17.02.2015 Views

Revealing the Mechanism of HSP104 Transcription Initiation in the ...

Revealing the Mechanism of HSP104 Transcription Initiation in the ...

Revealing the Mechanism of HSP104 Transcription Initiation in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

56. Hietakangas, V., J. K. Ahlskog, A. M. Jakobsson, M. Hellesuo, N. M.<br />

Sahlberg, C. I. Holmberg, A. Mikhailov, J. J. Palvimo, L. Pirkkala, and L.<br />

Sistonen. 2003. Phosphorylation <strong>of</strong> ser<strong>in</strong>e 303 is a prerequisite for <strong>the</strong> stress<strong>in</strong>ducible<br />

SUMO modification <strong>of</strong> heat shock factor 1. Mol Cell Biol 23:2953-<br />

68.<br />

57. Hilgarth, R. S., Y. Hong, O. K. Park-Sarge, and K. D. Sarge. 2003. Insights<br />

<strong>in</strong>to <strong>the</strong> regulation <strong>of</strong> heat shock transcription factor 1 SUMO-1 modification.<br />

Biochem Biophys Res Commun 303:196-200.<br />

58. Holmberg, C. I., V. Hietakangas, A. Mikhailov, J. O. Rantanen, M. Kallio, A.<br />

Me<strong>in</strong>ander, J. Hellman, N. Morrice, C. MacK<strong>in</strong>tosh, R. I. Morimoto, J. E.<br />

Eriksson, and L. Sistonen. 2001. Phosphorylation <strong>of</strong> ser<strong>in</strong>e 230 promotes<br />

<strong>in</strong>ducible transcriptional activity <strong>of</strong> heat shock factor 1. Embo J 20:3800-10.<br />

59. Holstege, F. C., E. G. Jenn<strong>in</strong>gs, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R.<br />

Green, T. R. Golub, E. S. Lander, and R. A. Young. 1998. Dissect<strong>in</strong>g <strong>the</strong><br />

regulatory circuitry <strong>of</strong> a eukaryotic genome. Cell 95:717-28.<br />

60. Hong, Y., R. Rogers, M. J. Matunis, C. N. Mayhew, M. L. Goodson, O. K.<br />

Park-Sarge, and K. D. Sarge. 2001. Regulation <strong>of</strong> heat shock transcription<br />

factor 1 by stress-<strong>in</strong>duced SUMO-1 modification. J Biol Chem 276:40263-7.<br />

61. Jakobsen, B. K., and H. R. Pelham. 1988. Constitutive b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> yeast heat<br />

shock factor to DNA <strong>in</strong> vivo. Mol Cell Biol 8:5040-2.<br />

62. Kaffman, A., N. M. Rank, E. M. O'Neill, L. S. Huang, and E. K. O'Shea. 1998.<br />

The receptor Msn5 exports <strong>the</strong> phosphorylated transcription factor Pho4 out <strong>of</strong><br />

<strong>the</strong> nucleus. Nature 396:482-6.<br />

63. Kang, J. S., S. H. Kim, M. S. Hwang, S. J. Han, Y. C. Lee, and Y. J. Kim.<br />

2001. The structural and functional organization <strong>of</strong> <strong>the</strong> yeast mediator<br />

complex. J Biol Chem 276:42003-10.<br />

64. Katan-Khaykovich, Y., and K. Struhl. 2002. Dynamics <strong>of</strong> global histone<br />

acetylation and deacetylation <strong>in</strong> vivo: rapid restoration <strong>of</strong> normal histone<br />

acetylation status upon removal <strong>of</strong> activators and repressors. Genes Dev<br />

16:743-52.<br />

65. Keaveney, M., and K. Struhl. 1998. Activator-mediated recruitment <strong>of</strong> <strong>the</strong><br />

RNA polymerase II mach<strong>in</strong>ery is <strong>the</strong> predom<strong>in</strong>ant mechanism for<br />

transcriptional activation <strong>in</strong> yeast. Mol Cell 1:917-24.<br />

66. Kim, J., A. Nueda, Y. H. Meng, W. S. Dynan, and N. F. Mivechi. 1997.<br />

Analysis <strong>of</strong> <strong>the</strong> phosphorylation <strong>of</strong> human heat shock transcription factor-1 by<br />

MAP k<strong>in</strong>ase family members. J Cell Biochem 67:43-54.<br />

67. Knauf, U., E. M. Newton, J. Kyriakis, and R. E. K<strong>in</strong>gston. 1996. Repression<br />

<strong>of</strong> human heat shock factor 1 activity at control temperature by<br />

phosphorylation. Genes Dev 10:2782-93.<br />

68. Kobayashi, N., and K. McEntee. 1990. Evidence for a heat shock transcription<br />

factor-<strong>in</strong>dependent mechanism for heat shock <strong>in</strong>duction <strong>of</strong> transcription <strong>in</strong><br />

Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 87:6550-4.<br />

69. Koerkamp, M. G., M. Rep, H. J. Bussemaker, G. P. Hardy, A. Mul, K.<br />

Piekarska, C. A. Szigyarto, J. M. De Mattos, and H. F. Tabak. 2002.<br />

Dissection <strong>of</strong> transient oxidative stress response <strong>in</strong> Saccharomyces cerevisiae<br />

by us<strong>in</strong>g DNA microarrays. Mol Biol Cell 13:2783-94.<br />

70. Kouzarides, T. 2007. Chromat<strong>in</strong> modifications and <strong>the</strong>ir function. Cell<br />

128:693-705.<br />

56

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!