29.01.2015 Views

Design and Applications of Delay Locked Loop

Design and Applications of Delay Locked Loop

Design and Applications of Delay Locked Loop

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

University <strong>of</strong> Niš<br />

Faculty <strong>of</strong> Electronic Engineering<br />

Department <strong>of</strong> Electronic<br />

Goran Jovanović<br />

<strong>Design</strong> <strong>and</strong> <strong>Applications</strong> <strong>of</strong><br />

<strong>Delay</strong> <strong>Locked</strong> <strong>Loop</strong><br />

DAAD Workshop "Embedded System <strong>Design</strong>"<br />

Niš, , Serbia, 5-95<br />

9 July 2010.


<strong>Delay</strong> elements <strong>and</strong> delay lines<br />

Architecture <strong>and</strong> properties <strong>of</strong> DLL<br />

circuits, comparison with PLL<br />

Linearization <strong>of</strong> analog delay<br />

element, three solutions<br />

Application with delay elements <strong>and</strong><br />

DLL circuits


wide regulation range<br />

linear delay regulation<br />

characteristic<br />

low power consumption<br />

discrete characteristic<br />

coarse regulation<br />

high jitter level<br />

Continual &<br />

fine delay regulation<br />

simple realization<br />

resistant to interference<br />

narrow regulation range<br />

nonlinear delay<br />

regulation<br />

larger power<br />

consumption<br />

wide regulation<br />

range,<br />

fine regulation<br />

complex<br />

realization<br />

complicated<br />

control<br />

larger power<br />

consumption


Digital delay lines are realized as chain <strong>of</strong><br />

elements with fixed delay value.<br />

The number <strong>of</strong> elements in a chain<br />

determines the amount <strong>of</strong> the delay.


Digital delay lines<br />

are controlled with:<br />

multiplexer,<br />

shift register <strong>and</strong><br />

CMOS switch


V P bias<br />

V dd<br />

M 4<br />

M 2<br />

V 0<br />

M 1<br />

i d3<br />

W 4 /L 4<br />

i d4<br />

V ctrl<br />

in<br />

out<br />

C L<br />

V N bias<br />

M 3<br />

W 3 /L 3<br />

CLK ref<br />

1 2 3 4 5<br />

CLK ref<br />

EK 1 EK 2 EK 3 EK 4 EK 5<br />

CLK out<br />

(a)<br />

Simple circuits with<br />

structure <strong>of</strong> inverter or<br />

buffer.<br />

Control voltage<br />

change:<br />

DC operate point,<br />

impedance value in<br />

critical circuit’s node<br />

1<br />

2<br />

3<br />

4<br />

5<br />

CLK out<br />

(b)


It consists <strong>of</strong>:<br />

two inverters stage<br />

bias circuit<br />

2200<br />

Transistors M 3<br />

& M 4<br />

limited<br />

charging/ discharging current<br />

<strong>of</strong> parasite output capacitance.<br />

1800<br />

1400<br />

t<br />

d<br />

=<br />

C<br />

⋅V<br />

L dd<br />

2 ⋅ i d 3<br />

1000<br />

600<br />

2.6 2.8 3 3.2 3.4 3.6 3.8 4<br />

Voltage V c [V]


It consists <strong>of</strong>:<br />

inverter stage<br />

variable capacitive load<br />

840<br />

800<br />

Inverter with variable capacitive output<br />

impedance (transistor M 4 & M 8 )<br />

Bias circuit is not necessary.<br />

Control voltage V ctrl polarize gates<br />

transistors M 3 & M 7 which work in linear<br />

mode (like resistors) <strong>and</strong> determine<br />

output impedance.<br />

kašnjenje td [ps]<br />

760<br />

720<br />

680<br />

640<br />

600<br />

560<br />

3 3.5 4 4.5 5<br />

napon V ctrl [V]


