17.05.2015 Views

Lecture Notes 19: Magnetic Fields in Matter I; Dia-/Para-/Ferro ...

Lecture Notes 19: Magnetic Fields in Matter I; Dia-/Para-/Ferro ...

Lecture Notes 19: Magnetic Fields in Matter I; Dia-/Para-/Ferro ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

LECTURE NOTES <strong>19</strong><br />

MAGNETIC FIELDS IN MATTER<br />

THE MACROSCOPIC MAGNETIZATION, Μ <br />

There exist many types of materials which, when placed <strong>in</strong> an external magnetic field<br />

<br />

Bext<br />

( r ) become magnetized — i.e. at the microscopic level ∃ <strong>in</strong>ternal atomic/molecular magnetic<br />

dipole moments m atom<br />

or m <br />

molecular<br />

, which, <strong>in</strong> the presence of the external align<strong>in</strong>g magnetic field<br />

<br />

Bext<br />

( r ) produce magnetic torques τ ( r ) = m ( r ) × B <br />

ext ( r<br />

) which act on the <strong>in</strong>dividual<br />

atomic/molecular dipole moments, thereby caus<strong>in</strong>g a net alignment of the atomic/molecular<br />

<br />

magnetic dipole moments matom mmolecular<br />

which <strong>in</strong> turn results <strong>in</strong> a net, macroscopic magnetic<br />

polarization, also known as the magnetization, Μ <br />

( r ) . This is analogous to the situation<br />

associated with dielectric materials where electrostatic torques τ ( r ) = p ( r ) × E <br />

ext ( r<br />

) act on<br />

<br />

<strong>in</strong>dividual atomic/molecular electric dipole moments patom pmolecular<br />

<strong>in</strong> an external electric<br />

<br />

field Eext<br />

( r)<br />

result<strong>in</strong>g <strong>in</strong> a net, macroscopic electric polarization, Ρ <br />

( r ) .<br />

<br />

In the absence of an external applied magnetic field (i.e. Bext<br />

( r ) = 0) the macroscopic<br />

<br />

alignment of the atomic/molecular magnetic dipole moments matom mmolecular<br />

(<strong>in</strong> many, but not all<br />

magnetic materials) is random, due to fluctuations <strong>in</strong> the <strong>in</strong>ternal thermal energy of the material<br />

at f<strong>in</strong>ite temperature (e.g. room temperature). Thus, no net macroscopic magnetization<br />

<br />

M ( r ) exists <strong>in</strong> many such materials for Bext<br />

( r ) = 0 at f<strong>in</strong>ite (absolute) temperature, T.<br />

<br />

We def<strong>in</strong>e the macroscopic magnetic polarization (a.k.a. magnetization) M ( r ) of a magnetic<br />

material <strong>in</strong> complete analogy to that associated with the macroscopic electric polarization<br />

<br />

P( r ) of a dielectric material:<br />

<br />

Macroscopic Electric Polarization P( r ) :<br />

⎛electric dipole moment ⎞ <br />

P ( r)<br />

= ⎜ ⎟ at po<strong>in</strong>t r SI Units of P : Coulombs/m 2<br />

⎝ unit volume ⎠<br />

<br />

N<br />

<br />

N <br />

pmol ( r) ( ) ( )<br />

( )<br />

i i Qd<br />

i i<br />

ri<br />

P r = nmol<br />

pmol<br />

r ≡ ∑<br />

=<br />

Volume, V ∑ Volume, V<br />

n<br />

mol<br />

=<br />

# atoms/molecules<br />

unit volume<br />

i= 1 i=<br />

1<br />

<br />

Macroscopic <strong>Magnetic</strong> Polarization/Magnetization M ( r ) :<br />

⎛magnetic dipole moment ⎞ <br />

M ( r)<br />

= ⎜ ⎟ at po<strong>in</strong>t r SI Units of M : Amperes/meter<br />

⎝ unit volume ⎠<br />

N<br />

<br />

N <br />

mmol ( r) ( ) ( )<br />

( )<br />

i i Ia<br />

i i<br />

ri<br />

M r = nmol<br />

mmol<br />

r ≡ ∑<br />

=<br />

Volume, V ∑ Volume, V<br />

i= 1 i=<br />

1<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

1


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

Note that the magnetization ( r )<br />

<br />

K( r)<br />

(Amperes/meter), whereas the electric polarization P( r )<br />

surface charge density, σ ( r<br />

) (Coulombs/m 2 ).<br />

There are (at least) four k<strong>in</strong>ds of magnetism:<br />

1.) DIAMAGNETISM:<br />

Μ <br />

has SI units the same as that for a surface current density,<br />

has SI units the same as that for a<br />

The <strong>in</strong>duced macroscopic magnetization Μ <br />

( r ) is antiparallel to B ( r )<br />

dia<br />

<br />

ext<br />

. Due to the physics<br />

orig<strong>in</strong> of diamagnetism at the microscopic scale – i.e. at the atomic/molecular scale, ALL<br />

substances are diamagnetic! However, diamagnetism is very a weak phenomenon – other k<strong>in</strong>ds<br />

of magnetism (see below) can “over-ride”/mask out the diamagnetic behavior of a material.<br />

