17.02.2015 Views

Revealing the Mechanism of HSP104 Transcription Initiation in the ...

Revealing the Mechanism of HSP104 Transcription Initiation in the ...

Revealing the Mechanism of HSP104 Transcription Initiation in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

121. Stanhill, A., N. Schick, and D. Engelberg. 1999. The yeast ras/cyclic AMP<br />

pathway <strong>in</strong>duces <strong>in</strong>vasive growth by suppress<strong>in</strong>g <strong>the</strong> cellular stress response.<br />

Mol Cell Biol 19:7529-38.<br />

122. Strahl, B. D., and C. D. Allis. 2000. The language <strong>of</strong> covalent histone<br />

modifications. Nature 403:41-5.<br />

123. Sullivan, E. K., C. S. Weirich, J. R. Guyon, S. Sif, and R. E. K<strong>in</strong>gston. 2001.<br />

<strong>Transcription</strong>al activation doma<strong>in</strong>s <strong>of</strong> human heat shock factor 1 recruit<br />

human SWI/SNF. Mol Cell Biol 21:5826-37.<br />

124. Swanson, M. J., H. Qiu, L. Sumibcay, A. Krueger, S. J. Kim, K. Natarajan, S.<br />

Yoon, and A. G. H<strong>in</strong>nebusch. 2003. A multiplicity <strong>of</strong> coactivators is required<br />

by Gcn4p at <strong>in</strong>dividual promoters <strong>in</strong> vivo. Mol Cell Biol 23:2800-20.<br />

125. Thompson, C. M., A. J. Koleske, D. M. Chao, and R. A. Young. 1993. A<br />

multisubunit complex associated with <strong>the</strong> RNA polymerase II CTD and<br />

TATA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> <strong>in</strong> yeast. Cell 73:1361-75.<br />

126. Treger, J. M., T. R. Magee, and K. McEntee. 1998. Functional analysis <strong>of</strong> <strong>the</strong><br />

stress response element and its role <strong>in</strong> <strong>the</strong> multistress response <strong>of</strong><br />

Saccharomyces cerevisiae. Biochem Biophys Res Commun 243:13-9.<br />

127. Treger, J. M., A. P. Schmitt, J. R. Simon, and K. McEntee. 1998.<br />

<strong>Transcription</strong>al factor mutations reveal regulatory complexities <strong>of</strong> heat shock<br />

and newly identified stress genes <strong>in</strong> Saccharomyces cerevisiae. J Biol Chem<br />

273:26875-9.<br />

128. Uffenbeck, S. R., and J. E. Krebs. 2006. The role <strong>of</strong> chromat<strong>in</strong> structure <strong>in</strong><br />

regulat<strong>in</strong>g stress-<strong>in</strong>duced transcription <strong>in</strong> Saccharomyces cerevisiae. Biochem<br />

Cell Biol 84:477-89.<br />

129. Varela, J. C., U. M. Praekelt, P. A. Meacock, R. J. Planta, and W. H. Mager.<br />

1995. The Saccharomyces cerevisiae HSP12 gene is activated by <strong>the</strong> highosmolarity<br />

glycerol pathway and negatively regulated by prote<strong>in</strong> k<strong>in</strong>ase A.<br />

Mol Cell Biol 15:6232-45.<br />

130. Wanke, V., K. Accorsi, D. Porro, F. Esposito, T. Russo, and M. Vanoni. 1999.<br />

In budd<strong>in</strong>g yeast, reactive oxygen species <strong>in</strong>duce both RAS-dependent and<br />

RAS-<strong>in</strong>dependent cell cycle-specific arrest. Mol Microbiol 32:753-64.<br />

131. Westwood, J. T., J. Clos, and C. Wu. 1991. Stress-<strong>in</strong>duced oligomerization<br />

and chromosomal relocalization <strong>of</strong> heat-shock factor. Nature 353:822-7.<br />

132. Wieser, R., G. Adam, A. Wagner, C. Schuller, G. Marchler, H. Ruis, Z.<br />

Krawiec, and T. Bil<strong>in</strong>ski. 1991. Heat shock factor-<strong>in</strong>dependent heat control <strong>of</strong><br />

transcription <strong>of</strong> <strong>the</strong> CTT1 gene encod<strong>in</strong>g <strong>the</strong> cytosolic catalase T <strong>of</strong><br />

Saccharomyces cerevisiae. J Biol Chem 266:12406-11.<br />

133. Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu<br />

Rev Cell Dev Biol 11:441-69.<br />

134. Zandi, E., T. N. Tran, W. Chamberla<strong>in</strong>, and C. S. Parker. 1997. Nuclear entry,<br />

oligomerization, and DNA b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> <strong>the</strong> Drosophila heat shock transcription<br />

factor are regulated by a unique nuclear localization sequence. Genes Dev<br />

11:1299-314.<br />

135. Zanton, S. J., and B. F. Pugh. 2006. Full and partial genome-wide assembly<br />

and disassembly <strong>of</strong> <strong>the</strong> yeast transcription mach<strong>in</strong>ery <strong>in</strong> response to heat<br />

shock. Genes Dev 20:2250-65.<br />

136. Zhao, J., J. Herrera-Diaz, and D. S. Gross. 2005. Doma<strong>in</strong>-wide displacement<br />

<strong>of</strong> histones by activated heat shock factor occurs <strong>in</strong>dependently <strong>of</strong> Swi/Snf and<br />

is not correlated with RNA polymerase II density. Mol Cell Biol 25:8985-99.<br />

60

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!