V dd<br />

M<br />

V<br />

5<br />

ctrl<br />

V dd<br />

out A<br />

in A<br />

M 3 M 4<br />

M 1 M 2<br />

V dd<br />

M 6<br />

out B<br />

in B<br />

<strong>Delay</strong> elements with<br />

differential input/output<br />

latch structure<br />

good resistance on interference<br />

<strong>and</strong> compliance <strong>of</strong> rising <strong>and</strong><br />

falling edge delay<br />

Differential delay elements use limited<br />

charge/discharge current <strong>and</strong> parasite<br />

output capacitance to obtain delay<br />

very fine delay<br />

regulation <strong>and</strong> good<br />

resistance to noise<br />

complex realization,<br />

large power<br />

consumption, small<br />

output voltage level


Current starved delay<br />

element has the best<br />

features :<br />

the wider range <strong>of</strong><br />

delay regulation,<br />

simple realization,<br />

low-power<br />

consumption


DLL circuits is used for control delay elements <strong>and</strong> lines.<br />

Ensures that the output clock signal to synchronize with a<br />

reference clock.<br />

DLL architectures is classified into<br />

three types:<br />

analog<br />

digital<br />

hybrid (with double loop)<br />

If exist, phase error<br />

between referent <strong>and</strong><br />

output signalsa,<br />

negative feedback<br />

loop corrected delay<br />

value.


