Impedance, 2-15<br />

Reactor, 2-15<br />

N<br />

Noise<br />

Brake, 6-3<br />

Common Mode, 6-1<br />

Contacts, 6-3<br />

Enclosure Lighting, 6-6<br />

Inductive Loads, 6-3<br />

Lighting, 6-6<br />

Mitigating, 6-3<br />

Motor Brake, 6-3<br />

Motor Starters, 6-3<br />

Motors, 6-3<br />

Preventing, 6-3<br />

Related Grounds, 3-3<br />

Relays, 6-3<br />

Solenoids, 6-3<br />

Switch Contacts, 6-3<br />

Transient Interference, 6-3<br />

P<br />

Power<br />

Wire, 1-10, 1-11, 1-12, 3-7, 4-14, 4-18,<br />

6-2<br />

Power Cables, Input, 1-10<br />

Power Distribution, 2-1<br />

Delta/Delta with Grounded Leg, 2-2<br />

Delta/Wye with Grounded Wye, 2-1<br />

High Resistance Ground, 2-3<br />

TN-S Five-Wire System, 2-4<br />

Ungrounded Secondary, 2-3<br />

Power Terminals, 4-18<br />

PowerFlex 4, 2-8<br />

PowerFlex 40, 2-8<br />

PowerFlex 400, 2-9<br />

PowerFlex 70, 2-9<br />

PowerFlex 700, 2-11<br />

Practices, Grounding, 4-1<br />

Precautions, P-2<br />

Protection<br />

MOV Surge, 2-17<br />

R<br />

RC Networks, 6-4<br />

Reactor, Multiple Drives, 2-15<br />

Recommended Cable Design, 1-5<br />

Recommended Documentation, P-1<br />

Reflected Wave, 5-1<br />

Effects on Wire Types, 5-1<br />

Length Restrictions, 5-2<br />

Motor Protection, 5-2<br />

Relays, Noise, 6-3<br />

Remote I/O, 1-14<br />

Resistance, Ground, 2-3<br />

RFI Filter Grounding, 3-2<br />

Routing, 4-9<br />

S<br />

Safety Grounds<br />

Building Steel, 3-1<br />

Grounding PE or Ground, 3-2<br />

Safety Grounds, Grounding, 3-1<br />

Secondary, Ungrounded, 2-3<br />

Serial (RS232/485), 1-14<br />

Shields<br />

Cable, 1-6, 3-7<br />

Termination, 4-15<br />

Signal<br />

Analog Cable, 1-12<br />

Terminals, 4-18<br />

Wire, 1-12<br />

Solenoids, Noise, 6-3<br />

Spacing, 4-10<br />

Wiring, 4-9, 4-10<br />

<strong>Stand</strong>ard Installation, 4-1<br />

Suppression, Noise<br />

Contracts, 6-3<br />

Inductive Loads, 6-3<br />

Motor Starters, 6-3<br />

Motors, 6-3<br />

Relays, 6-3<br />

Solenoids, 6-3<br />

Suppressor, 2-17, 6-4<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


Index-4<br />

Surge Protection<br />

MOV, 2-17<br />

Switch Contacts<br />

Noise, 6-3<br />

System Configuration<br />

Delta/Delta with Grounded Leg, 2-2<br />

Delta/Wye with Grounded Wye, 2-1<br />

High Resistance Ground, 2-3<br />

TN-S Five-Wire System, 2-4<br />

Ungrounded Secondary, 2-3<br />

T<br />

TB (Terminal Block)<br />

Control, 4-18<br />

Power, 4-18<br />

Signal, 4-18<br />

Temperature, 1-3<br />

Termination<br />

Conductor, 4-18<br />

Control Terminal, 4-18<br />

Power Terminals, 4-18<br />

Shield, 4-15<br />

Shield via Pigtail (Lead), 4-5<br />

Signal Terminals, 4-18<br />

Via Cable Clamp, 4-17<br />

Via Circular Clamp, 4-15<br />

Via Pigtail (Lead), 4-16<br />

TN-S Five-Wire Systems, 2-4, 3-2<br />

Transient Interference<br />

Causes, 6-3<br />

Suppression, 6-3<br />

Signal, 1-12<br />

Wire Routing<br />

Antennas, 4-12<br />

Loops, 4-12<br />

Noise, 4-12<br />

Within a Cabinet, 4-11<br />

Within Conduit, 4-12<br />

Wire/Cable Types, 1-1<br />

Armored Cable, 1-8<br />

Conductors, 1-3<br />

European Style Cable, 1-9<br />

Exterior Cover, 1-2<br />

Gauge, 1-3<br />

Geometry, 1-4<br />

Insulation Thickness, 1-4<br />

Material, 1-2<br />

Reflected Wave Effects, 5-1<br />

Shielded Cable, 1-6<br />

Temperature Rating, 1-3<br />

Unshielded Cable, 1-5<br />

Wiring<br />

Category Definitions, 4-9<br />

Routing, 4-9<br />

Spacing, 4-9<br />

Spacing Notes, 4-10<br />

Z<br />

Zero Cross Switching, 6-3<br />

U<br />

Ungrounded Secondary, 2-3<br />

Ungrounded System Example, 3-4<br />

Unshielded Cable, 1-5<br />

V<br />

Varistors, 2-17, 6-4<br />

W<br />

Wire<br />

Control, 1-11<br />

Insulation, 1-1, 1-2, 1-4, 1-9, 1-10, 1-12,<br />

4-13, 4-18, 5-1<br />

Power, 1-10, 1-11, 1-12, 3-7, 4-14, 4-18,<br />

6-2<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P


U.S. Allen-Bradley Drives Technical Support - Tel: (1) 262.512.8176, Fax: (1) 262.512.2222, Email: support@drives.ra.rockwell.com, Online: www.ab.com/support/abdrives<br />

www.rockwellautomation.com<br />

Power, Control and Information Solutions Headquarters<br />

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444<br />

Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640<br />

Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846<br />

Publication DRIVES-IN<strong>001</strong>K-EN-P – May 2010<br />

Supersedes Publication DRIVES-IN<strong>001</strong>J-EN-P – April 2009<br />

Copyright © 2010 Rockwell Automation, Inc. All rights reserved. Printed in USA.


Product Details and Certifications<br />

http://raise.rockwellautomation.com/RAConfig/sendsuppl.asp?CID=C8662ED80DBD420...<br />

Page 1 of 1<br />

9/24/2009<br />

Product Details and Certifications<br />

Product: 140U-NRP3-D90<br />

Description: Molded Case Circuit Breaker Rating Plug, 1200A, N-Frame,Thermal Trip<br />

900A<br />

SelectionType<br />

Select Group or Individual<br />

Individual Accessory<br />

Circuit Breaker Data<br />

Bulletin Number<br />

Rating / Frame Size<br />

Pole Configuration<br />

Bulletin 140U<br />

1200A, N-Frame<br />

3 Poles<br />

Accessory Items<br />

140U Accessories () Rating Plug (for Bulletin 140U)<br />

Certifications and Approvals<br />

UL 489<br />

CSA 22.2, No. 5<br />

IEC 60947-2<br />

CE<br />

KEMA-KEUR<br />

For UL Certifications Directory:<br />

http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME/index.htm<br />

Dimensions and Weight<br />

Weight (kg / lbs) 0.02 / 0.04<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2009 Rockwell Automation, Inc. All Rights Reserved.


Short Circuit Ratings<br />

Product: 140U-N0L3-E12-F<br />

Description: Molded Case Circuit Breaker, N-Frame (up to 1200A), 100 kA, Electronic LS - Long &<br />

Short Time, Rated Current 1200A, AX/AL: (1) 1a - 1b + (1) 1M-1B<br />

SCCR (Interrupting Rating) max kA<br />

Rating Document File Ref: UL File Ref: CSA Comments<br />

240V 480V 600V 600Y/347V<br />

200 100 50 — Nameplate E197878 216034 and 216035 —<br />

http://raise.rockwellautomation.com/...ID=760BC9F8FC814C388BF254630691A1F9&PIID=RDCPDL.$M$:/PFM/ec&tar=F$SCCR&pg=0[2/15/2012 11:09:39 AM]


http://raise.rockwellautomation.com/raconfig/rtcache/jpg/140unfrm.jpg[2/15/2012 11:10:19 AM]


http://raise.rockwellautomation.com/raconfig/rtcache/jpg/140u1200%20specifications.jpg[2/15/2012 11:09:58 AM]


Product Details and Certifications<br />

http://raise.rockwellautomation.com/RAConfig/sendsuppl.asp?CID=57AD5EC9427E46A...<br />

Page 1 of 1<br />

8/17/2009<br />

Product Details and Certifications<br />

Product: 20-COMM-E<br />

Description: PowerFlex Architecture Class EtherNet/IP to DPI Communication Adapter<br />

User Installed Options<br />

Communications Kits (1) PowerFlex Architecture Class EtherNet/IP to DPI<br />

Communication Adapter<br />

Dimensions and Weight<br />

Weight (kg / lbs) 0.00 / 0.00<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2009 Rockwell Automation, Inc. All Rights Reserved.


Product Details and Certifications<br />

Product Details and Certifications<br />

Product: 1497A-A11-M6-3-N<br />

Description: 1497A - CCT, 1000VA, 220x440V, 230x460V,<br />

240x480V (50/60Hz) Primary, 2 Pri - 1 Sec<br />

Fuse Blocks<br />

Representative Photo Only (actual product may vary based on<br />

configuration selections)<br />

TRANSFORMER DATA<br />

Continuous VA (Transformer Rating) 1000<br />

Primary - Secondary <strong>Voltage</strong><br />

220x440V, 230x460V, 240x480V - 110/115/120V (50/60Hz)<br />

Fuse Block<br />

2 Pri - 1 Sec<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2012 Rockwell Automation, Inc. All Rights Reserved.<br />

http://raise.rockwellautomation.com/...ID=6E6B8AF583334AE4A767C121BE4E406A&PIID=RDCPDL.$M$:/PFM/2658&tar=2658&pg=0[1/24/2012 10:51:23 AM]


Yokogawa Corp. of America - Meter & Instrument Div. - Item # 240311AAAB, 3 1/2" New Big Look Time Meter Hours Non-Reset<br />

Yokogawa Corp. of America - Meter & Instrument Div.<br />

2 Dart Rd<br />

Newnan, GA 30265 US<br />

Phone: 770-254-0400<br />

Fax: 770-251-2088<br />

Toll-free: 800-888-6400<br />

Email: meters-instr@us.yokogawa.com<br />

Website: http://www.yokogawa-usa.com<br />

All Categories > Electrical Meters > Elapsed Time Meters > New Big Look Panel Mounted Elapsed Time<br />

Meter > Item # 240311AAAB<br />

Item # 240311AAAB, 3 1/2" New Big Look Time Meter Hours Non-Reset<br />

larger image<br />

Product Overview<br />

Accuracy<br />

Matches frequency control of power system.<br />

Vibration Shock Meets ANSI Specification C39.1<br />

Material<br />

Safety<br />

Input Range<br />

Sealing<br />

Presentation<br />

Brass terminal studs<br />

Case of clear Polycarbonate<br />

Frame of black Polycarbonate<br />

Polycarbonate front covers.<br />

Type 240 elapsed-time meters are recognized under the Component Program of Underwriters’<br />

Laboratories. (UL File #E91703) & CSA<br />

All Type 240 models available to operate on 120 or 208/240 or 480 volts AC, 50 or 60 Hertz.<br />

All non-reset Type 240 models are weather resistant. Sealed window and no- through screw holes<br />

for flange or back-of panel mounting protect motor, counter, and gearing from rain or panel washdown.<br />

6-digit counter in 5/32" high hours and tenths of hours or minutes and tenths of minutes.<br />

http://yokogawausa.thomasnet.com/...nted-elapsed-time-meter/240311aaab?&plpver=10&assetid=g1038&origin=&by=&filter=[3/9/2011 8:14:09 AM]


Yokogawa Corp. of America - Meter & Instrument Div. - Item # 240311AAAB, 3 1/2" New Big Look Time Meter Hours Non-Reset<br />

Insulation Level<br />

Burden Data<br />

Features<br />

Operating at 120, 208, 240 or 480 volts AC, will pass Hi-pot of 2000 V RMS for one minute.<br />

3 VA typical<br />

Back-of-panel model<br />

2 1/2" and 3 1/2" New Big Look models<br />

2 1/2" and 3 1/2" Round and Square models<br />

Conduit-case models<br />

Complete interchangeability physically and electrically with most GE Types 235 and 236<br />

models<br />

Optional 3 stud mounting is available on 3 1/2" New Big Look style 240 meters only.<br />

http://yokogawausa.thomasnet.com/...nted-elapsed-time-meter/240311aaab?&plpver=10&assetid=g1038&origin=&by=&filter=[3/9/2011 8:14:09 AM]


Career │ Site Map │ Contact Us │Copyright© 2008 ADDA All Rights Reserved - Fan Manufacturer<br />

"ADDA" and "ADDA Logo" are registered trademarks and/or service marks of ADDA corporation in Taiwan and<br />

other countries.<br />

ADDA USA |<br />

Designed By<br />

GRNET


TRI-ONIC ®<br />

TRM<br />

1-1/2” X 13/32” MIDGET FUSES<br />

Tri-onic TRM time-delay midget fuses<br />

are rated 250 volts AC and are offered in<br />

ampere ratings from 1/10A to 30A.<br />

They have 12 seconds time delay at 200%<br />

rating to provide supplemental protection<br />

of small motors, small transformers and<br />

other high inrush loads, plus many other<br />

250 volt applications. (Not for Branch<br />

Circuit Protection).<br />

HIGHLIGHTS:<br />

APPLICATIONS:<br />

Time Delay<br />

Small Motors<br />

250 VAC Rated Small Transformers<br />

Lighting Circuits<br />

Control Circuits<br />

<strong>Stand</strong>ard Fuse Ampere Ratings, Catalog Numbers<br />

Ratings<br />

AC: 1/10 to 30A<br />

250VAC, 10kA I.R.<br />

Features/Benefits<br />

<br />

<br />

<br />

<br />

Numerous ratings for a wide variety of<br />

applications<br />

250VAC rating in all sizes up to 30A<br />

Time delay for circuits with high inrush<br />

currrent<br />

Can be used with ULTRASAFE fuse holders<br />

Approvals<br />

<br />

<br />

UL Listed to<br />

<strong>Stand</strong>ard 248-14<br />

File E33925<br />

CSA Certified to <strong>Stand</strong>ard<br />

C22.2 No. 248.14<br />

AMPERE CATALOG AMPERE CATALOG AMPERE CATALOG AMPERE CATALOG AMPERE CATALOG AMPERE CATALOG<br />

RATING NUMBER RATING NUMBER RATING NUMBER RATING NUMBER RATING NUMBER RATING NUMBER<br />

1/10 TRM1/10 6/10 TRM6/10 1-6/10 TRM1-6/10 3 TRM3 5-6/10 TRM5-6/10 10 TRM10<br />

15/100 TRM15/100 8/10 TRM8/10 1-8/10 TRM1-8/10 3-2/10 TRM3-2/10 6 TRM6 12 TRM12<br />

2/10 TRM2/10 1 TRM1 2 TRM2 3-1/2 TRM3-1/2 6-1/4 TRM6-1/4 15 TRM15<br />

1/4 TRM1/4 1-1/8 TRM1-1/8 2-1/4 TRM2-1/4 4 TRM4 7 TRM7 20 TRM20<br />

3/10 TRM3/10 1-1/4 TRM1-1/4 2-1/2 TRM2-1/2 4-1/2 TRM4-1/2 8 TRM8 25 TRM25<br />

4/10 TRM4/10 1-4/10 TRM1-4/10 2-8/10 TRM2-8/10 5 TRM5 9 TRM9 30 TRM30<br />

1/2 TRM1/2<br />

C<br />

Melting Time – Current Data 1/10 - 3-1/2 Amperes, 250 Volts AC<br />

Melting Time – Current Data 4-30Amperes, 250 Volts AC<br />

Time in Seconds<br />

Time in Seconds<br />

Current in Amperes<br />

C 5<br />

Current in Amperes


AMP-TRAP 2000 ®<br />

ATQR<br />

TIME DELAY/CLASS CC<br />

TAKE CONTROL OF FAULT CURRENTS HEADED<br />

FOR YOUR CONTROL TRANSFORMER<br />

ATQR small-dimension fuses feature time delay<br />

characteristics ideally suited for the high inrush<br />

currents of control transformers, solenoids, and<br />

similar inductive loads. The newest member of our<br />

Amp-trap 2000 ® family of fuses - ATQR fuses<br />

provide superior protection for the branch circuits<br />

of electrical distribution systems.<br />

Features/Benefits<br />

Time delay for control transformer inrush loads without<br />

nuisance opening<br />

Highly current limiting for low peak let-thru current<br />

Rejection-style design prevents replacement errors<br />

(when used with recommended fuse blocks)<br />

High-visibility orange label ensures instant recognition,<br />

and simplifies replacement<br />

Metal-embossed date and catalog number<br />

for traceability and lasting identification<br />

Fiberglass body provides dimensional stability in harsh<br />

industrial settings<br />

High-grade silica filler ensures fast arc quenching and<br />

high current limitation<br />

HIGHLIGHTS:<br />

APPLICATIONS:<br />

Ratings<br />

Approvals<br />

Time Delay<br />

Best Choice for Small<br />

Transformer Protection<br />

Most Current-Limiting<br />

Control Transformers<br />

Solenoids<br />

Inductive Loads<br />

Lighting, Heating &<br />

General-purpose Loads<br />

<br />

<br />

AC: 1/10 to 30A<br />

600VAC, 200kA I.R.<br />

DC: 1/10 to<br />

30A300VDC,<br />

100kA I.R.<br />

<br />

<br />

<br />

UL Listed to<br />

<strong>Stand</strong>ard 248-4<br />

DC Listed to UL<br />

<strong>Stand</strong>ard 248<br />

CSA Certified to<br />

<strong>Stand</strong>ard C22.2<br />

No. 248.4<br />

A 16


AMP-TRAP 2000 ®<br />

TIME DELAY/CLASS CC FUSES<br />

ATQR<br />

<strong>Stand</strong>ard Fuse Ampere Ratings, Catalog Numbers<br />

AMPERE CATALOG AMPERE CATALOG AMPERE CATALOG AMPERE CATALOG<br />

RATING NUMBER RATING NUMBER RATING NUMBER RATING NUMBER<br />

1/10 ATQR1/10 8/10 ATQR8/10 2-8/10 ATQR2-8/10 7-1/2 ATQR7-1/2<br />

1/8 ATQR1/8 1 ATQR1 3 ATQR3 8 ATQR8<br />

3/16 ATQR3/16 1-1/8 ATQR1-1/8 3-2/10 ATQR3-2/10 9 ATQR9<br />

2/10 ATQR2/10 1-1/4 ATQR1-1/4 3-1/2 ATQR3-1/2 10 ATQR10<br />

1/4 ATQR1/4 1-4/10 ATQR1-4/10 4 ATQR4 12 ATQR12<br />

3/10 ATQR3/10 1-1/2 ATQR1-1/2 4-1/2 ATQR4-1/2 15 ATQR15<br />

4/10 ATQR4/10 1-6/10 ATQR1-6/10 5 ATQR5 17-1/2 ATQR17-1/2<br />

1/2 ATQR1/2 1-8/10 ATQR1-8/10 5-6/10 ATQR5-6/10 20 ATQR20<br />

6/10 ATQR6/10 2 ATQR2 6 ATQR6 25 ATQR25<br />

3/4 ATQR3/4 2-1/4 ATQR2-1/4 6-1/4 ATQR6-1/4 30 ATQR30<br />

2-1/2 ATQR2-1/2 7 ATQR7<br />

A<br />

Recommended ATQR Class CC Primary Fuses For<br />

Single Phase Control Transformers<br />

Dimensions<br />

TRANS<br />

VA<br />

25<br />

50<br />

75<br />

100<br />

150<br />

200<br />

250<br />

VOLTS<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

120<br />

PRIMARY<br />

FLA<br />

0.04<br />

0.05<br />

0.10<br />

0.12<br />

0.21<br />

0.08<br />

0.10<br />

0.21<br />

0.24<br />

0.42<br />

0.13<br />

0.16<br />

0.31<br />

0.36<br />

0.63<br />

0.17<br />

0.21<br />

0.42<br />

0.48<br />

0.83<br />

0.25<br />

0.31<br />

0.63<br />

0.72<br />

1.25<br />

0.33<br />

0.42<br />

0.83<br />

0.96<br />

1.67<br />

0.42<br />

0.52<br />

1.04<br />

1.2<br />

2.08<br />

ATQR<br />

AMPS<br />

1/10<br />

1/10<br />

2/10<br />

1/4<br />

4/10<br />

1/4<br />

1/4<br />

4/10<br />

1/2<br />

6/10<br />

1/4<br />

3/10<br />

1/2<br />

3/4<br />

1<br />

3/10<br />

4/10<br />

6/10<br />

1<br />

1-1/2<br />

1/2<br />

1/2<br />

1<br />

1-1/2<br />

2-1/2<br />

1/2<br />

6/10<br />

1-1/2<br />

2<br />

3<br />

6/10<br />

1-1/8<br />

2<br />

3<br />

4*<br />

TRANS<br />

VA<br />

300<br />

500<br />

750<br />

1000<br />

1500<br />

2000<br />

3000<br />

5000<br />

VOLTS<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

120<br />

600<br />

480<br />

240<br />

208<br />

600<br />

480<br />

240<br />

600<br />

480<br />

PRIMARY<br />

FLA<br />

0.50<br />

0.63<br />

1.25<br />

1.44<br />

2.5<br />

0.83<br />

1.04<br />

2.08<br />

2.40<br />

4.17<br />

1.25<br />

1.56<br />

3.13<br />

3.61<br />

6.25<br />

1.67<br />

2.08<br />

4.16<br />

4.81<br />

8.33<br />

2.50<br />

3.13<br />

6.25<br />

7.21<br />

12.5<br />

3.33<br />

4.17<br />

8.33<br />

9.62<br />

5.00<br />

6.25<br />

12.5<br />

8.33<br />

10.4<br />

ATQR<br />

AMPS<br />

1-1/8<br />

1-1/2<br />

2-1/2<br />

3<br />

5*<br />

1-1/2<br />

2<br />

4*<br />

6*<br />

10*<br />

2-1/2<br />

3<br />

7*<br />

8*<br />

15*<br />

3<br />

4*<br />

10*<br />

12*<br />

20*<br />

5*<br />

7*<br />

10<br />

20*<br />

25*<br />

8*<br />

10*<br />

20++*<br />

20++*<br />

12+*<br />

15+*<br />

30++*<br />

20++*<br />

25+*<br />

Recommended Fuse Blocks for Class CC Fuses<br />

Number<br />

of<br />

Poles<br />

ULTRASAFE<br />

Indicating<br />

Fuse<br />

Holder<br />

Screw<br />

with Double<br />

Quick<br />

Connects<br />

Pressure Plate<br />

with Double<br />

Quick<br />

Connects<br />

Copper<br />

Box<br />

Connector<br />

ADDER 30310R 30320R 30350R<br />

1 USCC1I 30311R 30321R 30351R<br />

2 USCC2I 30312R 30322R 30352R<br />

3 USCC3I 30313R 30323R 30353R<br />

Primary fuses - If primary FLA is less than 2 amps, fuse may be 300%<br />

max. (500% for motor control). If primary FLA exceeds 2 amps but is<br />

less than 9 amps, fuse may not exceed 167% of primary FLA unless<br />

secondary protection is used, when it may be increased to 250%. Fuse<br />

sizes shown are based on approx. 40 x FLA for .01 sec.<br />

* Secondary protection is required for these ratings.<br />

+ Fuse will withstand 30 x FLA for .01 second<br />

++ Fuse will withstand 25 x FLA for .01 second<br />

A 17


AMP-TRAP 2000 ®<br />

TIME DELAY/CLASS CC FUSES<br />

ATQR<br />

Peak Let-Thru Current Data–ATQR1/4 to 30, 600 Volts AC<br />

Melting Time-Current Data ATQR 3/16 to 1-8/10, 600 Volts<br />

Current in Amperes<br />

Time in Seconds<br />

Maximum Instantaneous Peak Let-Thru Amperes<br />

Time in Seconds<br />

Available Current in RMS Symmetrical Amperes<br />

Melting Time-Current Data ATQR 2 to 30, 600 Volts AC<br />

Current in Amperes<br />

A 18


LIMITRON ®<br />

Fast-Acting Fuses<br />

13/32” x 1-1/2”, Class CC - 600 Volt, 1/10 - 30 Amps<br />

Bussmann ®<br />

KTK-R<br />

Dimensional Data<br />

1.5<br />

(±0.031)<br />

(38.1mm)<br />

• LIMITRON ® fast-acting fuse.<br />

• Melamine tube. Nickel-plated brass endcaps.<br />

• U.L. Listed for branch circuit protection.<br />

• Rejection type; for both standard holders or those which<br />

reject other type fuses.<br />

Time-Current Characteristic Curves–Average Melt<br />

.41<br />

(±0.005)<br />

(10.3mm)<br />

Catalog Symbol: KTK-R<br />

Fast-Acting Branch Circuit Fuse:<br />

1/10 TO 30A<br />

<strong>Voltage</strong> Rating:<br />

600Vac (or less): 0-30A<br />

Interrupting Rating:<br />

ac: 200,000A RMS Sym.<br />

UL LIisted, STD. 248-4, Class CC,<br />

(Guide #JDDZ, File #E4273)<br />

CSA Certified, C22.2 NO. 248.4, (File #53787—Class<br />

#1422-02)<br />

Electrical Ratings (Catalog Symbol and Amperes)<br />

600Vac - UL Listed & C.S.A.<br />

KTK-R-1/10 KTK-R-6/10 KTK-R-3-1/2 KTK-R-10<br />

KTK-R-1/8 KTK-R-3/4 KTK-R-4 KTK-R-12<br />

KTK-R-2/10 KTK-R-1 KTK-R-5 KTK-R-15<br />

KTK-R-1/4 KTK-R-1-1/2 KTK-R-6 KTK-R-20<br />

KTK-R-3/10 KTK-R-2 KTK-R-7 KTK-R-25<br />

KTK-R-4/10 KTK-R-2-1/2 KTK-R-8 KTK-R-30<br />

KTK-R-1/2 KTK-R-3 KTK-R-9 –<br />

Carton Quantity and Weight<br />

Ampere Carton Weight*<br />

Ratings Qty. Lbs. Kg.<br />

1/10–30 10 .180 .082<br />

*Weight per carton.<br />

Recommended fuseblocks/fuseholders for<br />

Class CC 600V fuses<br />

See Data Sheets listed below<br />

• Open fuseblocks - 1105<br />

• Finger-safe fuseholders - 1109, 1102, 1103, 1151<br />

• Panel-mount fuseholders - 2114, 2113<br />

• In-line fuseholders - 2126<br />

CE logo denotes compliance with European Union <strong>Low</strong> <strong>Voltage</strong> Directive<br />

(50-1000Vac, 75-1500Vdc). Refer to Data Sheet: 8002 or contact<br />

Bussmann Application Engineering at 636-527-1270 for more information.<br />

The only controlled copy of this Data Sheet is the electronic read-only version located on the Bussmann Network Drive. All other copies of this Data Sheet are by definition uncontrolled. This bulletin is intended to clearly<br />

present comprehensive product data and provide technical information that will help the end user with design applications. Bussmann reserves the right, without notice, to change design or construction of any products<br />

and to discontinue or limit distribution of any products. Bussmann also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it<br />

should be tested by the user in all possible applications.<br />

3-19-03 SB03078<br />

Form No. KTK-R<br />

Page 1 of 1<br />

Data Sheet: 1015


Bussmann ®<br />

LOW-PEAK ® Time-Delay Fuses KRP-C<br />

Class L – 600 Volt 601-2000A<br />

Dimensional Data All other tolerances (± 0.02)<br />

0.63" (± 0.03)<br />

All Slots and Holes<br />

10.75"<br />

(± 0.09)<br />

8.63"<br />

(± 0.09)<br />

6.75" 5.75"<br />

601A<br />

to<br />

800A<br />

801A<br />

to<br />

1200A<br />

1350A<br />

to<br />

1600A<br />

1800A<br />

to<br />

2000A<br />

3.75"<br />

.38"<br />

.38"<br />

.44"<br />

.5"<br />

Terminal:<br />

Width (± 0.06)<br />

Thickness (± 0.03)<br />

2"<br />

2"<br />

2.38"<br />

2.75"<br />

2.5"<br />

2.53"<br />

Max.<br />

2.5"<br />

2.78"<br />

Max.<br />

3"<br />

3.03"<br />

Max.<br />

3.5"<br />

3.53"<br />

Max.<br />

Catalog Symbol: KRP-C-SP<br />

Time-Delay – 4 seconds (minimum) at 500% rated current<br />

Current-Limiting<br />

Ampere Rating: 601 to 2000 Amperes‡<br />

<strong>Voltage</strong> Rating: 600 Volts AC (or less) 300 Volts DC (or less)<br />

Interrupting Rating: 300,000A RMS Sym. (UL)<br />

Interrupting Rating: 100,000A DC (UL)<br />

Agency Approvals:<br />

UL Listed – Special Purpose £, Guide JFHR, File E56412<br />

CSA Certified – (200,000 AIR), Class 1422-02, File 53787<br />

Class L per CSA C22.2, No. 248.10<br />

‡Use KRP-CL for current ratings below 601 amps.<br />

*601-3000A is rated 340 VDC and 50 KAIC.<br />

£Meets all performance requirements of UL <strong>Stand</strong>ard 248-10 for Class L fuses.<br />

Ampere Ratings†<br />

Catalog Ctn. Weight** Catalog Ctn. Weight**<br />

Number Qty. Lbs. Kg. Number Qty. Lbs. Kg.<br />

KRP-C-601SP<br />

KRP-C-1350SP<br />

KRP-C-650SP<br />

KRP-C-1400SP<br />

KRP-C-700SP 1 3.75 1.7 KRP-C-1500SP<br />

1 6.50 2.948<br />

KRP-C-750SP<br />

KRP-C-1600SP<br />

KRP-C-800SP<br />

KRP-C-1800SP<br />

KRP-C-801SP KRP-C-1900SP 1 8.5 3.85<br />

KRP-C-900SP<br />

KRP-C-2000SP<br />

KRP-C-1000SP 1 4.5 2.041<br />

KRP-C-1100SP<br />

KRP-C-1200SP<br />

**Weight per carton.<br />

†Special purpose rating of 300,000 AIR.<br />

General Information:<br />

• All-purpose silver-linked fuse for both overload and shortcircuit<br />

protection for high capacity systems (mains and<br />

large feeders).<br />

• Time-delay (minimum of four seconds at five times amp<br />

rating) for close sizing.<br />

• Current-limiting action of the fuse generally affords<br />

considerable reduction in bus bracing.<br />

• Interrupting rating of 300,000 amperes complies with<br />

NEC Sections 110-9 and 230-65 for today’s large capacity<br />

systems.<br />

• O-ring seals maximize pressure build-up during currentlimiting<br />

action and ensure filler retention.<br />

• High grade silica-sand filler; accelerates response of fuse to<br />

short-circuits by having quenching effect upon the fuse arc.<br />

• 99.9% pure silver fuselinks. The high conductivity of silver<br />

gives low watt loss and low operating temperature at normal<br />

current levels; maximizes total clearing I 2 t fault energy<br />

let-through.<br />

• Selective coordination (blackout prevention).<br />

• Glass melamine tube.<br />

• Silver-plated end bells.<br />

CE logo denotes compliance with European Union <strong>Low</strong> <strong>Voltage</strong> Directive<br />

(50-1000 VAC, 75-1500 VDC). Refer to BIF document #8002 or contact<br />

Bussmann Application Engineering at 636-527-1270 for more information.<br />

11-12-99<br />

A99119<br />

Rev. A<br />

Form No. KRP-C-601-2000<br />

Page 1 of 3<br />

BIF Doc #1008


Bussmann ®<br />

LOW-PEAK ® Time-Delay Fuses KRP-C<br />

Class L – 600 Volt 601-2000A<br />

Time-Current Characteristic Curves–Average Melt<br />

Fuseblocks: (601 - 1200 Amps)<br />

Catalog<br />

Number Poles<br />

51215 1<br />

51235 3<br />

No reducers available.<br />

300<br />

100<br />

800A<br />

1200A<br />

1600A<br />

2000A<br />

AMPERE<br />

RATING<br />

10<br />

TIME IN SECONDS<br />

1<br />

.1<br />

.01<br />

1,000<br />

10,000<br />

CURRENT IN AMPERES<br />

100,000<br />

200,000<br />

11-12-99<br />

A99119<br />

Rev. A<br />

Form No. KRP-C-601-2000<br />

Page 2 of 3<br />

BIF Doc #1008


Bussmann ®<br />

LOW-PEAK ® Time-Delay Fuses KRP-C<br />

Class L – 600 Volt 601-2000A<br />

Current-Limitation Curves<br />

The only controlled copy of this BIF document is the electronic read-only version located on the Bussmann Network Drive. All other copies of this document are by definition uncontrolled. This bulletin is<br />

intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Bussmann reserves the right, without notice, to change<br />

design or construction of any products and to discontinue or limit distribution of any products. Bussmann also reserves the right to change or update, without notice, any technical information contained<br />

in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.<br />

11-12-99<br />

A99119<br />

Rev. A<br />

Form No. KRP-C-601-2000<br />

Page 3 of 3<br />

BIF Doc #1008


PowerFlex® HIMs for 70, 700, 700S<br />

United<br />

States [+]<br />

About Us News & Events Products Services & Support Industries & Solutions<br />

Sign In, Become a Member, Why Join?<br />

Drives<br />

Drives Home<br />

AC Drives<br />

DC Drives<br />

Drives<br />

Drive Communications &<br />

Accessories<br />

Drive Software<br />

Medium <strong>Voltage</strong><br />

Servo Drives<br />

General Resources<br />

A to Z Product Directory<br />

Configuration and<br />

Selection Tools<br />

Events Listing<br />

Locate Us<br />

Newsletters / Magazines<br />

Product Certification<br />

Product Cross Reference<br />

Publications Library<br />

PowerFlex® 7-Class HIMs<br />

20-HIM-A1 20-HIM-A2 20-HIM-A3 20-HIM-A4 20-HIM-A5<br />

LED<br />

IP20 (NEMA 1)<br />

Digital Speed LCD<br />

IP20 (NEMA 1)<br />

Full Numeric LCD<br />

IP20 (NEMA 1)<br />

Analog Speed LCD<br />

IP20 (NEMA 1)<br />

Programmer Only LCD<br />

IP20 (NEMA 1)<br />

How to Purchase<br />

Find a US Distributor<br />

WorldWide Offices<br />

Shop On-Line<br />

Get Drawings<br />

Autocad Library<br />

Get Software<br />

RAISE Product Selection and<br />

Engineering Tools<br />

Request-For-Quote Builder<br />

DriveTools SP<br />

DriveExplorer<br />

Electronic Data Sheets (EDS)<br />

Product Selection<br />

Browse the Library<br />

On-Line Catalog<br />

Related Products<br />

Need Drive Packaging Options?<br />

Drive Systems Solutions<br />

Control Matched Motors<br />

Energy Efficiency Solutions<br />

20-HIM-B1 20-HIM-C3S 20-HIM-C5S<br />

Bezel Kit<br />

Panel Mount LCD Display<br />

IP20 (NEMA Type 1)<br />

Full Numeric<br />

Panel Mount LCD<br />

IP66 (NEMA 4X/12)<br />

Indoor use only<br />

Programmer Only<br />

Panel Mount LCD<br />

IP66 (NEMA 4X/12)<br />

Indoor use only<br />

Locations|Contact|Sitemap|Legal Notices<br />

Copyright © 2005 Rockwell Automation, Inc. All Rights Reserved.<br />

http://www.ab.com/drives/powerflex/him/12/7/2005 11:00:07 AM


Product Details and Certifications<br />

Product Details and Certifications<br />

Product: 800TC-FXT6A5<br />

Description: 30.5mm Type 4/13 2 Pos. PB-Non-Illum., Push-Pull / Twist to Release, Red, 2 NCLB,<br />

Finger Safe Guards<br />

ASSEMBLY<br />

Factory or User Assembled?<br />

Factory Assembled<br />

PUSH BUTTON DATA<br />

E Stop<br />

Hazardous Location<br />

Finger Safe Guards<br />

Head Type<br />

Cap/Button Color<br />

Block Type<br />

Contact Blocks<br />

Yes<br />

No<br />

Finger Safe Guards<br />

Push-Pull / Twist to Release<br />

Red<br />

<strong>Stand</strong>ard<br />

2 N.C.L.B.<br />

Certifications and Approvals<br />

UL<br />

Listed E14840, E10314; Guide #NKCR, NOIV<br />

CSA LR1234, LR11924, 22.2 #14<br />

CE 60947-5-1<br />

For UL Certifications Directory:<br />

http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME/index.htm<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2011 Rockwell Automation, Inc. All Rights Reserved.<br />

http://raise.rockwellautomation.com/...?CID=0F13EE29069B4B78906F4A2BBCA5D16E&PIID=RDCPDL.$M$:/PFM/8cc&tar=8cc&pg=0[11/29/2011 4:03:46 PM]


Product Details and Certifications<br />

Product: 800TC-PTH16W<br />

Description: 30.5mm Type 4/13 Pilot Light, Xfmr, Pushto-Test,<br />

LED, White, 120V AC 50/60 Hz, 1<br />

NO-1 NC, Finger Safe Guards<br />

ASSEMBLY<br />

Factory or User<br />

Assembled?<br />

Factory Assembled<br />

PUSH BUTTON DATA<br />

Hazardous Location<br />

Finger Safe Guards<br />

Power Module Type<br />

Lamp Test Options<br />

Illumination Options<br />

<strong>Voltage</strong><br />

Lens Color<br />

Block Type<br />

Contact Blocks<br />

No<br />

Finger Safe Guards<br />

Transformer<br />

Push-to-Test<br />

LED<br />

120V AC 50/60 Hz<br />

White<br />

<strong>Stand</strong>ard<br />

1 N.O. - 1 N.C. (<strong>Stand</strong>ard with Push-to-<br />

Test)<br />

Certifications and Approvals<br />

UL<br />

Listed E14840, E10314; Guide #NKCR, NOIV<br />

CSA LR1234, LR11924, 22.2 #14<br />

CE 60947-5-1<br />

For UL<br />

Certifications<br />

http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME/index.htm


Directory:<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2010 Rockwell Automation, Inc. All Rights Reserved.


Product Details and Certifications<br />

Product: 800TC-PTH16R<br />

Description: 30.5mm Type 4/13 Pilot Light, Xfmr, Pushto-Test,<br />

LED, Red, 120V AC 50/60 Hz, 1<br />

NO-1 NC, Finger Safe Guards<br />

ASSEMBLY<br />

Factory or User<br />

Assembled?<br />

Factory Assembled<br />

PUSH BUTTON DATA<br />

Hazardous Location<br />

Finger Safe Guards<br />

Power Module Type<br />

Lamp Test Options<br />

Illumination Options<br />

<strong>Voltage</strong><br />

Lens Color<br />

Block Type<br />

Contact Blocks<br />

No<br />

Finger Safe Guards<br />

Transformer<br />

Push-to-Test<br />

LED<br />

120V AC 50/60 Hz<br />

Red<br />

<strong>Stand</strong>ard<br />

1 N.O. - 1 N.C. (<strong>Stand</strong>ard with Push-to-<br />

Test)<br />

Certifications and Approvals<br />

UL<br />

Listed E14840, E10314; Guide #NKCR, NOIV<br />

CSA LR1234, LR11924, 22.2 #14<br />

CE 60947-5-1<br />

For UL<br />

Certifications<br />

http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME/index.htm


Directory:<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2010 Rockwell Automation, Inc. All Rights Reserved.


Product Details and Certifications<br />

Product Details and Certifications<br />

Product: 800TC-PTH16G<br />

Description: 30.5mm Type 4/13 Pilot Light, Xfmr, Push-to-Test, LED, Green, 120V AC 50/60 Hz, 1<br />

NO-1 NC, Finger Safe Guards<br />

ASSEMBLY<br />

Factory or User Assembled?<br />

Factory Assembled<br />

PUSH BUTTON DATA<br />

Hazardous Location<br />

Finger Safe Guards<br />

Power Module Type<br />

Lamp Test Options<br />

Illumination Options<br />

<strong>Voltage</strong><br />

Lens Color<br />

Block Type<br />

Contact Blocks<br />

No<br />

Finger Safe Guards<br />

Transformer<br />

Push-to-Test<br />

LED<br />

120V AC 50/60 Hz<br />

Green<br />

<strong>Stand</strong>ard<br />

1 N.O. - 1 N.C. (<strong>Stand</strong>ard with Push-to-Test)<br />

Certifications and Approvals<br />

UL<br />

Listed E14840, E10314; Guide #NKCR, NOIV<br />

CSA LR1234, LR11924, 22.2 #14<br />

CE 60947-5-1<br />

For UL Certifications Directory:<br />

http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME/index.htm<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2011 Rockwell Automation, Inc. All Rights Reserved.<br />

http://raise.rockwellautomation.com/...ID=5ADD954A652B490C85D3E9A9CCA0A811&PIID=RDCPDL.$M$:/PFM/3f31&tar=3f31&pg=0[9/23/2011 9:23:09 AM]


Product Details and Certifications<br />

Product: 800TC-PTH16A<br />

Description: 30.5mm Type 4/13 Pilot Light, Xfmr, Pushto-Test,<br />

LED, Amber, 120V AC 50/60 Hz, 1<br />

NO-1 NC, Finger Safe Guards<br />

ASSEMBLY<br />

Factory or User<br />

Assembled?<br />

Factory Assembled<br />

PUSH BUTTON DATA<br />

Hazardous Location<br />

Finger Safe Guards<br />

Power Module Type<br />

Lamp Test Options<br />

Illumination Options<br />

<strong>Voltage</strong><br />

Lens Color<br />

Block Type<br />

Contact Blocks<br />

No<br />

Finger Safe Guards<br />

Transformer<br />

Push-to-Test<br />

LED<br />

120V AC 50/60 Hz<br />

Amber<br />

<strong>Stand</strong>ard<br />

1 N.O. - 1 N.C. (<strong>Stand</strong>ard with Push-to-<br />

Test)<br />

Certifications and Approvals<br />

UL<br />

Listed E14840, E10314; Guide #NKCR, NOIV<br />

CSA LR1234, LR11924, 22.2 #14<br />

CE 60947-5-1<br />

For UL<br />

Certifications<br />

http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME/index.htm


Directory:<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2010 Rockwell Automation, Inc. All Rights Reserved.


Product Details and Certifications<br />

Product: 800TC-A1A<br />

Description: 30.5mm Type 4/13 Mom. Contact PB,<br />

Non-Illum., Green, Flush Hd, 1 NO-1 NC,<br />

Finger Safe Guards<br />

ASSEMBLY<br />

Factory or User<br />

Assembled?<br />

Factory Assembled<br />

PUSH BUTTON DATA<br />

Hazardous Location No<br />

Finger Safe Guards Finger Safe Guards<br />

Operator Type<br />

Flush Head<br />

Cap/Button Color Green<br />

Special Mushroom Head No Special Head<br />

Block Type<br />

<strong>Stand</strong>ard<br />

Contact Blocks<br />

1 N.O. - 1 N.C.<br />

Certifications and Approvals<br />

UL<br />

Listed E14840, E10314; Guide #NKCR, NOIV<br />

CSA LR1234, LR11924, 22.2 #14<br />

CE 60947-5-1<br />

For UL<br />

Certifications<br />

Directory:<br />

http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME/index.htm<br />

Dimensions and Weight


Weight (kg / lbs) 0.15 / 0.33<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2010 Rockwell Automation, Inc. All Rights Reserved.


Product Details and Certifications<br />

Product: 800TC-B6A<br />

Description: 30.5mm Type 4/13 Mom. Contact PB,<br />

Non-Illum., Red, Extended Hd, 1 NO-1 NC,<br />

Finger Safe Guards<br />

ASSEMBLY<br />

Factory or User<br />

Assembled?<br />

Factory Assembled<br />

PUSH BUTTON DATA<br />

Hazardous Location No<br />

Finger Safe Guards Finger Safe Guards<br />

Operator Type<br />

Extended Head<br />

Cap/Button Color Red<br />

Special Mushroom Head No Special Head<br />

Block Type<br />

<strong>Stand</strong>ard<br />

Contact Blocks<br />

1 N.O. - 1 N.C.<br />

Certifications and Approvals<br />

UL<br />

Listed E14840, E10314; Guide #NKCR, NOIV<br />

CSA LR1234, LR11924, 22.2 #14<br />

CE 60947-5-1<br />

For UL<br />

Certifications<br />

Directory:<br />

http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME/index.htm<br />

Dimensions and Weight


Weight (kg / lbs) 0.15 / 0.33<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2010 Rockwell Automation, Inc. All Rights Reserved.


Product Details and Certifications<br />

Product: 800TC-A2A<br />

Description: 30.5mm Type 4/13 Mom. Contact PB, Non-Illum., Black, Flush Hd, 1 NO-1 NC, Finger Safe Guards<br />

ASSEMBLY<br />

Factory or User Assembled?<br />

Factory Assembled<br />

PUSH BUTTON DATA<br />

Hazardous Location<br />

Finger Safe Guards<br />

Operator Type<br />

Cap/Button Color<br />

Special Mushroom Head<br />

Block Type<br />

Contact Blocks<br />

No<br />

Finger Safe Guards<br />

Flush Head<br />

Black<br />

No Special Head<br />

<strong>Stand</strong>ard<br />

1 N.O. - 1 N.C.<br />

Certifications and Approvals<br />

UL<br />

Listed E14840, E10314; Guide #NKCR, NOIV<br />

CSA LR1234, LR11924, 22.2 #14<br />

CE 60947-5-1<br />

For UL Certifications Directory:<br />

http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm<br />

Dimensions and Weight<br />

Weight (kg / lbs) 0.15 / 0.33


Product Details and Certifications<br />

Product: 800TC-J2H<br />

Description: 30.5mm Type 4/13 3 Pos. Sel. Switch-<br />

Non-Illum., White, Std. Knob Maint., Finger<br />

Safe Guards<br />

ASSEMBLY<br />

Factory or User<br />

Assembled?<br />

Factory Assembled<br />

SELECTOR SWITCH DATA<br />

Hazardous Location No<br />

Finger Safe Guards Finger Safe Guards<br />

Head Type<br />

<strong>Stand</strong>ard Knob<br />

Knob Insert or Metal Wing White<br />

Lever Color<br />

Operator Function Maintained<br />

Target Table Selections () Cam and Contact Blocks<br />

Certifications and Approvals<br />

UL<br />

Listed E14840, E10314; Guide #NKCR, NOIV<br />

CSA LR1234, LR11924, 22.2 #14<br />

CE 60947-5-1<br />

For UL<br />

Certifications<br />

Directory:<br />

http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME/index.htm<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2010 Rockwell Automation, Inc. All Rights Reserved.