<strong>Dia</strong>magnetism results from changes <strong>in</strong>duced <strong>in</strong> the orbits of electrons <strong>in</strong> the atoms/molecules<br />

of a substance, due to the applied/external magnetic field. The direction of the change <strong>in</strong> orbital<br />

motion of the electrons is such that it to opposes the change <strong>in</strong> applied magnetic flux (this is<br />

noth<strong>in</strong>g more than Lenz’s Law act<strong>in</strong>g at the microscopic/atomic/molecular scale!).<br />

Superconductors are examples of strong diamagnets – they are <strong>in</strong> fact perfect diamagnets,<br />

<br />

Bext<br />

r (* if no flux-p<strong>in</strong>n<strong>in</strong>g<br />

Μ <br />

dia<br />

r vanishes when<br />

<br />

B r = .<br />

completely* screen<strong>in</strong>g out the applied external magnetic field ( )<br />

defects are present <strong>in</strong> the superconduct<strong>in</strong>g material). Note that ( )<br />

ext<br />

( ) 0<br />

2.) PARAMAGNETISM:<br />

The <strong>in</strong>duced macroscopic magnetization, Μ <br />

para ( r ) is parallel to Bext<br />

( r ) . Atoms or molecules<br />

that have a net orbital and/or <strong>in</strong>tr<strong>in</strong>sic sp<strong>in</strong> magnetic dipole moment m (e.g. atoms/molecules<br />

with unpaired electrons – such as A<br />

, Ba, Ca, Na, Sr, U,<br />

… and also metals – due to the<br />

magnetic dipole moments m associated with <strong>in</strong>tr<strong>in</strong>sic sp<strong>in</strong>s of the conduction electrons) are<br />

<br />

paramagnetic materials. The external applied magnetic field Bext<br />

( r ) exerts a torque on these<br />

atomic/molecular magnetic dipole moments m which tends to (partially) align them, giv<strong>in</strong>g rise<br />

to a net Μ <br />

para ( r ) which is parallel to Bext<br />

( r ) . The energy of alignment UM<br />

( r ) =−m ( r ) i Bext<br />

( r )<br />

is a m<strong>in</strong>imum when m <br />

is parallel to Bext<br />

( r ) . This is analogous to the net <strong>in</strong>duced electric<br />

polarization Ρ <br />

( r ) which is parallel to Eext<br />

( r ) <strong>in</strong> dielectric materials, the energy of alignment<br />

<br />

UE( r) =−p( r) iEext( r)<br />

when p <br />

is parallel to Eext<br />

( r)<br />

. Note that Μ <br />

para ( r ) also vanishes<br />

<br />

when B ( r ) = 0.<br />

ext<br />

Μ <br />

Μ <br />

dia<br />

para<br />

<br />

( r )<br />

<br />

( r )<br />

<br />

B<br />

<br />

B<br />

ext<br />

ext<br />

<br />

( r )<br />

<br />

( r )<br />

2<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

Μ <br />

depends on the (entire)<br />

!! There exists a non-l<strong>in</strong>ear hysteresis-type relation between<br />

3.) FERROMAGNETISM: The macroscopic magnetization,<br />

ferro ( r )<br />

<br />

past history of exposure to Bext<br />

( r )<br />

Μ <br />

( r ) and B ( r )<br />

<br />

ferro<br />

ext . Iron and other ferromagnetic materials have a “macroscopic” crystall<strong>in</strong>e<br />

doma<strong>in</strong> structure (a typical scale length <strong>in</strong>volves many thousands of atoms), with<strong>in</strong> a doma<strong>in</strong><br />