digital DLL<br />

analog DLL


<strong>Delay</strong> td<br />

digital DLL<br />

TIME RASPONSE<br />

analog DLL


the wider range <strong>of</strong><br />

delay regulation<br />

fine regulation<br />

complex realization<br />

complex control<br />

larger power<br />

consumption


DL<br />

CP<br />

PD<br />

DL<br />

CP<br />

PD<br />

DL<br />

CP<br />

PD<br />

I<br />

k<br />

k<br />

k<br />

C<br />

s<br />

k<br />

sC<br />

k<br />

k<br />

k<br />

sC<br />

k<br />

k<br />

s<br />

D<br />

s<br />

D<br />

⋅<br />

⋅<br />

⋅<br />

+<br />

=<br />

⋅<br />

⋅<br />

+<br />

⋅<br />

⋅<br />

=<br />

1<br />

1<br />

1<br />

)<br />

(<br />

)<br />

0 (<br />

C<br />

k<br />

I<br />

f<br />

C<br />

k<br />

k<br />

k<br />

DL<br />

CP<br />

ref<br />

DL<br />

CP<br />

PD<br />

N<br />

⋅<br />

⋅<br />

=<br />

⋅<br />

⋅<br />

=<br />

ω<br />

N<br />

DL<br />

CP<br />

ref<br />

I<br />

DLL<br />

s<br />

k<br />

I<br />

f<br />

C<br />

s<br />

s<br />

D<br />

s<br />

D<br />

s<br />

H<br />

ω<br />

+<br />

=<br />

⋅<br />

⋅<br />

⋅<br />

+<br />

=<br />

=<br />

1<br />

1<br />

1<br />

1<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

0<br />

first order system,<br />

absolute stable


θ ( s)<br />

= θ<br />

⋅ F(<br />

s)<br />

second order system,<br />

0<br />

PD CP VCO<br />

H PLL( s)<br />

=<br />

potential unstable ( s)<br />

s + K ⋅ K ⋅ K ⋅ F(<br />

s)<br />

i<br />

K<br />

⋅ K<br />

PD<br />

⋅ K<br />

CP<br />

VCO<br />

Nisko-<br />

Frekventni<br />

Fltar<br />

f ref<br />

Naponski Kontrolisani Oscilator<br />

VCO<br />

Strujna<br />

Pumpa<br />

UP<br />

Fazni<br />

Detektor<br />

NFF<br />

SP<br />

FD<br />

V ctrl<br />

DOWN<br />

f out<br />

ξ<br />

H ( s)<br />

=<br />

1<br />

ω n τ z<br />

2<br />

θ0(<br />

s)<br />

θ ( s)<br />

i<br />

=<br />

s<br />

2<br />

2<br />

n<br />

2⋅ξ<br />

⋅ωn<br />

⋅ s + ω<br />

+ 2⋅ξ<br />

⋅ω<br />

⋅ s + ω<br />

= ωn<br />

= K PD ⋅ KCP<br />

⋅ KVCO<br />

⋅ K F<br />

n<br />

2<br />

n


Characteristic DLL PLL<br />

Frequency<br />

multiplying<br />

No<br />

yes<br />

Architecture simple complex<br />

transfer function firs order second order<br />

stabile absolute conditional<br />

locking time short long<br />

delay range <strong>of</strong><br />

regulation<br />

limited<br />

unlimited<br />

tracking jitter small large<br />

PLL<br />

2<br />

, DLL<br />

2<br />

∆t ∆t<br />

∆t<br />

α ≅<br />

ω<br />

2ω<br />

ref<br />

2<br />

2<br />

2<br />

PLL = α ⋅ ∆t VCO<br />

PLL<br />

∆t<br />

2<br />

= N ⋅ ∆<br />

DLL t d<br />

2


The proposed three solutions to the<br />

analog voltage controlled lines with<br />

linear regulation <strong>of</strong> the delay as a<br />

function <strong>of</strong> control voltage :<br />

with control threshold voltage<br />

current starved delay element<br />

with symmetrical load<br />

current starved element with<br />

nonlinear bias circuit<br />

Proposed solutions is<br />

differ in:<br />

method <strong>of</strong><br />

implementation<br />

is useful for different<br />

range <strong>of</strong> delay<br />

regulation


<strong>Delay</strong> is determined by:<br />

charge/discharge current<br />

output impedance (capacitance)<br />

threshold voltage (hysteresis)<br />

C<br />

C<br />

td LH = ( VH<br />

+ −V−<br />

) td<br />

HL = ( V+ −VH<br />

−)<br />

I<br />

I<br />

1<br />

2<br />

CLKin<br />

τ=t dLH<br />

= t dHL<br />

τ =<br />

C ∆ V<br />

I<br />

V L<br />

∆V=V H+<br />

-V -<br />

= V +<br />

-V H-<br />

I 1<br />

=I 2<br />

=I<br />

CLKout


<strong>Delay</strong> is proportional:<br />

output capacity <strong>and</strong><br />

threshold voltage (hysteresis)<br />

<strong>and</strong> reciprocal:<br />

charge/discharge output<br />

current<br />

CLK in I 2,i i=1,..,5<br />

+V H<br />

histerezis<br />

I 1,i i=1,..,5<br />

t<br />

CLK out<br />

t dLH T/2 t dHL T/2 t<br />

-V H<br />

V L<br />

CLKout<br />

voltage controlled<br />

capacitance can not<br />

be implemented in<br />

linear <strong>and</strong> suitable<br />

manner


It consist <strong>of</strong> :<br />

integrator (IN)<br />

threshold voltage generator<br />

(GH)<br />

comparator (K)<br />

threshold voltage V H<br />

has<br />

opposite value for raisin<br />

<strong>and</strong> falling clock edge, to<br />

avoid changes in pulse<br />

width.


V +<br />

V+<br />

V +<br />

V B<br />

M 7<br />

M 5<br />

M 6<br />

V bp<br />

V bn<br />

M 4<br />

M 3<br />

M 2<br />

M 1<br />

I 1<br />

SW 1<br />

I 2<br />

IN<br />

V L<br />

C=1pF<br />

V H<br />

CLK out<br />

hysteresis<br />

voltage<br />

generator with<br />

characteristic<br />

V +<br />

M 2<br />

M 3<br />

V ctrl<br />

SW 2<br />

M 12<br />

V H+<br />

M 9<br />

M 10<br />

CLK in<br />

M 8<br />

V H<br />

V ctrl<br />

V H+<br />

V H-<br />

M 1<br />

M 11<br />

V H-<br />

scheme <strong>of</strong> delay line with hysteresis<br />

voltage regulation


6.0V<br />

4.0V<br />

2.0V<br />

0V<br />

5.0V<br />

4.0V<br />

2.0V<br />

0V<br />

30ns<br />

CLK in<br />

V H+<br />

V H-<br />

V H+ V H-<br />

3.6V 1.4V<br />

3.4V 1.6V<br />

3.2V 1.8V<br />

3.0V 2.0V<br />

0s 0.2us 0.4us 0.6us 0.8us 1.0us<br />

t<br />

5.0V<br />

4.0V<br />

2.0V<br />

0V<br />

60ns 530ns<br />

t<br />

t<br />

560ns<br />

delay in<br />

function <strong>of</strong><br />

control<br />

voltage<br />

delay<br />

linearity<br />

error in<br />

function <strong>of</strong><br />

control<br />

voltage<br />

[ns]<br />

dτ<br />

τ<br />

52<br />

50<br />

48<br />

46<br />

44<br />

42<br />

40<br />

38<br />

2.6 2.8 3 3.2 3.4 3.6 3.8 4<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