9<br />

<br />

<br />

<br />

<br />

<br />

<br />

KEY BENEFITS<br />

Unique protection features - Comprehensive motor protection<br />

plus voltage dependant overload curves, torque metering and<br />

protection, broken rotor bar protection<br />

Most advanced thermal model - Including multiple RTD inputs<br />

for stator thermal protection<br />

Advanced monitoring functions - vibration, bearing temperature<br />

Best in class man machine interface (MMI) - Large backlit<br />

display with 40 characters to view relay information and<br />

settings in direct sunlight, full numerical keypad, and setpoint<br />

navigation keys.<br />

Minimize replacement time - Draw-out construction<br />

Complete asset monitoring - Temperature, Analog I/O, full<br />

metering including demand & energy<br />

<br />

<br />

<br />

<br />

<br />

<br />

Improve uptime of auxiliary equipment - Through I/O monitoring<br />

Reduce troubleshooting time and maintenance costs - Event<br />

reports, waveform capture, data logger<br />

Simplify testing - Built in simulation features<br />

Cost effective Access to information - Via Modbus RTU<br />

protocol, through standard RS232 & RS485 serial ports, and<br />

optional Modbus RTU over TCP/IP through embedded Ethernet<br />

Port to connect to 10MB Ethernet local or wide area networks.<br />

Follow technology evolution - Flash memory for product field<br />

upgrade<br />

Long lasting life when exposed to chemically corrosive and<br />

humid environments with optional conformal coating<br />

<br />

APPLICATIONS<br />

Protection and Management of three phase medium and large horsepower motors and driven equipment, including<br />

high inertia, two speed and reduced-voltage start motors.<br />

FEATURES<br />

Protection and Control<br />

Thermal model biased with RTD and negative sequence<br />

current feedback<br />

Start supervision and inhibit<br />

Mechanical jam<br />

<strong>Voltage</strong> compensated acceleration<br />

Undervoltage, overvoltage<br />

Underfrequency<br />

Stator differential protection<br />

Thermal overload<br />

Overtemperature protection<br />

Phase and ground overcurrent<br />

Current unbalance<br />

Power elements<br />

Torque protection<br />

Dual overload curves for 2 speed motors<br />

Reduced voltage starting control<br />

Monitoring and Metering<br />

A V W var VA PF Hz Wh varh demand<br />

Torque, temperature<br />

Event recorder<br />

Oscillography & Data Logger (trending)<br />

Statistical information & learned motor data<br />

Motor starting reports - NEW<br />

User Interface<br />

Front Panel LEDs, full key pad, and backlit LCD display<br />

RS232, and RS485 ports - up to 19,200 bps<br />

Optional Embedded 10BaseT, 10Mbs ethernet port<br />

ModBus RTU Protocol<br />

ModBus over TCP/IP<br />

Optional Device Net Protocol<br />

Includes EnerVista software<br />

Inputs and Outputs<br />

12 RTDs, programmable<br />

5 pre-defined & 4 assignable digital inputs<br />

6 output relays<br />

4 analog inputs<br />

4 programmable analog outputs<br />

210


469 Motor Protection System<br />

469 SR Motor Protection System<br />

Protection and Control<br />

The 469 is a digital motor protection<br />

system designed to protect and manage<br />

medium and large motors and driven<br />

equipment. It contains a full range of<br />

selectively enabled, self contained<br />

protection and control elements as<br />

detailed in the Functional Block Diagram<br />

and Features table.<br />

Motor Thermal Model<br />

The primary protective function of the 469<br />

is the thermal model with six key elements:<br />

<br />

<br />

<br />

<br />

<br />

<br />

Overload Curves<br />

Unbalance Biasing<br />

Hot/Cold Safe Stall Ratio<br />

Motor Cooling Time Constants<br />

Start Inhibit and Emergency Restart<br />

RTD Biasing<br />

Functional Block Diagram<br />

Overload Curves<br />

The curves can take one of three formats:<br />

standard, custom, or voltage dependent.<br />

For all curve styles, the 469 retains thermal<br />

memory in a thermal capacity used<br />

register which is updated every 0.1 second.<br />

The overload pickup determines where the<br />

running overload curve begins.<br />

The 469 standard overload curves are of<br />

standard shape with a multiplier value of 1<br />

to 15.<br />

The voltage dependent overload curves<br />

are used in high inertia load applications,<br />

where motor acceleration time can<br />

actually exceed the safe stall time and<br />

motor thermal limits. During motor<br />

acceleration, the programmed thermal<br />

overload curve is dynamically adjusted<br />

with reference to the system voltage level.<br />

The selection of the overload curve type<br />

and the shape is based on motor thermal<br />

limit curves provided by motor vendor.<br />

TRIP TIME (seconds)<br />

10000<br />

10,000<br />

1000<br />

1,000<br />

100<br />

10<br />

1<br />

CURVE<br />

15<br />

12<br />

9<br />

7<br />

4<br />

3<br />

2<br />

0.1<br />

1<br />

10<br />

Full Load<br />

Setpoint PHASE CURRENT<br />

(multiples of full load)<br />

819765A8.cdr<br />

Fifteen standard overload curves.<br />

TYPICAL CUSTOM CURVE<br />

6500 HP, 13800 VOLT INDUCED DRAFT FAN MOTOR<br />

1 PROGRAMMED 469 CUSTOM CURVE<br />

2 RUNNING SAFETIME (STATOR LIMIT)<br />

3 ACCELERATION SAFETIME (ROTOR LIMIT)<br />

4 MOTOR CURRENT @ 100% VOLTAGE<br />

5 MOTOR CURRENT @ 80% VOLTAGE<br />

1<br />

9<br />

1<br />

BUS<br />

52<br />

50 50G<br />

TIME TO TRIP IN SECONDS<br />

100<br />

10<br />

2<br />

3<br />

2<br />

27<br />

59 47 81<br />

R2<br />

AUXILIARY<br />

1.0<br />

4<br />

5<br />

3<br />

3<br />

AMBIENT AIR<br />

RTD<br />

MOTOR<br />

STATOR RTDs<br />

BEARING RTDs<br />

LOAD<br />

14<br />

TACHOMETER<br />

DCMA<br />

R1<br />

TRIP<br />

50<br />

50G<br />

87<br />

49<br />

38<br />

METERING<br />

V,A,W,Var,VA,PF,Hz<br />

55<br />

51 49 37 66 46<br />

51G<br />

78<br />

4 ANALOG INPUTS<br />

R3<br />

AUXILIARY<br />

R4<br />

ALARM<br />

R5<br />

BLOCK<br />

START<br />

R6<br />

SERVICE<br />

74<br />

86<br />

4 ISOLATED<br />

ANALOG<br />

OUTPUTS<br />

469<br />

Motor Management System<br />

14<br />

START<br />

RS232<br />

RS485<br />

RS485<br />

Ethernet<br />

0.1<br />

0.5 1.0 10 100 1000<br />

MULTIPLE OF FULL LOAD CURRENT SETPOINT<br />

806803A5.cdr<br />

Typical custom overload curve.<br />

DEVICE PROTECTION<br />

14 Speed switch<br />

19/48 Reduced voltage start and<br />

incomplete sequence<br />

27/59 Undervoltage/Overvoltage<br />

32 Reverse power<br />

Mechanical Jam<br />

Acceleration time<br />

Over Torque<br />

37 Undercurrent/Underpower<br />

38 Bearing RTD<br />

46 Current Unbalance<br />

47 Phase Reversal<br />

49 Stator RTD<br />

50 Short circuit backup<br />

50G/51G Ground overcurrent backup<br />

51 Overload<br />

55 Power factor<br />

66 Starts/hour and time between<br />

starts<br />

81 Frequency<br />

86 Overload lockout<br />

87 Differential<br />

806807A7.cdr<br />

www.GEMultilin.com<br />

211


469 SR Motor Protection System<br />

469 Motor Protection System<br />

9<br />

TIME TO TRIP (SECONDS)<br />

Unbalance (Negative Sequence<br />

Current) Biasing<br />

Negative sequence current, which causes<br />

rotor heating, is not accounted for in the<br />

thermal limit curves supplied by the motor<br />

manufacturer. The 469 measures unbalance<br />

as the ratio of negative to positive<br />

sequence current. The thermal model is<br />

biased to reflect the additional heating.<br />

Motor derating due to current unbalance<br />

can be selected via the setpoint unbalance<br />

bias k factor. Unbalance voltage causes<br />

approximately 6 times higher level of<br />

current unbalance (1% of voltage unbalance<br />

equal to 6% of current unbalance). Note<br />

that the k=8 curve is almost identical to the<br />

NEMA derating curve.<br />

Motor derating factor due to unbalanced voltage<br />

DERATING FACTOR<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

1.00<br />

HIGH INERTIA LOAD OVERLOAD CURVES<br />

8800 HP, 13.2 kV, REACTOR COOLANT PUMP<br />

OVERLOAD THERMAL LIMIT<br />

MOTOR ACCELERATION<br />

CURVE<br />

SAFE STALL TIME<br />

@80% V<br />

ACCELERATION INTERSECTION<br />

@80% V<br />

ACCELERATION THERMAL LIMIT<br />

ACCELERATION INTERSECTION @100% V<br />

CUSTOM CURVE<br />

LOCKED ROTOR THERMAL LIMIT<br />

SAFE STALL TIME@100% V<br />

1 2 3 4 5 6 7 8<br />

MULTIPLES OF FULL LOAD AMPS<br />

806805A3.cdr<br />

An example of a voltage dependent overload<br />

curve; in this example the user has set the<br />

minimum voltage to 80%.<br />

0.95<br />

k=2<br />

0.90<br />

k=4<br />

0.85<br />

k=6<br />

0.80<br />

k=8<br />

0.75<br />

k=10<br />

0.70<br />

0 1 2 3 4 5<br />

PERCENT VOLTAGE UNBALANCE derafacta2.cdr<br />

Hot/Cold Safe Stall Ratio<br />

The Hot/Cold Safe Stall time ratio defines<br />

the steady state level of thermal capacity<br />

used (TCU) by the motor. This level<br />

corresponds to normal operating<br />

temperature of the fully loaded motor and<br />

will be adjusted proportionally if motor<br />

load is lower then rated.<br />

Hot/Cold Safe Stall ratio is used by the<br />

relay to determine the lower limit of the<br />

running cool down curve and also defines<br />

the thermal capacity level of the central<br />

point in RTD Biasing curve.<br />

Thermal Capacity Used<br />

100<br />

75<br />

50<br />

25<br />

Iavg @ 100% FLA<br />

Iavg @ 50% FLA<br />

0<br />

0 50 100 150 200 250<br />

Time in Minutes 806810A3.cdr<br />

Exponential cooldown (hot/cold curve ratio 60%).<br />

Motor Cooling Time Constants<br />

When the 469 detects that the motor is<br />

running at a load lower then overload<br />

pickup setpoint, or the motor is stopped, it<br />

will start reducing the stored TCU value,<br />

simulating actual motor cool down<br />

process. TCU decays exponentially at a<br />

rate dictated by Cooling Time Constants<br />

setpoints. Normally the cooling down<br />

process of the stopped motor is much<br />

slower then of running motor, thus running<br />

and stopped cooling time constants<br />

setpoints are provided in the relay to<br />

reflect the difference.<br />

The TCU lower limit of the running cool<br />

down curve is defined by Hot/Cold Safe<br />

Stall Ratio and level of the motor load. The<br />

TCU lower limit of the stopped cool down<br />

curve is 0% and corresponds to motor at<br />

ambient temperature.<br />

Start Inhibit and Emergency Restart<br />

The Start Inhibit function prevents starting<br />

of a motor when insufficient thermal<br />

capacity is available or motor start<br />

supervision function dictate the start<br />

inhibit. In case of emergency the thermal<br />

capacity used and motor start supervision<br />

timers can be reset to allow the hot motor<br />

starting.<br />

RTD Thermal Capacity Used (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

RTD Bias Minimum<br />

RTD Bias curve.<br />

RTD Bias Maximum<br />

RTD Bias Center<br />

Point<br />

-50 0 50 100 150 200 250<br />

Maximum Stator RTD Temperature (C)<br />

806809A4.cdr<br />

RTD Biasing<br />

The relay thermal replica operates as a<br />

complete and independent model. The<br />

thermal overload curves are based solely<br />

on measured current, assuming a normal<br />

40°C ambient and normal motor cooling.<br />

The actual motor temperature will increase<br />

due to unusually high ambient temperature,<br />

or motor cooling blockage. Use the RTD<br />

bias feature to augment the thermal model<br />

calculation of Thermal Capacity Used,<br />

if the motor stator has embedded RTDs.<br />

The RTD bias feature is feedback of<br />

measured stator temperature. This feedback<br />

acts to correct the assumed thermal<br />

model. Since RTDs have a relatively slow<br />

response, RTD biasing is useful for slow<br />

motor heating. Other portions of the<br />

thermal model are required during starting<br />

and heavy overload conditions when<br />

motor heating is relatively fast.<br />

For RTD temperatures below the RTD BIAS<br />

MINIMUM setting, no biasing occurs. For<br />

maximum stator RTD temperatures above<br />

the RTD BIAS MAXIMUM setting, the<br />

thermal memory is fully biased and forced<br />

to 100%. At values in between, if the RTD<br />

bias thermal capacity used is higher<br />

compared to the thermal capacity used<br />

created by other features of the thermal<br />

model, then this value is used from that<br />

point onward.<br />

212<br />

www.GEMultilin.com


469 Motor Protection System<br />

469 SR Motor Protection System<br />

Motor Start Supervision<br />

Motor Start Supervision consists of the<br />

following features: Time-Between-Starts,<br />

Start-per-Hour, Restart Time.<br />

These elements intend to guard the motor<br />

against excessive starting duty, which are<br />

normally defined by motor manufacturer<br />

in addition to the thermal damage curves.<br />

Mechanical Jam and Acceleration<br />

Time<br />

The function is equipped with overreach<br />

filter, which removes the DC component<br />

from the asymmetrical current present at<br />

the moment a fault occurs or motor starts.<br />

Two pickup levels ( trip and alarm) with<br />

individual time delays are available for<br />

ground fault detection.<br />

Trip Backup feature is also available as<br />

part of this function. The operational<br />

principal of Ground Fault Trip Backup is the<br />

same as of Short Circuit Trip Backup.<br />

RTD Protection<br />

The 469 has 12 programmable RTD inputs<br />

that are normally used for monitoring<br />

temperature of stator, bearings, ambient<br />

temperature and some other parts of<br />

motor assembly that can be exposed to<br />

overheating. Each RTD input has 3<br />

operational levels: alarm, high alarm and<br />

trip.<br />

Relay supports RTD trip voting and<br />

provides open/short RTD failure alarm.<br />

The two elements are used to prevent a<br />

motor damage at the abnormal<br />

operational conditions: such as too long<br />

acceleration time and stalled rotor.<br />

Phase Differential Protection<br />

This function is intended to protect the<br />

stator windings and supplying power<br />

cables of large motors. Two types of<br />

current transformers connections are<br />

supported:<br />

6 CT's externally connected in the<br />

summing configuration.<br />

3 Flux Balancing CT's.<br />

Separate trip pickup levels and time delays<br />

are provided for motor starting and<br />

running conditions.<br />

Short Circuit Trip<br />

This function is intended to protect the<br />

stator windings of the motors against<br />

phase-to-phase faults.<br />

Equipped with an overreach filter, the 469<br />

removes the DC component from the<br />

asymmetrical current present at the<br />

moment a fault occurs or motor starts.<br />

A trip backup feature is also available as<br />

part of this function, used to issue a second<br />

trip if the fault is not cleared within a given<br />

time delay.<br />

Ground Fault<br />

This function is designed to protect motors<br />

against phase to ground faults.<br />

There are two dedicated ground current<br />

inputs in the relay, which support the<br />

following types of ground current<br />

detection.<br />

Core balance (Zero sequence) current<br />

transformer.<br />

Core balance (Zero sequence) 50:0.025 A<br />

(sensitive) current transformer.<br />

Residual connection of phase current<br />

transformers.<br />

<strong>Voltage</strong> and Frequency Protection<br />

Use the voltage and frequency protection<br />

functions to detect abnormal system voltage<br />

and frequency conditions, potentially<br />

hazardous to the motor.<br />

The following voltage elements are available:<br />

Undervoltage<br />

Overvoltage<br />

Over and Underfrequency<br />

Phase Reversal<br />

To avoid nuisance operations, the 469 can<br />

be set to block the undervoltage element<br />

when the bus that supplies power to the<br />

motor is de-energized, or under VT fuse<br />

failure conditions.<br />

Power Elements<br />

The following power elements are<br />

available in 469 relay. The first four<br />

elements have blocking provision during<br />

motor starting.<br />

Power Factor This element is used in<br />

synchronous motors applications to detect<br />

out of synchronism conditions.<br />

Reactive Power This element is used in the<br />

applications where reactive power limit is<br />

specified.<br />

Underpower Used to detect loss of load.<br />

Reverse Active Power Useful to detect<br />

conditions where the motor can become a<br />

generator.<br />

Overtorque This element is used to protect<br />

the driven load from mechanical breakage.<br />

Current Unbalance<br />

In addition to Thermal model biasing<br />

current unbalance is presented in 469<br />

relay as independent element with 2<br />

pickup levels and built-in single phasing<br />

detection algorithm.<br />

Additional and Special Features<br />

Two speed motor protection.<br />

Load averaging filter for cyclic load<br />

applications<br />

Reduced voltage starting supervision.<br />

Variable frequency filter allowing<br />

accurate sensing and calculation of the<br />

analog values in VFD applications.<br />

Analog input differential calculation for<br />

dual drives applications.<br />

Speed counter trip and alarm.<br />

Universal digital counter trip and alarm.<br />

Pulsing KWh and Kvarh output.<br />

Trip coil supervision.<br />

Drawout indicator, Setpoints Access and<br />

Test permit inputs.<br />

Undervoltage Autorestart (additional<br />

element per special order)<br />

Experimental broken rotor bar detection<br />

system (additional element per special<br />

order)<br />

Inputs and Outputs<br />

Current and <strong>Voltage</strong> Inputs<br />

The 469 has two sets of three phase CT<br />

inputs, one for phase current, and one<br />

dedicated for differential protection.<br />

The ratings of the phase current inputs (1A<br />

and 5A) must be specified when ordering<br />

the relay, while the ratings for differential<br />

inputs are field programmable, supporting<br />

both 1A and 5A secondary currents.<br />

There are also 2 one-phase ground CT<br />

inputs: standard input with settable<br />

secondary rating; 5A or 1A, and special<br />

sensitive ground current detection input for<br />

high resistance grounded systems.<br />

Three phase VT inputs support delta and<br />

wye configuration and provide voltage<br />

signals for all voltage and power based<br />

protection elements and metering.<br />

9<br />

www.GEMultilin.com<br />

213


469 SR Motor Protection System<br />

469 Motor Protection System<br />

9<br />

RTD Inputs<br />

The 469 has 12 field programmable RTD<br />

inputs supporting 4 different types of RTD<br />

sensors. These inputs are used for RTD<br />

Temperature protection and also for<br />

thermal model biasing.<br />

Digital Inputs<br />

The 469 has 5 predefined inputs:<br />

Starter Status<br />

Emergency Restart<br />

Remote Reset<br />

Setpoint Access<br />

Test Switch<br />

It also has four assignable digital inputs,<br />

which can be configured to aid the<br />

following functions:<br />

Remote Trip and Alarm<br />

Speed Switch Trip and Tachometer<br />

Vibration Switch Trip and Alarm<br />

Pressure Switch Trip and Alarm<br />

Load Shed Trip<br />

Universal Digital Counter and<br />

Configurable General Switch<br />

External oscillography trigger and<br />

External Relay Fault Simulation<br />

initiation.<br />

Analog Inputs and Outputs<br />

Use the four configurable analog inputs<br />

available in the 469 to measure motor<br />

operation related quantities fed to the<br />

relay from standard transducers. Each<br />

input can be individually set to measure<br />

4-20 mA, 0-20 mA or 0-1 mA transducer<br />

signals. The 469 can also be set to issue<br />

trip or alarm commands base on signal<br />

thresholds.<br />

Use the four configurable analog outputs<br />

available in the 469 to provide standard<br />

transducer signals to local monitoring<br />

equipment. The relay must be ordered<br />

with the hardware to provide the desired<br />

output signal, either 4-20 mA, or 0-1 mA.<br />

The analog outputs can be configured to<br />

provide suitable outputs based on any<br />

measured analog value, or any calculated<br />

quantity.<br />

Output Relays<br />

There are six Form-C output relays<br />

available in the 469. Four relays are<br />

always non-failsafe and can be selectively<br />

assigned to perform trip, or alarm<br />

functions. A non-failsafe block start relay is<br />

also provided, controlled by protection<br />

functions requiring blocking functionality.<br />

Loss of control power or 469 internal<br />

failures are indicated via the failsafe<br />

service relay.<br />

The trip and alarm relays can also be<br />

configured with latching functionality<br />

when their status shall be maintained until<br />

the 469 is manually reset, locally via the<br />

front panel, or remotely via communications.<br />

Monitoring and Metering<br />

The 469 is equipped with monitoring tools<br />

to capture data. The following information<br />

is presented in a suitable format for<br />

analysis:<br />

Monitoring<br />

The 469 is equipped with monitoring tools<br />

to capture data. The following information<br />

is presented in a suitable format.<br />

Status of inputs, outputs and alarms<br />

Last trip data<br />

Motor learned parameters: last and<br />

maximum acceleration times, starting<br />

currents and starting TCU, average<br />

currents, RTD maximums, analog inputs<br />

maximums and minimums.<br />

User Interface<br />

469 STATUS INDICATORS<br />

469 status<br />

Motor status<br />

Output relays<br />

LARGE DISPLAY<br />

Forty character display for viewing<br />

setpoints and actual value messages.<br />

Diagnostic messages are<br />

displayed when there is a trip or<br />

alarm condition. Default messages<br />

are displayed after a period of<br />

inactivity.<br />

NUMERIC KEYPAD<br />

Numeric keys allow for simple<br />

entry of setpoint values. Control<br />

keys allow simple navigation<br />

through setpoint and actual value<br />

message structures. Help key<br />

provides context sensitive help<br />

messages<br />

CONTROL AND<br />

PROGRAMMING KEYS<br />

Menu, Escape, Reset, Enter,<br />

Menu Up, and Menu Down<br />

keys for complete acess<br />

without a computer.<br />

VALUE KEYS<br />

Value Up, and Value Down keys<br />

to change setpoint values<br />

DRAWOUT HANDLE<br />

With provision for a wire<br />

lead seal to prevent unauthorized<br />

removal<br />

PROGRAM PORT INTERFACE<br />

RS232 for connection to a<br />

computer, 9600 baud<br />

214<br />

www.GEMultilin.com


469 Motor Protection System<br />

469 SR Motor Protection System<br />

<br />

<br />

<br />

Trip and general counters, motor running<br />

hours and start timers.<br />

Event recorder<br />

oscillography. 10 waveforms (Ia, Ib, Ic,<br />

Ig, Iadiff, Ibdiff, Icdiff, Va, Vb, Vc)<br />

Metering<br />

The following actual values are accurately<br />

measured and displayed:<br />

Phase, differential and ground currents,<br />

average current, motor load, current<br />

unbalance.<br />

Phase-to-ground and Phase-to-phase<br />

voltages, average phase voltage, system<br />

frequency.<br />

Real, reactive, apparent power, power<br />

factor, watthours, varhours, torque<br />

Current and power demand.<br />

Analog inputs and RTD’s temperature.<br />

Thermal capacity used, lockout times,<br />

motor speed<br />

Event Recording<br />

The event recorder stores motor and<br />

system information with a date and time<br />

stamp each time an event occurs up to 256<br />

events.<br />

Oscillography<br />

The 469 records up to 64 cycles with 12<br />

samples per cycle of waveform data for 10<br />

waveforms (Ia, Ib, Ic, Ig, Diffa, Diffb, Diffc,<br />

Va, Vb, Vc) each time a trip occurs. The<br />

record is date and time stamped.<br />

Simulation<br />

The simulation feature tests the functionality<br />

and relay response to programmed<br />

conditions without the need for external<br />

inputs. When placed in simulation mode<br />

the 469 suspends reading of the actual<br />

inputs and substitutes them with the<br />

simulated values. Pre-trip and fault<br />

conditions can be simulated.<br />

User Interfaces<br />

Keypad and Display<br />

The 469 has a keypad and 40 character<br />

display for local control and programming<br />

without a computer. Up to 20 userselected<br />

default messages can be<br />

displayed when inactive. In the event of a<br />

trip, alarm, or start block, the display will<br />

automatically default to the pertinent<br />

message and the Message LED indicator<br />

will flash.<br />

LED Indicators<br />

The 469 has 22 LED indicators on the front<br />

panel. These give a quick indication of 469<br />

status, motor status, and output relay<br />

status.<br />

Communications<br />

The 469 is equipped with three standard<br />

serial communications ports, one RS232<br />

located in the front panel, and two RS485<br />

in the rear of the relay. One optional<br />

10BaseT Ethernet port is also available<br />

located, when ordered, at the rear of the<br />

relay. The front panel port allows easy<br />

local computer access. The rear ports<br />

provide remote communications or<br />

connection to a DCS, SCADA, or PLC. The<br />

RS232 baud rate is fixed at 9600, while the<br />

RS485 ports are variable from 300 to<br />

19,200 bps. The optional Ethernet port can<br />

be used to connect the 469 to 10 Mbps<br />

Ethernet networks. The three serial ports<br />

support ModBus® RTU protocol, while the<br />

Ethernet port supports ModBus® RTU via<br />

TCP/IP protocol. The communication<br />

system of the 469 is designed to allow<br />

simultaneous communication via all ports.<br />

Using Ethernet as the physical media to<br />

integrate the 469 to Local or Wide Area<br />

Networks, replaces a multidrop-wired<br />

network (e.g., serial Modbus®), and<br />

eliminates expensive leased or dial-up<br />

connections, reducing monthly operating<br />

costs.<br />

Software<br />

The relay comes with the Windows ® -<br />

based EnerVista 469 setup software which<br />

can be used to manipulate and display 469<br />

data. A simple point and click interface<br />

allows setpoint files for each motor to be<br />

stored, printed for verification, and downloaded<br />

to the 469 for error-free setpoint<br />

entry. The entire 469 manual is included as<br />

a help file for quick local access.<br />

EnerVista Software<br />

The 469 comes with EnerVista, an<br />

industry-leading suite of software tools<br />

that simplifies every aspect of working<br />

with GE Multilin devices. EnerVista<br />

software is extremely easy to use and<br />

provides advanced features that help you<br />

maximize your investment in GE Multilin<br />

products.<br />

EnerVista Launchpad<br />

EnerVista Launchpad is a complete set of<br />

powerful device setup and configuration<br />

tools that is included at no extra charge<br />

with the 469.<br />

Set up the 469 - and any other GE<br />

Multilin device - in minutes. Retrieve and<br />

view oscillography and event data at<br />

the click of a button.<br />

Build an instant archive on any PC of the<br />

latest GE Multilin manuals, service<br />

advisories, application notes, specifications<br />

or firmware for your 469.<br />

Automatic document and software<br />

version updates via the Internet and<br />

detailed e-mail notification of new<br />

releases.<br />

EnerVista Viewpoint<br />

EnerVista is a premium workflow-based<br />

toolset that provides engineers and<br />

technicians with everything they need to<br />

monitor, test and troubleshoot GE Multilin<br />

IEDs and manage settings files with ease.<br />

The 469 includes an evaluation version of<br />

EnerVista Viewpoint.<br />

Settings file change control, automatic<br />

error checking and a visual FlexLogic<br />

editor make creating, editing and<br />

storing settings a snap<br />

Plug-and-Play monitoring automatically<br />

creates customized monitoring screens<br />

for your 469 - no programming required<br />

Powerful testing tools help shorten your<br />

commissioning cycle<br />

Quickly retrieve oscillography and event<br />

data when a fault occurs<br />

See the EnerVista Suite section for more<br />

information.<br />

469 Guideform<br />

Specifications<br />

For an electronic version of the 469 guideform<br />

specifications, please visit:<br />

www.GEMultilin.com/specs, fax your<br />

request to 905-201-2098 or email to<br />

literature.multilin@ge.com.<br />

9<br />

www.GEMultilin.com<br />

215


469 SR Motor Protection System<br />

469 Motor Protection System<br />

Typical Wiring<br />

A<br />

CIRCUIT<br />

BREAKER<br />

PHASE A CT<br />

GROUND CT<br />

DIFF.<br />

PHASE A CT<br />

C<br />

B<br />

A<br />

B<br />

C<br />

PHASE B CT<br />

PHASE C CT<br />

DIFF.<br />

PHASE B CT<br />

DIFF.<br />

PHASE C CT<br />

MOTOR<br />

469<br />

POWER<br />

SUPPLY<br />

CAUTION<br />

G12 G11 H12 H11<br />

G2 H1<br />

H2<br />

G1<br />

G6 H6<br />

G7 H7 G8 H8 G9 H9 G10 H10 G3 H3 G4 H4<br />

G5 H5<br />

AUTOMATIC CT<br />

SHORTING TERMINALS<br />

CHECK VOLTAGE RATING<br />

OF THE UNIT BEFORE<br />

APPLYING POWER.<br />

(SEE Pgs. 2-8)<br />

SAFETY<br />

GROUND<br />

FILTER<br />

GROUND<br />

CONTROL<br />

POWER<br />

Va Vb Vc Vcom<br />

PHASE<br />

VOLTAGE INPUTS<br />

1A/5A COM 1A/5A COM 1A/5A COM 1A/5A COM 50:.025 COM 1A/5A COM 1A/5A COM 1A/5A COM<br />

PHASE A PHASE B PHASE C GROUND GROUND PHASE A PHASE B PHASE C<br />

CURRENT INPUTS<br />

DIFFERENTIAL INPUTS<br />

CIRCUIT BREAKER CONTACTS<br />

(52a, 52b) SHOWN FOR<br />

BREAKER OPEN.<br />

9<br />

E12<br />

CONTROL<br />

GROUND<br />

DRAWOUT<br />

BUS<br />

POWER<br />

INDICATOR F12<br />

B1 RTD SHIELD<br />

MOTOR<br />

A1 HOT<br />

RTD #1<br />

TRIP COIL<br />

WINDING<br />

E11<br />

A2 COMPENSATION<br />

1<br />

SUPERVISION F11<br />

A3 RTD RETURN<br />

Multilin 469<br />

A4<br />

A5 g<br />

MOTOR<br />

COMPENSATION<br />

WINDING<br />

RTD #2<br />

2<br />

HOT<br />

Motor Protection System<br />

MOTOR<br />

A6 HOT<br />

STOP<br />

RTD #3<br />

52a<br />

WINDING<br />

A7 COMPENSATION<br />

TRIP<br />

3<br />

E2<br />

A8 RTD RETURN<br />

COIL<br />

MOTOR<br />

R1 TRIP<br />

F1<br />

WINDING<br />

A9 COMPENSATION<br />

RTD #4<br />

E1<br />

4<br />

A10 HOT<br />

F2<br />

MOTOR<br />

A11 HOT<br />

RTD #5<br />

R2 AUXILIARY E3<br />

WINDING<br />

A12 COMPENSATION<br />

5<br />

F3<br />

A13 RTD RETURN<br />

MOTOR<br />

E5<br />

WINDING<br />

A14 COMPENSATION<br />

RTD #6<br />

R3 AUXILIARY F4<br />

6<br />

A15 HOT<br />

E4<br />

MOTOR<br />

D1 HOT<br />

RTD #7<br />

F5<br />

BEARING<br />

D2 COMPENSATION<br />

R4 ALARM<br />

1<br />

E6 ALARM ANNUNCIATOR<br />

D3 RTD RETURN<br />

MOTOR<br />

F6<br />

D4 COMPENSATION<br />

START<br />

BEARING<br />

E8<br />

52b<br />

RTD #8<br />

2<br />

D5 HOT<br />

R5 BLOCK<br />

CLOSE<br />

F7<br />

D6 HOT<br />

START<br />

COIL<br />

PUMP<br />

RTD #9<br />

E7<br />

BEARING<br />

D7 COMPENSATION<br />

1<br />

F8<br />

D8 RTD RETURN<br />

PUMP<br />

R6 SERVICE E9<br />

BEARING<br />

D9 COMPENSATION<br />

RTD #10<br />

F9 SELF TEST ANNUNCIATOR<br />

2<br />

D10 HOT<br />

D11 HOT<br />

PUMP<br />

RTD #11<br />

CASE<br />

D12 COMPENSATION<br />

D13 RTD RETURN<br />

OUTPUT CONTACTS<br />

AMBIENT<br />

D14 COMPENSATION<br />

RTD #12<br />

SHOWN WITH NO<br />

D15 HOT<br />

CONTROL POWER<br />

INDUCTIVE/HALL EFFECT 52a<br />

SENSOR FOR<br />

D16 STARTER STATUS<br />

TACHOMETER<br />

D17 EMERGENCY RESTART<br />

FRONT PANEL LOCAL<br />

CAUTION +24<br />

D18 REMOTE RESET<br />

PROGRAMMING PORT<br />

D19 ASSIGNABLE INPUT 1<br />

D20 ASSIGNABLE INPUT 2<br />

D21 ASSIGNABLE INPUT 3<br />

DO NOT INJECT<br />

D22 ASSIGNABLE INPUT 4<br />

VOLTAGES TO<br />

DIGITAL INPUTS<br />

D23 COMMON<br />

(DRY CONTACT<br />

D24 SWITCH +24Vdc<br />

CONNECTIONS ONLY)<br />

RS232 INTERFACE<br />

C1<br />

ACCESS<br />

C2<br />

RELAY COMPUTER<br />

1 1 8<br />

KEYSWITCH C3<br />

TEST<br />

TXD 2 2 3 RXD<br />

FOR SETPOINT C4<br />

RXD 3 3 2 TXD<br />

4 4 20<br />

ACCESS<br />

DCS<br />

SGND 5 5 7 SGND<br />

6 6 6<br />

COMPUTER<br />

AUXILIARY<br />

ANALOG I/O<br />

7 7 4<br />

8 8 5<br />

RS485<br />

RS485<br />

ANALOG OUTPUTS<br />

ANALOG INPUTS<br />

9 9 22<br />

+ - COM + - COM COM 1+ 2+ 3+ 4+ SHIELD Vdc<br />

+24 1+ 2+ 3+ 4+ COM 9 PIN<br />

CONNECTOR<br />

D25 D26 D27<br />

B2 B3 B4 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27<br />

25 PIN<br />

CONNECTOR<br />

DIGITAL INPUTS<br />

RS232<br />

9 WIRE RS232<br />

120<br />

HUB<br />

120<br />

1nF<br />

1nF<br />

GROUND<br />

COMMUNICATION PORTS<br />

ONLY AT MASTER DEVICE<br />

Ethernet<br />

Option (T)<br />

120<br />

1nF<br />

PERSONAL<br />

COMPUTER RS232<br />

469PC<br />

PROGRAM<br />

COMMON-<br />

COMMON<br />

120 1nF<br />

RS485<br />

PORT<br />

4-20mA<br />

ANALOG<br />

INPUT<br />

PLC<br />

or<br />

COMPUTER<br />

THERMAL CAPACITY<br />

#1+<br />

1 AVG<br />

#2+<br />

STATOR RTDs<br />

#3+<br />

KW<br />

#4+<br />

MOTOR MOTOR LOAD LOAD<br />

BEARING1 BEARING2 BEARING1 BEARING2<br />

SELF POWERED VIBRATION TRANSDUCERS<br />

806751AS.dwg<br />

216<br />

www.GEMultilin.com


469 Motor Protection System<br />

469 SR Motor Protection System<br />

469 Technical Specifications<br />

PROTECTION<br />

PHASE SHORT CIRCUIT<br />

Pickup Level: 4.0 to 20.0 x CT primary in steps of<br />

0.1 of any one phase<br />

Time Delay: 0 to 1000 ms in steps of 10<br />

Pickup Accuracy: as per Phase Current Inputs<br />

Timing Accuracy: +50 ms<br />

Elements: Trip<br />

REDUCED VOLTAGE START<br />

Transition Level: 25 to 300% FLA in steps of 1<br />

Transition Time: 1 to 250 s in steps of 1<br />

Transition Control: Current, Timer, Current and Timer<br />

OVERLOAD/STALL PROTECTION/THERMAL MODEL<br />

Overload Curves: 15 <strong>Stand</strong>ard Overload Curves,<br />

Custom Curve, <strong>Voltage</strong> Dependent<br />

Custom Curve for high inertia<br />

starting (all curves time out against<br />

average phase current)<br />

Curve Biasing Phase Unbalance<br />

Hot/Cold Curve Ratio<br />

Stator RTD<br />

Running Cool Rate<br />

Stopped Cool Rate<br />

Line <strong>Voltage</strong><br />

Overload Pickup: 1.01 to 1.25 (for service factor)<br />

Pickup Accuracy: as per Phase Current Inputs<br />

Timing Accuracy: ±100 ms or ±2% of total time<br />

Elements: Trip and Alarm<br />

MECHANICAL JAM<br />

Pickup Level: 1.01 to 3.00 x FLA in steps of 0.01<br />

of any one phase, blocked on start<br />

Time Delay: 1 to 30 s in steps of 1<br />

Pickup Accuracy: as per Phase Current Inputs<br />

Timing Accuracy: ±0.5 s or ±0.5% of total time<br />

Elements: Trip<br />

UNDERCURRENT<br />

Pickup Level: 0.01 - 0.99 x CT Trip<br />

0.01 - 0.95 x CT Alarm<br />

in steps of 0.01<br />

Time Delay: 1 to 60 s in steps of 1<br />

Block From Start: 0 to 15000 s in steps of 1<br />

Pickup Accuracy: as per Phase Current Inputs<br />

Timing Accuracy: ±0.5 s or ±0.5% of total time<br />

Elements: Trip and Alarm<br />

CURRENT UNBALANCE<br />

Unbalance:<br />

I2 / I1 if Iavg > FLA<br />

I2 / I1 x Iavg / FLA if Iavg < FLA<br />

Range: 0 to 100% UB in steps of 1<br />

Pickup Level: 4 to 40% UB in steps of 1<br />

Time Delay: 1 to 60 s in steps of 1<br />

Pickup Accuracy: ±2%<br />

Timing Accuracy: ±0.5 s or ± 0.5% of total time<br />

Elements: Trip and Alarm<br />

PHASE DIFFERENTIAL<br />

Pickup Level: 0.05 to 1.0 x CT primary in steps<br />

of 0.01 of any one phase<br />

Time Delay: 0 to 1000 ms in steps of 10<br />

Pickup Accuracy: as per Phase Differential Current<br />

Inputs<br />

Timing Accuracy: +50 ms<br />

Elements: Trip<br />

GROUND INSTANTANEOUS<br />

Pickup Level: 0.1 to 1.0 x CT primary in steps of<br />

0.01<br />

Time Delay: 0 to 1000 ms in steps of 10<br />

Pickup Accuracy: as per Ground Current Input<br />

Timing Accuracy: +50 ms<br />

Elements: Trip and Alarm<br />

ACCELERATION TIMER<br />

Pickup:<br />

Transition of no phase current to<br />

> overload pickup<br />

Dropout:<br />

When current falls below overload<br />

pickup<br />

Time Delay: 1.0 to 250.0 s in steps of 0.1<br />

Timing Accuracy: ±100 ms or ± 0.5% of total time<br />

Elements: Trip<br />

JOGGING BLOCK<br />

Starts/Hour: 1 to 5 in steps of 1<br />

Time between Starts: 1 to 500 min.<br />

Timing Accuracy: ±0.5 s or ± 0.5% of total time<br />

Elements: Block<br />

RESTART BLOCK<br />

Time Delay: 1 to 50000 s in steps of 1<br />

Timing Accuracy: ±0.5 s or ± 0.5% of total time<br />

Elements: Block<br />

RTD<br />

Pickup: 1 to 250°C in steps of 1<br />

Pickup Hysteresis: 2°C<br />

Time Delay: 3 s<br />

Elements: Trip and Alarm<br />

UNDERVOLTAGE<br />

Pickup Level:<br />

Motor Starting: 0.60 to 0.99 x Rated in steps of 0.01<br />

Motor Running: 0.60 to 0.99 x Rated in steps of 0.01<br />

any one phase<br />

Time Delay: 0.1 to 60.0 s in steps of 0.1<br />

Pickup Accuracy: as per <strong>Voltage</strong> Inputs<br />

Timing Accuracy: 30% of full scale in Phase A<br />

Overfrequency Pkp:<br />

25.01 to 70.00 in steps of 0.01<br />

Underfrequency Pkp:<br />

20.00 to 60.00 in steps of 0.01<br />

Accuracy: ±0.02 Hz<br />

Time Delay: 0.1 to 60.0 s in steps of 0.1<br />

Timing Accuracy: 2 x CT: ± 1% of 20 x CT<br />

CT Withstand: 1 second at 80 x rated current<br />

2 seconds at 40 x rated current<br />

continuous at 3 x rated current<br />

DIFFERENTIAL CURRENT INPUTS<br />

CT Primary:<br />

1 to 5000 A<br />

CT Secondary: 1 A or 5 A (Set point)<br />

Burden:<br />

Less than 0.2 VA at rated load<br />

Conversion Range: 0.02 to 1 x CT primary Amps<br />

Nominal Frequence: 20 - 70 Hz<br />

Frequency Range: 20 - 120 Hz<br />

Accuracy:<br />

± 0.5% of 1 x CT for 5 A<br />

± 0.5% of 5 x CT for 1 A<br />

CT Withstand: 1 second at 80 x rated current<br />

2 seconds at 40 x rated current<br />

continuous at 3 x rated current<br />

continuous at 3 x rated current<br />

GROUND CURRENT INPUTS<br />

CT Primary:<br />

1 to 5000 A<br />

CT Secondary: 1 A or 5 A (Set point)<br />

Burden:<br />

< 0.2 VA at rated load for 1 A or 5 A<br />

< 0.25 VA for 50:025 at 25 A<br />

Conversion Range: 0.02 to 1 x CT primary Amps<br />

Nominal Frequence: 20 - 70 Hz<br />

Frequency Range: 20 - 120 Hz<br />

Accuracy:<br />

± 0.5% of 1 x CT for 5 A<br />

± 0.5% of 5 x CT for 1 A<br />

± 0.125 A for 50:0.025<br />

CT Withstand: 1 second at 80 x rated current<br />

2 seconds at 40 x rated current<br />

continuous at 3 x rated current<br />

VOLTAGE INPUTS<br />

VT Ratio: 1.00 to 150.00:1 in steps of 0.01<br />

VT Secondary: 273 V AC (full scale)<br />

Conversion Range: 0.05 to 1.00 x full scale<br />

Nominal Frequence: 20 - 70 Hz<br />

Frequency Range: 20 - 120 Hz<br />

Accuracy:<br />

±0.5% of full scale<br />

Max. Continuous: 280 V AC<br />

Burden:<br />

> 500 k<br />

DIGITAL INPUTS<br />

Inputs:<br />

9 opto-isolated inputs<br />

External Switch: dry contact < 400 , or open<br />

collector NPN transistor from<br />

sensor; 6 mA sinking from<br />

internal 4 K pull-up at 24 V DC<br />

with Vce < 4 V DC<br />

469 Sensor Supply: +24 V DC at 20 mA maximum<br />

RTD INPUTS<br />

3 wire RTD Types: 100 Platinum (DIN.43760),<br />

100 Nickel, 120 Nickel,<br />

10 Copper<br />

RTD Sensing 5mA<br />

Current:<br />

Isolation:<br />

36 Vpk<br />

(isolated with analog inputs<br />

and outputs)<br />

Range:<br />

–50 to +250°C<br />

Accuracy:<br />

±2°C<br />

Lead Resistance: 25 Max per lead for Pt and<br />

Ni type<br />

3 Max per lead for Cu type<br />

No Sensor: >1000<br />

Short/<strong>Low</strong> Alarm:: < –50°C<br />

TRIP COIL SUPERVISION<br />

Applicable <strong>Voltage</strong>: 20 to 300 V DC / V AC<br />

Trickle Current: 2 to 5 mA<br />

ANALOG CURRENT INPUTS<br />

Current Inputs:<br />

0 to 1 mA, 0 to 20mA or 4 to<br />

20 mA (setpoint)<br />

Input Impedance: 226 ±10%<br />

Conversion Range: 0 to 21 mA<br />

Accuracy:<br />

±1% of full scale<br />

Type:<br />

passive<br />

Analog In Supply: +24 V DC at 100 mA maximum<br />

Response Time: 100 ms<br />

9<br />

www.GEMultilin.com<br />

217


469 SR Motor Protection System<br />

469 Motor Protection System<br />

9<br />

218<br />

469 Technical Specifications Continued<br />

OUTPUTS<br />

ANALOG OUTPUTS<br />

Type: Active<br />

Range: 4 to 20 mA, 0 to 1 mA<br />

(must be specified with order)<br />

Accuracy: ±1% of full scale<br />

Maximum 4 to 20 mA input: 1200 ,<br />

Load: 0 to 1 mA input: 10 k<br />

Isolation: 36 Vpk<br />

(Isolation with RTDs and Analog<br />

Inputs)<br />

4 Assignable phase A current, phase B current,<br />

Outputs: phase C current, 3 phase average<br />

current, ground current, phase AN<br />

(AB) voltage, phase BN (BC) voltage,<br />

phase CN (CA) voltage, 3 phase<br />

average voltage, hottest stator RTD,<br />

hottest bearing RTD,hottest other<br />

RTD, RTD<br />

# 1 to 12, Power factor, 3-phase Real<br />

power (kW), 3-phase Apparent power<br />

(kVA, 3-phase Reactive power (kvar),<br />

Thermal Capacity Used, Relay<br />

Lockout Time, Current Demand, kvar<br />

Demand, kW Demand, kVA Demand,<br />

Motor Load, Torque<br />

Motor Load, Torque<br />

OUTPUT RELAYS<br />

Configuration: 6 Electromechanical Form C<br />

Contact Material:silver alloy<br />

Operate Time: 10 ms<br />

Max ratings for 100000 operations<br />

MAKE/ MAKE/<br />

VOLTAGE CARRY CARRY BREAK MAX<br />

CONTINUOUS 0.2 SEC LOAD<br />

DC 30 VDC 10 A 30A 10 A 300 W<br />

Resistive 125 VDC 10 A 30A 0.5 A 62.5 W<br />

250 VDC 10 A 30A 0.3 A 75 W<br />

DC 30 VDC 10 A 30A 5 A 150 W<br />

Inductive 125 VDC 10 A 30A 0.25 A 31.3 W<br />

L/R = 40 ms250 VDC 10 A 30A 0.15 A 37.5 W<br />

AC 120 VAC 10 A 30A 10 A 2770 VA<br />

Resistive 250 VAC 10 A 30A 10 A 2770 VA<br />

AC 120 VAC 10 A 30A 4 A 480 VA<br />

Inductive 250 VAC 10 A 30A 3 A 750 VA<br />

P.F. = 0.4<br />

POWER SUPPLY<br />

CONTROL POWER<br />

Options: LO / HI (must be specified with order)<br />

LO Range: DC: 20 to 60 V DC<br />

AC: 20 to 48 V AC at 48 to 62 Hz<br />

Hi Range: DC: 90 to 300 V DC<br />

AC: 70 to 265 V AC at 48 to 62 Hz<br />

Power: 45 VA (max), 25 VA typical<br />

Proper operation time without supply voltage: 30 ms<br />

COMMUNICATIONS<br />

RS232 Port: 1, Front Panel, non-isolated<br />

RS485 Ports: 2, Isolated together at 36 Vpk<br />

Baud Rates: RS485: 300 - 19,200 Baud<br />

programmable parity<br />

RS232: 9600<br />

Parity: None, Odd, Even<br />

Protocol: Modbus ® RTU / half duplex<br />

Ethernet Port: 10BaseT, RJ45 Connector, ModBus ®<br />

RTU over TCP/IP<br />

Ordering<br />

MONITORING<br />

POWER FACTOR<br />

Range: 0.01 lead or lag to 1.00<br />

Pickup Level:<br />

0.99 to 0.05 in steps of 0.01, Lead<br />

& Lag<br />

Time Delay: 0.2 to 30.0 s in steps of 0.1<br />

Block From Start: 0 to 5000 s in steps of 1<br />

Pickup Accuracy: ±0.02<br />

Timing Accuracy: ±100 ms or ±0.5% of total time<br />

Elements: Trip and Alarm<br />

3-PHASE REAL POWER<br />

Range:<br />

0 to ±99999 kW<br />

Underpower Pkp: 1 to 25000 kW in steps of 1<br />

Time Delay: 1 to 30 s in steps of 1<br />

Block From Start: 0 to 15000 s in steps of 1<br />

Pickup Accuracy:<br />

at Iavg < 2 x CT: ±1% of<br />

scale<br />

at Iavg > 2 x CT<br />

3 x 2 x CT x VT x VTfull<br />

±1.5% of 3 x 20 x CT x VT x VTfull<br />

scale<br />

Timing Accuracy: ±0.5 s or ±0.5% of total time<br />

Elements: Trip and Alarm<br />

3-PHASE APPARENT POWER<br />

Range:<br />

0 to 65535 kVA<br />

at Iavg < 2 x CT: ±1% of 3 x 2 x CT x VT x VTfull<br />

scale<br />

at Iavg > 2 x CT±1.5% of 3 x 20 x<br />

CT x VT x VTfull scale<br />

CT x VT x VTfull scale<br />

3-PHASE REACTIVE POWER<br />

Range:<br />

0 to ±99999 kW<br />

Pickup Level: ±1 to 25000 kW in steps of 1<br />

Time Delay: 0.2 to 30.0 s in steps of 1<br />

Block From Start: 0 to 5000 s in steps of 1<br />

Pickup Accuracy:<br />

at Iavg < 2 x CT: ±1% of ?3 x 2 x CT x VT x VTfull scale<br />

at Iavg > 2 x CT: ±1.5% of 3 x 20 x CT x VT x VTfull<br />

scale<br />

Timing Accuracy: ±100 ms or ±0.5% of total time<br />

Elements:<br />

Trip and Alarm<br />

OVERTORQUE<br />

Pickup Level: 1.0 to 999999.9 Nm/ft·lb in steps of<br />

0.1; torque unit is selectable under<br />

torque setup<br />

Time Delay: 0.2 to 30.0 s in steps of 0.1<br />

Pickup Accuracy: ±2.0%<br />

Time Accuracy: ±100 ms or 0.5% of total time<br />

Elements: Alarm (INDUCTION MOTORS ONLY)<br />

METERED REAL ENERGY CONSUMPTION<br />

Description: Continuous total real power<br />

consumption<br />

Range:<br />

0 to 999999.999 MW·hours.<br />

Timing Accuracy: ±0.5%<br />

Update Rate: 5 seconds<br />

METERED REACTIVE ENERGY CONSUMPTION<br />

Description: Continuous total reactive power<br />

consumption<br />

Range:<br />

0 to 999999.999 Mvar·hours<br />

Timing Accuracy: ±0.5%<br />

Update Rate: 5 seconds<br />

METERED REACTIVE POWER GENERATION<br />

Description: Continuous total reactive power<br />

generation<br />

Range:<br />

0 to 2000000.000 Mvar·hours<br />

Timing Accuracy: ±0.5%<br />

Update Rate: 5 seconds<br />

469 * * * * *<br />

469 | Basic Unit<br />

P1<br />

1 A phase CT secondaries<br />

P5<br />

5 A phase CT secondaries<br />

LO<br />

DC: 24 - 60 V; AC: 20 - 48 V @ 48 -62 Hz control power<br />

HI<br />

DC: 90 - 300 V; AC: 70 - 265 V @ 48 -62 Hz control power<br />

A1<br />

0 - 1 mA analog outputs<br />

A20<br />

4 - 20 mA analog outputs<br />

E Enhanced front panel<br />

T Enhanced front panel with Ethernet 10BaseT option<br />

H Harsh (Chemical) Environment Conformal Coating<br />

Accessories<br />

EnerVista:<br />

Included with each relay<br />

DEMO:<br />

Metal carry case in which 469 unit may be mounted<br />

19-1 PANEL: Single cutout 19" panel<br />

19-2 PANEL: Dual cutout 19" panel<br />

SCI MODULE:<br />

RS232 to RS485 converter box designed for<br />

harsh industrial environments<br />

Phase CT: 50, 75, 100, 150, 200, 250, 300, 350, 400, 500, 600, 750, 1000<br />

HGF3, HGF5, HGF8:<br />

For sensitive ground detection on high resistance grounded systems<br />

1 3/8" Collar: For shallow switchgear, reduces the depth of the relay by 1 3/8".<br />