(nearly) all of the atomic/molecular magnetic dipole moments m are aligned parallel to each<br />

other ⇒Μ <br />

doma<strong>in</strong> ( r ) can be very large. However, the orientation of Μ <br />

doma<strong>in</strong><br />

over many doma<strong>in</strong>s is<br />

<br />

≈ random, unless B ( r) ≠ 0 . However, ferromagnetic materials have a critical temperature<br />

ext<br />

(known as the Curie Temperature T<br />

C<br />

) below which the doma<strong>in</strong>s can spontaneously align − a<br />

phase transition occurs <strong>in</strong> the material at this temperature! In the presence of an external applied<br />

magnetic field B <br />

ext<br />

the alignment of ferromagnetic doma<strong>in</strong>s tends to be parallel to B <br />

ext<br />

, but it is <strong>in</strong><br />

fact (more) complicated than this, because it it history dependent!!! The alignment arises from<br />

quantum mechanics – <strong>in</strong>tr<strong>in</strong>sic sp<strong>in</strong> and the Pauli exclusion pr<strong>in</strong>ciple. Thus, Μ <br />

ferro ( r ) does not<br />

<br />

vanish when B ( r ) = 0!!!<br />

ext<br />

History-Dependence / Hysteresis Relation Between Μ <br />

ferro<br />

and B <br />

ext<br />

for <strong>Ferro</strong>magnetic Materials<br />

for T < T (= Curie Temperature):<br />

C<br />

<strong>Ferro</strong>magnetic behavior vanishes for T > TC<br />

The material then becomes paramagnetic.<br />

The arrows <strong>in</strong>dicate the path taken for Μ <br />

ferro<br />

: B <br />

ext<br />

starts at B<br />

ext<br />

= 0 , then goes to B <br />

max<br />

, then<br />

through 0, go<strong>in</strong>g to B m<strong>in</strong><br />

, then through 0 aga<strong>in</strong> and then go<strong>in</strong>g to B<br />

max<br />

, etc….<br />

4.) ANTI-FERROMAGNETISM (a.k.a. FERRIMAGNETISM)<br />

In some magnetically-ordered materials ∃ an anti-parallel alignment of <strong>in</strong>tr<strong>in</strong>sic sp<strong>in</strong>s, due to<br />

two (or more) <strong>in</strong>ter-penetrat<strong>in</strong>g crystall<strong>in</strong>e structures, such that no spontaneous magnetization <strong>in</strong><br />

the bulk material occurs. Ferrimagnetism/antiferromagnetism occurs for temperatures T < T Ne ' el<br />

.<br />

Materials exhibit<strong>in</strong>g antiferromagnetic properties are relatively uncommon – e.g. URu 2 Si 2 .<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

3


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

FORCES & TORQUES ON MAGNETIC DIPOLES<br />

When a magnetic dipole with magnetic dipole moment m is placed <strong>in</strong> an external magnetic<br />

field B <br />

ext<br />

a torque on the magnetic dipole τ<br />

M<br />

= m× B<br />

<br />

ext will occur, just as we saw for the case of<br />

an electric dipole with electric dipole moment p when it is placed <strong>in</strong> an external electric field<br />

E <br />

giv<strong>in</strong>g rise to a torque on the electric dipoleτ E<br />

= p×<br />

E ext .<br />

ext<br />

As we also learned for the case of an electric dipole <strong>in</strong> a uniform external electric field,<br />

similarly, for a magnetic dipole placed <strong>in</strong> a uniform external magnetic field, there is no net force<br />

act<strong>in</strong>g on the magnetic dipole.<br />

For a magnetic dipole with magnetic dipole moment m (e.g. aris<strong>in</strong>g from a current loop)<br />

placed <strong>in</strong> an uniform external magnetic field B <br />

ext<br />

the net force on the is zero:<br />

F<br />

net<br />

I d <br />

( r <br />

) B <br />

m ext( r <br />

) I ( d <br />

( r <br />

)) B <br />

= ∫<br />

′ ′ × ′ = ′ ′ ×<br />

ext( r <br />

<br />

<br />

′)<br />

= 0<br />

C′ ∫ <br />

C′<br />

<br />

cf w/ that for an electric dipole placed <strong>in</strong> a uniform external electric field E ext<br />

:<br />

<br />

net <br />

F<br />

= F r + F r = qE r − qE r = q E r − E r =<br />

≡ 0<br />

( ) 0<br />

( ) ( ) ( ) ( ) ( ) ( )<br />

p + + − − ext + ext − ext + ext −<br />

<br />

The nature of the magnetic (electric) torque τ<br />

M<br />

= m× B<br />

<br />

ext ( τ<br />

E<br />

= p × Eext)<br />

is such that it tends<br />

<br />

to align m( p)<br />

with (i.e. parallel to) the applied/external B ext ( E <br />

ext ) respectively.<br />

<br />

⇒ The effect(s) of magnetic torque expla<strong>in</strong>s paramagnetism, with Μ<br />

para<br />

Bext<br />

. One might be<br />

tempted to believe that paramagnetism should be a universal phenomenon, common to all<br />

materials. However, paramagnetism is connected to the <strong>in</strong>tr<strong>in</strong>sic magnetic dipole moment of an<br />