10 ns<br />

x 10 -3<br />

1 V<br />

V ctrl [V]<br />

-1<br />

2.6 2.8 3 3.2 3.4 3.6 3.8 4<br />

V ctrl [V]


The modification is made by<br />

adding a transistors M 5<br />

& M 6<br />

They present symmetrical<br />

load.<br />

Symmetrical load increase the current<br />

charging/discharging the output capacitance<br />

<strong>and</strong> change shape <strong>of</strong> regulation characteristic.<br />

Current is a variable <strong>and</strong> it value depends<br />

from output voltage.<br />

Symmetrical load provide negative feedback<br />

which gives linear regulation characteristic.


current starved<br />

delay element<br />

with symmetrical load<br />

⎛W<br />

⎜<br />

⎝ L<br />

⎛W<br />

⎜<br />

⎝ L<br />

3<br />

3<br />

5<br />

5<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

delay linearity error in function <strong>of</strong><br />

control voltage<br />

<strong>Delay</strong> in function <strong>of</strong> control<br />

voltage<br />

⎛W<br />

⎜<br />

⎝ L<br />

⎛W<br />

⎜<br />

⎝ L<br />

3<br />

3<br />

5<br />

5<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />


<strong>Delay</strong> tp [ps]<br />

−<br />

dV<br />

0<br />

C L = id<br />

3 +<br />

dt<br />

i<br />

d 5<br />

t<br />

p1<br />

=<br />

k<br />

k<br />

1<br />

2<br />

τ<br />

( V − V )<br />

g<br />

t<br />

⋅ arctan<br />

k<br />

k<br />

1<br />

2<br />

( V − V )<br />

2 ⎛Vdd<br />

⎞<br />

( V − V ) + ⎜ − V ⎟ ⋅ ( V −V<br />

)<br />

g<br />

V<br />

2<br />

t<br />

dd<br />

⋅<br />

⎝<br />

k<br />

k<br />

1<br />

2<br />

2<br />

g<br />

t<br />

⎠<br />

t<br />

dd<br />

t


Bias circuit control<br />

charging/discharging<br />

current I cp<br />

<strong>of</strong> output<br />

C load<br />

capacitance.<br />

Interconnection <strong>of</strong> BIAS circuit <strong>and</strong> current<br />

starved element<br />

The delay is<br />

determined by the<br />

equation:<br />

t<br />

d<br />

=<br />

C<br />

load<br />

2 ⋅<br />

⋅V<br />

I<br />

cp<br />

dd<br />

Typical, current I cp<br />

in<br />

a linear way depends<br />

on the control<br />

voltageV ctrl<br />

.


V ctrl<br />

R<br />

Nonlinear bias circuits use<br />

square characteristics <strong>of</strong> MOS<br />

transistor in saturation.<br />

Bias circuit is designed to<br />

provide reciprocal relation<br />

between current <strong>and</strong> voltage.


28<br />

26<br />

22<br />

L A =10 m<br />

L A =12 m<br />

L A =14 m<br />

18<br />

14<br />

-0.8 -0.4 0 0.4 0.8 1<br />

V ctrl [V]<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.035<br />

-0.8 -0.4 0 0.4 0.8 1<br />

V ctrl [V]<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

L A =10 m<br />

L A =12 m<br />

L A =14 m<br />

L A =10 m<br />

L A =12 m<br />

L A =14 m<br />

a)<br />

b)<br />

-4<br />

-0.8 -0.4 0 0.4 0.8 1<br />

V ctrl [V]<br />

c)<br />

Simulation<br />

<strong>of</strong>:<br />

bias circuit<br />

<strong>and</strong><br />

current<br />

starved<br />

delay<br />

element<br />

BIAS circuit<br />

simulation<br />

60<br />

50<br />

40<br />

30<br />

25<br />

-0.8 -0.4 0 0.4 0.8 1<br />

V ctrl [V]<br />

a)<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

-500<br />

-1000<br />

-0.8 - 0.4 0 0.4 0.8 1<br />

V ctrl [V]<br />

b)