3" Collar: For shallow switchgear, reduces the depth of the relay by 3".<br />

Dual mounting availablewith the 19-2 Panel.IP54 Collar<br />

NOTE: For dimensions see SR Family brochure.<br />

PRODUCT TESTS<br />

Thermal Cycling:<br />

Dielectric Strength:<br />

Operational test at ambient,<br />

reducing to –40°C and then<br />

increasing to 60°C<br />

2.0 kV for 1 minute from relays,<br />

CTs, VTs, power supply to Safety<br />

Ground<br />

TYPE TESTS<br />

Dielectric Strength: Per IEC 255-5 and ANSI/IEEE<br />

C37.90 2.0 kV for 1 minute from<br />

relays, CTs, VTs, power supply to<br />

Safety Ground<br />

Insulation Resistance:<br />

IEC255-5 500 V DC, from relays,<br />

CTs, VTs,power supply to Safety<br />

Ground<br />

Transients: ANSI C37.90.1 Oscillatory (2.5kV/<br />

1MHz); ANSI C37.90.1 Fast Rise<br />

(5kV/10ns); Ontario Hydro A-28M-<br />

82; IEC255-4 Impulse/High<br />

Frequency Disturbance, Class III<br />

Level<br />

Impulse Test: IEC 255-5 0.5 Joule 5 kV<br />

RFI:<br />

EMI:<br />

Static:<br />

Humidity:<br />

Temperature:<br />

Environment:<br />

Vibration:<br />

50 MHz/15 W Transmitter<br />

C37.90.2 Electromagnetic<br />

Interference at 150 MHz and 450<br />

MHz, 10 V/m<br />

IEC 801-2 Static Discharge<br />

95% non-condensing<br />

–40°C to +60°C ambient<br />

IEC 68-2 38Temperature<br />

/Humidity Cycle<br />

Sinusoidal Vibration 8.0 g for 72 hrs.<br />

CERTIFICATION<br />

ISO: Manufactured under an ISO9<strong>001</strong> registered<br />

system.<br />

CSA: CSA approved<br />

CE: Conforms to EN 55011/CISPR 11, EN<br />

50082-2<br />

IEC: Conforms to IEC 947-1,1010-1<br />

ENVIRONMENTAL<br />

Temperature Range:<br />

Operating: -40 °C to +60 °C<br />

Ambient Storage: -40 °C to +80 °C<br />

Ambient Shipping: -40 °C to +80 °C<br />

Humidity:<br />

Up to 90% noncondensing<br />

Pollution degree: 2<br />

IP Rating: 40-X<br />

Accessorize your 469<br />

www.GEMultilin.com<br />

www.GEMultilin.com


Product Details and Certifications<br />

Product Details and Certifications<br />

Product: 700-RTC11200U1<br />

Description: 700-RTC Solid State Timing Module, 1 N.O. /<br />

1 N.C. Inst. Contacts, 2 N.O. / 0 N.C. Timed<br />

Contacts, 120V DC / 110V 50Hz / 120V 60Hz<br />

Representative Photo Only (actual product may vary based on<br />

configuration selections)<br />

NOTES<br />

Please Note:<br />

Please Note:<br />

Not all valid catalog numbers are loaded into the RAISE system.<br />

Please check the PASSPORT system for availability of items. Some<br />

items are non-stock and have a lead time associated with them.<br />

CONTROL RELAY DATA<br />

Remote Potentiometer Provision<br />

Instantaneous Contact Configuration<br />

Timed Contact Configuration<br />

Enclosure Type<br />

No Potentiometer<br />

Instantaneous Contacts: 1 N.O. / 1 N.C.<br />

Timed Contacts: 2 N.O. / 0 N.C.<br />

No Enclosure Necessary<br />

Certifications and Approvals<br />

UL<br />

CSA<br />

For UL Certifications Directory:<br />

http://database.ul.com/cgibin/XYV/template/LISEXT/1FRAME/index.htm<br />

Tools & Resources|Locations|Contact Us|Sitemap|Legal Notices<br />

Copyright © 2011 Rockwell Automation, Inc. All Rights Reserved.<br />

http://raise.rockwellautomation.com/...CID=AEABFDF04F9B4819B5D3D823708F08F8&PIID=RDCPDL.$M$:/PFM/899&tar=899&pg=0[11/29/2011 4:00:47 PM]


Product Details<br />

Product Details<br />

Product:<br />

Description:<br />

700-PK400A1<br />

700-P NEMA<br />

Control Relay , 4 N.<br />

O. Contacts, 20<br />

Amp AC Contact<br />

Rating, 110V 50Hz /<br />

115-120V 60Hz,<br />

Open Type Relay<br />

Rail Mount<br />

CONTROL RELAY DATA<br />

Bulletin Number<br />

Contact Current Rating<br />

Relay Type<br />

Time Delay Contact<br />

Contact Configuration<br />

Bulletin 700-P (AC Coil)<br />

20 Amp AC Current Rating<br />

<strong>Stand</strong>ard Electrically Held Control Relay<br />

Relay w/ <strong>Stand</strong>ard and Time Delay Contacts<br />

4 N.O.<br />

MOUNTING DATA<br />

Mounting Type<br />

Open Type Relay Rail Mount<br />

Certifications and Approvals<br />

UL<br />

CSA<br />

http://raise.rockwellautomation.com/RAConfig/send...CCCABED7E5E&PIID=RDCPDL.$M$:/PFM/958&tar=958&pg=0 (1 of 2)3/17/2006 7:20:48 AM


Product Details<br />

http://raise.rockwellautomation.com/RAConfig/sendsuppl.asp?CID=74D1F748533240379...<br />

Page 1 of 1<br />

4/17/2007<br />

Product Details<br />

Product: 150-F625NBEB<br />

Description: SMC-Flex, Solid State Controller, Open,<br />

625 A, 500 Hp @ 460V AC, Input Volt.:<br />

200...480V, Control Volt.: 100...120V AC,<br />

Pump Control Option<br />

CONTROLLER DATA<br />

Controller Type<br />

Enclosure Type<br />

Input Line <strong>Voltage</strong><br />

Control <strong>Voltage</strong><br />

Bulletin 150, Solid State Controller<br />

Open<br />

200..480V AC, 3-Phase, 50/60Hz<br />

100...120V AC<br />

OPTIONS<br />

Control Options<br />

Pump Control<br />

Locations|Contact|Sitemap|Legal Notices<br />

Copyright © 2007 Rockwell Automation, Inc. All Rights Reserved.


POTENTIAL TRANSFORMERS<br />

THREE PHASE THREE WIRE POTENTIAL TRANSFORMER<br />

Model<br />

2VT469<br />

600V CLASS<br />

FEATURES<br />

• Frequency: 60Hz<br />

• <strong>Stand</strong>ard Secondary <strong>Voltage</strong>: 120VAC<br />

• Insulation Class: 600 volts, 10kV BIL<br />

• UL Recognized<br />

• FOR INDOOR USE ONLY<br />

SPECIFICATIONS<br />

• Accuracy Class:<br />

+ 1% at all burdens up to 5VA at 1.0 and ....<br />

.95 P.F. The transformers are<br />

compensated for + .5% at 5VA, .95 P.F.<br />

• Thermal Rating: 40VA at 30 O C amb.,<br />

27VA at 55 O C.<br />

• Terminals are 6-32 screws with one ....<br />

lockwasher and one flatwasher.<br />

• The core and coil assembly is encased in a ..<br />

thermoplastic shell and filled with resin.<br />

• These transformers are designed for ...<br />

operation line-to-line. They may also be<br />

operated line-to-ground or line-to-neutral<br />

at reduced voltage. (58% of rated volts)<br />

• It is desirable to use a 0.40 Amp fuse in the<br />

secondary to protect the transformer.<br />

• With two exceptions, these transformers are<br />

ANSI C57.13 Group 1. Those marked *<br />

are Group 2.<br />

• Weight: Approximately 4.5 lbs.<br />

® E93779<br />

®<br />

LR89403<br />

MODEL 2VT469 CASE DIMENSIONS<br />

POTENTIAL TRANSFORMERS<br />

ALL DIMENSIONS IN INCHES<br />

2VT469 CONNECTION DIAGRAM<br />

CATALOG<br />

NUMBER<br />

2VT469-069<br />

2VT469-120<br />

2VT469-208<br />

2VT469-240<br />

2VT-469-277<br />

2VT469-288<br />

2VT469-300<br />

2VT469-480<br />

2VT469-600<br />

VOLTAGE<br />

RATING<br />

69:4:120<br />

120:120<br />

208:120<br />

240:120<br />

277:120<br />

288:120<br />

300:120<br />

*480:120<br />

*600:120<br />

TURNS<br />

RATIO<br />

0.58:1<br />

1:1<br />

1.73:1<br />

2:1<br />

2.31:1<br />

2.4:1<br />

2.5:1<br />

4:1<br />

5:1<br />

Div. PHONE (614) 889-6152<br />

MORLAN & ASSOCIATES, INC<br />

TECHNICAL ASSISTANCE (614) 876-8308<br />

6625 McVEY BLVD. - COLUMBUS, OHIO 43235<br />

FAX # (614) 876-8538<br />

40


STANDARD DRIVES TEST ENGINEERING -- DEPARTMENT 292<br />

PowerFlex 70/700 Production Test Process


PowerFlex 70/700 Production Test Process<br />

PowerFlex 70/700 Production Test Flow<br />

Board Level Test:<br />

Control PCB's<br />

Power PCB's<br />

I/O PCB's<br />

Board<br />

Assembly<br />

ICT<br />

Test<br />

Functional<br />

Test<br />

Drive Assembly &<br />

Spares<br />

Drive Level Test:<br />

Drive<br />

Assembly<br />

Hipot /<br />

Ground Bond<br />

Test<br />

Flash<br />

Program<br />

Functional<br />

Test<br />

Run-In<br />

Options/<br />

Final<br />

Assembly<br />

Final<br />

Configuration<br />

Test<br />

Ship<br />

Communication, and HIM Options:<br />

Comm PCB's<br />

HIM PCB's<br />

Board<br />

Assembly<br />

ICT<br />

Test<br />

Option<br />

Assembly<br />

(as Required)<br />

Functional<br />

Test<br />

Stock/Ship<br />

Drive Level Test Overview<br />

• Hipot /Ground Bond Test<br />

‣ 240, 480, and 575 V drives are hipotted at 2100, 2500, 2600 VDC respectively. High voltage is automatically<br />

ramped and held for a 1 second duration.<br />

‣ 120V Control, and Relay I/O is Hipot tested at 2100 V DC.<br />

‣ The ground bond resistance between the PE terminals and chassis is measured by and verified to be less<br />

than 100mΩ.<br />

• Drive Functional Test<br />

‣ Test Configuration: Scan bar code catalog string, and decode Drive Size, Drive Type,<br />

and Drive <strong>Voltage</strong>.<br />

‣ Bus Test : Power up the Drive Under Test (DUT) while measuring Bus <strong>Voltage</strong> and verifying pre-charge<br />

operation. Shutdown if BUS fails to come up, or upon a pre-charge failure.<br />

<strong>Stand</strong>ard Drives<br />

Page 2 of 4<br />

Test Engineering


PowerFlex 70/700 Production Test Process<br />

Drive Level Test Overview (cont.) …<br />

‣ Communication / Parameter Download : Drive default parameters are recalled. DPI communications are<br />

checked at Port 1, Port 2, and Port 5. Test parameters are downloaded to the DUT.<br />

‣ Drive Revision Test : Hardware and Software revisions of the DUT are verified per<br />

the catalog string.<br />

‣ Fan Test : Fan operation is verified.<br />

‣ Discrete I/O Test : Operation of discrete inputs, and relay outputs is verified.<br />

‣ Analog I/O Test : Operation of Analog inputs and outputs is verified.<br />

‣ Velocity Test : The DUT is enabled with a 60 Hz speed command, and the acceleration time is measured.<br />

Once at speed, the dyne speed is measured and output frequency is read from the DUT.<br />

‣ Dynamic Brake Test: With the DUT at base speed and with DB enabled, zero speed is commanded and<br />

deceleration time is measured. The ability of the DUT to achieve zero speed in x seconds with no faults is<br />

verified.<br />

‣ Load Test : 60 Hz is commanded, once at speed the DUT is loaded to 100% rated load (Normal Duty). Input<br />

amps phase R, S, and T is measured and verified to be balanced. Output amps phase U, V, and W is<br />

measured and verified to be at rated amps. Drive Amps is Read from the DUT, and verified to be equal to<br />

measured amps.<br />

‣ Drive Run-In :<br />

- 2 Load Cycles consisting of the following:<br />

1 minute at 110% load @60Hz, 3 minutes at 100% load @60Hz, Drive Stop and Power Cycle.<br />

(See Fig 1).<br />

- Monitor DUT fault status, DUT Output Amps, DUT temperature, and dyne speed.<br />

‣ Default Initialization : Recall and store Drive default parameters for shipment.<br />

• Final Configuration Test<br />

‣ Drive Configuration: Power up DUT, and verify presence and type of installed HIM, and Communication<br />

options per catalog string.<br />

Run-In Load Profile<br />

% Load, % Speed<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 1 2 3 4 5 6 7 8 9<br />

Time (min)<br />

%Load<br />

%Speed<br />

Fig 1.<br />

<strong>Stand</strong>ard Drives<br />

Page 3 of 4<br />

Test Engineering


PowerFlex 70/700 Production Test Process<br />

APPENDIX A : REVISION INFORMATION<br />

DATE: REVISED BY: DESCRIPTION OF CHANGES(s):<br />

9-24-01 DGD Initial Release<br />

<strong>Stand</strong>ard Drives<br />

Page 4 of 4<br />

Test Engineering


TEST<br />

PROCEDURE<br />

Subject:<br />

SSB-HI Water Wastewater - <strong>Stand</strong>ard Drive Test<br />

Procedure<br />

Test No: TEST 5015-09-003<br />

Init. Release Date: 05/13/09<br />

Revision Date: 03/22/11<br />

Page 1 of 5<br />

Prepared By: Jim Neuens<br />

Revised By: J. Neuens<br />

Approved By: D. Danek<br />

1.0 EQUIPMENT NEEDED:<br />

1.1 3 Phase Power Cable/s<br />

1.2 Hand tools.<br />

1.3 HIM (Human Interface Module) if one is not part of job.<br />

1.4 Digital Multimeter.<br />

1.5 Test Motor – unloaded.<br />

1.6 Test Switches.<br />

2.0 GENERAL COMMENTS:<br />

2.1 Use an orange highlighter on schematics to confirm that all circuits are tested.<br />

2.2 Continuity check, point to point any circuits that cannot be verified by powered testing.<br />

3.0 INITIAL SET-UP:<br />

□ 3.1<br />

□ 3.2<br />

□ 3.3<br />

□ 3.4<br />

As a safety precaution, visually inspect the drive under test (DUT) for bad<br />

workmanship. (loose or missing parts, damaged insulation, correct parts installed.)<br />

Ohmically check all fuses. Verify that the power leads, motor leads and ground are not<br />

shorted to each other.<br />

Perform pull-check on control wires to confirm tightness of connections. Verify<br />

“torque mark” on power connections.<br />

Connect HIM to drive, if not part of job.<br />

Simulate all customer digital I/O and analog I/O shown on the schematic.<br />

DO NOT USE A JUMPER IN PLACE OF A SWITCH.<br />

□ 3.5<br />

□ 3.6<br />

□ 3.7<br />

□ 3.8<br />

Set up all dip switches and jumper positions per the schematics.<br />

Connect the 3-phase input power cables to the test unit. SELECT PROPER INPUT<br />

VOLTAGE for customers required voltage. This is indicated on the drive nameplate.<br />

Apply control voltage if customer supplied.<br />

Connect test motor cables.<br />

On 18 Pulse units, connect a test switch in series with the diode bridge heatsink<br />

thermal switch.<br />

4.0 TEST OF ASSEMBLY:


TEST<br />

PROCEDURE<br />

Test No: TEST 5015-09-003<br />

Init. Release Date: 05/13/09<br />

Revision Date: 03/22/11<br />

Page 2 of 5<br />

□ 4.1 Apply power to DUT.<br />

ATTENTION!<br />

Do not cycle power more than 3 times in any 5 minute period, and always allow 1<br />

minute between cycles, as damage to the drive may result from excessive cycling!<br />

□ 4.2<br />

Verify that no fault is indicated on the HIM. Use the HIM or DVM to verify that the<br />

bus voltage is as follows:<br />

Vdc = (Input AC <strong>Voltage</strong>) X 1.414 +/- 10%.<br />

□ 4.3<br />

□ 4.4<br />

□ 4.5<br />

□ 4.6<br />

□ 4.7<br />

□ 4.8<br />

□ 4.9<br />

Verify proper fan direction for all fans per the following:<br />

Fans that are mounted on upper half of cabinet should blow air OUT of cabinet<br />

(Exhaust).<br />

Fans that are mounted on lower half of cabinet should blow air INTO the cabinet<br />

(Intake).<br />

Verify that all Drive FW on this order, is same major revision.<br />

Reset parameters to factory defaults.<br />

Set parameters as indicated on schematic diagram.<br />

Confirm that HIM is functional.<br />

Using a test motor, verify that drive ramps up and down properly when using a speed<br />

potentiometer, HIM, or analog input to control speed. Observe the STOP and START<br />

function.<br />

Verify the function of all digital inputs and digital outputs that are utilized (wired by<br />

manufacturing, or shown used by customer).<br />

□ 4.10 Using a DVM, measure and verify only the utilized analog input and outputs,<br />

according to description on schematic. Typical setup would be as follows:<br />

Analog input 1 ; 4-20ma in = 0 to 60Hz output speed.<br />

Analog input 2 ; If speed pot present, 0-100% = 0 to 60Hz output speed.<br />

Analog output 1 : 0 to 60Hz output speed = 4-20ma out.<br />

□ 4.11 If unit is 18 Pulse, Run drive, simulate AUX fault by opening heatsink test switch<br />

(installed in section 3.0). Drive should stop and Aux Fault should occur. Close<br />

heatsink test switch and clear the fault. Aux fault should clear.<br />

□ 4.12 If present, verify HAND / OFF / AUTO selector switch function per schematic.<br />

Typical operation is as follows:


TEST<br />

PROCEDURE<br />

Test No: TEST 5015-09-003<br />

Init. Release Date: 05/13/09<br />

Revision Date: 03/22/11<br />

Page 3 of 5<br />

HAND - Runs drive, reference from speed pot or HIM.<br />

OFF - Stops and inhibits drive from running.<br />

AUTO - Start/Stop via customer RUN contact, speed reference from external source.<br />

□ 4.13 If bypass is present, operate motor on bypass, and verify same motor rotation<br />

direction, as when operating on VFD. Do not run in bypass (line start motor), if the<br />

motor is coupled to a dyne, since dyne damage could result.<br />

□ 4.14 Verify proper operation of Elasped Time Meter if present.<br />

□ 4.15 If a motor over temperature shutdown device is shown on schematics, verify that the<br />

drive stops upon over temperature trip.<br />

□ 4.16 Test all operator devices and pilot lights wired to the drive per the schematic. Be sure<br />

to test any switches wired as a customer contact in both positions to properly test<br />

functionality of related components.<br />

□ 4.17 Verify all contacts provided for the customer. Verify both states. (open & closed)<br />

□ 4.18 Verify any other custom relay logic per schematic.<br />

□ 4.19 Verify that the green light is present on any communication module that is present.<br />

□ 4.20 Perform any special tests that may be stated in the “Special Test Instructions” section<br />

of the Manufacturing Instruction sheet.<br />

.<br />

□ 4.21 If provided, verify power operation of cabinet air conditioner unit, by lowering the<br />

A/C thermostat until unit turns on. If MI and schematic does not specify the A/C<br />

thermostat setting, ship unit with it set to about 90 degree F (32.2 degree c).<br />

□ 4.22 Remove all power.<br />

5.0 POST TEST CHECKOUT:<br />

□ 5.0<br />

□ 5.1<br />

□ 5.2<br />

□ 5.3<br />

Disconnect all cables and fixtures from the drive under test.<br />

Verify that information on data nameplate is correct.<br />

Re-tighten any hardware disconnected during test.<br />

Set all door switches to off, and turn off the main breaker.


TEST<br />

PROCEDURE<br />

Test No: TEST 5015-09-003<br />

Init. Release Date: 05/13/09<br />

Revision Date: 03/22/11<br />

Page 4 of 5<br />

Tester Name (Print) ________________________________________<br />

Tester Signature<br />

Date<br />

Mequon Order #<br />

Mequon Item #<br />

Cabinet Serial #<br />

________________________________________<br />

________________________________________<br />

________________________________________<br />

________________________________________<br />

________________________________________<br />

Note: This completed form must be scanned and emailed to the Project Manager


TEST<br />

PROCEDURE<br />

Test No: TEST 5015-09-003<br />

Init. Release Date: 05/13/09<br />

Revision Date: 03/22/11<br />

Page 5 of 5<br />

Rev. By Desc.<br />

02/24/10 jhr Added air conditioner check<br />

03/22/11 dgd Added fan operation criteria to sec 4.3 per J.Neuens request.


Customer: The Reynolds Co.<br />

End User: <strong>Garney</strong> <strong>Construction</strong><br />

Systems Project: R1USX00249<br />

Parts Proposal: MP2012187<br />

Item<br />

QTY<br />

No. BOM Part No. Description REC<br />

1 150-F625NBEB SMC FLEX SOLID STATE CONTROLLER, 625 AMP 1<br />

2 ATQR-0.25 FUSE, 0.25 AMP, 600 VOLT 3<br />

3 KTK-R-1 FUSE, 1 AMP, 600 VOLT 3<br />

4 ATQR-7 FUSE, 7 AMP, 600 VOLT 1<br />

5 TRM-9 FUSE, 9 AMP, 250 VOLT 1<br />

6 KRP-C-900SP FUSE, 900 AMP, 600VAC [KRP-C-900SP] 3<br />

7 800T-N318A LAMP, AMBER 2<br />

8 800T-N318G LAMP, GREEN 2<br />

9 800T-N318R LAMP, RED 2<br />

10 800T-N318W LAMP, WHITE 2<br />

11 700-PK400A1 RELAY, CONTROL 1<br />

12 700-RTC11200U1 RELAY, TIMING 1<br />

Revision Number: 00<br />

Date: February 16, 2012<br />

Proposal Costing MP2012187.xls Page 1 of 1


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

0% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.0 K-factor 1.0 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

0.6 % Irms total to Irated 21.3 % Irms total to Irated 0 feet to panel 100.0 % load<br />

0.6 % thermal rating 21.3 % thermal rating<br />

0.0 Irms harmonics 0.0 Irms harmonics 0.0 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

13.4 Irms fundamental 384.5 Irms fundamental 384.5 Irms fundamental 0 feet to panel 100.0 % load<br />

13.4 Irms total 384.5 Irms total 384.5 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

1787.7 Isc/Iload 81.6 Isc/Iload 81.6 Isc/Iload 0 feet to panel 100.0 % load<br />

0.0 % V(THD) Limit 0.0 % V(THD) Limit 0.0 % V(THD) Limit<br />

0.0 % I(TDD) 20.0 0.0 % I(TDD) 12.0 0.0 % I(TDD) 12.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 0.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:15 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

0% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.0 0.0 20.0 1787.7 YES YES YES<br />

PCC2 0.0 0.0 12.0 81.6 YES YES YES<br />

PCC3 0.0 0.0 12.0 81.6 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.0 2092 0 13 13<br />

xfmr2 1500 5.75 480 1.0 1804 0 384 384<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 0.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:15 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

0% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 0.000 0.000 0.000 0.000 0.000 0.000<br />

3 180 0.000 0.000 0.000 0.000 0.000 0.000<br />

4 240 0.000 0.000 0.000 0.000 0.000 0.000<br />

5 300 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 360 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 420 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 480 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 540 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 600 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 660 0.000 0.000 0.000 0.000 0.000 0.000<br />

12 720 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 780 0.000 0.000 0.000 0.000 0.000 0.000<br />

14 840 0.000 0.000 0.000 0.000 0.000 0.000<br />

15 900 0.000 0.000 0.000 0.000 0.000 0.000<br />

16 960 0.000 0.000 0.000 0.000 0.000 0.000<br />

17 1020 0.000 0.000 0.000 0.000 0.000 0.000<br />

18 1080 0.000 0.000 0.000 0.000 0.000 0.000<br />

19 1140 0.000 0.000 0.000 0.000 0.000 0.000<br />

20 1200 0.000 0.000 0.000 0.000 0.000 0.000<br />

21 1260 0.000 0.000 0.000 0.000 0.000 0.000<br />

22 1320 0.000 0.000 0.000 0.000 0.000 0.000<br />

23 1380 0.000 0.000 0.000 0.000 0.000 0.000<br />

24 1440 0.000 0.000 0.000 0.000 0.000 0.000<br />

25 1500 0.000 0.000 0.000 0.000 0.000 0.000<br />

26 1560 0.000 0.000 0.000 0.000 0.000 0.000<br />

27 1620 0.000 0.000 0.000 0.000 0.000 0.000<br />

28 1680 0.000 0.000 0.000 0.000 0.000 0.000<br />

29 1740 0.000 0.000 0.000 0.000 0.000 0.000<br />

30 1800 0.000 0.000 0.000 0.000 0.000 0.000<br />

31 1860 0.000 0.000 0.000 0.000 0.000 0.000<br />

32 1920 0.000 0.000 0.000 0.000 0.000 0.000<br />

33 1980 0.000 0.000 0.000 0.000 0.000 0.000<br />

34 2040 0.000 0.000 0.000 0.000 0.000 0.000<br />

35 2100 0.000 0.000 0.000 0.000 0.000 0.000<br />

36 2160 0.000 0.000 0.000 0.000 0.000 0.000<br />

37 2220 0.000 0.000 0.000 0.000 0.000 0.000<br />

38 2280 0.000 0.000 0.000 0.000 0.000 0.000<br />

39 2340 0.000 0.000 0.000 0.000 0.000 0.000<br />

40 2400 0.000 0.000 0.000 0.000 0.000 0.000<br />

41 2460 0.000 0.000 0.000 0.000 0.000 0.000<br />

42 2520 0.000 0.000 0.000 0.000 0.000 0.000<br />

43 2580 0.000 0.000 0.000 0.000 0.000 0.000<br />

44 2640 0.000 0.000 0.000 0.000 0.000 0.000<br />

45 2700 0.000 0.000 0.000 0.000 0.000 0.000<br />

46 2760 0.000 0.000 0.000 0.000 0.000 0.000<br />

47 2820 0.000 0.000 0.000 0.000 0.000 0.000<br />

48 2880 0.000 0.000 0.000 0.000 0.000 0.000<br />

49 2940 0.000 0.000 0.000 0.000 0.000 0.000<br />

50 3000 0.000 0.000 0.000 0.000 0.000 0.000<br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 0.00 0 0.00 0 0.00 0<br />

Fundamental 13.37 13800 384.48 480 384.48 480<br />

Total 13.37 13800 384.48 480 384.48 480<br />

THD 0.00 0.00 0.00 0.00 0.00 0.00<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:15 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

0% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:15 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

10% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

2.0 K-factor 2.0 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

0.9 % Irms total to Irated 28.4 % Irms total to Irated 0 feet to panel 100.0 % load<br />

0.9 % thermal rating 30.1 % thermal rating<br />

1.7 Irms harmonics 49.3 Irms harmonics 49.3 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

17.8 Irms fundamental 510.8 Irms fundamental 510.8 Irms fundamental 0 feet to panel 100.0 % load<br />

17.8 Irms total 513.1 Irms total 513.1 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

1345.7 Isc/Iload 61.4 Isc/Iload 61.4 Isc/Iload 0 feet to panel 100.0 % load<br />

0.1 % V(THD) Limit 1.7 % V(THD) Limit 1.7 % V(THD) Limit<br />

9.6 % I(TDD) 20.0 9.6 % I(TDD) 12.0 9.6 % I(TDD) 12.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 10.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:17 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

10% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.1 9.6 20.0 1345.7 YES YES YES<br />

PCC2 1.7 9.6 12.0 61.4 YES YES YES<br />

PCC3 1.7 9.6 12.0 61.4 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 2.0 2092 2 18 18<br />

xfmr2 1500 5.75 480 2.0 1804 49 511 513<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 10.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:17 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

10% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 1.887 0.003 1.887 0.064 1.887 0.064<br />

3 180 3.509 0.008 3.509 0.179 3.509 0.179<br />

4 240 0.271 0.<strong>001</strong> 0.271 0.018 0.271 0.018<br />

5 300 6.159 0.023 6.159 0.524 6.159 0.524<br />

6 360 0.037 0.000 0.037 0.004 0.037 0.004<br />

7 420 3.014 0.016 3.014 0.359 3.014 0.359<br />

8 480 0.117 0.<strong>001</strong> 0.117 0.016 0.117 0.016<br />

9 540 0.117 0.<strong>001</strong> 0.117 0.018 0.117 0.018<br />

10 600 0.037 0.000 0.037 0.006 0.037 0.006<br />

11 660 3.082 0.025 3.082 0.577 3.082 0.577<br />

12 720 0.080 0.<strong>001</strong> 0.080 0.016 0.080 0.016<br />

13 780 1.541 0.015 1.541 0.341 1.541 0.341<br />

14 840 0.080 0.<strong>001</strong> 0.080 0.019 0.080 0.019<br />

15 900 0.234 0.003 0.234 0.060 0.234 0.060<br />

16 960 0.037 0.000 0.037 0.010 0.037 0.010<br />

17 1020 2.590 0.033 2.590 0.749 2.590 0.749<br />

18 1080 0.154 0.002 0.154 0.047 0.154 0.047<br />

19 1140 2.983 0.042 2.983 0.965 2.983 0.965<br />

20 1200 0.080 0.<strong>001</strong> 0.080 0.027 0.080 0.027<br />

21 1260 0.154 0.002 0.154 0.055 0.154 0.055<br />

22 1320 0.117 0.002 0.117 0.044 0.117 0.044<br />

23 1380 0.624 0.011 0.624 0.244 0.624 0.244<br />

24 1440 0.117 0.002 0.117 0.048 0.117 0.048<br />

25 1500 0.687 0.013 0.687 0.292 0.687 0.292<br />

26 1560 0.080 0.002 0.080 0.035 0.080 0.035<br />

27 1620 0.117 0.002 0.117 0.054 0.117 0.054<br />

28 1680 0.037 0.<strong>001</strong> 0.037 0.018 0.037 0.018<br />

29 1740 0.917 0.020 0.917 0.453 0.917 0.453<br />

30 1800 0.080 0.002 0.080 0.041 0.080 0.041<br />

31 1860 0.755 0.017 0.755 0.398 0.755 0.398<br />

32 1920 0.002 0.000 0.002 0.<strong>001</strong> 0.002 0.<strong>001</strong><br />

33 1980 0.011 0.000 0.011 0.006 0.011 0.006<br />

34 2040 0.002 0.000 0.002 0.<strong>001</strong> 0.002 0.<strong>001</strong><br />

35 2100 0.178 0.005 0.178 0.106 0.178 0.106<br />

36 2160 0.002 0.000 0.002 0.<strong>001</strong> 0.002 0.<strong>001</strong><br />

37 2220 0.148 0.004 0.148 0.093 0.148 0.093<br />

38 2280 0.002 0.000 0.002 0.<strong>001</strong> 0.002 0.<strong>001</strong><br />

39 2340 0.008 0.000 0.008 0.005 0.008 0.005<br />

40 2400 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

41 2460 0.118 0.004 0.118 0.082 0.118 0.082<br />

42 2520 0.002 0.000 0.002 0.<strong>001</strong> 0.002 0.<strong>001</strong><br />

43 2580 0.101 0.003 0.101 0.074 0.101 0.074<br />

44 2640 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

45 2700 0.007 0.000 0.007 0.005 0.007 0.005<br />

46 2760 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

47 2820 0.090 0.003 0.090 0.072 0.090 0.072<br />

48 2880 0.002 0.000 0.002 0.002 0.002 0.002<br />

49 2940 0.076 0.003 0.076 0.063 0.076 0.063<br />

50 3000 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 1.71 10 49.26 8 49.26 8<br />

Fundamental 17.77 13800 510.77 480 510.77 480<br />

Total 17.85 13800 513.14 480 513.14 480<br />

THD 9.64 0.08 9.64 1.72 9.64 1.72<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:17 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

10% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:17 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

20% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.6 K-factor 1.6 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

1.1 % Irms total to Irated 35.4 % Irms total to Irated 0 feet to panel 100.0 % load<br />

1.1 % thermal rating 36.8 % thermal rating<br />

1.7 Irms harmonics 49.3 Irms harmonics 49.3 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

22.2 Irms fundamental 637.1 Irms fundamental 637.1 Irms fundamental 0 feet to panel 100.0 % load<br />

22.2 Irms total 639.0 Irms total 639.0 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

1078.9 Isc/Iload 49.3 Isc/Iload 49.3 Isc/Iload 0 feet to panel 100.0 % load<br />

0.1 % V(THD) Limit 1.7 % V(THD) Limit 1.7 % V(THD) Limit<br />

7.7 % I(TDD) 20.0 7.7 % I(TDD) 8.0 7.7 % I(TDD) 8.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 20.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:19 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

20% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.1 7.7 20.0 1078.9 YES YES YES<br />

PCC2 1.7 7.7 8.0 49.3 YES YES YES<br />

PCC3 1.7 7.7 8.0 49.3 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.6 2092 2 22 22<br />

xfmr2 1500 5.75 480 1.6 1804 49 637 639<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 20.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:19 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

20% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 1.514 0.003 1.514 0.064 1.514 0.064<br />

3 180 2.815 0.008 2.815 0.179 2.815 0.179<br />

4 240 0.218 0.<strong>001</strong> 0.218 0.018 0.218 0.018<br />

5 300 4.941 0.023 4.941 0.525 4.941 0.525<br />

6 360 0.030 0.000 0.030 0.004 0.030 0.004<br />

7 420 2.418 0.016 2.418 0.359 2.418 0.359<br />

8 480 0.094 0.<strong>001</strong> 0.094 0.016 0.094 0.016<br />

9 540 0.094 0.<strong>001</strong> 0.094 0.018 0.094 0.018<br />

10 600 0.030 0.000 0.030 0.006 0.030 0.006<br />

11 660 2.473 0.025 2.473 0.577 2.473 0.577<br />

12 720 0.064 0.<strong>001</strong> 0.064 0.016 0.064 0.016<br />

13 780 1.236 0.015 1.236 0.341 1.236 0.341<br />

14 840 0.064 0.<strong>001</strong> 0.064 0.019 0.064 0.019<br />

15 900 0.188 0.003 0.188 0.060 0.188 0.060<br />

16 960 0.030 0.000 0.030 0.010 0.030 0.010<br />

17 1020 2.077 0.033 2.077 0.750 2.077 0.750<br />

18 1080 0.124 0.002 0.124 0.047 0.124 0.047<br />

19 1140 2.393 0.042 2.393 0.965 2.393 0.965<br />

20 1200 0.064 0.<strong>001</strong> 0.064 0.027 0.064 0.027<br />

21 1260 0.124 0.002 0.124 0.055 0.124 0.055<br />

22 1320 0.094 0.002 0.094 0.044 0.094 0.044<br />

23 1380 0.500 0.011 0.500 0.244 0.500 0.244<br />

24 1440 0.094 0.002 0.094 0.048 0.094 0.048<br />

25 1500 0.551 0.013 0.551 0.292 0.551 0.292<br />

26 1560 0.064 0.002 0.064 0.036 0.064 0.036<br />

27 1620 0.094 0.002 0.094 0.054 0.094 0.054<br />

28 1680 0.030 0.<strong>001</strong> 0.030 0.018 0.030 0.018<br />

29 1740 0.736 0.020 0.736 0.453 0.736 0.453<br />

30 1800 0.064 0.002 0.064 0.041 0.064 0.041<br />

31 1860 0.606 0.017 0.606 0.399 0.606 0.399<br />

32 1920 0.002 0.000 0.002 0.<strong>001</strong> 0.002 0.<strong>001</strong><br />

33 1980 0.005 0.000 0.005 0.003 0.005 0.003<br />

34 2040 0.002 0.000 0.002 0.<strong>001</strong> 0.002 0.<strong>001</strong><br />

35 2100 0.104 0.003 0.104 0.077 0.104 0.077<br />

36 2160 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

37 2220 0.086 0.003 0.086 0.067 0.086 0.067<br />

38 2280 0.004 0.000 0.004 0.003 0.004 0.003<br />

39 2340 0.005 0.000 0.005 0.004 0.005 0.004<br />

40 2400 0.004 0.000 0.004 0.003 0.004 0.003<br />

41 2460 0.080 0.003 0.080 0.070 0.080 0.070<br />

42 2520 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

43 2580 0.065 0.003 0.065 0.059 0.065 0.059<br />

44 2640 0.004 0.000 0.004 0.004 0.004 0.004<br />

45 2700 0.004 0.000 0.004 0.004 0.004 0.004<br />

46 2760 0.003 0.000 0.003 0.003 0.003 0.003<br />

47 2820 0.066 0.003 0.066 0.066 0.066 0.066<br />

48 2880 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

49 2940 0.053 0.002 0.053 0.055 0.053 0.055<br />

50 3000 0.003 0.000 0.003 0.003 0.003 0.003<br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 1.71 10 49.28 8 49.28 8<br />

Fundamental 22.16 13800 637.07 480 637.07 480<br />

Total 22.23 13800 638.98 480 638.98 480<br />

THD 7.74 0.07 7.74 1.72 7.74 1.72<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:19 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

20% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:19 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

30% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.5 K-factor 1.5 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

1.3 % Irms total to Irated 42.4 % Irms total to Irated 0 feet to panel 100.0 % load<br />

1.3 % thermal rating 43.5 % thermal rating<br />

1.7 Irms harmonics 49.5 Irms harmonics 49.5 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

26.6 Irms fundamental 763.4 Irms fundamental 763.4 Irms fundamental 0 feet to panel 100.0 % load<br />

26.6 Irms total 765.0 Irms total 765.0 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

900.4 Isc/Iload 41.1 Isc/Iload 41.1 Isc/Iload 0 feet to panel 100.0 % load<br />

0.1 % V(THD) Limit 1.7 % V(THD) Limit 1.7 % V(THD) Limit<br />

6.5 % I(TDD) 15.0 6.5 % I(TDD) 8.0 6.5 % I(TDD) 8.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 30.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:20 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

30% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.1 6.5 15.0 900.4 YES YES YES<br />

PCC2 1.7 6.5 8.0 41.1 YES YES YES<br />

PCC3 1.7 6.5 8.0 41.1 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.5 2092 2 27 27<br />

xfmr2 1500 5.75 480 1.5 1804 50 763 765<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 30.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:20 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

30% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 1.270 0.003 1.270 0.065 1.270 0.065<br />

3 180 2.362 0.008 2.362 0.180 2.362 0.180<br />

4 240 0.183 0.<strong>001</strong> 0.183 0.019 0.183 0.019<br />

5 300 4.145 0.023 4.145 0.527 4.145 0.527<br />

6 360 0.025 0.000 0.025 0.004 0.025 0.004<br />

7 420 2.029 0.016 2.029 0.361 2.029 0.361<br />

8 480 0.079 0.<strong>001</strong> 0.079 0.016 0.079 0.016<br />

9 540 0.079 0.<strong>001</strong> 0.079 0.018 0.079 0.018<br />

10 600 0.025 0.000 0.025 0.006 0.025 0.006<br />

11 660 2.074 0.025 2.074 0.580 2.074 0.580<br />

12 720 0.054 0.<strong>001</strong> 0.054 0.016 0.054 0.016<br />

13 780 1.037 0.015 1.037 0.343 1.037 0.343<br />

14 840 0.054 0.<strong>001</strong> 0.054 0.019 0.054 0.019<br />

15 900 0.158 0.003 0.158 0.060 0.158 0.060<br />

16 960 0.025 0.000 0.025 0.010 0.025 0.010<br />

17 1020 1.743 0.033 1.743 0.754 1.743 0.754<br />

18 1080 0.104 0.002 0.104 0.048 0.104 0.048<br />

19 1140 2.007 0.042 2.007 0.970 2.007 0.970<br />

20 1200 0.054 0.<strong>001</strong> 0.054 0.027 0.054 0.027<br />

21 1260 0.104 0.002 0.104 0.055 0.104 0.055<br />

22 1320 0.079 0.002 0.079 0.044 0.079 0.044<br />

23 1380 0.420 0.011 0.420 0.246 0.420 0.246<br />

24 1440 0.079 0.002 0.079 0.048 0.079 0.048<br />

25 1500 0.462 0.013 0.462 0.294 0.462 0.294<br />

26 1560 0.054 0.002 0.054 0.036 0.054 0.036<br />

27 1620 0.079 0.002 0.079 0.054 0.079 0.054<br />

28 1680 0.025 0.<strong>001</strong> 0.025 0.018 0.025 0.018<br />

29 1740 0.617 0.020 0.617 0.455 0.617 0.455<br />

30 1800 0.054 0.002 0.054 0.041 0.054 0.041<br />

31 1860 0.508 0.017 0.508 0.401 0.508 0.401<br />

32 1920 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

33 1980 0.003 0.000 0.003 0.003 0.003 0.003<br />

34 2040 0.002 0.000 0.002 0.002 0.002 0.002<br />

35 2100 0.081 0.003 0.081 0.072 0.081 0.072<br />

36 2160 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

37 2220 0.066 0.003 0.066 0.062 0.066 0.062<br />

38 2280 0.004 0.000 0.004 0.004 0.004 0.004<br />

39 2340 0.004 0.000 0.004 0.004 0.004 0.004<br />

40 2400 0.003 0.000 0.003 0.004 0.003 0.004<br />

41 2460 0.066 0.003 0.066 0.069 0.066 0.069<br />

42 2520 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

43 2580 0.053 0.003 0.053 0.058 0.053 0.058<br />

44 2640 0.004 0.000 0.004 0.005 0.004 0.005<br />

45 2700 0.003 0.000 0.003 0.003 0.003 0.003<br />

46 2760 0.003 0.000 0.003 0.004 0.003 0.004<br />

47 2820 0.053 0.003 0.053 0.063 0.053 0.063<br />

48 2880 0.000 0.000 0.000 0.000 0.000 0.000<br />

49 2940 0.043 0.002 0.043 0.054 0.043 0.054<br />

50 3000 0.003 0.000 0.003 0.004 0.003 0.004<br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 1.72 10 49.54 8 49.54 8<br />

Fundamental 26.55 13800 763.37 480 763.37 480<br />

Total 26.61 13800 764.98 480 764.98 480<br />

THD 6.49 0.08 6.49 1.72 6.49 1.72<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:20 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

30% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:20 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

40% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.3 K-factor 1.3 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

1.5 % Irms total to Irated 49.4 % Irms total to Irated 0 feet to panel 100.0 % load<br />

1.5 % thermal rating 50.4 % thermal rating<br />

1.7 Irms harmonics 49.5 Irms harmonics 49.5 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

30.9 Irms fundamental 889.7 Irms fundamental 889.7 Irms fundamental 0 feet to panel 100.0 % load<br />

31.0 Irms total 891.0 Irms total 891.0 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

772.6 Isc/Iload 35.3 Isc/Iload 35.3 Isc/Iload 0 feet to panel 100.0 % load<br />

0.1 % V(THD) Limit 1.7 % V(THD) Limit 1.7 % V(THD) Limit<br />

5.6 % I(TDD) 15.0 5.6 % I(TDD) 8.0 5.6 % I(TDD) 8.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 40.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:21 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

40% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.1 5.6 15.0 772.6 YES YES YES<br />

PCC2 1.7 5.6 8.0 35.3 YES YES YES<br />

PCC3 1.7 5.6 8.0 35.3 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.3 2092 2 31 31<br />

xfmr2 1500 5.75 480 1.3 1804 50 890 891<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 40.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:21 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

40% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 1.089 0.003 1.089 0.065 1.089 0.065<br />

3 180 2.025 0.008 2.025 0.180 2.025 0.180<br />

4 240 0.157 0.<strong>001</strong> 0.157 0.019 0.157 0.019<br />

5 300 3.554 0.023 3.554 0.527 3.554 0.527<br />

6 360 0.021 0.000 0.021 0.004 0.021 0.004<br />

7 420 1.739 0.016 1.739 0.361 1.739 0.361<br />

8 480 0.068 0.<strong>001</strong> 0.068 0.016 0.068 0.016<br />

9 540 0.068 0.<strong>001</strong> 0.068 0.018 0.068 0.018<br />

10 600 0.021 0.000 0.021 0.006 0.021 0.006<br />

11 660 1.779 0.025 1.779 0.580 1.779 0.580<br />

12 720 0.046 0.<strong>001</strong> 0.046 0.016 0.046 0.016<br />

13 780 0.889 0.015 0.889 0.343 0.889 0.343<br />

14 840 0.046 0.<strong>001</strong> 0.046 0.019 0.046 0.019<br />

15 900 0.135 0.003 0.135 0.060 0.135 0.060<br />

16 960 0.021 0.000 0.021 0.010 0.021 0.010<br />

17 1020 1.494 0.033 1.494 0.753 1.494 0.753<br />

18 1080 0.089 0.002 0.089 0.047 0.089 0.047<br />

19 1140 1.721 0.042 1.721 0.970 1.721 0.970<br />

20 1200 0.046 0.<strong>001</strong> 0.046 0.027 0.046 0.027<br />

21 1260 0.089 0.002 0.089 0.055 0.089 0.055<br />

22 1320 0.068 0.002 0.068 0.044 0.068 0.044<br />

23 1380 0.360 0.011 0.360 0.245 0.360 0.245<br />

24 1440 0.068 0.002 0.068 0.048 0.068 0.048<br />

25 1500 0.396 0.013 0.396 0.294 0.396 0.294<br />

26 1560 0.046 0.002 0.046 0.036 0.046 0.036<br />

27 1620 0.068 0.002 0.068 0.054 0.068 0.054<br />

28 1680 0.021 0.<strong>001</strong> 0.021 0.018 0.021 0.018<br />

29 1740 0.529 0.020 0.529 0.455 0.529 0.455<br />

30 1800 0.046 0.002 0.046 0.041 0.046 0.041<br />

31 1860 0.436 0.017 0.436 0.400 0.436 0.400<br />

32 1920 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

33 1980 0.004 0.000 0.004 0.004 0.004 0.004<br />

34 2040 0.002 0.000 0.002 0.002 0.002 0.002<br />

35 2100 0.074 0.003 0.074 0.077 0.074 0.077<br />

36 2160 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

37 2220 0.059 0.003 0.059 0.065 0.059 0.065<br />

38 2280 0.002 0.000 0.002 0.003 0.002 0.003<br />

39 2340 0.004 0.000 0.004 0.005 0.004 0.005<br />

40 2400 0.002 0.000 0.002 0.002 0.002 0.002<br />

41 2460 0.054 0.003 0.054 0.066 0.054 0.066<br />

42 2520 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

43 2580 0.045 0.003 0.045 0.058 0.045 0.058<br />

44 2640 0.002 0.000 0.002 0.003 0.002 0.003<br />

45 2700 0.002 0.000 0.002 0.003 0.002 0.003<br />

46 2760 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

47 2820 0.040 0.002 0.040 0.056 0.040 0.056<br />

48 2880 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

49 2940 0.035 0.002 0.035 0.050 0.035 0.050<br />

50 3000 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 1.72 10 49.51 8 49.51 8<br />

Fundamental 30.94 13800 889.67 480 889.67 480<br />

Total 30.99 13800 891.04 480 891.04 480<br />

THD 5.56 0.08 5.56 1.72 5.56 1.72<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:21 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

40% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:21 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

50% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.3 K-factor 1.3 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

1.7 % Irms total to Irated 56.4 % Irms total to Irated 0 feet to panel 100.0 % load<br />

1.7 % thermal rating 57.3 % thermal rating<br />

1.8 Irms harmonics 50.4 Irms harmonics 50.4 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

35.3 Irms fundamental 1016.0 Irms fundamental 1016.0 Irms fundamental 0 feet to panel 100.0 % load<br />

35.4 Irms total 1017.2 Irms total 1017.2 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

676.5 Isc/Iload 30.9 Isc/Iload 30.9 Isc/Iload 0 feet to panel 100.0 % load<br />

0.1 % V(THD) Limit 1.8 % V(THD) Limit 1.8 % V(THD) Limit<br />

5.0 % I(TDD) 15.0 5.0 % I(TDD) 8.0 5.0 % I(TDD) 8.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 50.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:22 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

50% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.1 5.0 15.0 676.5 YES YES YES<br />

PCC2 1.8 5.0 8.0 30.9 YES YES YES<br />

PCC3 1.8 5.0 8.0 30.9 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.3 2092 2 35 35<br />

xfmr2 1500 5.75 480 1.3 1804 50 1016 1017<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 50.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:22 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

50% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 0.970 0.003 0.970 0.066 0.970 0.066<br />

3 180 1.804 0.008 1.804 0.183 1.804 0.183<br />

4 240 0.139 0.<strong>001</strong> 0.139 0.019 0.139 0.019<br />

5 300 3.166 0.023 3.166 0.536 3.166 0.536<br />

6 360 0.019 0.000 0.019 0.004 0.019 0.004<br />

7 420 1.549 0.016 1.549 0.367 1.549 0.367<br />

8 480 0.060 0.<strong>001</strong> 0.060 0.016 0.060 0.016<br />

9 540 0.060 0.<strong>001</strong> 0.060 0.018 0.060 0.018<br />

10 600 0.019 0.000 0.019 0.006 0.019 0.006<br />

11 660 1.585 0.026 1.585 0.590 1.585 0.590<br />

12 720 0.041 0.<strong>001</strong> 0.041 0.017 0.041 0.017<br />

13 780 0.792 0.015 0.792 0.349 0.792 0.349<br />

14 840 0.041 0.<strong>001</strong> 0.041 0.020 0.041 0.020<br />

15 900 0.120 0.003 0.120 0.061 0.120 0.061<br />

16 960 0.019 0.000 0.019 0.010 0.019 0.010<br />

17 1020 1.331 0.033 1.331 0.766 1.331 0.766<br />

18 1080 0.079 0.002 0.079 0.048 0.079 0.048<br />

19 1140 1.533 0.043 1.533 0.986 1.533 0.986<br />

20 1200 0.041 0.<strong>001</strong> 0.041 0.028 0.041 0.028<br />

21 1260 0.079 0.002 0.079 0.056 0.079 0.056<br />

22 1320 0.060 0.002 0.060 0.045 0.060 0.045<br />

23 1380 0.321 0.011 0.321 0.250 0.321 0.250<br />

24 1440 0.060 0.002 0.060 0.049 0.060 0.049<br />

25 1500 0.353 0.013 0.353 0.299 0.353 0.299<br />

26 1560 0.041 0.002 0.041 0.036 0.041 0.036<br />

27 1620 0.060 0.002 0.060 0.055 0.060 0.055<br />

28 1680 0.019 0.<strong>001</strong> 0.019 0.018 0.019 0.018<br />

29 1740 0.472 0.020 0.472 0.463 0.472 0.463<br />

30 1800 0.041 0.002 0.041 0.042 0.041 0.042<br />

31 1860 0.388 0.018 0.388 0.407 0.388 0.407<br />

32 1920 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

33 1980 0.004 0.000 0.004 0.004 0.004 0.004<br />

34 2040 0.002 0.000 0.002 0.002 0.002 0.002<br />

35 2100 0.069 0.004 0.069 0.081 0.069 0.081<br />

36 2160 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

37 2220 0.055 0.003 0.055 0.068 0.055 0.068<br />

38 2280 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

39 2340 0.004 0.000 0.004 0.005 0.004 0.005<br />

40 2400 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

41 2460 0.047 0.003 0.047 0.065 0.047 0.065<br />

42 2520 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

43 2580 0.040 0.003 0.040 0.059 0.040 0.059<br />

44 2640 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

45 2700 0.002 0.000 0.002 0.003 0.002 0.003<br />

46 2760 0.000 0.000 0.000 0.000 0.000 0.000<br />

47 2820 0.033 0.002 0.033 0.052 0.033 0.052<br />

48 2880 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

49 2940 0.029 0.002 0.029 0.049 0.029 0.049<br />

50 3000 0.000 0.000 0.000 0.<strong>001</strong> 0.000 0.<strong>001</strong><br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 1.75 11 50.36 8 50.36 8<br />

Fundamental 35.34 13800 1015.97 480 1015.97 480<br />

Total 35.38 13800 1017.21 480 1017.21 480<br />

THD 4.96 0.08 4.96 1.75 4.96 1.75<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:22 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

50% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:22 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

60% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.2 K-factor 1.2 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

1.9 % Irms total to Irated 63.4 % Irms total to Irated 0 feet to panel 100.0 % load<br />

1.9 % thermal rating 64.2 % thermal rating<br />

1.8 Irms harmonics 50.4 Irms harmonics 50.4 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

39.7 Irms fundamental 1142.3 Irms fundamental 1142.3 Irms fundamental 0 feet to panel 100.0 % load<br />

39.8 Irms total 1143.4 Irms total 1143.4 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

601.7 Isc/Iload 27.5 Isc/Iload 27.5 Isc/Iload 0 feet to panel 100.0 % load<br />

0.1 % V(THD) Limit 1.8 % V(THD) Limit 1.8 % V(THD) Limit<br />

4.4 % I(TDD) 15.0 4.4 % I(TDD) 8.0 4.4 % I(TDD) 8.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 60.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:22 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

60% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.1 4.4 15.0 601.7 YES YES YES<br />

PCC2 1.8 4.4 8.0 27.5 YES YES YES<br />

PCC3 1.8 4.4 8.0 27.5 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.2 2092 2 40 40<br />

xfmr2 1500 5.75 480 1.2 1804 50 1142 1143<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 60.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:22 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

60% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 0.863 0.003 0.863 0.066 0.863 0.066<br />

3 180 1.605 0.008 1.605 0.183 1.605 0.183<br />

4 240 0.124 0.<strong>001</strong> 0.124 0.019 0.124 0.019<br />

5 300 2.817 0.023 2.817 0.536 2.817 0.536<br />

6 360 0.017 0.000 0.017 0.004 0.017 0.004<br />

7 420 1.379 0.016 1.379 0.367 1.379 0.367<br />

8 480 0.054 0.<strong>001</strong> 0.054 0.016 0.054 0.016<br />

9 540 0.054 0.<strong>001</strong> 0.054 0.018 0.054 0.018<br />

10 600 0.017 0.000 0.017 0.006 0.017 0.006<br />

11 660 1.410 0.026 1.410 0.590 1.410 0.590<br />

12 720 0.037 0.<strong>001</strong> 0.037 0.017 0.037 0.017<br />

13 780 0.705 0.015 0.705 0.349 0.705 0.349<br />

14 840 0.037 0.<strong>001</strong> 0.037 0.020 0.037 0.020<br />

15 900 0.107 0.003 0.107 0.061 0.107 0.061<br />

16 960 0.017 0.000 0.017 0.010 0.017 0.010<br />

17 1020 1.184 0.033 1.184 0.766 1.184 0.766<br />

18 1080 0.071 0.002 0.071 0.048 0.071 0.048<br />

19 1140 1.364 0.043 1.364 0.987 1.364 0.987<br />

20 1200 0.037 0.<strong>001</strong> 0.037 0.028 0.037 0.028<br />

21 1260 0.071 0.002 0.071 0.056 0.071 0.056<br />

22 1320 0.054 0.002 0.054 0.045 0.054 0.045<br />

23 1380 0.285 0.011 0.285 0.250 0.285 0.250<br />

24 1440 0.054 0.002 0.054 0.049 0.054 0.049<br />

25 1500 0.314 0.013 0.314 0.299 0.314 0.299<br />

26 1560 0.037 0.002 0.037 0.036 0.037 0.036<br />

27 1620 0.054 0.002 0.054 0.055 0.054 0.055<br />

28 1680 0.017 0.<strong>001</strong> 0.017 0.018 0.017 0.018<br />

29 1740 0.420 0.020 0.420 0.463 0.420 0.463<br />

30 1800 0.037 0.002 0.037 0.042 0.037 0.042<br />

31 1860 0.345 0.018 0.345 0.407 0.345 0.407<br />

32 1920 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

33 1980 0.003 0.000 0.003 0.004 0.003 0.004<br />

34 2040 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

35 2100 0.064 0.004 0.064 0.085 0.064 0.085<br />

36 2160 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

37 2220 0.051 0.003 0.051 0.072 0.051 0.072<br />

38 2280 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

39 2340 0.004 0.000 0.004 0.005 0.004 0.005<br />

40 2400 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

41 2460 0.043 0.003 0.043 0.067 0.043 0.067<br />

42 2520 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

43 2580 0.037 0.003 0.037 0.060 0.037 0.060<br />

44 2640 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

45 2700 0.002 0.000 0.002 0.003 0.002 0.003<br />

46 2760 0.000 0.000 0.000 0.000 0.000 0.000<br />

47 2820 0.030 0.002 0.030 0.053 0.030 0.053<br />

48 2880 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

49 2940 0.027 0.002 0.027 0.050 0.027 0.050<br />

50 3000 0.000 0.000 0.000 0.<strong>001</strong> 0.000 0.<strong>001</strong><br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 1.75 11 50.38 8 50.38 8<br />

Fundamental 39.73 13800 1142.26 480 1142.26 480<br />

Total 39.77 13800 1143.38 480 1143.38 480<br />

THD 4.41 0.08 4.41 1.75 4.41 1.75<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:22 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

60% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:22 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

70% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.2 K-factor 1.2 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

2.1 % Irms total to Irated 70.4 % Irms total to Irated 0 feet to panel 100.0 % load<br />

2.1 % thermal rating 71.1 % thermal rating<br />

1.8 Irms harmonics 50.5 Irms harmonics 50.5 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

44.1 Irms fundamental 1268.6 Irms fundamental 1268.6 Irms fundamental 0 feet to panel 100.0 % load<br />

44.2 Irms total 1269.6 Irms total 1269.6 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

541.8 Isc/Iload 24.7 Isc/Iload 24.7 Isc/Iload 0 feet to panel 100.0 % load<br />

0.1 % V(THD) Limit 1.8 % V(THD) Limit 1.8 % V(THD) Limit<br />

4.0 % I(TDD) 15.0 4.0 % I(TDD) 8.0 4.0 % I(TDD) 8.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 70.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:23 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

70% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.1 4.0 15.0 541.8 YES YES YES<br />

PCC2 1.8 4.0 8.0 24.7 YES YES YES<br />

PCC3 1.8 4.0 8.0 24.7 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.2 2092 2 44 44<br />

xfmr2 1500 5.75 480 1.2 1804 50 1269 1270<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 70.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:23 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

70% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 0.778 0.003 0.778 0.066 0.778 0.066<br />

3 180 1.447 0.008 1.447 0.184 1.447 0.184<br />

4 240 0.112 0.<strong>001</strong> 0.112 0.019 0.112 0.019<br />

5 300 2.540 0.023 2.540 0.537 2.540 0.537<br />

6 360 0.015 0.000 0.015 0.004 0.015 0.004<br />

7 420 1.243 0.016 1.243 0.368 1.243 0.368<br />

8 480 0.048 0.<strong>001</strong> 0.048 0.016 0.048 0.016<br />

9 540 0.048 0.<strong>001</strong> 0.048 0.018 0.048 0.018<br />

10 600 0.015 0.000 0.015 0.006 0.015 0.006<br />

11 660 1.271 0.026 1.271 0.591 1.271 0.591<br />

12 720 0.033 0.<strong>001</strong> 0.033 0.017 0.033 0.017<br />

13 780 0.636 0.015 0.636 0.349 0.636 0.349<br />

14 840 0.033 0.<strong>001</strong> 0.033 0.020 0.033 0.020<br />

15 900 0.097 0.003 0.097 0.061 0.097 0.061<br />

16 960 0.015 0.000 0.015 0.010 0.015 0.010<br />

17 1020 1.068 0.034 1.068 0.768 1.068 0.768<br />

18 1080 0.064 0.002 0.064 0.048 0.064 0.048<br />

19 1140 1.230 0.043 1.230 0.988 1.230 0.988<br />

20 1200 0.033 0.<strong>001</strong> 0.033 0.028 0.033 0.028<br />

21 1260 0.064 0.002 0.064 0.056 0.064 0.056<br />

22 1320 0.048 0.002 0.048 0.045 0.048 0.045<br />

23 1380 0.257 0.011 0.257 0.250 0.257 0.250<br />

24 1440 0.048 0.002 0.048 0.049 0.048 0.049<br />

25 1500 0.283 0.013 0.283 0.299 0.283 0.299<br />

26 1560 0.033 0.002 0.033 0.036 0.033 0.036<br />

27 1620 0.048 0.002 0.048 0.055 0.048 0.055<br />

28 1680 0.015 0.<strong>001</strong> 0.015 0.018 0.015 0.018<br />

29 1740 0.378 0.020 0.378 0.464 0.378 0.464<br />

30 1800 0.033 0.002 0.033 0.042 0.033 0.042<br />

31 1860 0.311 0.018 0.311 0.408 0.311 0.408<br />

32 1920 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

33 1980 0.003 0.000 0.003 0.004 0.003 0.004<br />

34 2040 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

35 2100 0.060 0.004 0.060 0.089 0.060 0.089<br />

36 2160 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

37 2220 0.048 0.003 0.048 0.075 0.048 0.075<br />

38 2280 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

39 2340 0.003 0.000 0.003 0.005 0.003 0.005<br />

40 2400 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

41 2460 0.040 0.003 0.040 0.069 0.040 0.069<br />

42 2520 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

43 2580 0.034 0.003 0.034 0.062 0.034 0.062<br />

44 2640 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

45 2700 0.002 0.000 0.002 0.004 0.002 0.004<br />

46 2760 0.000 0.000 0.000 0.000 0.000 0.000<br />

47 2820 0.028 0.002 0.028 0.056 0.028 0.056<br />

48 2880 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

49 2940 0.025 0.002 0.025 0.051 0.025 0.051<br />

50 3000 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 1.75 11 50.45 8 50.45 8<br />

Fundamental 44.12 13800 1268.56 480 1268.56 480<br />

Total 44.16 13800 1269.57 480 1269.57 480<br />

THD 3.98 0.08 3.98 1.76 3.98 1.76<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:23 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

70% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:23 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

80% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.1 K-factor 1.1 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

2.3 % Irms total to Irated 77.4 % Irms total to Irated 0 feet to panel 100.0 % load<br />

2.3 % thermal rating 78.0 % thermal rating<br />

1.8 Irms harmonics 50.9 Irms harmonics 50.9 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

48.5 Irms fundamental 1394.9 Irms fundamental 1394.9 Irms fundamental 0 feet to panel 100.0 % load<br />

48.5 Irms total 1395.8 Irms total 1395.8 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

492.8 Isc/Iload 22.5 Isc/Iload 22.5 Isc/Iload 0 feet to panel 100.0 % load<br />

0.1 % V(THD) Limit 1.8 % V(THD) Limit 1.8 % V(THD) Limit<br />

3.7 % I(TDD) 15.0 3.7 % I(TDD) 8.0 3.7 % I(TDD) 8.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 80.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:24 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

80% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.1 3.7 15.0 492.8 YES YES YES<br />

PCC2 1.8 3.7 8.0 22.5 YES YES YES<br />

PCC3 1.8 3.7 8.0 22.5 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.1 2092 2 49 49<br />

xfmr2 1500 5.75 480 1.1 1804 51 1395 1396<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 80.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:24 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

80% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 0.714 0.003 0.714 0.066 0.714 0.066<br />

3 180 1.328 0.008 1.328 0.185 1.328 0.185<br />

4 240 0.103 0.<strong>001</strong> 0.103 0.019 0.103 0.019<br />

5 300 2.332 0.024 2.332 0.542 2.332 0.542<br />

6 360 0.014 0.000 0.014 0.004 0.014 0.004<br />

7 420 1.141 0.016 1.141 0.371 1.141 0.371<br />

8 480 0.044 0.<strong>001</strong> 0.044 0.016 0.044 0.016<br />

9 540 0.044 0.<strong>001</strong> 0.044 0.019 0.044 0.019<br />

10 600 0.014 0.000 0.014 0.007 0.014 0.007<br />

11 660 1.167 0.026 1.167 0.597 1.167 0.597<br />

12 720 0.030 0.<strong>001</strong> 0.030 0.017 0.030 0.017<br />

13 780 0.583 0.015 0.583 0.353 0.583 0.353<br />

14 840 0.030 0.<strong>001</strong> 0.030 0.020 0.030 0.020<br />

15 900 0.089 0.003 0.089 0.062 0.089 0.062<br />

16 960 0.014 0.000 0.014 0.010 0.014 0.010<br />

17 1020 0.980 0.034 0.980 0.775 0.980 0.775<br />

18 1080 0.058 0.002 0.058 0.049 0.058 0.049<br />

19 1140 1.129 0.044 1.129 0.997 1.129 0.997<br />

20 1200 0.030 0.<strong>001</strong> 0.030 0.028 0.030 0.028<br />

21 1260 0.058 0.002 0.058 0.057 0.058 0.057<br />

22 1320 0.044 0.002 0.044 0.045 0.044 0.045<br />

23 1380 0.236 0.011 0.236 0.252 0.236 0.252<br />

24 1440 0.044 0.002 0.044 0.049 0.044 0.049<br />

25 1500 0.260 0.013 0.260 0.302 0.260 0.302<br />

26 1560 0.030 0.002 0.030 0.037 0.030 0.037<br />

27 1620 0.044 0.002 0.044 0.056 0.044 0.056<br />

28 1680 0.014 0.<strong>001</strong> 0.014 0.018 0.014 0.018<br />

29 1740 0.347 0.020 0.347 0.468 0.347 0.468<br />

30 1800 0.030 0.002 0.030 0.042 0.030 0.042<br />

31 1860 0.286 0.018 0.286 0.412 0.286 0.412<br />

32 1920 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

33 1980 0.003 0.000 0.003 0.004 0.003 0.004<br />

34 2040 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

35 2100 0.057 0.004 0.057 0.093 0.057 0.093<br />

36 2160 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

37 2220 0.046 0.003 0.046 0.079 0.046 0.079<br />

38 2280 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

39 2340 0.003 0.000 0.003 0.005 0.003 0.005<br />

40 2400 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

41 2460 0.038 0.003 0.038 0.072 0.038 0.072<br />

42 2520 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

43 2580 0.032 0.003 0.032 0.065 0.032 0.065<br />

44 2640 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

45 2700 0.002 0.000 0.002 0.004 0.002 0.004<br />

46 2760 0.000 0.000 0.000 0.000 0.000 0.000<br />

47 2820 0.027 0.003 0.027 0.059 0.027 0.059<br />

48 2880 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

49 2940 0.023 0.002 0.023 0.053 0.023 0.053<br />

50 3000 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 1.77 11 50.92 9 50.92 9<br />

Fundamental 48.52 13800 1394.86 480 1394.86 480<br />

Total 48.55 13800 1395.79 480 1395.79 480<br />

THD 3.65 0.08 3.65 1.77 3.65 1.77<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:24 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

80% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:24 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

90% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.1 K-factor 1.1 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

2.5 % Irms total to Irated 84.4 % Irms total to Irated 0 feet to panel 100.0 % load<br />

2.5 % thermal rating 85.0 % thermal rating<br />

1.8 Irms harmonics 51.7 Irms harmonics 51.7 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

52.9 Irms fundamental 1521.2 Irms fundamental 1521.2 Irms fundamental 0 feet to panel 100.0 % load<br />

52.9 Irms total 1522.0 Irms total 1522.0 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

451.9 Isc/Iload 20.6 Isc/Iload 20.6 Isc/Iload 0 feet to panel 100.0 % load<br />

0.1 % V(THD) Limit 1.8 % V(THD) Limit 1.8 % V(THD) Limit<br />

3.4 % I(TDD) 15.0 3.4 % I(TDD) 8.0 3.4 % I(TDD) 8.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 90.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:25 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

90% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.1 3.4 15.0 451.9 YES YES YES<br />

PCC2 1.8 3.4 8.0 20.6 YES YES YES<br />

PCC3 1.8 3.4 8.0 20.6 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.1 2092 2 53 53<br />

xfmr2 1500 5.75 480 1.1 1804 52 1521 1522<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 90.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:25 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

90% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 0.665 0.003 0.665 0.067 0.665 0.067<br />

3 180 1.236 0.008 1.236 0.188 1.236 0.188<br />

4 240 0.096 0.<strong>001</strong> 0.096 0.019 0.096 0.019<br />

5 300 2.169 0.024 2.169 0.550 2.169 0.550<br />

6 360 0.013 0.000 0.013 0.004 0.013 0.004<br />

7 420 1.062 0.016 1.062 0.377 1.062 0.377<br />

8 480 0.041 0.<strong>001</strong> 0.041 0.017 0.041 0.017<br />

9 540 0.041 0.<strong>001</strong> 0.041 0.019 0.041 0.019<br />

10 600 0.013 0.000 0.013 0.007 0.013 0.007<br />

11 660 1.086 0.026 1.086 0.605 1.086 0.605<br />

12 720 0.028 0.<strong>001</strong> 0.028 0.017 0.028 0.017<br />

13 780 0.543 0.016 0.543 0.358 0.543 0.358<br />

14 840 0.028 0.<strong>001</strong> 0.028 0.020 0.028 0.020<br />

15 900 0.083 0.003 0.083 0.063 0.083 0.063<br />

16 960 0.013 0.000 0.013 0.011 0.013 0.011<br />

17 1020 0.912 0.034 0.912 0.786 0.912 0.786<br />

18 1080 0.054 0.002 0.054 0.050 0.054 0.050<br />

19 1140 1.050 0.044 1.050 1.012 1.050 1.012<br />

20 1200 0.028 0.<strong>001</strong> 0.028 0.029 0.028 0.029<br />

21 1260 0.054 0.003 0.054 0.058 0.054 0.058<br />

22 1320 0.041 0.002 0.041 0.046 0.041 0.046<br />

23 1380 0.220 0.011 0.220 0.256 0.220 0.256<br />

24 1440 0.041 0.002 0.041 0.050 0.041 0.050<br />

25 1500 0.242 0.013 0.242 0.306 0.242 0.306<br />

26 1560 0.028 0.002 0.028 0.037 0.028 0.037<br />

27 1620 0.041 0.002 0.041 0.056 0.041 0.056<br />

28 1680 0.013 0.<strong>001</strong> 0.013 0.018 0.013 0.018<br />

29 1740 0.323 0.021 0.323 0.475 0.323 0.475<br />

30 1800 0.028 0.002 0.028 0.043 0.028 0.043<br />

31 1860 0.266 0.018 0.266 0.418 0.266 0.418<br />

32 1920 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

33 1980 0.003 0.000 0.003 0.004 0.003 0.004<br />

34 2040 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

35 2100 0.055 0.004 0.055 0.097 0.055 0.097<br />

36 2160 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

37 2220 0.044 0.004 0.044 0.083 0.044 0.083<br />

38 2280 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong> 0.<strong>001</strong><br />

39 2340 0.003 0.000 0.003 0.005 0.003 0.005<br />

40 2400 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

41 2460 0.036 0.003 0.036 0.075 0.036 0.075<br />

42 2520 0.000 0.000 0.000 0.<strong>001</strong> 0.000 0.<strong>001</strong><br />

43 2580 0.031 0.003 0.031 0.067 0.031 0.067<br />

44 2640 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

45 2700 0.002 0.000 0.002 0.004 0.002 0.004<br />

46 2760 0.000 0.000 0.000 0.<strong>001</strong> 0.000 0.<strong>001</strong><br />

47 2820 0.026 0.003 0.026 0.062 0.026 0.062<br />

48 2880 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

49 2940 0.022 0.002 0.022 0.055 0.022 0.055<br />

50 3000 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 1.80 11 51.66 9 51.66 9<br />

Fundamental 52.91 13800 1521.16 480 1521.16 480<br />

Total 52.94 13800 1522.04 480 1522.04 480<br />

THD 3.40 0.08 3.40 1.80 3.40 1.80<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:25 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

90% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:25 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

100% VFD Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M<br />

34.50 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 75.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 256.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.1 K-factor 1.1 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

2.7 % Irms total to Irated 91.4 % Irms total to Irated 0 feet to panel 100.0 % load<br />

2.8 % thermal rating 92.0 % thermal rating<br />

1.8 Irms harmonics 52.6 Irms harmonics 52.6 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

57.3 Irms fundamental 1647.5 Irms fundamental 1647.5 Irms fundamental 0 feet to panel 100.0 % load<br />

57.3 Irms total 1648.3 Irms total 1648.3 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

417.2 Isc/Iload 19.0 Isc/Iload 19.0 Isc/Iload 0 feet to panel 100.0 % load<br />

0.1 % V(THD) Limit 1.8 % V(THD) Limit 1.8 % V(THD) Limit<br />

3.2 % I(TDD) 15.0 3.2 % I(TDD) 5.0 3.2 % I(TDD) 5.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

1200 total hp<br />

0 feet to panel 100.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:25 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

100% VFD Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.1 3.2 15.0 417.2 YES YES YES<br />

PCC2 1.8 3.2 5.0 19.0 YES YES YES<br />

PCC3 1.8 3.2 5.0 19.0 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.1 2092 2 57 57<br />

xfmr2 1500 5.75 480 1.1 1804 53 1647 1648<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 34.5 75.0 256 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 1200 100.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:25 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

100% VFD Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 0.625 0.003 0.625 0.069 0.625 0.069<br />

3 180 1.161 0.008 1.161 0.191 1.161 0.191<br />

4 240 0.090 0.<strong>001</strong> 0.090 0.020 0.090 0.020<br />

5 300 2.039 0.024 2.039 0.560 2.039 0.560<br />

6 360 0.012 0.000 0.012 0.004 0.012 0.004<br />

7 420 0.998 0.017 0.998 0.383 0.998 0.383<br />

8 480 0.039 0.<strong>001</strong> 0.039 0.017 0.039 0.017<br />

9 540 0.039 0.<strong>001</strong> 0.039 0.019 0.039 0.019<br />

10 600 0.012 0.000 0.012 0.007 0.012 0.007<br />

11 660 1.020 0.027 1.020 0.616 1.020 0.616<br />

12 720 0.027 0.<strong>001</strong> 0.027 0.017 0.027 0.017<br />

13 780 0.510 0.016 0.510 0.364 0.510 0.364<br />

14 840 0.027 0.<strong>001</strong> 0.027 0.020 0.027 0.020<br />

15 900 0.078 0.003 0.078 0.064 0.078 0.064<br />

16 960 0.012 0.000 0.012 0.011 0.012 0.011<br />

17 1020 0.857 0.035 0.857 0.800 0.857 0.800<br />

18 1080 0.051 0.002 0.051 0.050 0.051 0.050<br />

19 1140 0.987 0.045 0.987 1.030 0.987 1.030<br />

20 1200 0.027 0.<strong>001</strong> 0.027 0.029 0.027 0.029<br />

21 1260 0.051 0.003 0.051 0.059 0.051 0.059<br />

22 1320 0.039 0.002 0.039 0.047 0.039 0.047<br />

23 1380 0.206 0.011 0.206 0.261 0.206 0.261<br />

24 1440 0.039 0.002 0.039 0.051 0.039 0.051<br />

25 1500 0.227 0.014 0.227 0.312 0.227 0.312<br />

26 1560 0.027 0.002 0.027 0.038 0.027 0.038<br />

27 1620 0.039 0.003 0.039 0.057 0.039 0.057<br />

28 1680 0.012 0.<strong>001</strong> 0.012 0.019 0.012 0.019<br />

29 1740 0.304 0.021 0.304 0.483 0.304 0.483<br />

30 1800 0.027 0.002 0.027 0.044 0.027 0.044<br />

31 1860 0.250 0.019 0.250 0.425 0.250 0.425<br />

32 1920 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

33 1980 0.002 0.000 0.002 0.004 0.002 0.004<br />

34 2040 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

35 2100 0.053 0.004 0.053 0.101 0.053 0.101<br />

36 2160 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

37 2220 0.042 0.004 0.042 0.086 0.042 0.086<br />

38 2280 0.000 0.000 0.000 0.<strong>001</strong> 0.000 0.<strong>001</strong><br />

39 2340 0.002 0.000 0.002 0.005 0.002 0.005<br />

40 2400 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

41 2460 0.034 0.003 0.034 0.078 0.034 0.078<br />

42 2520 0.000 0.000 0.000 0.<strong>001</strong> 0.000 0.<strong>001</strong><br />

43 2580 0.029 0.003 0.029 0.069 0.029 0.069<br />

44 2640 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

45 2700 0.002 0.000 0.002 0.005 0.002 0.005<br />

46 2760 0.000 0.000 0.000 0.<strong>001</strong> 0.000 0.<strong>001</strong><br />

47 2820 0.025 0.003 0.025 0.065 0.025 0.065<br />

48 2880 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

49 2940 0.021 0.003 0.021 0.057 0.021 0.057<br />

50 3000 0.<strong>001</strong> 0.000 0.<strong>001</strong> 0.002 0.<strong>001</strong> 0.002<br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 1.83 11 52.59 9 52.59 9<br />

Fundamental 57.30 13800 1647.46 480 1647.46 480<br />

Total 57.33 13800 1648.30 480 1648.30 480<br />

THD 3.19 0.08 3.19 1.83 3.19 1.83<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:25 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

100% VFD Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:25 PM


Harmonic Estimator Report - One Line<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer<br />

notes<br />

100% SSRVS Load<br />

version 080227P Notes:<br />

PCC is a Point of Common Coupling<br />

A "buffered drive" is one that has a DC Link Choke<br />

A "xfmr" is a transformer<br />

All of the values are recalculated when cell data is entered<br />

Please note that the information shown here is typical and does not<br />

constitute any guarantee of performance or measurement. Several outside<br />

factors can influence the harmonics measured on a power system, including<br />

other equipment within the plant and other equipment in neighboring plants.<br />

This can include, but is not limited to, drives, varying loads and/or other factory<br />

equipment.<br />

The calculated current and voltage harmonics shown in this report are for<br />

estimation purposes only.<br />

Source<br />

60 Hz PCC1 Linear Loads 0 set Ifund load<br />

M<br />

0.00 total hp motor loads on utility xfmr to<br />

PCC1 PCC2 PCC3 + 0.00 total kW resistive loads this % of Irated 1<br />

xfmr1 PCC at utility xfmr xfmr2 PCC at user xfmr panel PCC at distribution panel + 0.00 additional Amp loads<br />

PCC3 Linear Loads<br />

0 set Ifund load<br />

0 feet 1 0 feet 2 M 1200.00 total hp motor loads on user xfmr to<br />

Utility feet between UTILITY PROVIDED feet between 480V SWITCHBOARD + 45.00 total kW resistive loads this % of Irated 2<br />

Transformer utility xfmr PAD MOUNTED user xfmr and OPSSWBD + 248.00 additional Amp loads<br />

and user xfmr XFMR distribution panel<br />

50000 kVA 1 1500 kVA 2 6 pulse unbuf w/o LR M<br />

0 total hp<br />

8.75 %Z 1 5.75 %Z 2 0 feet to panel 100.0 % load<br />

13800 Vsec 1 480 Vsec 2 480 Vsec 3<br />

- OR - 0 Isc 1 - OR - 0 Isc 2 6 pulse buf w/o LR M<br />

0 total hp<br />

at PCC1 at PCC2 at PCC3 0 feet to panel 100.0 % load<br />

50000 kVA 1 1500 kVA 2<br />

2092 Irated 1 1804 Irated 2 6 pulse buf w/ 3% LR M<br />

0 total hp<br />

23908 Isc 1 31379 Isc 2 31379 Isc 3 0 feet to panel 100.0 % load<br />

884.0 L, uH 1 23.4 L, uH 2 0.0 L, uH 3<br />

1.0 K-factor 1.0 K-factor 6 pulse buf w/ 5% LR M<br />

0 total hp<br />

2.7 % Irms total to Irated 90.5 % Irms total to Irated 0 feet to panel 100.0 % load<br />

2.7 % thermal rating 90.5 % thermal rating<br />

0.0 Irms harmonics 0.0 Irms harmonics 0.0 Irms harmonics 6 pulse buf w/ PHF filter<br />

M<br />

0 total hp<br />

56.8 Irms fundamental 1633.0 Irms fundamental 1633.0 Irms fundamental 0 feet to panel 100.0 % load<br />

56.8 Irms total 1633.0 Irms total 1633.0 Irms total<br />

12 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

420.9 Isc/Iload 19.2 Isc/Iload 19.2 Isc/Iload 0 feet to panel 100.0 % load<br />

0.0 % V(THD) Limit 0.0 % V(THD) Limit 0.0 % V(THD) Limit<br />

0.0 % I(TDD) 15.0 0.0 % I(TDD) 5.0 0.0 % I(TDD) 5.0 12 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) YES IEEE special (3% Vthd) 0 feet to panel 100.0 % load<br />

YES IEEE general (5%Vthd) YES IEEE general (5%Vthd) YES IEEE general (5%Vthd)<br />

YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) YES IEEE dedicated (10% Vthd) 18 pulse buf w/ auto xfmr Auto<br />

M<br />

0 total hp<br />

0 feet to panel 100.0 % load<br />

Design Checks: (blank if no issues) Cell Key: 18 pulse buf w/ iso xfmr Iso<br />

M<br />

0 total hp<br />

data entry 0 feet to panel 100.0 % load<br />

intermediate calc Custom custom M<br />

0 Ifund at FL<br />

100.0 % load<br />

harmonic results<br />

Active Filter on PCC2<br />

0 Rated Current<br />

AHF<br />

Before using this for the first time, go to the worksheet tab labeled "Tutorial" 20 desired % Ithd 0.0 Required Current<br />

For help and additional information, go to the worksheet tab labeled "Notes & Tools"<br />

OK<br />

Non-Linear Drive Load<br />

2/21/2012<br />

2:49 PM


Harmonic Estimator Report - Summary<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

100% SSRVS Load<br />

version<br />

080227P<br />

Results 1 Current<br />

IEEE compliance 2<br />

PCC location <strong>Voltage</strong> THD, % TDD, % Limit, % Isc/Iload special general dedicated<br />

PCC1 0.0 0.0 15.0 420.9 YES YES YES<br />

PCC2 0.0 0.0 5.0 19.2 YES YES YES<br />

PCC3 0.0 0.0 5.0 19.2 YES YES YES<br />

Data<br />

Sources Hz kVA %Z Vsec Isc K-factor Irated, rms Iharm Ifund Itotal<br />

xfmr1 60 50000 8.75 13800 1.0 2092 0 57 57<br />

xfmr2 1500 5.75 480 1.0 1804 0 1633 1633<br />

feet<br />

distance between xfmr1 and xfmr2 0<br />

distance between xfmr2 and panel 0<br />

Load Types 3 Motor hp Res kW Amp Load % rated<br />

Linear Load 1 0 0.0 0 0<br />

Linear Load 2 1200 45.0 248 0<br />

Total hp % Load feet to panel<br />

6p unbuffered 0 100.0 0<br />

6p buffered 0 100.0 0<br />

6p 3% line react 0 100.0 0<br />

6p 5% line react 0 100.0 0<br />

6p w/ filter 0 100.0 0<br />

12p auto parallel 0 100.0 0<br />

12p iso series 0 100.0 0<br />

18p auto parallel 0 100.0 0<br />

18p iso series 0 100.0 0<br />

Iharm Ifund Itotal I(THD)<br />

PCC1 Loads 0.00 0.00 0.00 0.00<br />

PCC3 Loads 0.00 0.00 0.00 0.00<br />

Custom 0.00 0.00 0.00 0.00<br />

Irated<br />

Active Filter 0.0<br />

% Harmonic Current<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

Footnotes<br />

1.<br />

Please note that the information shown here is typical and does not constitute any guarantee of<br />

performance or measurement. Several outside factors can influence the harmonics measured on a power<br />

system, including other equipment within the plant and other equipment in neighboring plants. This can<br />

include, but is not limited to, drives, varying loads and/or other factory equipment.<br />

The calculated current and voltage harmonics shown in this report are for estimation purposes only.<br />

2. Use the compliance information only for the category of interest required for the application.<br />

3. Unless described as "unbuffered", all of the drives have a DC Link Choke.<br />

Additional Notes<br />

1.) ‘UTILITY PROVIDED PAD MOUNTED XFMR’ is rated at 1500KVA, 5.75%Z, and 480V<br />

secondary.<br />

2.) For all unidentified current loads, the current rating is calculated as 80% of the circuit breaker<br />

rating.<br />

2/21/2012<br />

2:49 PM


Harmonic Estimator Report - Table<br />

Project Name Ward County Water Supply Project Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

100% SSRVS Load<br />

version<br />

Harmonic Spectrum<br />

080227P<br />

Harmonic<br />

Number<br />

Frequency, Hz<br />

% Irms at<br />

PCC1<br />

% Vrms at<br />

PCC1<br />

% Irms at<br />

PCC2<br />

% Vrms at<br />

PCC2<br />

% Irms at<br />

PCC3<br />

% Vrms at<br />

PCC3<br />

1 60 100.000 100.000 100.000 100.000 100.000 100.000<br />

2 120 0.000 0.000 0.000 0.000 0.000 0.000<br />

3 180 0.000 0.000 0.000 0.000 0.000 0.000<br />

4 240 0.000 0.000 0.000 0.000 0.000 0.000<br />

5 300 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 360 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 420 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 480 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 540 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 600 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 660 0.000 0.000 0.000 0.000 0.000 0.000<br />

12 720 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 780 0.000 0.000 0.000 0.000 0.000 0.000<br />

14 840 0.000 0.000 0.000 0.000 0.000 0.000<br />

15 900 0.000 0.000 0.000 0.000 0.000 0.000<br />

16 960 0.000 0.000 0.000 0.000 0.000 0.000<br />

17 1020 0.000 0.000 0.000 0.000 0.000 0.000<br />

18 1080 0.000 0.000 0.000 0.000 0.000 0.000<br />

19 1140 0.000 0.000 0.000 0.000 0.000 0.000<br />

20 1200 0.000 0.000 0.000 0.000 0.000 0.000<br />

21 1260 0.000 0.000 0.000 0.000 0.000 0.000<br />

22 1320 0.000 0.000 0.000 0.000 0.000 0.000<br />

23 1380 0.000 0.000 0.000 0.000 0.000 0.000<br />

24 1440 0.000 0.000 0.000 0.000 0.000 0.000<br />

25 1500 0.000 0.000 0.000 0.000 0.000 0.000<br />

26 1560 0.000 0.000 0.000 0.000 0.000 0.000<br />

27 1620 0.000 0.000 0.000 0.000 0.000 0.000<br />

28 1680 0.000 0.000 0.000 0.000 0.000 0.000<br />

29 1740 0.000 0.000 0.000 0.000 0.000 0.000<br />

30 1800 0.000 0.000 0.000 0.000 0.000 0.000<br />

31 1860 0.000 0.000 0.000 0.000 0.000 0.000<br />

32 1920 0.000 0.000 0.000 0.000 0.000 0.000<br />

33 1980 0.000 0.000 0.000 0.000 0.000 0.000<br />

34 2040 0.000 0.000 0.000 0.000 0.000 0.000<br />

35 2100 0.000 0.000 0.000 0.000 0.000 0.000<br />

36 2160 0.000 0.000 0.000 0.000 0.000 0.000<br />

37 2220 0.000 0.000 0.000 0.000 0.000 0.000<br />

38 2280 0.000 0.000 0.000 0.000 0.000 0.000<br />

39 2340 0.000 0.000 0.000 0.000 0.000 0.000<br />

40 2400 0.000 0.000 0.000 0.000 0.000 0.000<br />

41 2460 0.000 0.000 0.000 0.000 0.000 0.000<br />

42 2520 0.000 0.000 0.000 0.000 0.000 0.000<br />

43 2580 0.000 0.000 0.000 0.000 0.000 0.000<br />

44 2640 0.000 0.000 0.000 0.000 0.000 0.000<br />

45 2700 0.000 0.000 0.000 0.000 0.000 0.000<br />

46 2760 0.000 0.000 0.000 0.000 0.000 0.000<br />

47 2820 0.000 0.000 0.000 0.000 0.000 0.000<br />

48 2880 0.000 0.000 0.000 0.000 0.000 0.000<br />

49 2940 0.000 0.000 0.000 0.000 0.000 0.000<br />

50 3000 0.000 0.000 0.000 0.000 0.000 0.000<br />

Amps Volts Amps Volts Amps Volts<br />

Harmonics 0.00 0 0.00 0 0.00 0<br />

Fundamental 56.80 13800 1632.98 480 1632.98 480<br />

Total 56.80 13800 1632.98 480 1632.98 480<br />

THD 0.00 0.00 0.00 0.00 0.00 0.00<br />

note: voltages are line-to-line<br />

2/21/2012<br />

2:49 PM


Harmonic Estimator Report - Spectrum<br />

Project Name Ward County Water Supply Project C-4 Prepared by Olusola Fawole<br />