Bias circuit<br />

I<br />

LPF1<br />

LPF2<br />

four-stages delay line with nonlinear<br />

bias circuit<br />

UP<br />

DOWN<br />

DOWN<br />

UP<br />

CP1<br />

CP2<br />

I<br />

DLL with two current pump.<br />

It provides differential<br />

control voltage.


Simulation<br />

<strong>of</strong> DLL with<br />

two charge<br />

pump<br />

<strong>and</strong><br />

nonlinear<br />

bias circuit


DLL <strong>and</strong> delay lines include wide area<br />

<strong>of</strong> applications :<br />

fast RAM memory,<br />

serial USB2 i IEEE 1394 interfaces<br />

FPGA chips,<br />

telecommunication,<br />

circuits for PN coda tracking<br />

spread spectrum systems<br />

measuring <strong>and</strong> processing<br />

equipment...<br />

Some suggested<br />

applications:<br />

multi-frequencies <strong>and</strong><br />

multi-phases clock<br />

synthesis with DLL<br />

high-resolution time-todigital<br />

converter<br />

adaptive duty cycle<br />

corrector


The most important DLL‘s<br />

application is achieving the<br />

correct transfer data<br />

between two synchronous<br />

digital blocks<br />

synthesis <strong>and</strong> distribution <strong>of</strong><br />

clock signal, clock-skew <strong>and</strong><br />

jitter problems elimination


CLK ref<br />

2.Ph_1<br />

2.Ph_4<br />

4.Ph_1<br />

4.Ph_2<br />

Phase Detector<br />

Current pump<br />

<strong>Loop</strong> Filter<br />

V ctrl<br />

<strong>Delay</strong> Line<br />

EK 1 EK 2 EK 3 EK n<br />

Edge Combiner Circuit<br />

s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 1<br />

CLK out<br />

1.Ph_1<br />

1.Ph_8<br />

V ctrl+<br />

V +<br />

V +<br />

M 2<br />

CLK i-1<br />

CLK i<br />

t d<br />

V ctrl-<br />

AND 1<br />

M 1<br />

M 3<br />

M 6<br />

M 4<br />

M 5<br />

In 1<br />

s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 1<br />

s i<br />

CLK ref<br />

1.Ph_2<br />

1.Ph_3<br />

1.Ph_4<br />

1.Ph_5<br />

a)<br />

1.Ph_6<br />

1.Ph_7<br />

1.Ph_8<br />

2.Ph_1<br />

2.Ph_2<br />

2.Ph_3<br />

b)<br />

2.Ph_4<br />

4.Ph_1<br />

4.Ph_2<br />

c)<br />

CLK ref<br />

s 1<br />

s 2<br />

s 3<br />

d)<br />

2.Ph_1 2.Ph_2 2.Ph_3 2.Ph_4<br />

(a)<br />

(b)<br />

4. Ph_1 4. Ph_2


DLL based frequency multiplier uses voltage-controlled delay<br />

elements which represents a significant advantage related to the<br />

st<strong>and</strong>ard solution with a PLL frequency multiplier circuit which<br />

uses voltage controlled ring oscillator.<br />

Illustration form <strong>of</strong><br />

jitter accumulation in<br />

PLL <strong>and</strong> DLL circuits for<br />

frequency multiplying


The timing resolution <strong>of</strong> the delay<br />

Vernier technique is determined by<br />

the difference between two<br />

propagation delay values.<br />

Start signal spreads through the<br />

upper (slower) delay line (t d1 ).<br />

Stop signal is spread through the<br />

lower (faster) line delay (t d2 ).<br />

Measurements resolution <strong>of</strong> several<br />

tens <strong>of</strong> pico-seconds can be achieved<br />

if difference in delays between upper<br />

<strong>and</strong> lower elements small enough.<br />

Measurement range is equal to the<br />

duration <strong>of</strong> one period <strong>of</strong> reference<br />

clock.