End User Big Spring, TX Date prepared 2/21/2012<br />

Customer Reynolds Co. email of preparer 0<br />

notes<br />

100% SSRVS Load<br />

version<br />

Harmonic Data<br />

080227P<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC1<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC1<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC2<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC2<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

100<br />

% Harmonic Current vs Harmonic Number at PCC3<br />

100<br />

% Harmonic <strong>Voltage</strong> vs Harmonic Number at PCC3<br />

90<br />

90<br />

80<br />

80<br />

% Harmonic Current<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

% Harmonic <strong>Voltage</strong><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

10<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

0<br />

0 6 12 18 24 30 36 42 48<br />

Harmonic Number<br />

2/21/2012<br />

2:49 PM


KPHV24 Harmonic Analysis<br />

WP-283 Newtown Creek WPCP Plant Upgrade<br />

Contract: NC-47G<br />

Specification Section: 16262G<br />

Page 7 of 238


SMC-Flex<br />

Bulletin 150 SMC-Flex<br />

Application Guide


Bulletin 150 SMC-Flex<br />

Important User<br />

Information<br />

Because of the variety of uses for the product described in this publication, those responsible<br />

for the application and use of this control equipment must satisfy themselves that all necessary<br />

steps have been taken to assure that each application and use meets all performance and<br />

safety requirements, including any applicable laws, regulations, codes and standards.<br />

The illustrations, charts, sample programs and layout examples shown in this guide are<br />

intended solely for purposes of example. Since there are many variables and requirements<br />

associated with any particular installation, Rockwell Automation does not assume<br />

responsibility or liability (to include intellectual property liability) for actual use based upon the<br />

examples shown in this publication.<br />

Rockwell Automation publication SGI-1.1, Safety Guidelines for the Application, Installation<br />

and Maintenance of Solid-State Control (available from your local Allen-Bradley distributor),<br />

describes some important differences between solid-state equipment and electromechanical<br />

devices that should be taken into consideration when applying products such as those<br />

described in this publication.<br />

Reproduction of the contents of this copyrighted publication, in whole or part, without written<br />

permission of Rockwell Automation, is prohibited.<br />

Throughout this manual we use notes to make you aware of safety considerations:<br />

!<br />

ATTENTION: Identifies information about practices<br />

or circumstances that can lead to personal injury or<br />

death, property damage or economic loss<br />

Attention statements help you to:<br />

• identify a hazard<br />

• avoid a hazard<br />

• recognize the consequences<br />

IMPORTANT<br />

Important: Identifies information that is critical for<br />

successful application and understanding of the product.<br />

Trademark List<br />

Accu-Stop, Allen-Bradley Remote I/O, SMC, SMC-2, SMC-Flex, SMC PLUS, SMC Dialog Plus, SMB, and STC are trademarks of<br />

Rockwell Automation. ControlNet is a trademark of ControlNet International, Ltd. DeviceNet and the DeviceNet logo are<br />

trademarks of the Open Device Vendors Association (ODVA). Ethernet is a registered trademark of Digital Equipment Corporation,<br />

Intel, and Xerox Corporation.<br />

ii


Bulletin 150 SMC-Flex<br />

Table of Contents<br />

Chapter 1<br />

Overview<br />

Chapter 2<br />

Application Profiles for the SMC-Flex<br />

Controller<br />

Introduction ................................................................................... 1-1<br />

SMC-Flex Features ................................................................. 1-1<br />

Description .................................................................................... 1-2<br />

Modes of Operation ....................................................................... 1-2<br />

<strong>Stand</strong>ard ....................................................................................... 1-3<br />

Soft Start with Selectable Kickstart ......................................... 1-3<br />

Current Limit Start with Selectable Kickstart ........................... 1-6<br />

Dual Ramp Start with Selectable Kickstart .............................. 1-9<br />

Full <strong>Voltage</strong> Start .................................................................. 1-12<br />

Preset Slow Speed ................................................................ 1-15<br />

Linear Speed Acceleration with Selectable Kickstart ............. 1-18<br />

Soft Stop .............................................................................. 1-21<br />

Pump Control .............................................................................. 1-24<br />

Pump Control Option with Selectable Kickstart ...................... 1-24<br />

Braking Control ............................................................................ 1-27<br />

SMB Smart Motor Braking Option ......................................... 1-27<br />

Accu-Stop ............................................................................ 1-30<br />

Slow Speed with Braking ...................................................... 1-33<br />

Features ...................................................................................... 1-36<br />

SCR Bypass .......................................................................... 1-36<br />

<strong>Stand</strong>ard or Wye-Delta Wiring ............................................... 1-36<br />

LCD Display .......................................................................... 1-36<br />

Parameter Programming ....................................................... 1-36<br />

Electronic Overload ............................................................... 1-37<br />

Stall Protection and Jam Detection ....................................... 1-37<br />

Ground Fault Protection ........................................................ 1-38<br />

Thermistor Input ................................................................... 1-38<br />

Metering ............................................................................... 1-38<br />

Fault Indication ..................................................................... 1-39<br />

Parameter Programming ............................................................. 1-40<br />

Communication Capabilities .................................................. 1-40<br />

Auxiliary Contacts ................................................................. 1-40<br />

Modular Design .................................................................... 1-40<br />

Control Terminal Description ................................................. 1-41<br />

Overview ....................................................................................... 2-1<br />

iiiiii


Bulletin 150 SMC-Flex<br />

Chapter 3<br />

Special Application Considerations<br />

Chapter 4<br />

Product Line Applications Matrix<br />

Chapter 5<br />

Design Philosophy<br />

Chapter 6<br />

Reduced <strong>Voltage</strong> Starting<br />

SMC-Flex Controllers in Drive Applications .....................................3-1<br />

Use of Protective Modules .......................................................3-1<br />

Motor Overload Protection ..............................................................3-2<br />

Stall Protection and Jam Detection .................................................3-2<br />

Built-in Communication ..................................................................3-3<br />

Power Factor Capacitors ................................................................3-3<br />

Multi-motor Applications ................................................................3-5<br />

Special Motors ...............................................................................3-6<br />

Wye-Delta ...............................................................................3-6<br />

Part Winding ............................................................................3-7<br />

Wound Rotor ...........................................................................3-7<br />

Synchronous ...........................................................................3-7<br />

Altitude De-rating ...........................................................................3-7<br />

Isolation Contactor .........................................................................3-8<br />

SMC-Flex Controller with Bypass Contactor (BC) ............................3-9<br />

SMC-Flex Controller with Reversing Contactor ..............................3-10<br />

SMC-Flex Controller as a Bypass to an AC Drive ...........................3-11<br />

SMC-Flex Controller with a Bulletin 1410 Motor Winding Heater ...3-12<br />

Motor Torque Capabilities with SMC-Flex Controller Options .........3-13<br />

SMB Smart Motor Braking .....................................................3-13<br />

Preset Slow Speed ................................................................3-13<br />

Accu-Stop .............................................................................3-14<br />

Description .....................................................................................4-1<br />

Mining and Metals ..........................................................................4-1<br />

Food Processing .............................................................................4-2<br />

Pulp and Paper ...............................................................................4-2<br />

Petrochemical ................................................................................4-3<br />

Transportation and Machine Tool ...................................................4-3<br />

OEM Specialty Machine ..................................................................4-4<br />

Lumber and Wood Products ...........................................................4-4<br />

Water/Wastewater Treatment and Municipalities ............................4-4<br />

Philosophy .....................................................................................5-1<br />

Line <strong>Voltage</strong> Conditions ..................................................................5-1<br />

Current and Thermal Ratings ..........................................................5-1<br />

Mechanical Shock and Vibration .....................................................5-1<br />

Noise and RF Immunity ..................................................................5-1<br />

Altitude ..........................................................................................5-2<br />

Pollution .........................................................................................5-2<br />

Setup .............................................................................................5-2<br />

Introduction to Reduced <strong>Voltage</strong> Starting ........................................6-1<br />

Reduced <strong>Voltage</strong> ............................................................................6-2<br />

iv


Bulletin 150 SMC-Flex<br />

Solid-State .................................................................................... 6-4<br />

Notes ............................................................................................ 6-6<br />

Chapter 7<br />

Solid-State Starters Using SCRs<br />

Chapter 8<br />

Reference<br />

..................................................................................................... 7-1<br />

Motor Output Speed/Torque/Horsepower ....................................... 8-1<br />

Torque and Horsepower ................................................................ 8-2<br />

Motor Output for NEMA Design Designations Polyphase<br />

1…500 Hp .......................................................................... 8-7<br />

Calculating Torque (Acceleration Torque Required for<br />

Rotating Motion) .................................................................. 8-9<br />

Inertia ................................................................................... 8-10<br />

Torque Formulas .................................................................. 8-10<br />

AC Motor Formulas ............................................................... 8-11<br />

Torque Characteristics on Common Applications ................... 8-12<br />

Electrical Formulas ................................................................ 8-14<br />

Calculating Motor Amperes.................................................... 8-15<br />

Other Formulas...................................................................... 8-15<br />

vv


Bulletin 150 SMC-Flex<br />

List of Figures<br />

Chapter 1<br />

Overview<br />

Figure 1.1: SMC-Flex Controller ...................................................1-2<br />

Figure 1.2: Soft Start ...................................................................1-3<br />

Figure 1.3: Soft Start Sequence of Operation ...............................1-4<br />

Figure 1.4: Soft Start Wiring Diagram ..........................................1-5<br />

Figure 1.5: Current Limit Start .....................................................1-6<br />

Figure 1.6: Current Limit Sequence of Operation .........................1-7<br />

Figure 1.7: Current Limit Wiring Diagram ....................................1-8<br />

Figure 1.8: Dual Ramp Start ........................................................1-9<br />

Figure 1.9: Dual Ramp Start Sequence of Operation ..................1-10<br />

Figure 1.10: Dual Ramp Start Wiring Diagram .............................1-11<br />

Figure 1.11: Full <strong>Voltage</strong> Start .....................................................1-12<br />

Figure 1.12: Full <strong>Voltage</strong> Start Sequence of Operation .................1-13<br />

Figure 1.13: Full <strong>Voltage</strong> Start Wiring Diagram ............................1-14<br />

Figure 1.14: Preset Slow Speed ..................................................1-15<br />

Figure 1.15: Preset Slow Speed Sequence of Operation ..............1-16<br />

Figure 1.16: Preset Slow Speed Wiring Diagram ..........................1-17<br />

Figure 1.17: Linear Speed Acceleration .......................................1-18<br />

Figure 1.18: Linear Speed Acceleration Sequence of Operation ...1-19<br />

Figure 1.19: Linear Speed Acceleration Wiring Diagram ..............1-20<br />

Figure 1.20: Soft Stop .................................................................1-21<br />

Figure 1.21: Soft Stop Sequence of Operation .............................1-22<br />

Figure 1.22: Soft Stop Wiring Diagram ........................................1-23<br />

Figure 1.23: Pump Control Option with Selectable Kickstart .........1-24<br />

Figure 1.24: Pump Control Option Sequence of Operation ............1-25<br />

Figure 1.25: Pump Control Option Wiring Diagram .......................1-26<br />

Figure 1.26: Smart Motor Braking ...............................................1-27<br />

Figure 1.27: Smart Motor Braking Sequence of Operation ...........1-28<br />

Figure 1.28: Smart Motor Braking Wiring Diagram ......................1-29<br />

Figure 1.29: Accu-Stop ...............................................................1-30<br />

Figure 1.30: Accu-Stop Sequence of Operation ...........................1-31<br />

Figure 1.31: Accu-Stop Wiring Diagram .......................................1-32<br />

Figure 1.32: Slow Speed with Braking .........................................1-33<br />

Figure 1.33: Slow Speed with Braking Sequence of Operation .....1-34<br />

Figure 1.34: Slow Speed with Braking Wiring Diagram ................1-35<br />

Figure 1.35: LCD Display with Keypad .........................................1-36<br />

Figure 1.36: Stall Protection Sequence of Operation ....................1-37<br />

Figure 1.37: Jam Detection Sequence of Operation .....................1-38<br />

Figure 1.38: Exploded View .........................................................1-40<br />

Figure 1.39: SMC-Flex Controller Control Terminals ....................1-42<br />

vi


Bulletin 150 SMC-Flex<br />

Chapter 2<br />

Application Profiles for the SMC-Flex<br />

Controller<br />

Chapter 3<br />

Special Application Considerations<br />

Chapter 6<br />

Reduced <strong>Voltage</strong> Starting<br />

Figure 2.1: Compressor with Soft Start ....................................... 2-1<br />

Figure 2.2: Tumbler with Soft Start and Accu-Stop .................... 2-2<br />

Figure 2.3: Pump with Soft Start ................................................. 2-3<br />

Figure 2.4: Bandsaw with Soft Start and Slow Speed with Braking ..<br />

2-4<br />

Figure 2.5: Rock Crusher with Soft Start ..................................... 2-5<br />

Figure 2.6: Hammermill with Current Limit Start and SMB Smart Motor<br />

Braking 2-6<br />

Figure 2.7: Centrifuge with Current Limit Start and SMB Smart Motor<br />

Braking 2-7<br />

Figure 2.8: Wire Draw Steel Mill Machine with Soft Start ............ 2-8<br />

Figure 2.9: Overload conveyor with Linear Speed and Tack Feedback<br />

2-9<br />

Figure 2.10: Ball Mill with Current Limit Start ............................. 2-10<br />

Figure 3.1: Protective Module ..................................................... 3-1<br />

Figure 3.2: Power Factor Capacitors ........................................... 3-3<br />

Figure 3.3: Power Factor Capacitors with Isolation Contactor ...... 3-4<br />

Figure 3.4: Multi-Motor Application ............................................. 3-5<br />

Figure 3.5: Inside-the-Delta Wiring. ............................................ 3-6<br />

Figure 3.6: Typical Connection Diagram with Isolation Contactor 3-8<br />

Figure 3.7: Typical Application Diagram of a Bypass Contactor ... 3-9<br />

Figure 3.8: Typical Application with a Single-Speed Reversing Starter<br />

Figure 3.9:<br />

3-10<br />

Typical Application Diagram of a Bypass Contactor for an<br />

AC Drive 3-11<br />

Figure 3.10: Typical Application Diagram of SMC-Flex Controller with a<br />

Bulletin 1410 Motor Winding Heater 3-12<br />

Figure 3.11: Starting and Running Torque ................................... 3-13<br />

Figure 3.12: Accu-Stop Option .................................................... 3-14<br />

Figure 6.1: Full-Load Current vs. Speed ...................................... 6-1<br />

Figure 6.2: Bulletin 570 Autotransformer .................................... 6-2<br />

Figure 6.3: Open Circuit Transition .............................................. 6-3<br />

Figure 6.4: Closed Circuit Transition ........................................... 6-3<br />

Figure 6.5: Transition at <strong>Low</strong> Speed ............................................ 6-3<br />

Figure 6.6: Transition near Full Speed ........................................ 6-3<br />

Figure 6.7: SMC-Flex Solid-State Controllers .............................. 6-4<br />

Figure 6.8: Soft Start .................................................................. 6-5<br />

Figure 6.9: Current Limit Start .................................................... 6-5<br />

viivii


Bulletin 150 SMC-Flex<br />

Chapter 7<br />

Solid-State Starters Using SCRs<br />

Chapter 8<br />

Reference<br />

Figure 7.1: Silicon Controlled Rectifier (SCR) ...............................7-1<br />

Figure 7.2: Typical Wiring Diagram for SCRs ...............................7-1<br />

Figure 7.3: Different Firing Angles (Single-Phase Simplification) ..7-2<br />

Figure 8.1: Shaft and Wrench ......................................................8-2<br />

Figure 8.2: Speed-Torque Curve ..................................................8-3<br />

Figure 8.3: Speed-Torque Curve with Current Curve ....................8-4<br />

Figure 8.4:<br />

Motor Safe Time vs. Line Current — <strong>Stand</strong>ard Induction<br />

Motors 8-6<br />

Figure 8.5: Typical NEMA Design A Speed/Torque Curve .............8-7<br />

Figure 8.6: Typical NEMA Design B Speed/Torque Curve .............8-7<br />

Figure 8.7: Typical NEMA Design C Speed/Torque Curve .............8-8<br />

Figure 8.8: Typical NEMA Design D Speed/Torque Curve .............8-8<br />

viii


Bulletin 150 SMC Flex<br />

Chapter 1<br />

Introduction<br />

Overview<br />

The Allen-Bradley SMC Controller lines offer a broad range of products for starting or stopping<br />

AC induction motors from ½ Hp to 6000 Hp. The innovative features, compact design, and<br />

available enclosed controllers meet world-wide industry requirements for controlling motors.<br />

Whether you need to control a single motor or an integrated automation system, our range of<br />

controllers meet your required needs.<br />

This document discusses the SMC-Flex. Some of the key features are listed below.<br />

SMC-Flex Features<br />

• Soft Start — with Selectable Kickstart<br />

• Current Limit Start — with Selectable Kickstart<br />

• Dual Ramp — with Selectable Kickstart<br />

• Full <strong>Voltage</strong><br />

• Linear Speed Acceleration — with Selectable Kickstart<br />

• Preset Slow Speed<br />

• Soft Stop<br />

• Pump Control — with Selectable Kickstart<br />

• SMB Smart Motor Braking<br />

• Accu-Stop<br />

• Slow Speed with Braking<br />

• Built in Bypass<br />

• Inside the Delta<br />

• Electronic Motor Overload Protection<br />

• Stall and Jam Detection<br />

• Ground Fault Protection<br />

• Thermistor Input (PTC)<br />

• Metering<br />

• Fault Indication<br />

• Parameter Programming<br />

• Communication Capabilities<br />

1-1


Bulletin 150 SMC Flex<br />

Description<br />

When the Smart Motor Controller (SMC) was first introduced in 1986, its modular design,<br />

digital setup, and microprocessor control set the standard for soft starters. Since its launch in<br />

1996, the SMC Dialog Plus controller has been in a class by itself, providing unmatched<br />

performance with innovative starting and stopping options. Now, the SMC-Flex controller<br />

achieves a higher level of sophistication with greatly enhanced protection, expanded<br />

diagnostics, ability to log the motor’s operation (A, kW, and power factor), and flexibility to<br />

communicate with various network protocols. The SMC-Flex can also be wired in a standard<br />

wiring configuration, or inside-the-delta. This allows the product to operate wye-delta motors<br />

with a much smaller device than before.<br />

Figure 1.1:SMC-Flex Controller<br />

The SMC-Flex controller is a compact, modular, multi-functional<br />

solid-state controller used in both starting three-phase squirrel-cage<br />

induction motors or wye-delta motors and controlling resistive loads.<br />

The SMC-Flex contains, as standard, a built-in SCR bypass and a<br />

built-in overload. The SMC-Flex product line includes current ratings<br />

5 to 480 A, 200 to 600V, 50/60Hz. This covers squirrel-cage induction<br />

motor applications up to 400 Hp (wye-delta motors up to 650 Hp). The<br />

SMC-Flex controller meets applicable standards and requirements.<br />

While the SMC-Flex controller incorporates many new features into<br />

its design, it remains easy to set up and operate. You can make use<br />

of as few or as many of the features as your application requires.<br />

Modes of<br />

Operation<br />

The following modes of operation are standard within a single controller:<br />

<strong>Stand</strong>ard:<br />

• Soft Start with Selectable Kickstart<br />

• Current Limit with Selectable Kickstart<br />

• Dual Ramp Start with Selectable Kickstart<br />

• Full <strong>Voltage</strong> Start<br />

• Preset Slow Speed<br />

• Linear Speed Acceleration with Selectable Kickstart<br />

• Soft Stop<br />

Pump Option<br />

• Pump Control with Selectable Kickstart<br />

Braking Option<br />

• Smart Motor Braking<br />

• Accu-Stop<br />

• Slow Speed with Braking<br />

1-2


Bulletin 150 SMC Flex<br />

<strong>Stand</strong>ard<br />

Soft Start with Selectable Kickstart<br />

This method covers the most general applications. The motor is given an initial torque setting,<br />

which is user adjustable from 0 to 90% of locked rotor torque. From the initial torque level, the<br />

output voltage to the motor is steplessly increased during the acceleration ramp time, which is<br />

user adjustable from 0 to 30 seconds. If, during the voltage ramp operation, the SMC-Flex<br />

controller senses that the motor has reached an up-to-speed condition, the output voltage will<br />

automatically switch to full voltage, and transition over the SCR Bypass contactors.<br />

The kickstart feature provides a boost at startup to break away loads that may require a pulse of<br />

high torque to get started. It is intended to provide a current pulse, user adjustable 0-90%<br />

locked rotor torque for a selected period of time from 0.0 to 2.0 seconds.<br />

Figure 1.2: Soft Start<br />

Percent<br />

<strong>Voltage</strong><br />

100%<br />

Initial<br />

Torque<br />

Start<br />

Run<br />

Time (seconds)<br />

Following are the parameters that are specifically used to provide and adjust the voltage ramp<br />

supplied to the motor.<br />

Table 1.A: Soft Start Parameters<br />

Parameter<br />

SMC Option<br />

Starting Mode<br />

Ramp Time<br />

Initial Torque<br />

Kickstart Time<br />

Kickstart Level<br />

Option 2 Input<br />

Stop Mode<br />

Stop Time<br />

<strong>Stand</strong>ard, Braking, Pump<br />

Soft Start<br />

0…30 s<br />

0…90% LRT<br />

0.0…2.0 s<br />

0…90% LRT<br />

Disable<br />

Disable<br />

0 s<br />

Adjustment<br />

1-3


Bulletin 150 SMC Flex<br />

Figure 1.3: Soft Start Sequence of Operation<br />

Selectable Kickstart<br />

100%<br />

Coast-to-rest<br />

Percent<br />

<strong>Voltage</strong><br />

Soft Stop<br />

Start<br />

Run<br />

Time (seconds)<br />

Soft Stop<br />

Push Buttons<br />

Start<br />

Stop<br />

Soft Stop<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Auxiliary Contacts<br />

If Soft Stop Selected<br />

Normal<br />

Up-to-speed<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

If Coast-to-rest Selected<br />

1-4


Bulletin 150 SMC Flex<br />

Figure 1.4: Soft Start Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

Start<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-5


Bulletin 150 SMC Flex<br />

Current Limit Start with Selectable Kickstart<br />

This method provides a current limit start and is used when it is necessary to limit the maximum<br />

starting current. The starting current is user adjustable from 50 to 600% of full load amperes.<br />

The current limit ramp time is user adjustable from 0 to 30 seconds.<br />

The kickstart feature provides a boost at startup to break away loads that may require a pulse of<br />

high torque to get started. It is intended to provide a current pulse, user adjustable 0-90%<br />

locked rotor torque for a selected period of time from 0.0 to 2.0 seconds.<br />

Figure 1.5: Current Limit Start<br />

600%<br />

Percent Full<br />

Load Current<br />

50%<br />

Start<br />

Time (seconds)<br />

To apply a current limit output to the motor, the following parameters are provided for user<br />

adjustment.<br />

Table 1.B: Current Limit Start Parameters<br />

Parameter<br />

SMC Option<br />

Starting Mode<br />

Ramp Time<br />

Current Limit Level<br />

Kickstart Time<br />

Kickstart Level<br />

Option 2 Input<br />

Stop Mode<br />

Stop Time<br />

<strong>Stand</strong>ard, Braking, Pump<br />

Current Limit<br />

0…30 s<br />

50…600% FLC<br />

0.0…2.0 s<br />

0…90% LRT<br />

Disable<br />

Disable<br />

0 s<br />

Adjustments<br />

1-6


Bulletin 150 SMC Flex<br />

Figure 1.6: Current Limit Sequence of Operation<br />

600%<br />

Percent Full<br />

Load<br />

Current<br />

Soft Stop<br />

100%<br />

Coast-to-rest<br />

50%<br />

Start<br />

Run<br />

Time (seconds)<br />

Soft Stop<br />

Push Buttons<br />

Start<br />

Stop<br />

Soft Stop<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Auxiliary Contacts<br />

If Soft Stop Selected<br />

Normal<br />

Up-to-speed<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

If Coast-to-rest Selected<br />

1-7


Bulletin 150 SMC Flex<br />

Figure 1.7: Current Limit Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

Start<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-8


Bulletin 150 SMC Flex<br />

Dual Ramp Start with Selectable Kickstart<br />

This starting method is useful on applications with varying loads, starting torque, and start time<br />

requirements. Dual Ramp Start offers the user the ability to select between two separate Start<br />

profiles with separately adjustable ramp times and initial torque settings.<br />

The kickstart feature provides a boost at startup to break away loads that may require a pulse of<br />

high torque to get started. It is intended to provide a current pulse, user adjustable 0…90%<br />

locked rotor torque for a selected period of time from 0.0 to 2.0 seconds.<br />

Figure 1.8: Dual Ramp Start<br />

Percent<br />

<strong>Voltage</strong><br />

100%<br />

Ramp #2<br />

Initial Torque<br />

#2<br />

Initial Torque<br />

#1<br />

Ramp #1<br />

Start #1 Run #1<br />

Start #2 Run #2<br />

Time (seconds)<br />

To obtain Dual Ramp Start control, the following parameters are available when you select Dual<br />

Ramp in the Option 2 Input parameter.<br />

Table 1.C: Dual Ramp Start Parameters<br />

Parameter<br />

SMC Option<br />

Starting Mode<br />

Ramp Time<br />

Initial Torque<br />

Current Limit Level<br />

Torque Limit<br />

Kickstart Time<br />

Kickstart Level<br />

Option 2 Input<br />

Starting Mode 2<br />

Start Time 2<br />

Initial Torque 2<br />

Current Limit Level 2<br />

Torque Limit 2<br />

Kickstart Time 2<br />

Kickstart Level 2<br />

Stop Mode<br />

Stop Time<br />

Adjustments<br />

<strong>Stand</strong>ard<br />

Full <strong>Voltage</strong>, Current Limit, Soft Start, Linear Speed<br />

0…30 s<br />

0…90% LRT<br />

50…600% FLC<br />

0…100% LRT<br />

0.0…2.0 s<br />

0…90% LRT<br />

Dual Ramp<br />

Full <strong>Voltage</strong>, Current Limit, Soft Start, Linear Speed<br />

0…30 s<br />

0…90% LRT<br />

50…600% FLC<br />

0…100% LRT<br />

0.0…2.0 s<br />

0…90% LRT<br />

Disable<br />

0 s<br />

1-9


Bulletin 150 SMC Flex<br />

Figure 1.9: Dual Ramp Start Sequence of Operation<br />

100%<br />

Ramp #2<br />

Coast-to-rest<br />

Percent<br />

<strong>Voltage</strong><br />

Ramp #1<br />

Soft Stop<br />

Start #1<br />

Start #2<br />

Run #1<br />

Run #2<br />

Soft Stop<br />

Push Buttons<br />

Time (seconds)<br />

Start<br />

Stop<br />

Soft Stop<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Auxiliary Contacts<br />

If Soft Stop Selected<br />

Normal<br />

Up-to-speed<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

If Coast-to-rest Selected<br />

1-10


Bulletin 150 SMC Flex<br />

Figure 1.10: Dual Ramp Start Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

➀<br />

Ramp 1 Ramp 2<br />

Start<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-11


Bulletin 150 SMC Flex<br />

Full <strong>Voltage</strong> Start<br />

This method is used in applications requiring across-the-line starting. The SMC-Flex controller<br />

performs like a solid-state contactor. Full inrush current and locked rotor torque are realized.<br />

The SMC-Flex may be programmed to provide full voltage start in which the output voltage to<br />

the motor reaches full voltage in ¼ second.<br />

Figure 1.11: Full <strong>Voltage</strong> Start<br />

100%<br />

Percent<br />

<strong>Voltage</strong><br />

Time (seconds)<br />

The basic parameter setup for Full <strong>Voltage</strong> Start follows:<br />

Table 1.D: Full <strong>Voltage</strong> Start Parameters<br />

Parameter<br />

SMC Option<br />

Starting Mode<br />

Stop Mode<br />

Stop Time<br />

<strong>Stand</strong>ard, Braking, Pump<br />

Full <strong>Voltage</strong><br />

Disable<br />

0 s<br />

Adjustments<br />

1-12


Bulletin 150 SMC Flex<br />

Figure 1.12: Full <strong>Voltage</strong> Start Sequence of Operation<br />

100%<br />

Coast-to-rest<br />

Percent<br />

<strong>Voltage</strong><br />

Soft Stop<br />

Start<br />

Run<br />

Time (seconds)<br />

Soft Stop<br />

Push Buttons<br />

Start<br />

Stop<br />

Soft Stop<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Auxiliary Contacts<br />

If Soft Stop Selected<br />

Normal<br />

Up-to-speed<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

If Coast-to-rest Selected<br />

1-13


Bulletin 150 SMC Flex<br />

Figure 1.13: Full <strong>Voltage</strong> Start Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

Start<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-14


Bulletin 150 SMC Flex<br />

Preset Slow Speed<br />

This method can be used on applications that require a slow speed for positioning material. The<br />

Preset Slow Speed can be set for either <strong>Low</strong>, 7% of base speed, or High, 15% of base speed.<br />

Reversing is also possible through programming. Speeds provided during reverse operation are<br />

<strong>Low</strong>, 10% of base speed, or High, 20% of base speed.<br />

Figure 1.14: Preset Slow Speed<br />

100%<br />

Motor<br />

Speed<br />

Forward<br />

15% - High<br />

7% - <strong>Low</strong><br />

10% - <strong>Low</strong><br />

Time (seconds)<br />

Start<br />

Run<br />

20% - High<br />

Reverse<br />

The basic parameter setup for Soft Start selection with Preset Slow Speed Option follows:<br />

Table 1.E: Preset Slow Speed Parameters<br />

Parameter<br />

SMC Option<br />

Starting Mode<br />

Ramp Time<br />

Initial Torque<br />

Current Limit Level<br />

Torque Limit<br />

Kickstart Time<br />

Kickstart Level<br />

Option 2 Input<br />

Stop Mode<br />

Stop Time<br />

Slow Speed Sel<br />

Slow Speed Dir<br />

Slow Accel Cur<br />

Slow Running Cur<br />

Adjustments<br />

<strong>Stand</strong>ard, Braking<br />

Full <strong>Voltage</strong>, Current Limit, Soft Start, Linear Speed<br />

0…30 s<br />

0…90% LRT<br />

50…600% FLC<br />

0…100% LRT<br />

0.0…2.0 s<br />

0…90% LRT<br />

Preset SS<br />

Disable<br />

0 s<br />

SS <strong>Low</strong>, SS High<br />

SS Forward, SS Reverse<br />

0…450% FLC<br />

0…450% FLC<br />

1-15


Bulletin 150 SMC Flex<br />

Figure 1.15: Preset Slow Speed Sequence of Operation<br />

100%<br />

Motor<br />

Speed<br />

7 or 15%<br />

Coast-to-rest<br />

Soft Stop<br />

Slow Speed<br />

Start<br />

Run<br />

Time (seconds)<br />

Coast<br />

Push Buttons<br />

Start<br />

Stop<br />

Slow Speed<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Auxiliary Contacts<br />

Normal<br />

Closed<br />

Open<br />

Up-to-speed<br />

Closed<br />

Open<br />

1-16


Bulletin 150 SMC Flex<br />

Figure 1.16: Preset Slow Speed Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

Slow Speed<br />

➀<br />

Start<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-17


Bulletin 150 SMC Flex<br />

Linear Speed Acceleration with Selectable Kickstart<br />

This method starts the motor following a linear speed ramp. The ramp time defines the time the<br />

motor will ramp from zero speed to full speed. This ramp time is user adjustable from<br />

0…30 seconds. Linear Speed requires a tachometer input (0…5 V DC, 4.5 V = 100% speed).<br />

The curent limit is active during the starting ramp.<br />

The kickstart feature provides a boost at startup to break away loads that may require a pulse of<br />

high torque to get started. It is intended to provide a current pulse, user adjustable 0…90%<br />

locked rotor torque for a selected period of time, 0.0…2.0 seconds. Note that speed ramp<br />

begins once the kickstart is completed.<br />

Figure 1.17: Linear Speed Acceleration<br />

Percent<br />

Speed<br />

100%<br />

Start<br />

Run<br />

Time (seconds)<br />

Stop<br />

The basic parameter set for Linear Speed follows:<br />

Table 1.F: Linear Speed Acceleration Parameters<br />

Parameter<br />

SMC Option<br />

Starting Mode<br />

Ramp Time<br />

Current Limit Level<br />

Kickstart Time<br />

Kickstart Level<br />

Option 2<br />

Stop Mode<br />

Stop time<br />

<strong>Stand</strong>ard<br />

Linear Speed<br />

0.0…30.0 s<br />

0…600% FLC (Full Load Current)<br />

0.0…2.0 s<br />

0…90% LRT<br />

Disable<br />

Linear Speed<br />

0.0…120.0 s<br />

Adjustments<br />

1-18


Bulletin 150 SMC Flex<br />

Figure 1.18: Linear Speed Acceleration Sequence of Operation<br />

100%<br />

Coast-to-rest<br />

Motor<br />

Speed<br />

Soft Stop or<br />

Linear Speed<br />

Start<br />

Run<br />

Time (seconds)<br />

Soft Stop<br />

Push Buttons<br />

Start<br />

Stop<br />

Soft Stop or<br />

Linear Speed<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Auxiliary Contacts<br />

If Soft Stop Selected<br />

Normal<br />

Closed<br />

Open<br />

Up-to-speed<br />

Closed<br />

Open<br />

If Coast-to-rest Selected<br />

1-19


Bulletin 150 SMC Flex<br />

Figure 1.19: Linear Speed Acceleration Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

Linear Stop<br />

➀<br />

Start<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-20


Bulletin 150 SMC Flex<br />

Soft Stop<br />

The Soft Stop option can be used in applications requiring an extended coast-to-rest. The<br />

voltage ramp down time is user adjustable from 0…120 seconds. The Soft Stop time is<br />

adjusted independently from the start time. The load will stop when the voltage drops to a point<br />

where the load torque is greater than the motor torque.<br />

Figure 1.20: Soft Stop<br />

Percent<br />

<strong>Voltage</strong><br />

100%<br />

Selectable Kickstart<br />

Coast-to-rest<br />

Soft Stop<br />

Initial<br />

Torque<br />

Start<br />

Run<br />

Time (seconds)<br />

Soft Stop<br />

The basic parameter setup for Soft Stop follows:<br />

Table 1.G: Soft Stop Parameters<br />

Parameter<br />

SMC Option<br />

Stop Mode<br />

Stop Time<br />

<strong>Stand</strong>ard, Braking, Pump<br />

Soft Stop<br />

0…120 seconds<br />

Adjustments<br />

1-21


Bulletin 150 SMC Flex<br />

Figure 1.21: Soft Stop Sequence of Operation<br />

100%<br />

Coast-to-rest<br />

Motor<br />

Speed<br />

Soft Stop<br />

Start<br />

Run<br />

Time (seconds)<br />

Soft Stop<br />

Push Buttons<br />

Start<br />

Stop<br />

Soft Stop<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Auxiliary Contacts<br />

If Soft Stop Selected<br />

Normal<br />

Closed<br />

Open<br />

Up-to-speed<br />

Closed<br />

Open<br />

If Coast-to-rest Selected<br />

1-22


Bulletin 150 SMC Flex<br />

Figure 1.22: Soft Stop Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

Soft Stop<br />

➀<br />

Start<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-23


Bulletin 150 SMC Flex<br />

Pump Control<br />

Pump Control Option with Selectable Kickstart<br />

The SMC-Flex controller’s unique interactive Pump Control is designed to reduce fluid surges in<br />

pumping systems. It provides closed loop acceleration and deceleration control of centrifugal<br />

pump motors without the need for feedback devices.<br />

The kickstart feature provides a boost at startup to break away loads that may require a pulse of<br />

high torque to get started. It is intended to provide a current pulse with user adjustable locked<br />

rotor torque from 0-90% and kickstart time from 0.0 to 2.0 seconds.<br />

Figure 1.23: Pump Control Option with Selectable Kickstart<br />

100%<br />

Motor<br />

Speed<br />

Pump Start<br />

Run<br />

Time (seconds)<br />

Pump Stop<br />

The basic parameter setup for Pump Control follows:<br />

Table 1.H: Pump Control Option Parameters<br />

Parameter<br />

SMC Option<br />

Starting Mode<br />

Start Time<br />

Initial Torque<br />

Kickstart Time<br />

Kickstart Level<br />

Stop Time<br />

Anti-Backspin Timer<br />

Pump<br />

Pump Start<br />

0…30 s<br />

0…90% LRT<br />

0.0…2.0 s<br />

0…90% LRT<br />

0…120 s<br />

0…999 s<br />

Adjustments<br />

1-24


Bulletin 150 SMC Flex<br />

Figure 1.24: Pump Control Option Sequence of Operation<br />

100%<br />

Coast-to-rest<br />

Motor<br />

Speed<br />

Pump Start<br />

Run<br />

Time (seconds)<br />

Pump Stop<br />

Push Buttons<br />

Start<br />

Stop<br />

Pump Stop<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Auxiliary Contacts<br />

If Pump Stop Selected<br />

Normal<br />

Up-to-speed<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

If Coast-to-rest Selected<br />

1-25


Bulletin 150 SMC Flex<br />

Figure 1.25: Pump Control Option Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

Pump Stop<br />

➀<br />

Start<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-26


Bulletin 150 SMC Flex<br />

Braking Control<br />

SMB Smart Motor Braking Option<br />

The SMB Smart Motor Braking option provides motor braking for applications, which require<br />

the motor to stop quickly. It is a microprocessor based braking system, which applies braking<br />

current to a motor. The strength of the braking current is adjustable from 0…400% of full load<br />

current.<br />

Figure 1.26: Smart Motor Braking<br />

100%<br />

Smart Motor Braking<br />

Motor<br />

Speed<br />

Coast-to-rest<br />

Start<br />

Run<br />

Time (seconds)<br />

Brake<br />

Automatic Zero Speed<br />

Shut-off<br />

The basic parameter setup for Smart Motor Braking follows:<br />

Table 1.I: Smart Motor Braking Parameters<br />

Parameter<br />

SMC Option<br />

Stop Mode<br />

Braking Current<br />

Braking<br />

SMB<br />

0…400% FLC<br />

Adjustments<br />

1-27


Bulletin 150 SMC Flex<br />

Figure 1.27: Smart Motor Braking Sequence of Operation<br />

100%<br />

Smart Motor Braking<br />

Motor<br />

Speed<br />

Coast-to-rest<br />

Start<br />

Run<br />

Time (seconds)<br />

Brake<br />

Automatic Zero Speed<br />

Shut-off<br />

Push Buttons<br />

Start<br />

Stop<br />

Smart Motor<br />

Braking<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Auxiliary Contacts<br />

If Brake Selected<br />

Normal<br />

Up-to-speed<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

If Coast-to-rest Selected<br />

1-28


Bulletin 150 SMC Flex<br />

Figure 1.28: Smart Motor Braking Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

Brake<br />

➀<br />

Start<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-29


Bulletin 150 SMC Flex<br />

Accu-Stop<br />

The Accu-Stop option provides rapid braking to a slow speed, and then braking to stop,<br />

facilitating cost-effective general positioning control.<br />

Figure 1.29: Accu-Stop<br />

The basic parameter setup for Accu-Stop follows:<br />

Table 1.J: Accu-Stop Parameters<br />

Parameter<br />

SMC Option<br />

Stop Mode<br />

Slow Speed Sel<br />

Slow Accel Cur<br />

Slow Running Cur<br />

Braking Current<br />

Stopping Current<br />

Braking<br />

Accu Stop<br />

SS <strong>Low</strong>, SS High<br />

0…450% FLC<br />

0…450% FLC<br />

0…400% FLC<br />

0…400% FLC<br />

Adjustments<br />

1-30


Bulletin 150 SMC Flex<br />

Figure 1.30: Accu-Stop Sequence of Operation<br />

100 %<br />

Motor<br />

Speed<br />

Braking<br />

Slow Speed<br />

Braking<br />

Coast-to-rest<br />

Slow Speed<br />

Slow<br />

Speed<br />

Start<br />

Run<br />

Time (seconds)<br />

Accu-Stop<br />

Push Buttons<br />

Start<br />

Closed<br />

Open<br />

Stop<br />

Closed<br />

Open<br />

Accu-Stop<br />

Closed<br />

Open<br />

Auxiliary Contacts<br />

Normal Closed<br />

Open<br />

Up-to-speed Closed<br />

Open<br />

If Coast-to-rest<br />

Selected<br />

Slow<br />

Speed<br />

Braking<br />

1-31


Bulletin 150 SMC Flex<br />

Figure 1.31: Accu-Stop Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

Accu-Stop<br />

➀<br />

Start<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-32


Bulletin 150 SMC Flex<br />

Slow Speed with Braking<br />

The Slow Speed with Braking option combines the benefits of the SMB Smart Motor Braking<br />

and Preset Slow Speed options for applications that require slow setup speeds and braking to a<br />

stop.<br />

Figure 1.32: Slow Speed with Braking<br />

The basic parameter setup for Slow Speed with Braking follows:<br />

Table 1.K: Slow Speed with Braking Parameters<br />

Parameter<br />

SMC Option<br />

Option 2 Input<br />

Slow Speed Sel<br />

Slow Speed Dir<br />

Slow Accel Cur<br />

Slow Running Cur<br />

Stop Mode<br />

Braking Current<br />

Braking<br />

Preset SS<br />

SS <strong>Low</strong>, SS High<br />

SS Forward, SS Reverse<br />

0…450% FLC<br />

0…450% FLC<br />

SMB<br />

0…400% FLC<br />

Adjustments<br />

1-33


Bulletin 150 SMC Flex<br />

Figure 1.33: Slow Speed with Braking Sequence of Operation<br />

100%<br />

Coast-to-Stop<br />

Motor<br />

Speed<br />

Braking<br />

Slow Speed<br />

Start<br />

Run<br />

Brake<br />

Time (seconds)<br />

Push Buttons<br />

Start<br />

Stop<br />

Slow Speed<br />

Brake<br />

Auxiliary Contacts<br />

Normal<br />

Up-to-speed<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Closed<br />

Open<br />

Brake<br />

If Coast-to-rest selectede<br />

1-34


Bulletin 150 SMC Flex<br />

Figure 1.34: Slow Speed with Braking Wiring Diagram<br />

Control Power<br />

➁<br />

Stop<br />

➀<br />

Brake<br />

➀<br />

Start<br />

➀<br />

Slow Speed<br />

➀<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Aux #1<br />

Normal/Up-to-Speed/<br />

Bypass<br />

Internal<br />

Auxilary<br />

Contacts<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Fault<br />

Contact<br />

Alarm<br />

Contact<br />

Aux #2<br />

Normal<br />

➀<br />

➁<br />

Customer supplied.<br />

Refer to the controller nameplate to verify the rating of the control power input rating.<br />

1-35


Bulletin 150 SMC Flex<br />

Features<br />

SCR Bypass<br />

The SMC-Flex has a built-in bypass contactor that is automatically pulled in when the motor<br />

reaches full speed. An external bypass contactor may be used. When an external bypass<br />

contactor is enabled (by setting the parameter “Aux1 Config” to “Bypass”) the internal bypass<br />

contactor will not be used, and a separate overload is required.<br />

<strong>Stand</strong>ard or Wye-Delta Wiring<br />

The SMC-Flex can operate either a standard squirrel-cage induction motor or a wye-delta motor.<br />

The user must program the selected configuration into the unit using the “Motor Connection”<br />

parameter. The wye-delta motor is connected in an inside-the-delta wiring configuration, and<br />

the Motor Connection is det to Delta.<br />

LCD Display<br />

A graphical backlit LCD display provides parameter definition with straightforward text so that<br />

controller setup may be accomplished without a reference manual. Parameters are arranged in<br />

an organized three-level menu structure for ease of programming and fast access to<br />

parameters.<br />

The displayed language can also be changed to meet global customer needs.<br />

Parameter Programming<br />

Programming of parameters is accomplished through a five-button keypad on the front of the<br />

SMC-Flex controller. The five buttons include up and down arrows, an Enter button, a Select<br />

button, and an Escape button. The user needs only to enter the correct sequence of keystrokes<br />

for programming the SMC-Flex controller.<br />

Figure 1.35: LCD Display with Keypad<br />

LCD Display<br />

Keypad<br />

1-36


Bulletin 150 SMC Flex<br />

Electronic Overload<br />

The SMC-Flex controller meets applicable requirements as a motor overload protective device.<br />

Overload protection is accomplished electronically through current sensors and an I 2 t<br />

algorithm.<br />

The overload trip class is selectable for OFF, 10, 15, 20, or 30 protection. The trip current is set<br />

by entering the motor’s full load current rating and the service factor.<br />

Thermal memory is included to model motor operating and cooling temperatures. Ambient<br />

insensitivity is inherent in the electronic design of the overload.<br />

Stall Protection and Jam Detection<br />

Motors can experience locked rotor currents and develop maximum torque in the event of a stall<br />

(during start) or a jam (after full speed is reached). These conditions can result in winding<br />

insulation breakdown or mechanical damage to the connected load.<br />

The SMC-Flex controller provides both stall and jam detection for enhanced motor and system<br />

protection. Stall protection allows the user to program a maximum stall time of up to 10<br />

seconds. Jam detection allows the user to determine the jam level as a percentage of the<br />

motor’s full load current rating, and a trip delay time of up to 99 seconds.<br />

Note:<br />

The stall trip delay time is in addition to the programmed start time.<br />

Figure 1.36: Stall Protection Sequence of Operation<br />

600%<br />

Percent<br />

Full<br />

Load<br />

Current<br />

Programmed Start Time<br />

Time (seconds)<br />

Stall<br />

1-37


Bulletin 150 SMC Flex<br />

Percent<br />

Full<br />

Load<br />

Current<br />

User Programmed Trip Level<br />

100%<br />

Running<br />

Time (seconds)<br />

Jam<br />

Ground Fault Protection<br />

Thermistor Input<br />

the PTC will help identify this. The thermistor input settings are user adjustable. See the User<br />

Manual for more details.<br />

The SMC-Flex controller contains several power monitoring parameters as standard. These<br />

parameters include:<br />

Three-phase current<br />

Three-phase voltage<br />

Power in kW<br />

Power usage in kWH<br />

Power factor<br />

Elapsed time<br />

Motor thermal capacity usage


Bulletin 150 SMC Flex<br />

The SMC-Flex controller monitors both the pre-start and running modes. If the controller senses<br />

a fault, the SMC-Flex controller shuts down the motor and displays the appropriate fault<br />

condition in the LCD display. The controller monitors the following conditions:<br />

Line Loss<br />

Shorted SCR<br />

Open SCR Gate<br />

Thermistor (PTC)<br />

Overtemperature (Power Pole, SCR, Motor)<br />

Bypass Failure<br />

No Load<br />

Overvoltage<br />

Undervoltage<br />

Overload<br />

Underload<br />

Jam<br />

Stall<br />

Phase Reversal<br />

Phase Unbalance<br />

Current Unbalance<br />

<strong>Voltage</strong> Unbalance<br />

Loss of Communication<br />

Power Loss<br />

Excessive Starts/Hour<br />

Ground Fault<br />

Motor Lead Loss<br />

Line Fault<br />

Communication Fault<br />

Any fault condition will cause the auxiliary contacts to change state and the hold-in circuit to<br />

release.


Bulletin 150 SMC Flex<br />

A serial interface port is furnished as standard with the SMC-Flex controller. This<br />

communication port allows connection to a Bulletin 20 Human Interface Module, and a variety<br />

of 20-COMM modules. These include Allen-Bradley Remote I/O, DeviceNet, ControlNet,<br />

Ethernet, ProfiBUS, Interbus, and RS485.<br />

Four hard contacts are provided as standard with the SMC-Flex controller. The first contact is<br />

programmable for Normal/Up-to-speed/Bypass. The second, third and fourth contact are<br />

configured to N.O/N.C.<br />

The SMC-Flex controller packaging is designed for industrial environments. The modularity of<br />

control and power modules feature plug-in functionality. There are no gate wires to remove and<br />

no soldering is required. Common control modules reduce inventory requirements.


Bulletin 150 SMC Flex<br />

The SMC-Flex controller contains 24 control terminals on the front of the controller. These<br />

control terminals are described below. See Figure 1.39.<br />

Terminal Number<br />

11 Control Power Input<br />

12 Control Power Common<br />

13 Controller Enable Input ➀<br />

14 Ground<br />

15 Option Input #2 ➀<br />

16 Option Input #1 ➀<br />

17 Start Input ➀<br />

18 Stop Input ➀<br />

19<br />

20<br />

N.O. Aux. Contact #1<br />

(Normal/Up-to-Speed/External Bypass) ➁<br />

N.O. Aux. Contact #1<br />

(Normal/Up-to-Speed/External Bypass) ➁<br />

Description<br />

21 Not Used<br />

22 Not Used<br />

23 PTC Input ➀<br />

24 PTC Input ➀<br />

25 Tach Input<br />

26 Tach Input<br />

27 Ground Fault Transformer Input ➀<br />

28 Ground Fault Transformer Input ➀<br />

29 Fault Contact (N.O./N.C.)<br />

30 Fault Contact (N.O./N.C.)<br />

31 Alarm Contact (N.O./N.C.)<br />

32 Alarm Contact (N.O./N.C.)<br />

33 Aux Contact #2 Normal (N.O./N.C.)<br />

34 Aux Contact #2 Normal (N.O./N.C.)<br />

➀ Do not connect any additional loads to these terminals. These “parasitic” loads may cause problems with operation, which<br />

may result in false starting and stopping.<br />

➁ External Bypass operates an external contactor and overload once the meter reaches full speed. The SMC-Flex overload<br />

functionality is disabled when the external bypass is activated. Proper sizing of the contactor and overload is required.


Bulletin 150 SMC Flex<br />

Figure 1.39: SMC-Flex Controller Control Terminals<br />

11 12 13 14 15 16 17 18 19 20 21<br />

22<br />

SMC-Flex<br />

Control Terminals<br />

Opt<br />

Input #2<br />

Opt<br />

Input #1<br />

Start<br />

Input<br />

Stop<br />

Input<br />

Aux #1<br />

23 24 25 26 27 28 29 30 31 32 33<br />

34<br />

PTC<br />

Input<br />

TACH<br />

Input<br />

Ground<br />

Fault<br />

Aux #2 Aux #3 Aux #4<br />

1-42


Bulletin 150 SMC Flex<br />

2<br />

Overview<br />

Application Profiles for the SMC-Flex Controller<br />

In this chapter, a few of the many possible applications for the SMC-Flex controller are<br />

described. The basis for selecting a particular control method is also detailed. Illustrations are<br />

included to help identify the application. Motor ratings are specified, but the ratings may vary in<br />

other typical applications.<br />

For example, a tumbler drum is described as requiring the Soft Start feature. The application is<br />

examined further to determine how the SMC-Flex controller options can be used to improve the<br />

tumbler drum performance and productivity.<br />

Figure 2.1: Compressor with Soft Start<br />

AirFilter<br />

InletValve<br />

TurnValve<br />

Ports<br />

208...480Volts<br />

50...250HP<br />

50/60Hz<br />

Problem: A compressor OEM shipped its equipment into overseas markets, where wye-delta<br />

motors are common. There were many different voltage and frequency requirements to meet<br />

because of the compressor’s final destination. Due to power company requirements and<br />

mechanical stress on the compressor, a reduced voltage starter was required. This made<br />

ordering and stocking spare parts difficult.<br />

Solution: The SMC-Flex controller was installed and wired to a wye-delta motor. The unit was<br />

set for an 18-second Soft Start, which reduced the voltage to the motor during starting and met<br />

the power company requirements. By reducing the voltage, the starting torque was also<br />

reduced, minimizing the shock to the compressor. Panel space was saved because the SMC-Flex<br />

controller has a built-in overload and SCR bypass feature.<br />

2-1


Bulletin 150 SMC Flex<br />

Figure 2.2: Tumbler with Soft Start and Accu-Stop<br />

480 Volts<br />

150 Hp<br />

Loading Door<br />

Tumbler Drum<br />

Drive Chain<br />

Motor<br />

Problem: A tumbler drum used in the de-burring process was breaking the drive chain because<br />

of the uncontrolled acceleration from the across-the-line starter. To increase production on the<br />

drum, the coasting time on stop had to be reduced. Previous solutions were a separate soft start<br />

package plus a motor brake, which required additional panel space and power wiring. A small<br />

enclosure size and simplified power wiring were needed to reduce the cost of the controls.<br />

Because a PLC was controlling several other processes in the facility, communication<br />

capabilities were desired.<br />

Solution: The SMC-Flex controller with the braking option configured as Accu-Stop was<br />

installed on the process. The Soft Start provided a smooth acceleration of the drive chain,<br />

which reduced downtime. The controlled acceleration made positioning for loading/unloading<br />

easier. The drum was positioned for loading using the Preset Slow Speed. For unloading, the<br />

drum was rotated at Preset Slow Speed and then accurately stopped. This increased the<br />

productivity of the loading/unloading cycle. Further, the Accu-Stop option did not require<br />

additional panel space or wiring. The SMC-Flex controller’s built-in overload eliminated the<br />

need to mount an external overload relay in the enclosure. The built-in SCR Bypass eliminated<br />

the need for an external bypass contact in the enclosure. Both features saved further panel<br />

space. The communication feature of the SMC-Flex controller allowed remote starting and<br />

stopping of the process from a PLC.<br />

2-2


Bulletin 150 SMC Flex<br />

Figure 2.3: Pump with Soft Start<br />

Ground Level<br />

480V<br />

150 Hp<br />

Check Valve<br />

Pump<br />

Motor<br />

Problem: A municipal water company was experiencing problems with pump impellers being<br />

damaged. The damage occurred during frequent motor starting while the load below the check<br />

valve was draining from the system. A timing relay was installed to prevent restart underload,<br />

but need to be adjusted frequently.The pumping station motor was over 100 feet below ground,<br />

making repair costly. For maintenance scheduling purposes, an elapsed time meter measuring<br />

motor running time had to be installed in the enclosure.<br />

Solution: The SMC-Flex controller with Pump control was installed, providing a controlled<br />

acceleration of the motor. By decreasing the torque during start up, the shock to the impeller<br />

was reduced. The SMC-Flex Anti-backspin timer feature was implemented to prevent the motor<br />

from starting while turning in a reverse direction. Panel space was saved by employing the<br />

built-in elapsed time meter. The SMC-Flex controller’s line diagnostics detected the pre-start<br />

and running single-phase condition and shut off the motor, protecting against motor damage.<br />

2-3


Bulletin 150 SMC Flex<br />

Figure 2.4: Bandsaw with Soft Start and Slow Speed with Braking<br />

480 Volts<br />

300 Hp<br />

Saw Blade<br />

Log<br />

Carriage<br />

Motor<br />

High Inertia Wheels<br />

Problem: Because of the remote location of the facility and power distribution limitations, a<br />

reduced voltage starter was needed on a bandsaw application. When the saw blade became<br />

dull, the current drawn by the motor increased. Therefore, an ammeter was required. The saw<br />

was turned off only during shift changes or routinely to change the saw blade. This application<br />

required 25 minutes to coast to stop, and braking devices were unacceptable due to their high<br />

complexity and panel space requirements. After a blade was replaced, it was dangerous to<br />

bring the saw up to full speed because of alignment problems. Metering the application for jam<br />

conditions was a necessity. In addition, single phasing of the motor was a problem because of<br />

distribution limitations.<br />

Solution: The SMC-Flex controller was installed to provide a reduced voltage start. This<br />

minimized the starting torque shock to the system. With the braking option configured as Slow<br />

Speed with Braking, it provided a preset slow speed, allowing the saw blade tracking to be<br />

inspected before the motor was brought to full speed. The current monitoring and jam detection<br />

features of the SMC-Flex controller were implemented, saving valuable panel space and the<br />

cost of purchasing dedicated monitoring devices. The controller’s built-in programmable<br />

overload protection was used. The SMC-Flex controller’s diagnostic capabilities would detect<br />

single phasing and shut the motor off accordingly. Starting and stopping control was furnished<br />

in a single modular unit, providing ease of installation.<br />

2-4


Bulletin 150 SMC Flex<br />

Figure 2.5: Rock Crusher with Soft Start<br />

250 HP<br />

480 Volts<br />

Starts: Unloaded<br />

Gearbox<br />

Motor<br />

Discharge<br />

Problem: Because of the remote location of a rock quarry, the power company required a<br />

reduced voltage start on all motors over 150 Hp. The starting current on these large motors<br />

strained the capacity of the power system, causing severe voltage dips. When the rock crusher<br />

became overloaded, the current draw by the Wye-Delta motor increased. Therefore, current<br />

monitoring capabilities within the soft starter were required. Because the conveyor feeding the<br />

rock crusher was controlled by a PLC, communications between the soft starter and a PLC was<br />

necessary. When the rock crusher ran, occasionally a stall or jam would occur.<br />

Solution: The SMC-Flex controller was installed, meeting the power company requirements.<br />

The motor was wired inside-the-delta, which saves valuable panel space. The metering<br />

capabilities of the SMC-Flex controller allowed the current drawn by the motor to be monitored.<br />

With the built-in communications capabilities, the motor current was communicated to the PLC.<br />

When the motor current reached a specified limit, the conveyor feeding the rock crusher could<br />

be slowed. By slowing the conveyor, a jam condition in the rock crusher was avoided. The stall<br />

and jam detection capabilities of the SMC-Flex controller would shut off the motor when a stall<br />

or jam condition occurred.<br />

2-5


Bulletin 150 SMC Flex<br />

Figure 2.6: Hammermill with Current Limit Start and SMB Smart Motor Braking<br />

480 Volts<br />

350 Hp<br />

Belts<br />

Hammer<br />

Feed<br />

Motor<br />

Problem: A hammermill required a reduced voltage start because of power company<br />

restrictions. A stopping time less than the present 5 minute coast-to-rest was desired. To save<br />

panel space, the customer wanted to incorporate both starting and stopping control in the same<br />

device.<br />

Solution: The SMC-Flex controller with the braking option configured as SMB Smart Motor<br />

Braking was installed. A 23-second, 450% current limit acceleration was programmed, meeting<br />

the power company requirements and reducing the mechanical stress on the belts during startup.<br />

The braking function was accomplished without additional power wiring, panel space, or<br />

contactors. Zero speed was detected without additional sensors or timers. The current limit<br />

start, braking, and overload protection were accomplished within the same modular package.<br />

2-6


Bulletin 150 SMC Flex<br />

Figure 2.7: Centrifuge with Current Limit Start and SMB Smart Motor Braking<br />

480 Volts<br />

400 Hp<br />

Centrifuge<br />

Motor<br />

Gearbox<br />

Problem: A centrifuge required a reduced voltage start because of power company restrictions.<br />

The high torque during starting was causing damage to the gearbox. A shorter stopping time<br />

than the present 15 minute coast-to rest was desired. The long stop time caused delays in the<br />

production process. A Wye-Delta starter with a mechanical brake was currently in use. A<br />

zero-speed switch was used to release the brake. The mechanical brake required frequent<br />

maintenance and replacement, which was costly and time consuming. Both the mechanical<br />

brake and zero-speed switches were worn out and required replacement.<br />

Solution: The SMC-Flex controller with the braking option configured as SMB Smart Motor<br />

Braking was installed and wired inside-the-delta to the wye-delta motor. The controller was set<br />

for a 28-second, 340% current limit start, meeting the power company requirements and<br />

reducing the starting torque stress to the gearbox. SMB Smart Motor Braking allowed the<br />

centrifuge to stop in approximately 1 minute. The SMC-Flex controller with SMB Smart Motor<br />

Braking did not require additional mounting space or panel wiring. The controller was mounted<br />

in a panel that was considerably smaller than the previous controller. Additionally, the controller<br />

did not require frequent maintenance and could sense zero speed without a feedback device.<br />

2-7


Bulletin 150 SMC Flex<br />

Figure 2.8: Wire Draw Steel Mill Machine with Soft Start<br />

575 Volts<br />

35 Hp<br />

Unwind<br />

Spool<br />

Die<br />

Take-Up Spool<br />

Chain<br />

Wire<br />

Motor<br />

Problem: An across-the-line starter was used on a wire draw machine to pull wire. This rapid<br />

cycling application caused mechanical wear on both the chain and the electromechanical<br />

starter. Other soft starts had been experimented with, but not enough torque was developed to<br />

pull the wire through the die.<br />

Solution: The SMC-Flex controller was installed to accelerate the motor smoothly. The<br />

kickstart feature was adjusted to provide enough torque to pull the wire through the die. After<br />

the initial kickstart, the controller went back to the soft start acceleration mode, reducing the<br />

amount of starting torque on the chain and helping to lower maintenance inspection and repair<br />

time. The controller was set for a 9-second ramp time.<br />

2-8


Bulletin 150 SMC Flex<br />

Figure 2.9: Overload conveyor with Linear Speed and Tack Feedback<br />

240 Vol<br />

1.5 Hp<br />

Chain<br />

Conveyor<br />

Motor Motor Motor<br />

Problem: A overload gravel conveyor had three motors to drive the conveying system. Acrossthe-line<br />

starts caused damage to the conveyor and spilled gravel on the conveyor. Occasionally,<br />

the conveyor would stop fully loaded. An across-the-line start would then be needed to provide<br />

enough torque to accelerate the load.<br />

Solution: The conveyor OEM installed a single SMC-Flex controller with linear speed and tach<br />

feedback to provide a smooth acceleration to all three motors, reducing the starting torque of<br />

the motors and the mechanical shock to the conveyor and load. In addition, the controller could<br />

be configured to simulate a full voltage start, allowing the conveyor to accelerate when fully<br />

loaded. The OEM liked the SMC-Flex controller because of its ability to control three motors as<br />

if they were a single motor, eliminating the need for multiple soft starters.<br />

2-9


Bulletin 150 SMC Flex<br />

Figure 2.10: Ball Mill with Current Limit Start<br />

Loading Port<br />

480 Volts<br />

150 Hp<br />

Drum<br />

Substance<br />

Gearbox<br />

Motor<br />

Ball Shot<br />

Problem: An across-the-line starter was used to start the motor in a ball mill application. The<br />

uncontrolled start was causing damage to the gearbox, resulting in maintenance downtime, as<br />

well as the potential for the loss of the product (paint) being mixed. Line failures were a<br />

frequent problem. The application required prestart and running protection, as well as an<br />

elapsed time meter to monitor the process time. Communication capability was desired, and<br />

panel space was limited.<br />

Solution: The SMC-Flex controller was installed. It was programmed for a 26-second current<br />

limit start, thereby reducing the starting torque and the damage to the gearbox. The metering<br />

feature of the SMC-Flex controller contained an elapsed time meter, which could monitor the<br />

process time of the ball mill. The communications capabilities of the controller allowed the<br />

process time to be communicated to the PLC, which could remotely stop the ball mill. The line<br />

diagnostics required in the application are standard in the SMC-Flex controller, and the built-in<br />

overload protection and SCR Bypass saved panel space.<br />

2-10


PROTECTIVE MODULE<br />

Bulletin 150 SMC Flex<br />

Chapter 3<br />

SMC-Flex<br />

Controllers in<br />

Drive<br />

Applications<br />

Special Application Considerations<br />

The SMC-Flex controller can be installed in starting and stopping control applications. A<br />

variable frequency drive must be installed when speed variation is required during run.<br />

Use of Protective Modules<br />

A protective module (see Figure 3.1) containing metal oxide varistors (MOVs) can be installed to<br />

protect the power components from electrical transients and/or electrical noise. The protective<br />

modules clip transients generated on the lines and prevent such surges from damaging the<br />

SCRs.<br />

Figure 3.1: Protective Module<br />

There are two general situations that may occur which would indicate the need for using the<br />

protective modules.<br />

1. Transient spikes may occur on the lines feeding the SMC-Flex controller (or feeding the<br />

load from the SMC-Flex controller). Spikes are created on the line when devices are<br />

attached with current-carrying inductances that are open-circuited. The energy stored in<br />

the magnetic field is released when the contacts open the circuit. Examples of these are<br />

lightly loaded motors, transformers, solenoids, and electromechanical brakes. Lightning<br />

can also cause spikes.<br />

2. The second situation arises when the SMC-Flex controller is installed on a system that has<br />

fast-rising wavefronts present, although not necessarily high peak voltages. Lightning<br />

strikes can cause this type of response. Additionally, if the SMC-Flex controller is on the<br />

same bus as other SCR devices, (AC/DC drives, induction heating equipment, or welding<br />

equipment) the firing of the SCRs in those devices can cause noise.<br />

3-1


Bulletin 150 SMC Flex<br />

Motor Overload<br />

Protection<br />

Stall Protection<br />

and Jam<br />

Detection<br />

When coordinated with the proper short-circuit protection, overload protection is intended to<br />

protect the motor, motor controller, and power wiring against overheating caused by excessive<br />

overcurrent. The SMC-Flex controller meets applicable requirements as motor overload<br />

protective device.<br />

The SMC-Flex controller incorporates, as standard, electronic motor overload protection. This<br />

overload protection is accomplished electronically with circuits and an I 2 t algorithm.<br />

The controller’s overload protection is programmable, providing the user with flexibility. The<br />

overload trip class can be selected for class OFF, 10, 15, 20, or 30 protection. The trip current<br />

can be programmed to the motor full load current rating.<br />

Thermal memory is included to model motor operating and cooling temperatures. Ambient<br />

insensitivity is inherent in the electronic design of the overload.<br />

Motors can experience locked rotor currents and develop high torque levels in the event of a<br />

stall or a jam. These conditions can result in winding insulation breakdown or mechanical<br />

damage to the connected load.<br />

The SMC-Flex controller provides both stall and jam detection for enhanced motor and system<br />

protection. Stall protection allows the user to program a maximum stall protection delay time<br />

from 0 to 10 seconds. The stall protection delay time is in addition to the programmed start time<br />

and begins only after the start time has timed out.<br />

Jam detection allows the user to determine the motor jam detection level as a percentage of<br />

the motor’s full load current rating. To prevent nuisance tripping, a jam detection delay time,<br />

from 0…99 seconds, can be programmed. This allows the user to select the time delay required<br />

before the SMC-Flex controller will trip on a motor jam condition. The motor current must<br />

remain above the jam detection level during the delay time. Jam detection is active only after<br />

the motor has reached full speed.<br />

3-2


Bulletin 150 SMC Flex<br />

Built-in<br />

Communication<br />

Power Factor<br />

Capacitors<br />

A serial interface port is furnished as standard on the SMC-Flex controller. The connections<br />

allows a Bulletin 20-COMM to be installed. Using the built-in communication capabilities, the<br />

user can remotely access parameter settings, fault diagnostics, and metering. Remote startstop<br />

control can also be performed.<br />

When used with the Bulletin 20-COMM communication modules, the SMC-Flex controller<br />

offers true networking capabilities with several network protocols, including Allen-Bradley<br />

Remote I/O, DeviceNet network, RS 485, ControlNet, EtherNet, ProfiBUS, and Interbus.<br />

The controller may be installed on a system with power factor correction capacitors. These<br />

capacitors must be installed on the line side to prevent damage to the SCRs in the SMC-Flex<br />

controller (See Figure 3.2).<br />

Figure 3.2: Power Factor Capacitors<br />

3-Phase<br />

Input Power<br />

L1/1<br />

L2/3<br />

L3/5<br />

T1/2<br />

T2/4<br />

T3/6<br />

M<br />

➀<br />

Branch<br />

Protection<br />

➀<br />

SMC-Flex<br />

Controller<br />

➁<br />

Power Factor<br />

Correction Capacitors<br />

➀<br />

➀ Customer Supplied<br />

➁ Overload protection is included as a<br />

standard feature of the SMC-Flex controller.<br />

High values of inrush current and oscillating voltages are common when capacitors are<br />

switched. Therefore, additional impedance should be connected in series with the capacitor<br />

bank to limit the inrush current and dampen oscillations. The preferred practice is to insert aircore<br />

inductors as shown in Figure 3.3.<br />

The inductors can be simply constructed:<br />

for volts greater than or equal to 460V: use a six-inch diameter coil with eight loops<br />

for volts less than 460V: use a six-inch diameter coil with six loops<br />

The wire should be sized to carry the steady-state current that will flow through the capacitor<br />

bank during normal operations.<br />

3-3


Bulletin 150 SMC Flex<br />

The coils should be mounted on insulated supports away from metal parts. This will minimize<br />

the possibility of producing heating effects. Do not mount the coils to be stacked directly on top<br />

of each other. This will increase the chances of cancelling the effectiveness of the inductors.<br />

If an isolation contactor is used, it is preferable that the power factor capacitors be installed<br />

ahead of the isolation contactor if at all possible (see Figure 3.3). In some installations, this may<br />

not be physically possible and the capacitor bank will have to be connected to the downstream<br />

terminals of the contactor. In this case, the installer must exercise caution and ensure that the<br />

air-core inductance is sufficient to prevent oscillating voltages from interfering with the proper<br />

performance of the SMC-Flex controller. It may be necessary to add more loops to the coil.<br />

Figure 3.3: Power Factor Capacitors with Isolation Contactor<br />

3-Phase<br />

Input Power<br />

L1/1<br />

L2/3<br />

L3/5<br />

T1/2<br />

T2/4<br />

T3/6<br />

M<br />

➀<br />

Branch<br />

Protection<br />

➀<br />

Isolation<br />

Contactor<br />

(IC)<br />

➀<br />

SMC-Flex<br />

Controller<br />

➁<br />

Power Factor<br />

Correction Capacitors<br />

➀<br />

➀ Customer Supplied<br />

➁ Overload protection is included as a<br />

standard feature of the SMC-Flex controller.<br />

3-4


Bulletin 150 SMC Flex<br />

Multi-motor<br />

Applications<br />

The SMC-Flex controller will operate with more than one motor connected to it. To size the<br />

controller, add the total nameplate amperes of all of the connected loads. The stall and jam<br />

features should be turned off. Separate overloads are still required to meet the National Electric<br />

Code (NEC) requirements.<br />

Note:<br />

The SMC-Flex controller’s built-in overload protection cannot be used in multi-motor<br />

applications.<br />

Figure 3.4: Multi-Motor Application<br />

3-Phase<br />

Input Power<br />

L1/1<br />

L2/3<br />

L3/5<br />

T1/2<br />

T2/4<br />

T3/6<br />

Motor<br />

No. 1<br />

➀<br />

Branch<br />

Protection<br />

➀<br />

SMC-Flex<br />

Controller<br />

Overload<br />

Relay (O.L.)<br />

➀<br />

➀ Customer Supplied<br />

Motor<br />

No. 2<br />

➀<br />

Overload<br />

Relay (O.L)<br />

➀<br />

3-5


Bulletin 150 SMC Flex<br />

Special Motors<br />

The SMC-Flex controller may be applied or retrofitted to special motors (wye-delta, part<br />

winding, synchronous, and wound rotor) as described below.<br />

Wye-Delta<br />

Wye-Delta is a traditional electro-mechanical method of reduced voltage starting. It requires a<br />

delta-wound motor with all its leads brought out to facilitate a wye connection. At the start<br />

command, approximately 58% of full line voltage is applied, generating about 33% of the<br />

motor’s full voltage starting torque capability. After an adjustable time interval, the motor is<br />

automatically connected in delta.<br />

To apply an SMC-Flex controller to a wye-delta motor, the power wiring from the SMC-Flex<br />

controller is simply wired in an inside-the-delta configuration to the motor. This connects all six<br />

motor connections back to the SMC-Flex. Because the SMC-Flex controller applies a reduced<br />

voltage start electronically, the transition connection is no longer necessary. Additionally, the<br />

starting torque can be adjusted with parameter programming.<br />

Note:<br />

Increased Hp ratings are achieved with the SMC-Flex being connected to wye-delta<br />

motors.<br />

Figure 3.5: Inside-the-Delta Wiring.<br />

1/L 3/L2 5/L3<br />

2/T1 4/T2 6/T3<br />

12/T6 8/T4 10/T5<br />

M<br />

3~<br />

3-6


Bulletin 150 SMC Flex<br />

Part Winding<br />

Part winding motors incorporate two separate, parallel windings in their design. With the<br />

traditional part winding starter, one set of windings is given full line voltage, and the motor<br />

draws about 400% of the motor’s full load current rating. Additionally, about 45% of locked<br />

rotor torque is generated. After a preset interval, the second winding is brought online in<br />

parallel with the first and the motor develops normal torque.<br />

The part winding motor may be wired to an SMC-Flex controller by connecting both windings in<br />

parallel. Again, the starting torque can be adjusted to match the load with parameter<br />

programming.<br />

Wound Rotor<br />

Wound rotor motors require careful consideration when implementing SMC-Flex controllers. A<br />

wound rotor motor depends on external resistors to develop high starting torque. It may be<br />

possible to develop enough starting torque using the SMC-Flex controller and a single step of<br />

resistors. The resistors are placed in the rotor circuit until the motor reaches approximately 70%<br />

of synchronous speed. At this point, the resistors are removed from the secondary by a shorting<br />

contactor. Resistor sizing will depend on the characteristics of the motor used.<br />

Please note that it is not recommended to short the rotor slip rings during start-up, as starting<br />

torque will be greatly reduced, even with full voltage applied to the motor. The starting torque<br />

will be even further reduced with the SMC-Flex controller since the output voltage to the motor<br />

is reduced on startup.<br />

Synchronous<br />

Synchronous, brush-type motors differ from standard squirrel-cage motors in the construction of<br />

the rotor. The rotor of a synchronous motor is comprised of two separate windings, a starting<br />

winding and a DC magnetic field winding.<br />

The starting winding is used to accelerate the motor to about 95% of synchronous speed. Once<br />

there, the DC magnetic field winding is energized to pull the motor up to synchronous speed.<br />

The SMC-Flex controller can be retrofitted to a synchronous controller by replacing the stator<br />

contactor with the SMC-Flex controller and maintaining the DC field application package.<br />

Altitude<br />

De-rating<br />

Because of the decreased efficiency of fans and heatsinks, it is necessary to de-rate the<br />

SMC-Flex controller above 6,500 feet (approximately 2,000 meters). When using the controller<br />

above 6,500 feet, use the next size device to guard against potential overtemperature trips.<br />

Note:<br />

The motor FLA Rating must remain in the range of the SMC-Flex Amp rating.<br />

3-7


Bulletin 150 SMC Flex<br />

Isolation<br />

Contactor<br />

When installed with branch circuit protection and an overcurrent device, SMC-Flex controllers<br />

are compatible with the National Electric Code (NEC). When an isolation contactor is not used,<br />

hazardous voltages are present at the load terminals of the power module even when the<br />

controller is turned off. Warning labels must be attached to the motor terminal box, the<br />

controller enclosure, and the control station to indicate this hazard.<br />

The isolation contactor is used to provide automatic electrical isolation of the controller and<br />

motor circuit when the controller is shut down. Shut down can occur in either of two ways:<br />

either manually, by pressing the stop button, or automatically, by the presence of abnormal<br />

conditions (such as a motor overload relay trip).<br />

Under normal conditions the isolation contactor carries only the load current. During start, the<br />

isolation contactor is energized before the SCRs are gated “on.” While stopping, the SCRs are<br />

gated “off” before the isolation contactor is de-energized. The isolation contactor is not making<br />

or breaking the load current.<br />

Figure 3.6: Typical Connection Diagram with Isolation Contactor<br />

3-Phase<br />

Input Power<br />

L1/1<br />

L2/3<br />

L3/5<br />

T1/2<br />

T2/4<br />

T3/6<br />

M<br />

➀<br />

Branch<br />

Protection<br />

➀<br />

Isolation<br />

Contactor<br />

(IC) ➀<br />

SMC-Flex<br />

Controller<br />

➀ Customer Supplied<br />

3-8


Bulletin 150 SMC Flex<br />

SMC-Flex<br />

Controller with<br />

Bypass<br />

Contactor (BC)<br />

Controlled start and stop are provided by wiring the controller as shown in Figure 3.7. When the<br />

motor is up to speed, the external bypass contactor is “pulled in” for run. The bypass mode must<br />

have a separate overload as the SMC-Flex overload is not active in this configuration.<br />

Figure 3.7: Typical Application Diagram of a Bypass Contactor<br />

3-Phase<br />

Input Power<br />

L1/1<br />

L2/3<br />

L3/5<br />

T1/2<br />

T2/4<br />

T3/6<br />

M<br />

➀<br />

Branch<br />

Protection<br />

➀<br />

SMC-Flex<br />

Controller<br />

➁<br />

External BC ➀<br />

➀ Customer Supplied<br />

➁ Overload protection is included as a standard feature of the SMC-Flex controller.<br />

Note:<br />

Aux Contact #1 must be set to Bypass.<br />

3-9


Bulletin 150 SMC Flex<br />

SMC-Flex<br />

Controller with<br />

Reversing<br />

Contactor<br />

By using the controller as shown in Figure 3.8, the motor accelerates under a controlled start<br />

mode in either forward or reverse.<br />

Note:<br />

Minimum transition time for reversing is ½ second.<br />

Phase Reversal must be OFF.<br />

Figure 3.8: Typical Application with a Single-Speed Reversing Starter<br />

3-Phase<br />

Input Power<br />

L1/1<br />

L2/3<br />

L3/5<br />

T1/2<br />

T2/4<br />

T3/6<br />

M<br />

➀<br />

Branch<br />

Protection<br />

➀<br />

SMC-Flex<br />

Controller<br />

➁<br />

Reversing Contactors<br />

➀<br />

➀ Customer Supplied<br />

➁ Overload protection is included as a<br />

standard feature of the SMC-Flex controller.<br />

3-10


Bulletin 150 SMC Flex<br />

SMC-Flex<br />

Controller as a<br />

Bypass to an AC<br />

Drive<br />

By using the controller as shown in Figure 3.9, a soft start characteristic can be provided in the<br />

event that an AC drive is non-operational.<br />

Note:<br />

A controlled acceleration can be achieved with this scheme, but speed control is not<br />

available in the bypass mode.<br />

Figure 3.9: Typical Application Diagram of a Bypass Contactor for an AC Drive<br />

AF ➁<br />

AF ➁<br />

O.L. ➁<br />

3-Phase<br />

Input Power<br />

VFD<br />

M<br />

➁<br />

VFD Branch<br />

Protection<br />

➂<br />

➀<br />

➀<br />

L1/1<br />

L2/3<br />

T1/2<br />

T2/4<br />

➀ Mechanical interlock required<br />

➁ Customer supplied<br />

IC<br />

➁<br />

L3/5<br />

SMC-Flex<br />

Controller<br />

➂ Many VF drives are rated 150% FLA. Because the SMC-Flex controller can be used for 600% FLA starting,<br />

separate branch circuit protection may be required.<br />

➃ Overload protection is included as a standard feature of the SMC-Flex controller.<br />

T3/6<br />

➃<br />

IC<br />

➁<br />

3-11


Bulletin 150 SMC Flex<br />

SMC-Flex<br />

Controller with<br />

a Bulletin 1410<br />

Motor Winding<br />

Heater<br />

Figure 3.10: Typical Application Diagram of SMC-Flex Controller with a Bulletin 1410 Motor<br />

Winding Heater<br />

IC ➀<br />

O.L.<br />

➀<br />

3-Phase<br />

Input Power<br />

L1/1<br />

L2/3<br />

L3/5<br />

T1/2<br />

T2/4<br />

T3/6<br />

M<br />

➀<br />

SMC-Flex Controller<br />

➁<br />

➀<br />

HC<br />

Bulletin 1410 MWH<br />

➀<br />

➀ Customer supplied.<br />

➁ Overload protection is included as a<br />

standard feature of the SMC-Flex controller.<br />

3-12


Bulletin 150 SMC Flex<br />

Motor Torque<br />

Capabilities<br />

with SMC-Flex<br />

Controller<br />

Options<br />

SMB Smart Motor Braking<br />

The stopping torque output of the SMC-Flex controller will vary depending on the braking<br />

current setting and motor characteristics. Typically the maximum stopping torque will be<br />

between 80…100% of the full load torque of the motor when set at 400% braking current.<br />

Preset Slow Speed<br />

Two torque characteristics of the Preset Slow Speed option must be considered. The first is the<br />

starting torque. The second is the available running torque at low speed (see Figure 3.11).<br />

These torque characteristics will also vary, depending on the speed selected. Refer to Table 3.A<br />

for the approximate maximum available starting and running full load torque at maximum<br />

current settings. On adjustment (Slow Speed Current) will control the starting and running<br />

torque values.<br />

Figure 3.11: Starting and Running Torque<br />

100%<br />

Motor<br />

Speed<br />

7- or- 15%<br />

➀<br />

➁<br />

➀- Starting -torque<br />

➁- Running- torque<br />

Time- (seconds)<br />

Table 3.A: Maximum Torque at Maximum Current Settings<br />

Present Slow Speed<br />

Maximum Starting Torque as a Percentage of<br />

Full Load Torque<br />

Maximum Running Torque as a Percentage of<br />

Full Load Torque<br />

7% 90…100% 110…120%<br />

15% 50% 100%<br />

3-13


Bulletin 150 SMC Flex<br />

Accu-Stop<br />

Two levels of braking torque are applied with the Accu-Stop option. There is the braking portion<br />

that brakes to slow speed, and the slow speed braking/coast (see Figure 3.12). The level of<br />

these braking currents are adjusted using one rotary digital switch. The maximum braking<br />

torque available from braking to slow speed and from slow speed to stop is approximately<br />

80…100% of full load torque of the motor. Using the slow speed starting portion of the Accu-<br />

Stop option will result in the same starting and running torque characteristics as described in<br />

the Preset Slow Speed option.<br />

Figure 3.12: Accu-Stop Option<br />

Notes<br />

100%<br />

Motor<br />

Speed<br />

Braking<br />

(A)<br />

Slow -Speed<br />

Slow -Speed<br />

Braking/Coast<br />

(B)<br />

Time- (seconds)<br />

3-14


Bulletin 150 SMC Flex<br />

Chapter 4<br />

Description<br />

Product Line Applications Matrix<br />

Use this chapter to identify possible SMC-Flex controller applications. This chapter contains an<br />

application matrix which will identify starting characteristics, as well as typical stopping<br />

features that may be used in various applications.<br />

Mining and Metals<br />

Applications<br />

Soft Start<br />

Current<br />

Limit<br />

Kickstart<br />

Soft Stop<br />

Pump<br />

Control<br />

SMC-Flex = X<br />

Accu-<br />

Stop<br />

Smart<br />

Motor<br />

Brake<br />

Preset<br />

Slow<br />

Speed<br />

Roller Mills X X X X<br />

Hammermills X X X X<br />

Roller Conveyors X X<br />

Centrifugal Pumps X X X<br />

Fans X X X<br />

Tumbler X X X X X X<br />

Rock Crusher X X<br />

Dust Collector X X<br />

Chillers X X<br />

Compressor X X<br />

Wire Draw<br />

Machine<br />

X X X<br />

Belt Conveyors X X X X X X<br />

Shredder X X<br />

Grinder X X X X<br />

Slow<br />

Speed<br />

with<br />

Brake<br />

Linear<br />

Speed<br />

Acceleration<br />

Slicer X X X<br />

Overload Conveyor X X X X X<br />

4-1


Bulletin 150 SMC Flex<br />

Food Processing<br />

Applications<br />

Soft Start<br />

Current<br />

Limit<br />

Kickstart<br />

Soft Stop<br />

Pump<br />

Control<br />

Centrifugal Pumps X X X<br />

Pallitizers X X<br />

SMC-Flex = X<br />

Accu-<br />

Stop<br />

Smart<br />

Motor<br />

Brake<br />

Mixers X X X X<br />

Agitators<br />

X<br />

Preset<br />

Slow<br />

Speed<br />

Centrifuges X X X<br />

Conveyors X X X X<br />

Fans X X<br />

Bottle Washers X X<br />

Compressors X X<br />

Hammermill X X<br />

Separators X X<br />

Dryers X X<br />

Slicers X X X<br />

Slow<br />

Speed<br />

with<br />

Brake<br />

Linear<br />

Speed<br />

Acceleration<br />

Pulp and Paper<br />

Applications<br />

Soft Start<br />

Current<br />

Limit<br />

Kickstart<br />

Soft Stop<br />

Pump<br />

Control<br />

SMC-Flex = X<br />

Accu-<br />

Stop<br />

Smart<br />

Motor<br />

Brake<br />

Compressors X X<br />

Conveyors X X X X X X<br />

Trolleys X X X X<br />

Dryers X X<br />

Agitators X X<br />

Centrifugal Pumps X X X<br />

Mixers X X<br />

Fans X X<br />

Re-Pulper X X X<br />

Shredder X X<br />

Preset<br />

Slow<br />

Speed<br />

Slow<br />

Speed<br />

with<br />

Brake<br />

Linear<br />

Speed<br />

Acceleration<br />

4-2


Bulletin 150 SMC Flex<br />

Petrochemical<br />

Applications<br />

Soft Start<br />

Current<br />

Limit<br />

Kickstart<br />

Soft Stop<br />

Pump<br />

Control<br />

Centrifugal Pumps X X X<br />

Extruders X X<br />

SMC-Flex = X<br />

Accu-<br />

Stop<br />

Smart<br />

Motor<br />

Brake<br />

Preset<br />

Slow<br />

Speed<br />

Screw Conveyors X X X<br />

Mixers X X X<br />

Agitators X X<br />

Compressors X X<br />

Fans X X<br />

Ball Mills X X X X X<br />

Centrifuge X X X X<br />

Slow<br />

Speed<br />

with<br />

Brake<br />

Linear<br />

Speed<br />

Acceleration<br />

Transportation and Machine Tool<br />

Applications<br />

Material Handling<br />

Conveyors<br />

Soft Start<br />

Current<br />

Limit<br />

Kickstart<br />

Soft Stop<br />

Pump<br />

Control<br />

SMC-Flex = X<br />

Accu-<br />

Stop<br />

Smart<br />

Motor<br />

Brake<br />

Preset<br />

Slow<br />

Speed<br />

X X X X X X<br />

Ball Mills X X X X X X<br />

Grinders X X X X<br />

Centrifugal Pumps X X X<br />

Trolleys X X X X<br />

Presses X X X X<br />

Fans X X<br />

Palletizers X X X X X<br />

Compressors X X<br />

Roller Mill X X X X<br />

Die Charger X X<br />

Rotary Table X X X<br />

Slow<br />

Speed<br />

with<br />

Brake<br />

Linear Speed<br />

Acceleration<br />

4-3


Bulletin 150 SMC Flex<br />

OEM Specialty Machine<br />

Applications<br />

Soft Start<br />

Current<br />

Limit<br />

Kickstart<br />

Lumber and Wood Products<br />

Soft Stop<br />

Pump<br />

Control<br />

SMC-Flex = X<br />

Accu-<br />

Stop<br />

Smart<br />

Motor<br />

Brake<br />

Preset<br />

Slow<br />

Speed<br />

Centrifugal Pumps X X X<br />

Washers X X X X X X<br />

Conveyors X X X X X X X X<br />

Power Walks X X X<br />

Fans X X<br />

Twisting/ Spinning<br />

Machine<br />

X X<br />

Applications<br />

Soft Start<br />

Current<br />

Limit<br />

Kickstart<br />

Soft Stop<br />

Pump<br />

Control<br />

SMC-Flex = X<br />

Accu-<br />

Stop<br />

Smart<br />

Motor<br />

Brake<br />

Preset<br />

Slow<br />

Speed<br />

Chipper X X X X<br />

Circular Saw X X X X<br />

Bandsaw X X X X X<br />

Edger X X<br />

Conveyors X X X X X X<br />

Centrifugal Pumps X X X<br />

Compressors X X<br />

Fans X X<br />

Planers X X<br />

Sander X X X X X X<br />

Debarker X X X X<br />

Slow<br />

Speed<br />

with<br />

Brake<br />

Slow<br />

Speed<br />

with<br />

Brake<br />

Linear<br />

Speed<br />

Acceleration<br />

Linear<br />

Speed<br />

Acceleration<br />

Water/Wastewater Treatment and Municipalities<br />

Applications<br />

Soft Start<br />

Current<br />

Limit<br />

Kickstart<br />

Soft Stop<br />

Pump<br />

Control<br />

SMC-Flex = X<br />

Accu-<br />

Stop<br />

Smart<br />

Motor<br />

Brake<br />

Preset<br />

Slow<br />

Speed<br />

Centrifugal Pumps X X X<br />

Centrifuge X X X X<br />

Fans X X<br />

Compressors X X<br />

Slow<br />

Speed<br />

with<br />

Brake<br />

Linear<br />

Speed<br />

Acceleration<br />

4-4


Bulletin 150 SMC Flex<br />

Chapter 5<br />

Philosophy<br />

Line <strong>Voltage</strong><br />

Conditions<br />

Current and<br />

Thermal Ratings<br />

Mechanical<br />

Shock and<br />

Vibration<br />

Noise and RF<br />

Immunity<br />

Design Philosophy<br />

Allen-Bradley SMC controllers are designed to operate in today’s industrial environments. Our<br />

controllers are manufactured to provide consistent and reliable operation. Rockwell Automation<br />

has more than just an adequate solution to meet your needs; we have the right solution. With a<br />

broad offering of power device products and application services, Rockwell Automation can<br />

effectively address the productivity issues most important to you.<br />

<strong>Voltage</strong> transients, disturbances, harmonics and noise exist in any industrial supply. A solidstate<br />

controller must be able to withstand these noises and should not be an unnecessary<br />

source of generating noise back into the line.<br />

Ease of selection for the required line voltage is achieved with a design that provides operation<br />

over a wide voltage range, at 50/60 Hz, within a given controller rating.<br />

The controller can withstand 3000V surges at a rate of 100 bursts per second for 10 seconds<br />

(IEEE Std. 472). Further, the controller can withstand the showering arc test of 350…1500V<br />

(NEMA Std. ICS2-230) for higher resistance to malfunction in a noisy environment.<br />

An optional MOV module is available to protect SCRs from voltage transients.<br />

Solid-state controller ratings must ensure reliability under the wide range of current levels and<br />

starting times needed in various applications.<br />

SCR packaging keeps junction temperatures below 125°C (257°F) when running at full-rated<br />

current to reduce thermal stress and provide longer, more reliable operation.<br />

The thermal capacity of the SMC-Flex controllers meet NEMA standards MG-1 and IEC34 (S1).<br />

Solid-state controllers must withstand the shock and vibration generated by the machinery that<br />

they control.<br />

SMC-Flex controllers meet the same shock and vibration specifications as electromechanical<br />

starters. They can withstand a 5 G shock for 11 ms in any plane and one hour of vibration of 1.0<br />

G without malfunction.<br />

This product meets Class A requirements for EMC emission levels.<br />

5-1


Bulletin 150 SMC Flex<br />

Altitude<br />

Pollution<br />

Setup<br />

Altitudes up to 2000 meters (6560 ft) are permitted without de-rating. The products’ allowable<br />

ambient temperature must be de-rated for altitudes in excess of 2000 meters (6560 ft). The<br />

allowable ambient temperature must be de-rated by –3°C (27°F) per 1000 meters (3280 ft), up<br />

to a maximum of 7000 meters (23000 ft). Current ratings of the devices do not change for<br />

altitudes that require a lower maximum ambient temperature.<br />

This product is intended for a Pollution Degree 2 environment.<br />

Simple, easily understood settings provide identifiable, consistent results.<br />

For ease of installation, the controllers include compact design and feed-through wiring.<br />

SMC-Flex controllers are global products rated at 50/60 Hz. All parameter adjustments are<br />

programmed into the controller through the built-in keypad. A full line of enclosures is available.<br />

5-2


Bulletin 150 SMC Flex<br />

Chapter 6<br />

Introduction to<br />

Reduced<br />

<strong>Voltage</strong> Starting<br />

Reduced <strong>Voltage</strong> Starting<br />

There are two primary reasons for using reduced voltage when starting a motor:<br />

Limit line disturbances<br />

Reduce excessive torque to the driven equipment<br />

The reasons for avoiding these problems will not be described. However, different methods of<br />

reduced voltage starting of motors will be explored.<br />

When starting a motor at full voltage, the current drawn from the power line is typically 600%<br />

of normal full load current. This high current flows until the motor is almost up to speed and<br />

then decreases, as shown in Figure 6.1. This could cause line voltage dips and brown-outs.<br />

Figure 6.1: Full-Load Current vs. Speed<br />

600<br />

500<br />

%<br />

Full<br />

Load<br />

Current<br />

400<br />

300<br />

200<br />

100<br />

0 % Speed 100<br />

In addition to high starting currents, the motor also produces starting torques that are higher<br />

than full-load torque. The magnitude of the starting torque depends on the motor design. NEMA<br />

publishes standards for torques and currents for motor manufacturers to follow. Typically, a<br />

NEMA Design B motor will have a locked rotor or starting torque in the area of 180% of fullload<br />

torque.<br />

In many applications, this starting torque can cause excessive mechanical damage such as belt,<br />

chain, or coupling breakage.<br />

6-1


Bulletin 150 SMC Flex<br />

Reduced<br />

<strong>Voltage</strong><br />

Figure 6.2:Bulletin 570 Autotransformer<br />

The most widely used method of electromechanical<br />

reduced voltage starting is the autotransformer. Wye-<br />

Delta (Y-D), also referred to as Star-Delta, is the next<br />

most popular method.<br />

All forms of reduced voltage starting affect the motor<br />

current and torque characteristics. When a reduced<br />

voltage is applied to a motor at rest, the current drawn<br />

by the motor is reduced. In addition, the torque<br />

produced by the motor is a factor of approximately the<br />

square of the percentage of voltage applied.<br />

For example, if 50% voltage is applied to the motor, a<br />

starting torque of approximately 25% of the normal starting torque would be produced. In the<br />

previous full voltage example, the NEMA Design B motor had a starting torque of 180% of full<br />

load torque. With only 50% voltage applied, this would equate to approximately 45% of full<br />

load torque. Table 6.A shows the typical relationship of voltage, current, and torque for a NEMA<br />