stop start<br />

Modifying<br />

Vernier delay<br />

technique<br />

DLL is used<br />

for<br />

calibration<br />

delay lines in<br />

Vernier<br />

convertora<br />

Fazni<br />

detektor


t x<br />

t 4<br />

t 5<br />

t 6<br />

t 7<br />

t 8<br />

t 9<br />

S 1 C 1<br />

1<br />

t 0<br />

t 1<br />

t 2<br />

t 3<br />

S 2 C 2<br />

1<br />

S 3 C 3<br />

1<br />

S 4 C 4<br />

S 7<br />

S<br />

1 elements.<br />

1<br />

6<br />

1<br />

C 7<br />

C 8<br />

1<br />

9 C 9<br />

1<br />

1<br />

S 10<br />

1 Waveform <strong>of</strong> S i i C i represent start i stop<br />

pulses on outputs <strong>of</strong> appropriate delay<br />

S 5 C 5<br />

S 6 C<br />

8<br />

C 10<br />

S 11<br />

C 12<br />

S 11 0<br />

S 12 0<br />

5.0ns 10.0ns 15.0ns 20.0ns 25.0ns 30.0ns<br />

time


V dd<br />

V DCC<br />

in<br />

M 2<br />

*<br />

out<br />

in<br />

*<br />

M 3<br />

out<br />

M 2<br />

V dd<br />

V DCC<br />

V BP<br />

in<br />

V BN<br />

M 1<br />

M 1<br />

(a)<br />

V dd V dd<br />

M 4<br />

* M 6<br />

M 2<br />

M 3<br />

(c)<br />

*<br />

in<br />

out<br />

M 5<br />

V DCC<br />

V DCC<br />

(b)<br />

6 stages<br />

7 stages<br />

(d)<br />

out<br />

Working principle <strong>of</strong> duty cycle<br />

corrector is based on delay element<br />

which gives a different delay value<br />

for rising <strong>and</strong> falling edge <strong>of</strong> signal.<br />

Circuit from Fig. (c) has the<br />

widest range <strong>of</strong> regulation.<br />

Circuits from Fig. (a), (b) <strong>and</strong><br />

(d) have influence or just on<br />

expansion or just on<br />

compression <strong>of</strong> pulses.


(a) Scheme<br />

(b) Ekvivalent scheme<br />

100<br />

90<br />

80<br />

Pulse / period<br />

ratio in function<br />

<strong>of</strong> control voltage<br />

Duty Cycle [%]<br />

70<br />

60<br />

50<br />

40<br />

V ctrl<br />

30<br />

1.5 2 2.5 3 3.5<br />

20<br />

V ctrl [V]


Voltage<br />

CLKin<br />

PICSout<br />

Spice<br />

simulation for<br />

different<br />

values <strong>of</strong><br />

control<br />

voltage<br />

V ctrl


Symmetrical relation between pulse/pause is unmatched<br />

when:<br />

signal passes through a long series <strong>of</strong> buffers,<br />

unbalance <strong>of</strong> N <strong>and</strong> P MOS transistors,<br />

technology variations,<br />

temperature or supply voltage have change ...<br />

PWCL scheme<br />

Waveform at<br />

PWCL<br />

obtained by<br />

Spice<br />

simulation


It is presented three new solutions for<br />

linear analog delay line :<br />

with threshold voltage control,<br />

with symmetrical load,<br />

with nonlinear bias circuit,<br />

<strong>and</strong> proposed new <strong>and</strong> modified<br />

existing application :<br />

multi-frequency <strong>and</strong> multi-phase<br />

clock synthesis with DLL<br />

time-to-digital converter<br />

adaptive pulse width control loop<br />

The applied models <strong>and</strong><br />

design rules are for<br />

technology companies<br />

South Africa<br />

Microelectronics (SAMES)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!