Design B motor.<br />

Table 6.A: Typical <strong>Voltage</strong>, Current and Torque Characteristics for NEMA Design B Motors<br />

Starting Method<br />

% <strong>Voltage</strong> at Motor<br />

Terminals<br />

Motor Starting Current as a % of: Line Current as a % of: Motor Starting Torque as a % of:<br />

Locked Rotor<br />

Locked Rotor<br />

Locked Rotor<br />

Full Load Current<br />

Full Load Current<br />

Full Load Torque<br />

Current<br />

Current<br />

Torque<br />

Full <strong>Voltage</strong> 100 100 600 100 600 100 180<br />

Autotrans.<br />

80% tap 80 80 480 64 384 64 115<br />

65% tap 65 65 390 42 252 42 76<br />

50% tap 50 50 300 25 150 25 45<br />

Part Winding 100 65 390 65 390 50 90<br />

Wye-Delta 100 33 198 33 198 33 60<br />

Solid-state 0…100 0…100 0…100 0…100 0…100 0…100 0…100<br />

With the wide range of torque characteristics for the various starting methods, selecting an<br />

electromechanical reduced voltage starter becomes more application dependent. In many<br />

instances, available torque becomes the factor in the selection processes.<br />

Limiting line current has been a prime reason in the past for using electromechanical reduced<br />

voltage starting. Utility current restrictions, as well as in-plant bus capacity, may require motors<br />

above a certain horsepower to be started with reduced voltage. Some countries require that any<br />

motor above 7½ Hp be started with reduced voltage.<br />

Using reduced voltage motor starting also enables torque control. High inertia loads are a good<br />

example of an application in which electromechanical reduced voltage starting has been used<br />

to control the acceleration of the motor and load.<br />

Electromechanical reduced voltage starters must make a transition from reduced voltage to full<br />

voltage at some point in the starting cycle. At this point, there is normally a line current surge.<br />

The amount of surge depends upon the type of transition being used and the speed of the motor<br />

at the transition point.<br />

6-2


Bulletin 150 SMC Flex<br />

There are two methods of transition: Open Circuit Transition and Closed Circuit Transition. Open<br />

circuit transition means that the motor is actually disconnected from the line for a brief period<br />

of time when the transition takes place. With closed transition, the motor remains connected to<br />

the line during transition. Open circuit transition will produce a higher surge of current because<br />

the motor is momentarily disconnected from the line. Examples of open and closed circuit<br />

transition currents are shown in Figure 6.3 and Figure 6.4.<br />

Figure 6.3: Open Circuit Transition<br />

Figure 6.4: Closed Circuit Transition<br />

%<br />

Full<br />

Load<br />

Current<br />

600<br />

500<br />

400<br />

300<br />

200<br />

%<br />

Full<br />

Load<br />

Current<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

100<br />

0 % Speed 100<br />

0 % Speed 100<br />

The motor speed can determine the amount of current surge that occurs at transition. Transfer<br />

from reduced voltage to full voltage should occur at as close to full speed as possible. This also<br />

minimizes the amount of surge on the line.<br />

Figure 6.5 and Figure 6.6 illustrate transition at low motor speed and near full speed. The<br />

transition at low speed shows the current surge as transition occurs at 550%, which is greater<br />

than the starting current of 400%. The transition near full speed shows that the current surge is<br />

300%, which is below the starting current.<br />

Figure 6.5: Transition at <strong>Low</strong> Speed<br />

Figure 6.6: Transition near Full Speed<br />

600<br />

600<br />

%<br />

Full<br />

Load<br />

Current<br />

500<br />

400<br />

300<br />

200<br />

%<br />

Full<br />

Load<br />

Current<br />

500<br />

400<br />

300<br />

200<br />

100<br />

100<br />

0 % Speed 100<br />

0 % Speed 100<br />

6-3


Bulletin 150 SMC Flex<br />

SMC- Flex<br />

Solid-State<br />

The main function of solid-state controllers is their ability to provide a soft start or stepless<br />

reduced voltage start of AC motors. The same principles of current and torque apply to both<br />

electromechanical reduced voltage starters and solid-state controllers. Many solid-state<br />

controllers offer the choice of four starting modes: soft start, current limit start, dual ramp start,<br />

or full voltage start in the same device.<br />

Figure 6.7: SMC-Flex Solid-State Controllers<br />

5…85 A 108…251 A 317…480 A<br />

In addition to selecting the starting modes, the solid-state controller allows adjustment of the<br />

time for the soft start ramp, or the current limit maximum value, which enables selection of the<br />

starting characteristic to meet the application. The most widely used version is the soft start.<br />

This method provides a smooth start for most applications.<br />

The major advantages of solid-state controllers are the elimination of the current transition<br />

point and the capability of adjusting the time to reach full voltage. The result is no large current<br />

surge when the solid-state controller is set up and correctly matched to the load, as illustrated<br />

in Figure 6.8.<br />

6-4


Bulletin 150 SMC Flex<br />

Figure 6.8: Soft Start<br />

Percent<br />

<strong>Voltage</strong><br />

Kickstart<br />

100%<br />

Initial<br />

Torque<br />

Start<br />

Run<br />

Time (seconds)<br />

Current limit starting can be used in situations in which power line limitations or restrictions<br />

require a specific current load. Figure 6.9 shows a 450% current limit curve. Other values may<br />

be selected, such as 200%, 300%, or 400%, depending on the particular application. Current<br />

limit starting is also used in applications where higher starting torque is required compared to a<br />

soft start, which typically starts at less than 300% current. Current limit starting is typically<br />

used on low inertia loads, such as compressors.<br />

Figure 6.9: Current Limit Start<br />

600<br />

%<br />

Full<br />

Load<br />

Current<br />

450<br />

100<br />

0 % Speed 100<br />

Other features available with solid-state controllers include additional protection to the motor<br />

and controller, and diagnostics to aid in setup and troubleshooting. Protection typically provided<br />

includes shorted SCR, phase loss, open load lead, SCR overtemperature, and stalled motor.<br />

Appropriate fault messages are displayed to aid in troubleshooting when one of these faults<br />

trip out the solid-state reduced voltage controller.<br />

6-5


Bulletin 150 SMC Flex<br />

Notes<br />

6-6


Bulletin 150 SMC Flex<br />

Chapter 7<br />

Solid-State Starters Using SCRs<br />

In solid-state starters, silicon controlled rectifiers (SCRs) (see Figure 7.1) are used to control the<br />

voltage output to the motor. An SCR allows current to flow in one direction only. The amount of<br />

conduction of an SCR is controlled by the pulses received at the gate of the SCR. When two<br />

SCRs are connected back to back (see Figure 7.2), the AC power to a load can be controlled by<br />

changing the firing angle of the line voltage (see Figure 7.3) during each half cycle. By changing<br />

the angle, it is possible to increase or decrease the voltage and current to the motor. The<br />

SMC-Flex controller incorporates a microprocessor to control the firing of the SCRs. Six SCRs<br />

are used in the power section to provide full cycle control of the voltage and current. The<br />

voltage and current can be slowly and steplessly increased to the motor.<br />

Figure 7.1: Silicon Controlled Rectifier (SCR)<br />

SCR<br />

Figure 7.2: Typical Wiring Diagram for SCRs<br />

Power- Input<br />

3-Phase<br />

L1<br />

T1<br />

L2<br />

T2<br />

Motor<br />

L3<br />

T3<br />

SMC-Flex-Controller<br />

Power -Section<br />

7-1


Bulletin 150 SMC Flex<br />

Figure 7.3: Different Firing Angles (Single-Phase Simplification)<br />

Supply<br />

<strong>Voltage</strong><br />

Firing for<br />

Approx.<br />

50% RMS<br />

<strong>Voltage</strong><br />

Firing for<br />

25% RMS<br />

<strong>Voltage</strong><br />

Firing for<br />

100% RMS<br />

<strong>Voltage</strong><br />

7-2


Bulletin 150 SMC Flex<br />

Chapter 8<br />

Reference<br />

Certain mechanical parameters must be taken into consideration when applying motor<br />

controllers. The following section explains these parameters and how to calculate or measure<br />

them.<br />

Motor Output<br />

Speed/Torque/<br />

Horsepower<br />

The speed at which an induction motor operates depends on the input power frequency and the<br />

number of poles for which the motor is wound. The higher the frequency, the faster the motor<br />

runs. The more poles the motor has, the slower it runs. To determine the synchronous speed of<br />

an induction motor, use the following equation:<br />

Synchronous Speed =<br />

60 x 2 x Frequency<br />

Number of Poles<br />

Actual full-load speed (the speed at which the motor will operate at nameplate rated load) will<br />

be less than synchronous speed. This difference between synchronous speed and full-load<br />

speed is called slip. Percent slip is defined as follows:<br />

Percent Slip = Synchronous Speed - Full Load Speed x 100<br />

Synchronous Speed<br />

Induction motors are built with slip ranging from less than 5% to as much as 20%. A motor with<br />

a slip of less than 5% is called a normal slip motor. Motors with a slip of 5% or more are used<br />

for applications requiring high starting torque.<br />

8-1


Bulletin 150 SMC Flex<br />

Torque and<br />

Horsepower<br />

Torque and horsepower, two important motor characteristics, determine the size of the motor<br />

required for a given application. The difference between the two can be explained using a<br />

simple illustration of a shaft and wrench.<br />

One Foot<br />

One Pound<br />

Figure 8.1:Shaft and Wrench<br />

Torque is merely a turning effort. In the previous<br />

illustration, it takes one pound at the end of the<br />

one-foot wrench to turn the shaft at a steady<br />

rate. Therefore, the torque required is one<br />

pound × one foot, or one foot-lb. If the wrench<br />

were turned twice as fast, the torque required<br />

would remain the same, provided it is turned at<br />

a steady rate. Horsepower, on the other hand,<br />

takes into account how fast the shaft is turned.<br />

Turning the shaft rapidly requires more<br />

horsepower than turning it slowly. Thus,<br />

horsepower is a measure of the rate at which<br />

work is done. By definition, the relationship<br />

between torque and horsepower is as follows:<br />

1 Horsepower = 33,000 ft.-lb./minute<br />

In the above example, the one pound of force moves a distance of:<br />

2 ft. x π x 1 lb. = 6.28 ft.-lb.<br />

To produce one horsepower, the shaft would have to be turned at rate of:<br />

1 Hp x 33,000 ft-lb./minute<br />

6.28 ft-lb./revolution<br />

= 5250 RPM<br />

For this relationship, an equation can be derived for determining horsepower output from speed<br />

and torque.<br />

Hp =<br />

RPM x Torque X 2<br />

RPM x Torque<br />

or<br />

30,000 5250<br />

For this relationship, full-load torque is:<br />

Full-Load Torque in ft.-lb. =<br />

Hp x 5250<br />

Full-Load RPM<br />

8-2


Bulletin 150 SMC Flex<br />

Figure 8.2 illustrates a typical speed-torque curve for a NEMA Design B induction motor. An<br />

understanding of several points on this curve will aid in properly applying motors.<br />

Figure 8.2: Speed-Torque Curve<br />

Breakdown Torque - BT<br />

Synchronous Speed<br />

Locked Rotor Torque - LRT<br />

%<br />

of<br />

Full<br />

Load<br />

Torque<br />

Pull Up Torque - PUT<br />

Slip<br />

Full Load Torque - FLT<br />

Full Speed<br />

Full-load Torque (FLT)<br />

The full-load torque of a motor is the torque necessary to produce its rated horsepower at fullload<br />

speed. In foot-lbs, it is equal to the rated horsepower, multiplied by 5250, divided by the<br />

full-load speed in RPM.<br />

Locked-Rotor Torque (LRT)<br />

Locked-rotor torque is the torque which the motor will develop at rest for all angular positions<br />

of the rotor, with rated voltage at rated frequency applied. It is sometimes known as “starting<br />

torque” and is usually measured as a percentage of full-load torque.<br />

Pull-Up Torque (PUT)<br />

Pull-up torque of an induction motor is the minimum torque developed during the period of<br />

acceleration from locked rotor to the speed at which breakdown torque occurs. For motors that<br />

do not have definite breakdown torque (such as NEMA Design D), pull-up torque is the<br />

minimum torque developed, up to rated full-load speed, and is usually expressed as a<br />

percentage of full-load torque.<br />

Breakdown Torque (BT)<br />

The breakdown torque of an induction motor is the maximum torque the motor will develop with<br />

rated voltage applied, at rated frequency, without an abrupt drop in speed. Breakdown torque is<br />

usually expressed as a percentage of full-load torque.<br />

8-3


Bulletin 150 SMC Flex<br />

In addition to the relationship between speed and torque, the relationship of current draw to<br />

these two values is an important application consideration. The speed/torque curve is repeated<br />

below, with the current curve added, to demonstrate a typical relationship.<br />

Figure 8.3: Speed-Torque Curve with Current Curve<br />

Locked Rotor<br />

Current<br />

Breakdown Torque - BT<br />

Synchronous Speed<br />

Locked Rotor<br />

Torque - LRT<br />

Slip<br />

%<br />

of<br />

Full<br />

Load<br />

Torque<br />

Pull Up Torque - PUT<br />

Full-load Torque - FLT<br />

Full Speed<br />

Full-load Current<br />

Two important points on this current curve require explanation.<br />

Full-load Current<br />

The full-load current of an induction motor is the steady-state current taken from the power line<br />

when the motor is operating at full-load torque with rated voltage and rated frequency applied.<br />

Locked-rotor Current<br />

Locked-rotor current is the steady state current of a motor with the rotor locked and with rated<br />

voltage applied at rated frequency. NEMA has designed a set of code letters to define lockedrotor:<br />

Kilovolt-amperes-per-horsepower (kVA/Hp). This code letter appears on the nameplate of<br />

all AC squirrel-cage induction motors.<br />

kVA per Hp is calculated as follows:<br />

For three-phase motors:<br />

kVA/Hp =<br />

1.73 x Current (in Amperes) x Volts<br />

1000 x Hp<br />

8-4


Bulletin 150 SMC Flex<br />

For single phase motors:<br />

kVA/Hp =<br />

Current (in Amperes) x Volts<br />

1000 x Hp<br />

Letter Designation<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

J<br />

K<br />

L<br />

M<br />

N<br />

P<br />

R<br />

S<br />

T<br />

U<br />

V<br />

kVA per Hp<br />

0…3.15<br />

3.15…3.55<br />

3.55…4.0<br />

4.0…4.5<br />

4.5…5.0<br />

5.0…5.6<br />

5.6…6.3<br />

6.3…7.1<br />

7.1…8.0<br />

8.0…9.0<br />

9.0…10.0<br />

10.0…11.2<br />

11.2…12.5<br />

12.5…14.0<br />

14.0…16.0<br />

16.0…18.0<br />

18.0…20.0<br />

20.0…22.4<br />

22.4 and up<br />

By manipulating the preceding equation for kVA/Hp for three-phase motors, the following<br />

equation can be used for calculating locked-rotor current:<br />

LRA =<br />

1000 x Hp x KVA/Hp<br />

1.73 x Volts<br />

This equation can then be used to determine the approximate starting current of any particular<br />

motor. For instance, the approximate starting current for 7½ Hp, 230V motor with a locked-rotor<br />

kVA code letter of G would be:<br />

LRA =<br />

1000 x 7.5 x 6.0 = 113 A<br />

1.73 x 230<br />

Operating a motor in a locked-rotor condition for an extended period of time will result in<br />

insulation failure because of the excessive heat generated in the stator. The following graph<br />

illustrates the maximum time a motor may be operated at locked-rotor without incurring<br />

damage caused by heating. This graph assumes a NEMA Design B motor with Class B<br />

temperature rise.<br />

8-5


Bulletin 150 SMC Flex<br />

Figure 8.4: Motor Safe Time vs. Line Current — <strong>Stand</strong>ard Induction Motors<br />

From Operating<br />

Temperature<br />

8<br />

From Ambient<br />

6<br />

Motor<br />

Line<br />

Amps<br />

Per<br />

Unit<br />

4<br />

Motor Stalled<br />

1.15 Serv. Factor<br />

Motor<br />

2<br />

1<br />

0<br />

1.0 Serv. Factor<br />

Motor<br />

Motor Running<br />

10 15 20 1000 2000 7000<br />

Time in Seconds<br />

Motor protection, either inherent or in the motor control, should be selected to limit the stall<br />

time of the motor.<br />

8-6


Bulletin 150 SMC Flex<br />

Motor Output for NEMA Design Designations Polyphase 1…500 Hp<br />

NEMA has designated several specific types of motors, each having unique speed/torque<br />

relationships. These designs, along with some typical applications for each type, are described<br />

below. Following these descriptions are summaries of performance characteristics.<br />

Figure 8.5: Typical NEMA Design A Speed/Torque Curve<br />

• Starting Current: High<br />

• Starting Torque: High<br />

• Breakdown Torque: High<br />

• Full-load Slip: <strong>Low</strong><br />

Torque<br />

Applications: Fans, blowers, pumps, machine tools, or other<br />

applications with high starting torque requirements and an<br />

essentially constant load.<br />

Speed<br />

Figure 8.6: Typical NEMA Design B Speed/Torque Curve<br />

• Starting Current: Normal<br />

• Starting Torque: Normal<br />

• Breakdown Torque: Normal<br />

• Full-load Slip: Normal<br />

Torque<br />

Applications: Fans, blowers, pumps, machine tools, or other<br />

applications with normal starting torque requirements and an<br />

essentially constant load.<br />

Speed<br />

8-7


Bulletin 150 SMC Flex<br />

• Starting Current: <strong>Low</strong><br />

• Starting Torque: High<br />

• Breakdown Torque: <strong>Low</strong><br />

• Full-load Slip: <strong>Low</strong><br />

Torque<br />

Applications: The higher starting torque of NEMA Design C<br />

motors makes them advantageous for use on hard-to-start<br />

loads such as plunger pumps, conveyors, and compressors.<br />

Speed<br />

• Starting Current: Normal<br />

• Starting Torque: High<br />

• Breakdown Torque: None<br />

• Full-load Slip: High (5…13%)<br />

Torque<br />

Applications: The combination of high starting torque and high<br />

slip make NEMA Design D motors ideal for use on very high<br />

inertia loads and/or in applications where a considerable<br />

variation in load exists. These motors are commonly used on<br />

punch presses, shears, cranes, hoists, and elevators.<br />

Speed<br />

Table 8.A: Motor Output - Comparison of NEMA Polyphase Designs<br />

NEMA<br />

Design<br />

Starting<br />

Torque<br />

Locked<br />

Rotor<br />

Torque<br />

Breakdown<br />

Torque<br />

% Slip Applications<br />

A High High High < 5% Broad applications including fans, blowers, pumps, and machine tools.<br />

B Normal Normal Normal < 5%<br />

C <strong>Low</strong> High <strong>Low</strong> <strong>Low</strong><br />

Normal starting torque for fans, blowers, rotary pumps, unloaded<br />

compressors, conveyors, metal cutting, machine tools, miscellaneous<br />

machinery.<br />

High inertia starts such as large centrifugal blowers, fly wheels and<br />

crusher drums. Loaded starts such as piston pumps, compressors and<br />

conveyors.<br />

D Normal High None<br />

High<br />

Very high inertia and loaded starts. Choice of slip range to match<br />

application.<br />

5–8% Punch press, sheers and forming machine tools.<br />

8–13% Cranes, hoists, elevators and oil well pumping jacks.<br />

8-8


Bulletin 150 SMC Flex<br />

Calculating Torque (Acceleration Torque Required for Rotating<br />

Motion)<br />

Some machines must be accelerated to a given speed in a certain period of time. The torque<br />

rating of the drive may have to be increased to accomplish this objective. The following<br />

equation may be used to calculate the average torque required to accelerate a known inertia<br />

(WK2). This torque must be added to all the other torque requirements of the machine when<br />

determining the drive and motor’s required peak torque output.<br />

T =<br />

WK 2 x (ΔN)<br />

308 x t<br />

Where:<br />

T = Acceleration Torque (ft.-lb.)<br />

WK 2 = total system inertia (ft.-lb. 2 ) that the motor must accelerate. This value includes<br />

motor armature, reducer, and load.<br />

ΔN = Change in speed required (RPM)<br />

t = time to accelerate total system load (seconds).<br />

Note: The number substituted for (WK 2 ) in this equation must be in units of ft.-lb. 2 . Consult<br />

the conversion tables for the proper conversion factor.<br />

The same formula can be used to determine the minimum acceleration time of a given drive, or<br />

it can be used to establish whether a drive can accomplish the desired change in speed within<br />

the required time period.<br />

Transposed formula:<br />

T =<br />

WK 2 x (ΔN)<br />

308 x t<br />

General Rule — If the running torque is greater than the accelerating torque, use the running<br />

torque as the full-load torque required to determine the motor horsepower.<br />

Note:<br />

The following equations for calculating horsepower are meant to be used for<br />

estimating purposes only. These equations do not include any allowance for machine<br />

friction, winding or other factors that must be considered when selecting a device for a<br />

machine application. After the machine torque is determined, the required horsepower<br />

is calculated using the formula:<br />

Hp =<br />

T x N<br />

5250<br />

Where:<br />

Hp = Horsepower


Bulletin 150 SMC Flex<br />

T = Torque (ft.-lb.)<br />

N = Speed of motor at rated load (RPM)<br />

If the calculated horsepower falls between standard available motor ratings, select the higher<br />

available horsepower rating. It is good practice to allow some margin when selecting the motor<br />

horsepower.<br />

Inertia<br />

Inertia is a measure of the body’s resistance to changes in velocity, whether the body is at rest<br />

or moving at a constant velocity. The velocity can be either linear or rotational.<br />

The moment of inertia (WK 2 ) is the product of the weight (W) of an object and the square of the<br />

radius of gyration (K 2 ). The radius of gyration is a measure of how the mass of the object is<br />

distributed about the axis of rotation. Because of this distribution of mass, a small diameter<br />

cylindrical part has a much lower inertia than a large diameter part.<br />

WK 2 or WR 2<br />

Where:<br />

WR 2 refers to the inertia of a rotating member that was calculated by assuming the weight<br />

of the object was concentrated around its rim at a distance R (radius) from the center<br />

(e.g., flywheel).<br />

WK 2 refers to the inertia of a rotating member that was calculated by assuming the weight of<br />

the object was concentrated at some smaller radius, K (termed the radius of gyration). To<br />

determine the WK 2 of a part, the weight is normally required (e.g., cylinder, pulley, gear).<br />

Torque Formulas<br />

T =<br />

Hp x 5250<br />

N<br />

Where:<br />

Hp = Horsepower<br />

T = Torque (ft.-lb.)<br />

N = Speed of motor at rated load (RPM)<br />

T =<br />

F x R<br />

Where:<br />

T = Torque (ft.-lb.)<br />

F = Force (lb.)<br />

R = Radius (ft.)<br />

8-10


Bulletin 150 SMC Flex<br />

T (Accelerating) =<br />

WK 2 x (ΔRPM)<br />

308 x t<br />

Where:<br />

T = Torque (ft.-lb.)<br />

WK 2 = Inertia reflected to the motor shaft (ft.-lb. 2 )<br />

ΔRPM = Change in speed<br />

t = Time to accelerate (s.)<br />

Note: To change in-lb-sec. 2 to ft.-lb. 2 , multiply by 2.68.<br />

To change ft.-lb. 2 to in-lb-sec. 2 , divide by 2.68.<br />

AC Motor Formulas<br />

Synchronous Speed =<br />

Frequency x 120<br />

Number of Poles<br />

Where:<br />

Synchronous Speed = Synchronous Speed (RPM)<br />

Frequency = Frequency (Hz)<br />

Percent Slip = Synchronous Speed - Full-Load Speed x 100<br />

Synchronous Speed<br />

Where:<br />

Where:<br />

Full-Load Speed = Full Load Speed (RPM)<br />

Synchronous Speed = Synchronous Speed (RPM)<br />

Reflected WK 2 = WK2 of Load<br />

(Reduction Rate) 2<br />

WK 2 = Inertia (ft.-lb. 2 )<br />

8-11


Bulletin 150 SMC Flex<br />

Torque Characteristics on Common Applications<br />

This chart offers a quick guideline on the torque required to breakaway, start and run many<br />

common applications.<br />

Table 8.B: Torque Characteristics on Common Applications<br />

Application<br />

Load Torque as Percent of Full Load Drive Torque<br />

Breakaway Accelerating Peak Running<br />

Agitators:<br />

Liquid 100 100 100<br />

Slurry 150 100 100<br />

Blowers, centrifugal:<br />

Valve closed 30 50 40<br />

Valve open 40 110 100<br />

Blowers, positive-displacement, rotary, bypassed 40 40 100<br />

Card machines, textile 100 110 100<br />

Centrifuges (extractors) 40 60 125<br />

Chippers, wood, starting empty 50 40 200<br />

Compressors, axial-vane, loaded 40 100 100<br />

Compressors, reciprocating, start unloaded 100 50 100<br />

Conveyors, belt (loaded) 150 130 100<br />

Conveyors, drag (or apron) 175 150 100<br />

Conveyors, screw (loaded) 175 100 100<br />

Conveyors, shaker-type (vibrating) 150 150 75<br />

Draw presses (flywheel) 50 50 200<br />

Drill presses 25 50 150<br />

Escalators, stairways (starting unloaded) 50 75 100<br />

Fans, centrifugal, ambient:<br />

Valve closed 25 60 50<br />

Valve open 25 110 100<br />

Fans, centrifugal, hot:<br />

Valve closed 25 60 100<br />

Valve open 25 200 175<br />

Fans, propeller, axial-flow 40 110 100<br />

Feeders, (belt) loaded 100 120 100<br />

Feeders, distributing, oscillating drive 150 150 100<br />

Feeders, screw, compacting rolls 150 100 100<br />

Feeders, screw, filter-cake 150 100 100<br />

Feeders, screw, dry 175 100 100<br />

Feeders, vibrating, motor-driven 150 150 100<br />

Frames, spinning, textile 50 125 100<br />

Grinders, metal 25 50 100<br />

Ironers, laundry (mangles) 50 50 125<br />

Jointers, woodworking 50 125 125<br />

Machines, bottling 150 50 100<br />

Machines, buffing, automatic 50 75 100<br />

Machines, cinder-block, vibrating 150 150 70<br />

Machines, keyseating 25 50 100<br />

Machines, polishing 50 75 100<br />

8-12


Bulletin 150 SMC Flex<br />

Application<br />

Load Torque as Percent of Full Load Drive Torque<br />

Breakaway Accelerating Peak Running<br />

Mills, flour, grinding 50 750 100<br />

Mills, saw, band 50 75 200<br />

Mixers, chemical 175 75 100<br />

Mixers, concrete 40 50 100<br />

Mixers, dough 175 125 100<br />

Mixers, liquid 100 100 100<br />

Mixers, sand, centrifugal 50 100 100<br />

Mixers, sand, screw 175 100 100<br />

Mixers, slurry 150 125 100<br />

Mixers, solids 175 125 175<br />

Planers, woodworking 50 125 150<br />

Presses, pellet (flywheel) 150 75 150<br />

Presses, punch (flywheel) 150 75 100<br />

Pumps, adjustable-blade, vertical 50 40 125<br />

Pumps, centrifugal, discharge open 40 100 100<br />

Pumps, oil-field, flywheel 150 200 200<br />

Pumps, oil, lubricating 40 150 150<br />

Pumps, oil fuel 40 150 150<br />

Pumps, propeller 40 100 100<br />

Pumps, reciprocating, positive displacement 175 30 175<br />

Pumps, screw-type, primed, discharge open 150 100 100<br />

Pumps, Slurry-handling, discharge open 150 100 100<br />

Pumps, turbine, centrifugal, deep-well 50 100 100<br />

Pumps, vacuum (paper mill service) 60 100 150<br />

Pumps, vacuum (other applications) 40 60 100<br />

Pumps, vane-type, positive displacement 150 150 175<br />

Rolls, crushing (sugar cane) 30 50 100<br />

Rolls, flaking 30 50 100<br />

Sanders, woodworking, disk or belt 30 50 100<br />

Saws, band, metalworking 30 50 100<br />

Saws, circular, metal, cut-off 25 50 150<br />

Saws, circular, wood, production 50 30 150<br />

Saws, edger (see edgers)<br />

Saws, gang 60 30 150<br />

Screens, centrifugal (centrifuges) 40 60 125<br />

Screens, vibrating 50 150 70<br />

Separators, air (fan-type) 40 100 100<br />

Shears, flywheel-type 50 50 120<br />

Textile machinery 150 100 90<br />

Walkways, mechanized 50 50 100<br />

Washers, laundry 25 75 100<br />

8-13


Bulletin 150 SMC Flex<br />

Electrical Formulas<br />

Ohm’s Law:<br />

I<br />

E<br />

= -- R<br />

R<br />

E<br />

= - E = I×<br />

R<br />

I<br />

Where:<br />

I = Current (Amperes)<br />

E = EMF or <strong>Voltage</strong> (Volts)<br />

R = Resistance (Ohms)<br />

Power in DC Circuits:<br />

P = I×<br />

E HP<br />

=<br />

I×<br />

E<br />

---------<br />

746<br />

kW<br />

I×<br />

E<br />

= ----------- kWH<br />

1,000<br />

=<br />

I × E × Hour<br />

-------------------------<br />

1,000<br />

Where:<br />

P = Power (Watts)<br />

I = Current (Amperes)<br />

E = EMF or <strong>Voltage</strong> (Volts)<br />

kW = Kilowatts<br />

kWH = Kilowatt-Hours<br />

I E<br />

kVA (1-phase) = -----------<br />

×<br />

kVA (3-phase)<br />

1,000<br />

Where:<br />

kVA = Kilovolt-Amperes<br />

I = Current (Amperes)<br />

E = EMF or <strong>Voltage</strong> (Volts)<br />

I× E × PF<br />

kW (1-phase) = --------------------<br />

1,000<br />

=<br />

I× E×<br />

1.73<br />

------------------------<br />

1,000<br />

kW (2-phase)<br />

=<br />

I× E × PF × 1.42<br />

------------------------------------<br />

1,000<br />

kW (3-phase) =<br />

I× E × PF × 1.73<br />

------------------------------------<br />

1,000<br />

8-14


Bulletin 150 SMC Flex<br />

PF<br />

W<br />

= --------- =<br />

V×<br />

I<br />

kW<br />

------<br />

kVA<br />

Where:<br />

kW = Kilowatts<br />

I = Current (Amperes)<br />

E = EMF or <strong>Voltage</strong> (Volts)<br />

PF = Power Factor<br />

W = Watts<br />

V = Volts<br />

kVA = Kilovolt-Amperes<br />

Calculating Motor Amperes<br />

Motor Amperes<br />

Motor Amperes<br />

=<br />

=<br />

HP × 746<br />

-------------------------------------------<br />

E × 1.732 × Eff × PF<br />

kVA × 1,000<br />

-------------------------<br />

1.73 × E<br />

Motor Amperes =<br />

kW × 1,000<br />

----------------------------<br />

1.73 × E × PF<br />

Where:<br />

HP = Horsepower<br />

E = EMF or <strong>Voltage</strong> (Volts)<br />

Eff = Efficiency of Motor (%/100)<br />

kVA = Kilovolt-Amperes<br />

kW = Kilowatts<br />

PF= Power Factor<br />

8-15


Bulletin 150 SMC Flex<br />

Other Formulas<br />

Calculating Accelerating Force for Linear Motion:<br />

F (Acceleration)<br />

=<br />

W × ΔV<br />

------------------<br />

1,933 × t<br />

Where:<br />

F = Force (lb.)<br />

W = Weight (lb.)<br />

ΔV = Change in Velocity (FPM)<br />

t = Time to accelerate weight (seconds)<br />

LRA<br />

=<br />

Start kVA<br />

HP × ⎛-----------------<br />

⎞ 1,000<br />

⎝ HP ⎠<br />

×<br />

-----------------------------------------------------<br />

E × 1.73<br />

Where:<br />

LRA = Locked Rotor Amperes<br />

HP = Horsepower<br />

kVA = Kilovolt-Amperes<br />

E = EMF or <strong>Voltage</strong> (Volts)<br />

60 Hz LRA<br />

LRA @ Freq. X<br />

=<br />

--------------------<br />

60<br />

-------------<br />

Freq. X<br />

Where:<br />

60 Hz LRA = Locked Rotor Amperes<br />

Freq. X = Desired frequency (Hz)<br />

8-16


Bulletin 150 SMC Flex<br />

Notes<br />

8-17


Bulletin 150 SMC Flex<br />

Notes<br />

8-18


Publication 150-AT002B-EN-P — June 2004<br />

Supersedes Publication 150-AT002A-EN-P — January 2003<br />

© 2004 Rockwell Automation. All Rights Reserved. Printed in USA


Drives Support > Drive Maintenance<br />

http://www.ab.com/support/abdrives/maintain.html<br />

Page 1 of 5<br />

2/9/2007<br />

Search »<br />

[+ Worldwide]<br />

Sign In, Become a Member, Why Join?<br />

About Us<br />

News & Events<br />

Products<br />

Services & Support<br />

Industries & Solutions<br />

DRIVES SERVICE & SUPPORT<br />

> Drive Maintenance<br />

Drives Service & Support<br />

Drives Support Home<br />

Drives Products Home<br />

AC Drives<br />

DC Drives<br />

Communications<br />

Peripherals<br />

Support Options<br />

Get Literature<br />

Contact Drives Support<br />

General Resources<br />

A to Z Product Directory<br />

Configuration and<br />

Selection Tools<br />

Knowledgebase<br />

Events Listing<br />

Locate Us<br />

Newsletters / Magazines<br />

Product Certification<br />

Product Cross Reference<br />

Publications Library<br />

MAINTENANCE OF INDUSTRIAL CONTROL EQUIPMENT<br />

ATTENTION: Servicing energized Industrial Control Equipment can be hazardous. Severe injury or<br />

death can result from electrical shock, bump, or unintended actuation of controlled equipment.<br />

Recommended practice is to disconnect and lockout control equipment from power sources, and<br />

release stored energy, if present. Refer to National Fire Protection Association <strong>Stand</strong>ard No.<br />

NFPA70E, Part II and (as applicable) OSHA rules for Control of Hazardous Energy Sources<br />

(Lockout/Tagout) and OSHA Electrical Safety Related Work Practices for safety related work<br />

practices, including procedural requirements for lockout-tagout, and appropriate work practices,<br />

personnel qualifications and training requirements where it is not feasible to de-energize and<br />

lockout or tagout eectric circuits and equipment before working on or near exposed circuit parts.<br />

Sections:<br />

Periodic Inspection<br />

Contamination<br />

Cooling Devices<br />

Hazardous Location Enclosures<br />

Operating Mechanisms<br />

Contacts<br />

Vacuum Contactors<br />

Terminals<br />

Arc Hoods<br />

Coils<br />

Batteries<br />

Pilot Llights<br />

Solid State Devices<br />

High <strong>Voltage</strong> Testing<br />

Locking and Interlocking Devices<br />

Maintenance after a fault condition<br />

Periodic Inspection - Industrial control equipment should be inspected<br />

periodically. Inspection intervals should be based on environmental and operating<br />

conditions and adjusted as indicated by experience. An initial inspection within 3<br />

to 4 months after installation is suggested. See National Electrical Manufacturers<br />

Association NEMA) <strong>Stand</strong>ard No. ICS 1.3, Preventive Maintenance of Industrial<br />

Control and Systems Equipment, for general guidelines for setting-up a periodic<br />

maintenance program. Some specific guidelines for Allen-Bradley products are<br />

listed below.<br />

Contamination - If Inspection reveals that dust, dirt, moisture or other<br />

contamination has reached the control equipment, the cause must be eliminated.


Drives Support > Drive Maintenance<br />

http://www.ab.com/support/abdrives/maintain.html<br />

Page 2 of 5<br />

2/9/2007<br />

This could indicate an incorrectly selected or ineffective enclosure, unsealed<br />

enclosure openings (conduit or other) or incorrect operating procedures. Replace<br />

any improperly selected enclosure with one that is suitable for the environmental<br />

conditions - refer to NEMA <strong>Stand</strong>ard No. 250, Enclosures for Electrical Epuipment<br />

for enclosure type descriptions and test criteria. Replace any damaged or<br />

embrittled elastomer seals and repair or replace any other damaged or<br />

malfunctioning parts (e.g., hinges, fasteners, etc.). Dirty, wet or contaminated<br />

control devices must be replaced unless they can be cleaned effectively by<br />

vacuuming or wiping. Compressed air is not recommended for cleaning because it<br />

may displace dirt, dust, or debris into other parts or equipment, or damage<br />

delicate parts.<br />

Cooling Devices - Inspect blowers and fans used for forced air cooling. Replace any<br />

that have bent, chipped, or missing blades, or if the shaft does not turn freely.<br />

Apply power momentarily to check operation. If unit does not operate, check and<br />

replace wiring, fuse, or blower or fan motor as appropriate. Clean or change air<br />

fitters as recommended in the product manual. Also, clean fins of heat exchangers<br />

so convection cooling is not impaired.<br />

Hazardous Location Enclosures - ATTENTION: Explosion hazard. Always disconnect<br />

power before opening enclosures in hazardous locations. Close and secure such<br />

enclosures before reapplying power.<br />

NEMA Types 7 and 9 enclosures require careful handling so machined flanges do not<br />

get damaged. For removable covers, remove the cover and set aside with<br />

machined surface up. For hinged covers, open the cover fully and restrain in the<br />

full open position H necessary. Clean and examine the flanges on both the body<br />

and cover before reassembly. If there are scratches, nicks, grooves or rust on the<br />

mating surfaces, replace the body or cover as necessary. Examine all bolts and<br />

replace any that have damaged threads. Also check mating threads for damage and<br />

replace enclosure it necessary. Covers and bodies of some enclosures are<br />

manufactured as matched sets (not interchangeable). The manufacturer should be<br />

consulted before replacing a cover or body unless it is specified by the<br />

manufacturer as interchangeable.<br />

Operating Mechanisms - Check for proper functioning and freedom from sticking<br />

or binding. Replace any broken, deformed or badly wont parts or assemblies<br />

according to individual product renewal parts lists. Check for and retighten<br />

securely any loose fasteners. Lubricate if specified in individual product<br />

instructions. Note: Allen-Bradley magnetic starters, contactors and relays are<br />

designed to operate without lubrication-do not lubricate these devices because oil<br />

or grease on the pole faces (mating surfaces) of the operating magnet may cause<br />

the device to stick in the "ON" mode. Sane parts of other devices are factory<br />

lubricated-if lubrication during use or maintenance of these devices is needed, it<br />

will be specified in their individual instructions. if in doubt, consult your nearest<br />

Allen-Bradley Sales Office for information.


Drives Support > Drive Maintenance<br />

http://www.ab.com/support/abdrives/maintain.html<br />

Page 3 of 5<br />

2/9/2007<br />

Contacts - Check contacts for excessive wear and dirt accumulations. Vacuum or<br />

wipe contacts with a soft cloth ?f necessary to remove dirt. Contacts are not<br />

harmed by discoloration and slight pitting. Contacts should never be flied, as<br />

dressing only shortens contact life. Contact spray cleaners should not be used as<br />

their residues on magnet pole faces or in operating mechanisms may cause<br />

sticking, and on contacts can interfere with electrical continuity. Contacts should<br />

only be replaced otter silver has become badly wont. Always replace contacts in<br />

complete sets to avoid misalignment and uneven contact pressure.<br />

Vacuum Contactors - Contacts of vacuum contactors are not visible, so contact<br />

wear must be checked indirectly. Vacuum bottles should be replaced when:<br />

1. The estimated number of operations equals one million, or<br />

2. The contact life line indicator shows need for replacement, or<br />

3. The vacuum bottle integrity tests show need for replacement. Replace all<br />

vacuum bottles in the contactor at the same time to avoid misalignment and<br />

uneven contact wear. If the vacuum battles do not require replacement, check and<br />

adjust overtravel to the value listed on the maintenance instructions.<br />

Terminals - Loose connections in power circuits can cause overheating that can<br />

lead to equipment malfunction or failure. Loose connections in control circuits can<br />

cause control malfunctions. Loose bonding or grounding connections can Increase<br />

hazards of electrical shock and contribute to electromagnetic interference (EMI).<br />

Check the tightness of all terminals and bus bar connections and tighten securely<br />

any loose connections. Replace any parts or wiring damaged by overheating, and<br />

any broken wires or bonding straps.<br />

Arc Hood - Check for cracks, breaks, or deep erosion. Arc hoods and arc chutes<br />

should be replaced if damaged or deeply eroded.<br />

Coils - If a cog exhibits evidence of overheating (cracked, melted or burned<br />

insulation), it must be replaced. In that event, check for and correct overvoltage<br />

or undervoltage conditions, which can cause coil failure. Be sure to dean any<br />

residues of melted coil insulation from other parts of the device or replace such<br />

parts.<br />

Batteries - Replace batteries periodically as specified in product manual or if a<br />

battery shows signs of electrolyte leakage. Use tools to handle batteries that have<br />

leaked electrolyte; most electrolytes are corrosive and can cause burns. Dispose of<br />

the old battery in accordance with instructions supplied with the new battery or as<br />

specified In the manual for the product.<br />

Pilot Lights - Replace any burned out lamps or damaged lenses. Photoelectric<br />

Switches-The lenses of photoelectric switches require periodic cleaning with a soft<br />

dry cloth. Reflective devices used in conjunction with photoelectric switches also<br />

require periodic cleaning. Do not use solvents or cleaning agents on the lenses or<br />

reflectors. Replace any damaged lenses and reflectors.


Drives Support > Drive Maintenance<br />

http://www.ab.com/support/abdrives/maintain.html<br />

Page 4 of 5<br />

2/9/2007<br />

Solid State Devices<br />

-ATTENTION: Use of other than factory recommended test equipment for solid state controls may result in<br />

damage to the control or test equipment or unintended actuation of the controlled equipment. Refer to<br />

paragraph titled HIGH VOLTAGE TESTING.<br />

Solid state devices require little more than a periodic visual inspection. Discolored,<br />

charred or burned components may indicate the need to replace the component or<br />

circuit board. Necessary replacements should be made only at the PC board or<br />

plug-in component level. Printed circuit boards should be inspected to determine<br />

whether they are properly seated in the edge board connectors. Board locking tabs<br />

should also be in place. Solid state devices must also be protected from<br />

contamination, and cooling provisions must be maintained - refer to paragraphs<br />

titled CONTAMINATION and COOLING DEVICES. Solvents should not be used on<br />

printed circuit boards.<br />

High <strong>Voltage</strong> Testing - High voltage insulation resistance (IR) and dielectric<br />

withstanding voltage (DWV) tests should not be used to check solid state control<br />

equipment. When measuring IR or DWV of electrical equipment such as<br />

transformers or motors, a solid state device used for control or monitoring must be<br />

disconnected before performing the test. Even though no damage is readily<br />

apparent after an IR or DWV test, the solid state devices are degraded and<br />

repeated application of high voltage can lead to failure.<br />

Locking and Interlocking Devices - Check these devices for proper working<br />

condition and capability of performing their Intended functions. Make any<br />

necessary replacements only with Allen-Bradley renewal parts or kits. Adjust or<br />

repair only in accordance with Allen-Bradley Instructions.<br />

Maintenance After a Fault Condition - Opening of the short circuit protective<br />

device (such as fuses or circuit breakers) in a properly coordinated motor branch<br />

circuit is an indication of a fault condition in excess of operating overload. Such<br />

conditions can cause damage to control equipment. Before restoring power, the<br />

fault condition must be corrected and any necessary repairs or replacements must<br />

be made to restore the control equipment to good working order. Refer to NEMA<br />

<strong>Stand</strong>ards Publication No. ICS-2, Part ICS2-302 for procedures. Replacements-Use<br />

only replacement parts and devices recommended by Allen-Bradley to maintain the<br />

integrity of the equipment Make sure the parts are properly matched to the model,<br />

series and revision level of the equipment Final Check Out - After maintenance or<br />

repair of industrial controls, always test the control system for proper functioning<br />

under controlled conditions; that avoid hazards in the event of a control<br />

malfunction. For additional information, refer to NEMA ICS 1.3, PREVENTIVE<br />

MAINTENANCE OF INDUSTRIAL CONTROL AND SYSTEMS EQUIPMENT, published by<br />

the National Electrical Manufacturers Association, and NFPA70B, ELECTRICAL<br />

EQUIPMENT MAINTENANCE, published by the National Fire Protection Association.<br />

Back to top


ALLEN-BRADLEY DRIVES<br />

TECHNICAL SUPPORT<br />

Rockwell Automation is committed to maintaining<br />

and supporting your Allen-Bradley drives and<br />

installations. Included in this commitment<br />

is support for active products, support for<br />

products that are no longer manufactured and<br />

consultation for high performance drive<br />

applications. Allen-Bradley Drives’ Technical<br />

Support Center is staffed with knowledgeable,<br />

experienced specialists who have the expertise,<br />

equipment and documentation to answer your<br />

product questions accurately and efficiently.<br />

To help minimize the expense of production<br />

downtime, our call center provides technical<br />

assistance weekdays from 7:00 a.m. to 6:00 p.m.<br />

CST. Support options include: active and inactive<br />

product phone support; obsolete and discontinued<br />

product phone support; web based support; and,<br />

SupportPlus.<br />

SUPPORT OPTIONS<br />

Active and Inactive Product Phone Support<br />

All Active and Inactive products receive phone<br />

support at no charge. This support is available free<br />

of charge by dialing 262-512-8176 weekdays from<br />

7:00 a.m. to 6:00 p.m. Central <strong>Stand</strong>ard Time.<br />

Obsolete and Discontinued Product Phone Support<br />

All Obsolete and some Discontinued products<br />

have phone support available in two packages:<br />

an annual site contract and a single incident<br />

charge. Refer to the Drive Product Life Stages<br />

chart for product life descriptions.<br />

An annual site contract entitles you to an<br />

unlimited number of calls over a twelve-month<br />

period for a single product line at one location.<br />

This is the best option for customers who have a<br />

large number of mature products or those who<br />

need to make changes to existing configurations.<br />

Single incident support is also available to assist<br />

in resolving a specific problem. At the time of the<br />

initial phone call to technical support, a case<br />

number is assigned. This case will remain open<br />

until the particular incident or problem is resolved<br />

even if multiple phone calls are involved. Both<br />

options can be purchased with a credit card or a<br />

company Purchase Order.<br />

All calls for part number cross-reference or for<br />

assistance in upgrading to a current product are at<br />

no charge.<br />

WEB BASED SUPPORT<br />

Allen-Bradley Drives Technical Support maintains a web site<br />

(www.ab.com/support/abdrives) with information on all drive products.<br />

Information available includes dimensions, spare parts lists, wiring diagrams,<br />

firmware updates, frequently asked questions, obsolete and discontinued<br />

products, general drives fault information, finder drive troubleshooting tool<br />

and more. This site also has a discussion forum and the ability to direct an<br />

e-mail request to the technical support group.<br />

ACTIVE<br />

In catalog and available<br />

for sale<br />

INACTIVE<br />

No orders for new drives<br />

accepted, parts and<br />

service available<br />

DISCONTINUED<br />

Sale of parts limited to<br />

available inventory,<br />

repair services available<br />

OBSOLETE<br />

Repair services available on<br />

a limited basis, contingent<br />

on component availability.<br />

Recommended to transition<br />

to replacement products.


SupportPlus<br />

For consultation on high performance<br />

drive applications, we offer our<br />

SupportPlus program. SupportPlus<br />

uses expert level Rockwell<br />

Automation system engineers to<br />

support your engineering team.<br />

Rockwell Automation engineers<br />

will work with you to layout the<br />

appropriate architecture, configure drives, recommend<br />

programming techniques and provide application assistance on<br />

the most effective ways to implement your control solution.<br />

High Performance Support<br />

SupportPlus engineers provide product support for all<br />

active product lines. This service includes things such as<br />

replacement part information, startup guidance, installation<br />

or warranty administration.<br />

Design Consultation<br />

Design consultation is also available on a fee basis. SupportPlus<br />

engineers will help layout appropriate architecture, configure<br />

drives, recommend programming techniques and provide<br />

application assistance on the most effective ways to implement<br />

control solutions. The SupportPlus engineers will provide example<br />

Allen-Bradley PLC programs and drive configuration files that can<br />

be incorporated into your solutions. SupportPlus engineers will<br />

share files through a website or via E-mail. Service is available<br />

through the entire design and commissioning process.<br />

This is a cost-effective alternative to system engineering services<br />

if you prefer to provide your own engineering but need additional<br />

support. This service complements your engineering team by<br />

providing application and site specific support when you most<br />

need it.<br />

Power Quality Analysis<br />

With the increased use of electronic equipment such as variable<br />

speed drives in the industrial, commercial and utility environment,<br />

an increased awareness of potential power quality<br />

issues has arisen.<br />

SupportPlus offers on-site power quality and EMC<br />

(electromagnetic compatibility) analysis associated with the<br />

installation, application and use of variable speed AC and<br />

DC drives.<br />

This service provides consumption monitoring, measurement and<br />

information analysis for single and multiple drive applications as<br />

related to drive performance. SupportPlus can also troubleshoot<br />

and provide solutions to drive related EMI (electromagnetic<br />

interference) problems.<br />

Pre-installation wiring and grounding consultation is also available<br />

as well as training on drive installation and problem solving.<br />

This valuable service can improve your uptime and decrease<br />

maintenance and energy costs.<br />

Get Proven Results<br />

The SupportPlus team works through design issues before they<br />

reach the field, reducing the engineering and commissioning<br />

cycle. The SupportPlus team analyzes the entire solution,<br />

examining potential issues like network update rates, drive<br />

throughput times and correct gearing schemes.<br />

Obsolete and Discontinued Product support<br />

The following products require a annual contract or per<br />

incident charge:<br />

1313<br />

1331<br />

1335<br />

1351<br />

1362<br />

1373<br />

1376<br />

1396<br />

1318<br />

1332<br />

1340<br />

Period<br />

Product or Application Specification<br />

Documentation Request<br />

Hardware-Electrical<br />

Installation<br />

Technical Question<br />

Startup Guidance<br />

Software Tools<br />

Basic Configuration and Programming<br />

Communication Modules<br />

Breakdown<br />

Product Specific Questions<br />

Firmware Upload/Download<br />

Repair/Replacement Parts Information<br />

Warranty Administration<br />

Architecture Design<br />

Product/Network Configuration<br />

Application Engineering Design<br />

Application Support<br />

Software Architecture and Design<br />

<strong>Stand</strong>ard Software Module Integration<br />

Custom Software Module Creation<br />

Site Specific Drive Control Support<br />

Power Analysis<br />

Product Failure Analysis<br />

1352 (all series)<br />

1371<br />

1374<br />

1379<br />

1330<br />

Complimentary Fee for Service<br />

Product Support Product Support SupportPlus<br />

Active/In-Active Discontinued/ Active<br />

Product Lines Obsolete Products Product Lines<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

1334<br />

1350<br />

1372<br />

1375<br />

1381<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

Publication SDB-PP002B-EN-P – May 2006<br />

Supercedes Publication SDB-PP002A-EN-P – February 2003<br />

Copyright © 2006 Rockwell Automation, Inc. All Rights Reserved. Printed in USA.


Extended Parts and Labor Warranty<br />

Dependable, Easy to Use Coverage from Day One<br />

Gain added protection and peace of mind with an<br />

Extended Warranty from Rockwell Automation.<br />

Our Extended Warranty both extends and enhances our<br />

original factory warranties on your new and existing<br />

Rockwell Automation hardware. In most cases, our<br />

standard factory warranties provide more than enough<br />

protection against unexpected breakdown or failure.<br />

However, with a Rockwell Automation Extended Warranty<br />

you have the flexibility to customize a multi-year<br />

protection plan that fits your needs.<br />

Whether you simply wish to extend<br />

the length of our original warranty<br />

terms, or enhance your coverage to<br />

include protection against unplanned<br />

labor expenses, Rockwell Automation<br />

has an extended warranty that is right<br />

for you to help protect your<br />

automation investment.<br />

An Extended Parts Warranty provides<br />

targeted coverage of repairable<br />

Rockwell Automation electrical<br />

equipment. This parts-only warranty<br />

extends the standard, one-year<br />

Rockwell Automation equipment<br />

warranty on an annual basis for up to<br />

an additional four years. This service<br />

can be ordered anytime within the<br />

original warranty of the new and/or<br />

remanufactured product. Extended<br />

Parts Warranty is backed by our<br />

remanufacturing and exchange<br />

services.<br />

With an Extended Parts and Labor<br />

Warranty, you won’t have to worry<br />

about unexpected breakdowns or<br />

equipment failure. This extended<br />

warranty offering includes protection<br />

against the cost of replacement parts,<br />

local repair labor and local travel for<br />

up to five additional years on select<br />

Rockwell Automation control<br />

equipment and drives.<br />

You can purchase an Extended<br />

Warranty as a stand-alone offering,<br />

or bundle it with any offering from<br />

Rockwell Automation Services &<br />

Support. Together, an extended<br />

warranty can become an integral part<br />

of your maintenance strategy,<br />

providing valuable protection and<br />

peace of mind.<br />

In a business environment where<br />

plant operations are constantly<br />

tasked to do more with less, take<br />

control of your maintenance budget<br />

– drive down unplanned repair and<br />

MRO expenses, as well as reduce<br />

the duration of unscheduled<br />

downtime events. Enjoy having<br />

the peace of mind knowing your<br />

automation investment is protected<br />

with a Rockwell Automation<br />

Extended Warranty.<br />

Publication GMSA10-PP022A-EN-E November 2009


SERVICE & SUPPORT<br />

Contract Callout Services<br />

Prepurchase OnSite Support to<br />

Reduce Your Maintenance Expenses<br />

Redeem the Hours in Your<br />

Contract for Onsite Support<br />

on a Wide Variety of Industrial<br />

Automation Products 1<br />

Your contract hours can be used for<br />

on-site support on an as needed basis<br />

or for non-fixed scope projects 2 .<br />

These services can include:<br />

• Vibration Analysis<br />

• Infrared Thermography<br />

• Oil Analysis<br />

• Grounding Checks<br />

• Input <strong>Voltage</strong> Measurement<br />

• Megger Motor MTR Readings<br />

• Drive Calibration<br />

• Troubleshooting and Repair<br />

(emergency and non emergency)<br />

• Engineering Assistance related<br />

to Conversion/Migration,<br />

System Start-Up<br />

• On-the-Job Training<br />

Services can be performed on the following<br />

products:<br />

• Programmable Controllers<br />

• AC & DC Drives and Motors<br />

• Motion Control<br />

• Medium <strong>Voltage</strong> Drives<br />

• Motor Control Centers<br />

• Instruments and Controlled Devices<br />

• Operator Terminals<br />

• Rotating Equipment<br />

1<br />

Contract Callout Services can NOT be used<br />

toward fixed scope or interval services such as:<br />

ProtectionPlus drives start-up, HMI Conversion<br />

Services, Preventive/Predictive Maintenance Services,<br />

Extended Warranty, Safety Assessment Services,<br />

Network Design and Design Review, Security Services<br />

By prepurchasing Rockwell Automation Callout Services, you will have access to<br />

a wide range of Onsite Support Services (left) to supplement your maintenance<br />

activities and improve your Overall Equipment Effectiveness — at a significant<br />

savings compared to our standard Callout Services!<br />

Rockwell Automation Contract Callout Services provide many benefits<br />

including:<br />

• Improved budget stability – lower service costs<br />

• Simplified purchasing – purchase now, redeem when needed<br />

• Reduced unplanned downtime events – identification of impending failures<br />

during Callout service<br />

• Reduced downtime duration – faster problem resolution through<br />

priority dispatch<br />

• Proactive tracking – receive periodic statements with complete draw-down<br />

details of each Callout visit<br />

Contract Callout Services also provide the flexibility to use your prepurchased<br />

hours toward OnSite Support Services whenever you need them, emergency<br />

and non-emergency, without additional approvals or purchase orders.<br />

2<br />

To extend the life of your equipment, optimize its<br />

performance and utilization, and lower the total cost<br />

of ownership, formal predictive and preventive<br />

maintenance is recommended.


Contract Redemption<br />

When you need Onsite Support Services, contact your local authorized Allen-Bradley Distributor or the<br />

Rockwell Automation Call Management Center at 1-440-646-3434. Contract will draw down per the following:*<br />

• Weekdays, up to 8 hours<br />

(1.0 x actual hours utilized)<br />

• Saturdays and weekdays over 8 hours<br />

(1.5 x actual hours utilized)<br />

• Sunday or holidays<br />

(2.0 x actual hours utilized)<br />

• Any applicable overnight and actual<br />

expenses such as airfare, rental car and tolls,<br />

will be converted to hours and deducted<br />

from the contract at normal (1.0) rate.<br />

• Travel time is deducted from the contract<br />

per the following table (miles are calculated<br />

portal to portal from dispatched engineer's<br />

assigned office and represent round trip<br />

distance).<br />

Travel Zones<br />

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9<br />

Miles 0-50 51-75 76-100 101-125 126-150 >350 151-200 201-275 276-350<br />

Hours<br />

Deducted<br />

1 Hour 1.5 Hours 2 Hours 2.5 Hours 3 Hours Actual Hours 3.5 Hours 4 Hours 5 Hours<br />

For More Information<br />

For more information about Rockwell Automation Onsite Support Services, contact your local authorized<br />

Allen-Bradley distributor or Rockwell Automation sales office, or visit: www.rockwellautomation.com/support.<br />

To request callout service, call 1-440-646-3434.<br />

* Additional time is deducted for emergency callout service.<br />

An emergency is defined as a situation requiring on-site service within<br />

48 hours of contacting the Rockwell Automation Call Management Center.<br />

Contact your distributor or Rockwell Automation dispatch for additional<br />

information on applicable rates.<br />

Publication GMSC10-PP023C-EN-E – October 2007 — Supersedes GMSC10-PP023B-EN-E - September 2007<br />

Copyright ©2007 Rockwell Automation, Inc. All Rights Reserved. Printed in USA.


Table of Contents<br />

1. Introduction<br />

1.1 Description of the Motor Starting Study<br />

1.2 Input Data Sheets<br />

1.2.1 Feeder Input Data Sheet<br />

1.2.2 Generation Contribution Data Sheet<br />

1.2.3 Motor Contribution Data Sheet<br />

1.3 One Line Diagram<br />

2. Motor Starting Study<br />

2.1 Motor Starting Study Discussion<br />

2.2 SKM TMS Solid State <strong>Voltage</strong> Ramp Start<br />

2.2.1 Plot of SKM TMS Solid State <strong>Voltage</strong> Ramp Start<br />

2.2.2 SKM TMS Solid State <strong>Voltage</strong> Ramp Start Report<br />

2.3 SKM TMS 100% <strong>Voltage</strong> Start<br />

2.3.1 Plot of SKM TMS 100% <strong>Voltage</strong> Start<br />

2.3.2 SKM TMS 100% <strong>Voltage</strong> Start Report<br />

2.4 SKM TMS 80% <strong>Voltage</strong> Start<br />

2.4.1 Plot of SKM TMS 80% <strong>Voltage</strong> Start<br />

2.4.2 SKM TMS 80% <strong>Voltage</strong> Start Report<br />

3. Warranty and Limitation of Liability<br />

3.1 Warranty<br />

3.2 Limitation of Liability<br />

4. Information<br />

2


1. Introduction<br />

This motor starting study has been prepared for the CRMWD Ward County Water Supply<br />

Project, Contract C-1, Pre-Purchase of Pump Units for WPS.<br />

1.1 Description of the Motor Starting Study<br />

The purpose of this analysis is to determine the minimum starting current for the WPS pumps<br />

using the proposed Rockwell Automation SMC-Flex solid state starters. Pumps WPS-1, WPS-<br />

2, and WPS-3 are rated 400 horsepower at 460V. Information on the motors and pump loads<br />

has been obtained from the Patterson Pump Company submittals. This information is included<br />

in Section 4 of this report.<br />

The SKM Transient Motor Starting (TMS) software is used for the motor starting calculations.<br />

TMS uses a time simulation method that is similar to a transient stability program that<br />

simulates both running and starting motors.<br />

The information from the pump submittal has been entered into the SKM software as graphical<br />

motor and load components. For this study, a 480V utility source with a short circuit<br />

contribution of 10 MVA has been used. The TMS source model is comprised of a round rotor<br />

steam turbine with a standard Type 1 exciter and standard steam governor.<br />

3


1.2.1 Feeder Input Data Sheet<br />

ALL PU VALUES ARE EXPRESSED ON A 100 MVA BASE.<br />

FEEDER INPUT DATA<br />

===============================================================================================================<br />

CABLE FEEDER FROM FEEDER TO QTY VOLTS LENGTH FEEDER<br />

NAME NAME NAME /PH L-L SIZE TYPE<br />

===============================================================================================================<br />

WPSP1-P WPSSWBD BUS-0003 2 368 10.0 FEET 500 Copper<br />

Duct Material: Non-Magnetic Insulation Type: Insulation Class: XHHW-2<br />

+/- Impedance: 0.0276 + J 0.0373 Ohms/1000 ft 0.1019 + J 0.1377 PU<br />

Z0 Impedance: 0.0438 + J 0.0999 Ohms/1000 ft 0.1617 + J 0.3688 PU<br />

1.2.2 Generation Contribution Data Sheet<br />

GENERATION CONTRIBUTION DATA<br />

=====================================================================================<br />

BUS CONTRIBUTION VOLTAGE<br />

NAME NAME L-L MVA X"d X/R<br />

=====================================================================================<br />

WPSSWBD UTIL 368.00 10.00<br />

Three Phase Contribution: 10.00 MVA 8.00<br />

Single Line to Ground Contribution: 1.0000 MVA 8.00<br />

Pos Sequence Impedance (100 MVA Base) 1.24 + J 9.92 PU<br />

Zero Sequence Impedance (100 MVA Base) 9.92 + J 79.38 PU<br />

1.2.3 Motor Contribution Data Sheet<br />

MOTOR CONTRIBUTION DATA<br />

=====================================================================================<br />

BUS CONTRIBUTION VOLTAGE BASE Motor<br />

NAME NAME L-L kVA X"d X/R Number<br />

=====================================================================================<br />

WPSSWBD P-1 MTRI-WPSSWBD P 368 356.16 0.1771 10.0 1.00<br />

Pos Sequence Impedance (100 MVA Base) 7.77 + j 77.70 PU<br />

4


UTIL<br />

WPSSWBD 2000A MAIN<br />

WPSSWBD<br />

WPSSWBD 1000A WPS P-1<br />

WPSP1-P<br />

MTRI-WPSSWBD P-1<br />

CRMWD Ward County Water Supply WPS Pre-Purchase<br />

February 24, 2012<br />

5


2.1 Motor Starting Study Discussion<br />

The SKM TMS Solid State <strong>Voltage</strong> Ramp starting is used to simulate the SMC-Flex starter.<br />

For this study, the beginning <strong>Voltage</strong> has been set to 0.01V PU and the ending is 1.0V PU. The<br />

ramp time is 10.0 seconds.<br />

The results of the solid state voltage ramp start are shown in Section 2.2. The plot in 2.2.1<br />

shows the motor has a peak current of about 1524.5 Amps at 7.0 seconds. The motor reaches<br />

full speed in approximately 7.66 seconds, which is significantly quicker than the ten second<br />

<strong>Voltage</strong> ramp.<br />

To confirm the SKM motor and pump models with the pump submittal, 100% <strong>Voltage</strong> (460V)<br />

and 80% <strong>Voltage</strong> (368V) scenarios are also included.<br />

Section 2.3 shows the 100% <strong>Voltage</strong> start. The motor has a peak current of 2497.85 Amps<br />

immediately upon start. The motor reaches full speed at approximately 1.1 seconds, which<br />

matches the submittal.<br />

Section 2.4 shows the 80% <strong>Voltage</strong> start. The motor has a peak current of 2000.97 Amps<br />

immediately upon start. The motor reaches full speed at approximately 2.0 seconds, which<br />

matches the submittal.<br />

6


2.2 SKM TMS Solid State <strong>Voltage</strong> Ramp Start<br />

This page is intentionally blank.<br />

7


WPS RVSS<br />

Study1 - RVSS - MTRI-WPSSWBD P-1 - Motor Speed<br />

Study1 - RVSS - MTRI-WPSSWBD P-1 - Motor <strong>Voltage</strong><br />

500<br />

1250<br />

Study1 - RVSS - MTRI-WPSSWBD P-1 - Line Current<br />

1500<br />

450<br />

1250<br />

400<br />

1000<br />

350<br />

Line Current (Amps)<br />

1000<br />

750<br />

500<br />

Motor <strong>Voltage</strong> (Volts)<br />

300<br />

250<br />

200<br />

150<br />

Motor Speed (RPM)<br />

750<br />

500<br />

250<br />

100<br />

250<br />

50<br />

0<br />

0<br />

0<br />

0.0 2.5 5.0 7.5 10.0<br />

Time (Seconds)<br />

8


2.2.2 SKM TMS Solid State <strong>Voltage</strong> Ramp Start Report<br />

Study Name: Study1<br />

----------------------------------------<br />

Case Name: RVSS<br />

----------------------------------------<br />

M O T O R D A T A ( T R A N S I E N T S T A R T )<br />

===============================================================================<br />

MOTOR NAME MODEL DESCRIPTION KVA KV SYNC. RPM<br />

BUS NAME INITIAL STATUS<br />

===============================================================================<br />

MTRI-WPSSWBD P-1 QTY= 1 GRAPHICAL MODEL 356.2 0.46 1200<br />

WPSSWBD P-1 OFFLINE Wk**2(LB-FT2): 371.000 2H: 0.693<br />

GRAPHICAL MODEL DATA===========================<br />

SPEED(RPM) CURRENT(AMPS) TORQUE(FT-LBS) PF<br />

0.00 2512.14 1224.91 0.181<br />

120.00 2494.26 1283.15 0.186<br />

240.00 2454.48 1348.46 0.192<br />

360.00 2414.69 1412.00 0.198<br />

480.00 2364.63 1493.19 0.207<br />

600.00 2306.97 1576.15 0.216<br />

720.00 2235.00 1660.86 0.227<br />

840.00 2144.71 1768.53 0.244<br />

960.00 2043.24 1989.15 0.276<br />

1040.40 1910.93 2393.34 0.333<br />

1080.00 1743.75 2721.63 0.387<br />

1119.60 1458.56 3258.19 0.499<br />

1148.40 1135.83 3512.35 0.641<br />

1179.60 684.80 2463.94 0.837<br />

1190.40 443.87 1768.53 0.881<br />

1200.00 106.83 0.00 0.050<br />

9


2.2.2 SKM TMS Solid State <strong>Voltage</strong> Ramp Start Report<br />

MOTOR SWITCHING DATA===========================<br />

PUT ON LINE AT TIME:<br />

CONTROLLER TYPE: SOILD STATE CONTROL FUNCTION: NONE<br />

LOAD DATA======================================<br />

LOAD MODEL: GRAPHICAL MODEL<br />

'SPEED (RPM) VS. TORQUE (FT-LBS)<br />

0.00 7.36<br />

120.00 25.61<br />

240.00 47.02<br />

360.00 120.37<br />

480.00 183.97<br />

600.00 291.84<br />

720.00 404.98<br />

840.00 541.77<br />

960.00 677.81<br />

1080.00 886.67<br />

1200.00 1085.95<br />

10


2.2.2 SKM TMS Solid State <strong>Voltage</strong> Ramp Start Report<br />

S O U R C E D A T A ( T R A N S I E N T S T A R T )<br />

===============================================================================<br />

SOURCE NAME BUS NAME<br />

===============================================================================<br />

UTIL WPSSWBD<br />

Library Model Name: Round Rotor Steam Unit<br />

Machine Modal Data::<br />

6.000000 Td0' D-axis transient time constant<br />

0.040000 Td0" D-axis sub-transient time constant<br />

1.000000 Tq0' Q-axis transient time constant<br />

0.070000 Tq0" Q-axis sub-transient time constant<br />

4.000000 H Inertia constant<br />

0.000000 D Load damping coefficient<br />

1.300000 Xd D-axis armature reactance<br />

1.250000 Xq Q-axis armature reactance<br />

0.200000 Xd' D-axis transient reactance<br />

0.400000 Xq' Q-axis transient reactance<br />

0.120000 X" Machine sub-transient reactance<br />

0.080000 Xl Leakage reactance<br />

0.100000 S10 Saturation factor at V=1.0 PU<br />

0.400000 S12 Saturation factor at V=1.2 PU<br />

0.002000 Ra Armature resistance<br />

0.120000 X" Machine sub-transient reactance<br />

Exciter Model: 1979 IEEE Type 1<br />

Governor Model: <strong>Stand</strong>ard Steam Turbine<br />

*** Motor MTRI-WPSSWBD P-1 AT BUS WPSSWBD P-1 SWITCHED ON LINE AT TIME: 0.00<br />

11


2.2.2 SKM TMS Solid State <strong>Voltage</strong> Ramp Start Report<br />

SIMULATION TIME = 0.00 SECONDS<br />

INSTANTANEOUS DETAILED MOTOR REPORT<br />

=================================================================================================================<br />

MOTOR SPEED SLIP VOLTAGE CURRENT POWER FACTOR<br />

BUS NAME NAME (RPM) (KV) (AMPS)<br />

WPSSWBD P-1 MTRI-WPSSWBD P-1 0.0 1.0000 0.005 26 0.1802<br />

INSTANTANEOUS GENERATOR SCHEDULE REPORT<br />

=========================================================================================================<br />

BUS NAME SOURCE NAME <strong>Voltage</strong> (pu) KW KVAR<br />

WPSSWBD UTIL 1.000 3.9446 21.433<br />

INSTANTANEOUS BUS VOLTAGE REPORT<br />

=========================================================================================================<br />

BUS NAME <strong>Voltage</strong> (pu) BUS NAME <strong>Voltage</strong> (pu)<br />

WPSSWBD 1.000 WPSSWBD P-1 1.000<br />

MOTOR TIME STEP REPORT<br />

==========================================================================================================================<br />

MOTOR SPEED SLIP VOLTAGE CURRENT KVA PF<br />

TIME BUS NAME NAME (RPM) (KV) (AMPS)<br />

0.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 0.0 1.0000 0.028 153.4 7.5 0.181<br />

TQ(FT-LB) MOTOR: 5 LOAD: 7 ACCELERATION: -3<br />

1.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1.1 0.9991 0.052 283.1 25.4 0.181<br />

TQ(FT-LB) MOTOR: 16 LOAD: 8 ACCELERATION: 8<br />

1.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 7.7 0.9936 0.076 412.7 54.0 0.181<br />

TQ(FT-LB) MOTOR: 33 LOAD: 9 ACCELERATION: 25<br />

2.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 22.4 0.9813 0.099 541.9 93.3 0.182<br />

TQ(FT-LB) MOTOR: 58 LOAD: 11 ACCELERATION: 47<br />

2.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 47.5 0.9604 0.123 670.5 143.0 0.183<br />

TQ(FT-LB) MOTOR: 89 LOAD: 15 ACCELERATION: 75<br />

3.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 85.4 0.9288 0.147 798.1 203.0 0.185<br />

TQ(FT-LB) MOTOR: 129 LOAD: 20 ACCELERATION: 109<br />

3.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 138.8 0.8844 0.171 923.0 272.8 0.187<br />

TQ(FT-LB) MOTOR: 178 LOAD: 29 ACCELERATION: 149<br />

4.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 210.1 0.8249 0.194 1041.5 350.7 0.191<br />

TQ(FT-LB) MOTOR: 238 LOAD: 42 ACCELERATION: 196<br />

12


2.2.2 SKM TMS Solid State <strong>Voltage</strong> Ramp Start Report<br />

4.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 299.5 0.7504 0.218 1154.7 436.3 0.195<br />

TQ(FT-LB) MOTOR: 310 LOAD: 83 ACCELERATION: 227<br />

5.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 399.0 0.6675 0.242 1261.4 528.6 0.201<br />

TQ(FT-LB) MOTOR: 398 LOAD: 141 ACCELERATION: 257<br />

5.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 514.1 0.5716 0.266 1356.3 624.1 0.210<br />

TQ(FT-LB) MOTOR: 506 LOAD: 215 ACCELERATION: 291<br />

6.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 637.8 0.4685 0.289 1437.3 720.6 0.219<br />

TQ(FT-LB) MOTOR: 635 LOAD: 328 ACCELERATION: 307<br />

6.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 769.8 0.3585 0.313 1496.2 811.7 0.234<br />

TQ(FT-LB) MOTOR: 791 LOAD: 462 ACCELERATION: 329<br />

7.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 915.7 0.2369 0.337 1524.2 889.6 0.264<br />

TQ(FT-LB) MOTOR: 1024 LOAD: 628 ACCELERATION: 396<br />

7.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1165.2 0.0290 0.361 700.2 437.5 0.747<br />

TQ(FT-LB) MOTOR: 1813 LOAD: 1028 ACCELERATION: 784<br />

8.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1191.7 0.0070 0.384 334.3 222.6 0.773<br />

TQ(FT-LB) MOTOR: 1074 LOAD: 1072 ACCELERATION: 2<br />

8.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1192.6 0.0062 0.408 325.8 230.4 0.692<br />

TQ(FT-LB) MOTOR: 1076 LOAD: 1074 ACCELERATION: 2<br />

9.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1193.4 0.0055 0.432 318.8 238.6 0.624<br />

TQ(FT-LB) MOTOR: 1077 LOAD: 1075 ACCELERATION: 2<br />

9.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.0 0.0050 0.456 313.1 247.2 0.566<br />

TQ(FT-LB) MOTOR: 1078 LOAD: 1076 ACCELERATION: 2<br />

10.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.6 0.0045 0.480 308.5 256.2 0.516<br />

TQ(FT-LB) MOTOR: 1078 LOAD: 1077 ACCELERATION: 1<br />

10.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.6 0.0045 0.480 308.2 256.2 0.515<br />

TQ(FT-LB) MOTOR: 1077 LOAD: 1077 ACCELERATION: 0<br />

11.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.6 0.0045 0.480 308.2 256.2 0.515<br />

TQ(FT-LB) MOTOR: 1077 LOAD: 1077 ACCELERATION: 0<br />

13


2.2.2 SKM TMS Solid State <strong>Voltage</strong> Ramp Start Report<br />

SIMULATION TIME = 11.00 SECONDS<br />

INSTANTANEOUS DETAILED MOTOR REPORT<br />

=================================================================================================================<br />

MOTOR SPEED SLIP VOLTAGE CURRENT POWER FACTOR<br />

BUS NAME NAME (RPM) (KV) (AMPS)<br />

WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.6 0.0045 0.480 308 0.5151<br />

INSTANTANEOUS GENERATOR SCHEDULE REPORT<br />

=========================================================================================================<br />

BUS NAME SOURCE NAME <strong>Voltage</strong> (pu) KW KVAR<br />

WPSSWBD UTIL 1.000 131.9103 219.678<br />

INSTANTANEOUS BUS VOLTAGE REPORT<br />

=========================================================================================================<br />

BUS NAME <strong>Voltage</strong> (pu) BUS NAME <strong>Voltage</strong> (pu)<br />

WPSSWBD 1.000 WPSSWBD P-1 1.000<br />

14


2.3 SKM TMS 100% <strong>Voltage</strong> Start<br />

This page is intentionally blank.<br />

15


2500<br />

1250<br />

100 Percent <strong>Voltage</strong><br />

Study1 - 100% <strong>Voltage</strong> Start - MTRI-WPSSWBD P-1 - Motor Speed<br />

Study1 - 100% <strong>Voltage</strong> Start - MTRI-WPSSWBD P-1 - Line Current<br />

2000<br />

1000<br />

Line Current (Amps)<br />

1500<br />

1000<br />

Motor Speed (RPM)<br />

750<br />

500<br />

500<br />

250<br />

0<br />

0<br />

-0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0<br />

Time (Seconds)<br />

16


2.3.2 SKM TMS 100% <strong>Voltage</strong> Start Report<br />

Study Name: Study1<br />

----------------------------------------<br />

Case Name: 100% <strong>Voltage</strong> Start<br />

----------------------------------------<br />

M O T O R D A T A ( T R A N S I E N T S T A R T )<br />

===============================================================================<br />

MOTOR NAME MODEL DESCRIPTION KVA KV SYNC. RPM<br />

BUS NAME INITIAL STATUS<br />

===============================================================================<br />

MTRI-WPSSWBD P-1 QTY= 1 GRAPHICAL MODEL 356.2 0.46 1200<br />

WPSSWBD P-1 OFFLINE Wk**2(LB-FT2): 371.000 2H: 0.693<br />

GRAPHICAL MODEL DATA===========================<br />

SPEED(RPM) CURRENT(AMPS) TORQUE(FT-LBS) PF<br />

0.00 2512.14 1224.91 0.181<br />

120.00 2494.26 1283.15 0.186<br />

240.00 2454.48 1348.46 0.192<br />

360.00 2414.69 1412.00 0.198<br />

480.00 2364.63 1493.19 0.207<br />

600.00 2306.97 1576.15 0.216<br />

720.00 2235.00 1660.86 0.227<br />

840.00 2144.71 1768.53 0.244<br />

960.00 2043.24 1989.15 0.276<br />

1040.40 1910.93 2393.34 0.333<br />

1080.00 1743.75 2721.63 0.387<br />

1119.60 1458.56 3258.19 0.499<br />

1148.40 1135.83 3512.35 0.641<br />

1179.60 684.80 2463.94 0.837<br />

1190.40 443.87 1768.53 0.881<br />

1200.00 106.83 0.00 0.050<br />

17


2.3.2 SKM TMS 100% <strong>Voltage</strong> Start Report<br />

MOTOR SWITCHING DATA===========================<br />

PUT ON LINE AT TIME:<br />

CONTROLLER TYPE: FULL VOLTAGE CONTROL FUNCTION: NONE<br />

LOAD DATA======================================<br />

LOAD MODEL: GRAPHICAL MODEL<br />

'SPEED (RPM) VS. TORQUE (FT-LBS)<br />

0.00 7.36<br />

120.00 25.61<br />

240.00 47.02<br />

360.00 120.37<br />

480.00 183.97<br />

600.00 291.84<br />

720.00 404.98<br />

840.00 541.77<br />

960.00 677.81<br />

1080.00 886.67<br />

1200.00 1085.95<br />

18


2.3.2 SKM TMS 100% <strong>Voltage</strong> Start Report<br />

S O U R C E D A T A ( T R A N S I E N T S T A R T )<br />

===============================================================================<br />

SOURCE NAME BUS NAME<br />

===============================================================================<br />

UTIL WPSSWBD<br />

Library Model Name: Round Rotor Steam Unit<br />

Machine Modal Data::<br />

6.000000 Td0' D-axis transient time constant<br />

0.040000 Td0" D-axis sub-transient time constant<br />

1.000000 Tq0' Q-axis transient time constant<br />

0.070000 Tq0" Q-axis sub-transient time constant<br />

4.000000 H Inertia constant<br />

0.000000 D Load damping coefficient<br />

1.300000 Xd D-axis armature reactance<br />

1.250000 Xq Q-axis armature reactance<br />

0.200000 Xd' D-axis transient reactance<br />

0.400000 Xq' Q-axis transient reactance<br />

0.120000 X" Machine sub-transient reactance<br />

0.080000 Xl Leakage reactance<br />

0.100000 S10 Saturation factor at V=1.0 PU<br />

0.400000 S12 Saturation factor at V=1.2 PU<br />

0.002000 Ra Armature resistance<br />

0.120000 X" Machine sub-transient reactance<br />

Exciter Model: 1979 IEEE Type 1<br />

Governor Model: <strong>Stand</strong>ard Steam Turbine<br />

*** Motor MTRI-WPSSWBD P-1 AT BUS WPSSWBD P-1 SWITCHED ON LINE AT TIME: 0.00<br />

19


2.3.2 SKM TMS 100% <strong>Voltage</strong> Start Report<br />

SIMULATION TIME = 0.00 SECONDS<br />

INSTANTANEOUS DETAILED MOTOR REPORT<br />

=================================================================================================================<br />

MOTOR SPEED SLIP VOLTAGE CURRENT POWER FACTOR<br />

BUS NAME NAME (RPM) (KV) (AMPS)<br />

WPSSWBD P-1 MTRI-WPSSWBD P-1 20.2 0.9832 0.458 2498 0.1818<br />

INSTANTANEOUS GENERATOR SCHEDULE REPORT<br />

=========================================================================================================<br />

BUS NAME SOURCE NAME <strong>Voltage</strong> (pu) KW KVAR<br />

WPSSWBD UTIL 0.997 363.0564 1951.949<br />

INSTANTANEOUS BUS VOLTAGE REPORT<br />

=========================================================================================================<br />

BUS NAME <strong>Voltage</strong> (pu) BUS NAME <strong>Voltage</strong> (pu)<br />

WPSSWBD 0.997 WPSSWBD P-1 0.996<br />

MOTOR TIME STEP REPORT<br />

==========================================================================================================================<br />

MOTOR SPEED SLIP VOLTAGE CURRENT KVA PF<br />

TIME BUS NAME NAME (RPM) (KV) (AMPS)<br />

0.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 545.6 0.5453 0.458 2321.4 1840.2 0.212<br />

TQ(FT-LB) MOTOR: 1523 LOAD: 243 ACCELERATION: 1280<br />

1.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1090.0 0.0917 0.459 1669.5 1328.3 0.415<br />

TQ(FT-LB) MOTOR: 2848 LOAD: 903 ACCELERATION: 1945<br />

1.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.2 0.0048 0.461 311.7 248.9 0.553<br />

TQ(FT-LB) MOTOR: 1076 LOAD: 1076 ACCELERATION: -0<br />

2.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.2 0.0049 0.460 311.9 248.7 0.555<br />

TQ(FT-LB) MOTOR: 1076 LOAD: 1076 ACCELERATION: -0<br />

2.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.2 0.0049 0.460 311.9 248.5 0.556<br />

TQ(FT-LB) MOTOR: 1076 LOAD: 1076 ACCELERATION: -0<br />

3.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.2 0.0049 0.460 312.0 248.5 0.556<br />

TQ(FT-LB) MOTOR: 1076 LOAD: 1076 ACCELERATION: -0<br />

3.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.2 0.0049 0.460 312.0 248.5 0.556<br />

TQ(FT-LB) MOTOR: 1076 LOAD: 1076 ACCELERATION: -0<br />

4.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.2 0.0049 0.460 312.0 248.5 0.556<br />

TQ(FT-LB) MOTOR: 1076 LOAD: 1076 ACCELERATION: -0<br />

4.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.2 0.0049 0.460 312.0 248.5 0.556<br />

TQ(FT-LB) MOTOR: 1076 LOAD: 1076 ACCELERATION: -0<br />

5.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.2 0.0049 0.460 312.0 248.5 0.556<br />

TQ(FT-LB) MOTOR: 1076 LOAD: 1076 ACCELERATION: -0<br />

20


2.3.2 SKM TMS 100% <strong>Voltage</strong> Start Report<br />

SIMULATION TIME = 5.00 SECONDS<br />

INSTANTANEOUS DETAILED MOTOR REPORT<br />

=================================================================================================================<br />

MOTOR SPEED SLIP VOLTAGE CURRENT POWER FACTOR<br />

BUS NAME NAME (RPM) (KV) (AMPS)<br />

WPSSWBD P-1 MTRI-WPSSWBD P-1 1194.2 0.0049 0.460 312 0.5560<br />

INSTANTANEOUS GENERATOR SCHEDULE REPORT<br />

=========================================================================================================<br />

BUS NAME SOURCE NAME <strong>Voltage</strong> (pu) KW KVAR<br />

WPSSWBD UTIL 1.000 138.1957 206.577<br />

INSTANTANEOUS BUS VOLTAGE REPORT<br />

=========================================================================================================<br />

BUS NAME <strong>Voltage</strong> (pu) BUS NAME <strong>Voltage</strong> (pu)<br />

WPSSWBD 1.000 WPSSWBD P-1 1.000<br />

21


2.4 SKM TMS 80% <strong>Voltage</strong> Start<br />

This page is intentionally blank.<br />

22


2000<br />

1250<br />

80 Percent <strong>Voltage</strong><br />

Study1 - 80% <strong>Voltage</strong> Start - MTRI-WPSSWBD P-1 - Motor Speed<br />

Study1 - 80% <strong>Voltage</strong> Start - MTRI-WPSSWBD P-1 - Line Current<br />

1750<br />

1500<br />

1000<br />

Line Current (Amps)<br />

1250<br />

1000<br />

750<br />

Motor Speed (RPM)<br />

750<br />

500<br />

500<br />

250<br />

250<br />

0<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

Time (Seconds)<br />

23


2.4.2 SKM TMS 80% <strong>Voltage</strong> Start Report<br />

Study Name: Study1<br />

----------------------------------------<br />

Case Name: 80% <strong>Voltage</strong> Start<br />

----------------------------------------<br />

M O T O R D A T A ( T R A N S I E N T S T A R T )<br />

===============================================================================<br />

MOTOR NAME MODEL DESCRIPTION KVA KV SYNC. RPM<br />

BUS NAME INITIAL STATUS<br />

===============================================================================<br />

MTRI-WPSSWBD P-1 QTY= 1 GRAPHICAL MODEL 356.2 0.46 1200<br />

WPSSWBD P-1 OFFLINE Wk**2(LB-FT2): 371.000 2H: 0.693<br />

GRAPHICAL MODEL DATA===========================<br />

SPEED(RPM) CURRENT(AMPS) TORQUE(FT-LBS) PF<br />

0.00 2512.14 1224.91 0.181<br />

120.00 2494.26 1283.15 0.186<br />

240.00 2454.48 1348.46 0.192<br />

360.00 2414.69 1412.00 0.198<br />

480.00 2364.63 1493.19 0.207<br />

600.00 2306.97 1576.15 0.216<br />

720.00 2235.00 1660.86 0.227<br />

840.00 2144.71 1768.53 0.244<br />

960.00 2043.24 1989.15 0.276<br />

1040.40 1910.93 2393.34 0.333<br />

1080.00 1743.75 2721.63 0.387<br />

1119.60 1458.56 3258.19 0.499<br />

1148.40 1135.83 3512.35 0.641<br />

1179.60 684.80 2463.94 0.837<br />

1190.40 443.87 1768.53 0.881<br />

1200.00 106.83 0.00 0.050<br />

24


2.4.2 SKM TMS 80% <strong>Voltage</strong> Start Report<br />

MOTOR SWITCHING DATA===========================<br />

PUT ON LINE AT TIME:<br />

CONTROLLER TYPE: FULL VOLTAGE CONTROL FUNCTION: NONE<br />

LOAD DATA======================================<br />

LOAD MODEL: GRAPHICAL MODEL<br />

'SPEED (RPM) VS. TORQUE (FT-LBS)<br />

0.00 7.36<br />

120.00 25.61<br />

240.00 47.02<br />

360.00 120.37<br />

480.00 183.97<br />

600.00 291.84<br />

720.00 404.98<br />

840.00 541.77<br />

960.00 677.81<br />

1080.00 886.67<br />

1200.00 1085.95<br />

25


2.4.2 SKM TMS 80% <strong>Voltage</strong> Start Report<br />

S O U R C E D A T A ( T R A N S I E N T S T A R T )<br />

===============================================================================<br />

SOURCE NAME BUS NAME<br />

===============================================================================<br />

UTIL WPSSWBD<br />

Library Model Name: Round Rotor Steam Unit<br />

Machine Modal Data::<br />

6.000000 Td0' D-axis transient time constant<br />

0.040000 Td0" D-axis sub-transient time constant<br />

1.000000 Tq0' Q-axis transient time constant<br />

0.070000 Tq0" Q-axis sub-transient time constant<br />

4.000000 H Inertia constant<br />

0.000000 D Load damping coefficient<br />

1.300000 Xd D-axis armature reactance<br />

1.250000 Xq Q-axis armature reactance<br />

0.200000 Xd' D-axis transient reactance<br />

0.400000 Xq' Q-axis transient reactance<br />

0.120000 X" Machine sub-transient reactance<br />

0.080000 Xl Leakage reactance<br />

0.100000 S10 Saturation factor at V=1.0 PU<br />

0.400000 S12 Saturation factor at V=1.2 PU<br />

0.002000 Ra Armature resistance<br />

0.120000 X" Machine sub-transient reactance<br />

Exciter Model: 1979 IEEE Type 1<br />

Governor Model: <strong>Stand</strong>ard Steam Turbine<br />

*** Motor MTRI-WPSSWBD P-1 AT BUS WPSSWBD P-1 SWITCHED ON LINE AT TIME: 0.00<br />

26


2.4.2 SKM TMS 80% <strong>Voltage</strong> Start Report<br />

SIMULATION TIME = 0.00 SECONDS<br />

INSTANTANEOUS DETAILED MOTOR REPORT<br />

=================================================================================================================<br />

MOTOR SPEED SLIP VOLTAGE CURRENT POWER FACTOR<br />

BUS NAME NAME (RPM) (KV) (AMPS)<br />

WPSSWBD P-1 MTRI-WPSSWBD P-1 12.8 0.9893 0.367 2<strong>001</strong> 0.1815<br />

INSTANTANEOUS GENERATOR SCHEDULE REPORT<br />

=========================================================================================================<br />

BUS NAME SOURCE NAME <strong>Voltage</strong> (pu) KW KVAR<br />

WPSSWBD UTIL 0.998 232.4478 1252.078<br />

INSTANTANEOUS BUS VOLTAGE REPORT<br />

=========================================================================================================<br />

BUS NAME <strong>Voltage</strong> (pu) BUS NAME <strong>Voltage</strong> (pu)<br />

WPSSWBD 0.998 WPSSWBD P-1 0.996<br />

MOTOR TIME STEP REPORT<br />

==========================================================================================================================<br />

MOTOR SPEED SLIP VOLTAGE CURRENT KVA PF<br />

TIME BUS NAME NAME (RPM) (KV) (AMPS)<br />

0.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 340.6 0.7161 0.367 1929.1 1224.6 0.197<br />

TQ(FT-LB) MOTOR: 890 LOAD: 109 ACCELERATION: 781<br />

1.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 649.4 0.4588 0.367 1817.5 1155.7 0.221<br />

TQ(FT-LB) MOTOR: 1026 LOAD: 338 ACCELERATION: 688<br />

1.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 907.4 0.2439 0.367 1667.6 1061.3 0.262<br />

TQ(FT-LB) MOTOR: 1207 LOAD: 618 ACCELERATION: 589<br />

2.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1189.8 0.0085 0.369 365.8 233.6 0.879<br />

TQ(FT-LB) MOTOR: 1159 LOAD: 1069 ACCELERATION: 90<br />

2.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1190.9 0.0076 0.368 340.4 217.2 0.835<br />

TQ(FT-LB) MOTOR: 1071 LOAD: 1071 ACCELERATION: -0<br />

3.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1190.9 0.0076 0.368 340.5 217.1 0.836<br />

TQ(FT-LB) MOTOR: 1071 LOAD: 1071 ACCELERATION: -0<br />

3.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1190.9 0.0076 0.368 340.6 217.0 0.837<br />

TQ(FT-LB) MOTOR: 1071 LOAD: 1071 ACCELERATION: -0<br />

4.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1190.9 0.0076 0.368 340.6 217.0 0.837<br />

TQ(FT-LB) MOTOR: 1071 LOAD: 1071 ACCELERATION: -0<br />

4.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1190.9 0.0076 0.368 340.6 217.0 0.837<br />

TQ(FT-LB) MOTOR: 1071 LOAD: 1071 ACCELERATION: -0<br />

5.00 WPSSWBD P-1 MTRI-WPSSWBD P-1 1190.9 0.0076 0.368 340.6 217.0 0.837<br />

TQ(FT-LB) MOTOR: 1071 LOAD: 1071 ACCELERATION: -0<br />

5.50 WPSSWBD P-1 MTRI-WPSSWBD P-1 1190.9 270.0076<br />

0.368 340.6 217.0 0.837<br />

TQ(FT-LB) MOTOR: 1071 LOAD: 1071 ACCELERATION: 0


2.4.2 SKM TMS 80% <strong>Voltage</strong> Start Report<br />

SIMULATION TIME = 5.50 SECONDS<br />

INSTANTANEOUS DETAILED MOTOR REPORT<br />

=================================================================================================================<br />

MOTOR SPEED SLIP VOLTAGE CURRENT POWER FACTOR<br />

BUS NAME NAME (RPM) (KV) (AMPS)<br />

WPSSWBD P-1 MTRI-WPSSWBD P-1 1190.9 0.0076 0.368 341 0.8368<br />

INSTANTANEOUS GENERATOR SCHEDULE REPORT<br />

=========================================================================================================<br />

BUS NAME SOURCE NAME <strong>Voltage</strong> (pu) KW KVAR<br />

WPSSWBD UTIL 1.000 181.6880 118.851<br />

INSTANTANEOUS BUS VOLTAGE REPORT<br />

=========================================================================================================<br />

BUS NAME <strong>Voltage</strong> (pu) BUS NAME <strong>Voltage</strong> (pu)<br />

WPSSWBD 1.000 WPSSWBD P-1 1.000<br />

28


3. Warranty and Limitation of Liability<br />

3.1 Warranty<br />

It is the intent of Strategic Engineering to provide a study that is accurate and based on sound<br />

professional judgment. If it is found that any portion of this study does not satisfy this goal, we<br />

will correct that portion of the study at no charge providing we are notified in writing within<br />

one year of submission of the study. The warranty does not include modifications to the study<br />

resulting from design changes to the system after the study has been initiated.<br />

3.2 Limitation of Liability<br />

The foregoing warranty represents the sole responsibility of the company. Strategic<br />

Engineering shall not be liable for any consequential damages. It does not assume<br />

responsibility or liability for loss, injury or damage to equipment that may result from the<br />

failure of equipment or the system to operate in accordance of the predictions or<br />

recommendations of the study.<br />

29


4. Information<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!