unpaired electron and/or its orbital magnetic dipole moment. Because of the Pauli exclusion<br />

pr<strong>in</strong>ciple (identical fermions, here, electrons) cannot be <strong>in</strong> the exact same quantum state, hence<br />

pairs of electrons can only be <strong>in</strong> the same quantum state with one of them sp<strong>in</strong>-up, and the other<br />

sp<strong>in</strong> down. Thus, torques on paired magnetic dipole moments (or more correctly, the B -fields<br />

associated with the paired electron magnetic dipole moments m ) cancel.<br />

⇒ <strong>Para</strong>magnetism only arises <strong>in</strong> atoms/molecules with an odd number of electrons – the<br />

outermost electron is unpaired ⇒ hence it (alone) is subject to magnetic torque(s).<br />

As we saw <strong>in</strong> the case for an electric dipole with electric dipole moment p <strong>in</strong> a non-uniform<br />

external electric field E <br />

ext<br />

, a non-zero force acts on the electric dipole. Similarly, for a magnetic<br />

dipole, with magnetic dipole moment m <strong>in</strong> a non-uniform external magnetic<br />

field B <br />

ext<br />

experiences a non-zero force:<br />

<br />

F<br />

m<br />

r m r Bext r m r Bext<br />

r<br />

<br />

F<br />

r p r E r p r E r<br />

( ) ( ( ) ) ( )<br />

( ) ( ( ) ) ( )<br />

( ) =∇ ( ) i ( ) = i ∇ {last step valid iff m( r)<br />

<br />

( ) =∇<br />

<br />

( ) i<br />

<br />

( ) =<br />

<br />

i ∇<br />

<br />

{last step valid iff p ( r )<br />

p ext ext<br />

e<br />

= constant vector}<br />

= constant vector}<br />

4<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

Similarly, work (= potential energy) of a magnetic (electric) dipole moment <strong>in</strong> an external<br />

<br />

magnetic (electric) field, Bext<br />

( Eext<br />

) are (respectively) given by:<br />

<br />

<br />

W<br />

= PE . . =−m i B vs. W<br />

= PE . . =−p i E<br />

m m ext<br />

p p ext<br />

The Physics of <strong>Dia</strong>magnetism<br />

Atomic electrons orbit/revolve around the nucleus of the atom at some mean / average /<br />

characteristic radius, R. Atomic electrons bound to the nucleus of an atom no longer behave like<br />

po<strong>in</strong>t-like particles, but as quantum-mechanical matter waves. However, an orbit<strong>in</strong>g atomic<br />

electron “wave” still constitutes a circulat<strong>in</strong>g current:<br />

I<br />

QM<br />

eve eve eve<br />

~ = = λe C = 2π<br />

R for ground state<br />

λ C 2πR<br />

e<br />

Gnd State<br />

Gnd State<br />

Conventional<br />

Current, I<br />

ẑ<br />

<br />

B<br />

ext<br />

= Bzˆ<br />

o<br />

R<br />

<br />

m<br />

e<br />

<br />

v<br />

e<br />

=−m zˆ<br />

e<br />

e −<br />

= vϕˆ<br />

e<br />

Classically, a circulat<strong>in</strong>g po<strong>in</strong>t electric charge has:<br />

I<br />

Class<br />

e<br />

= with τ 2<br />

orbit<br />

= C = π R<br />

τ<br />

ve<br />

v<br />

⇒<br />

e<br />

orbit<br />

I<br />

Class<br />

eve<br />

= = I<br />

2π R<br />

QM<br />

⎛ ev<br />

Then: m= Ia =− e<br />

⎞<br />

⎜ ⎟<br />

⎝2π<br />

R ⎠<br />

π 2 1<br />

R zˆ<br />

=− ( ev ) ˆ<br />

eR z<br />

2<br />

due to e − charge<br />

<br />

With no external magnetic field applied B<br />

ext<br />

= 0, thus the forces act<strong>in</strong>g on the atomic electron are:<br />

<br />

Felectrostatic<br />

= Fcentripetal<br />

2<br />

2<br />

2<br />

2<br />

1 Ze <br />

ve<br />

1 Ze v<br />

− ˆ<br />

ˆ<br />

2 r =− m<br />

e a<br />

centipetal<br />

=− m<br />

e r ⇒ Equation A:<br />

2 r<br />

e<br />

ˆ=<br />

m ˆ<br />

e r<br />

4πε<br />

R<br />

R<br />

4πε<br />

R R<br />

o<br />

e<br />

m = mass of electron<br />

Z = nuclear electric charge # {+Ze = nuclear charge}<br />

o<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

5


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

<br />

With an external magnetic field present Bext<br />

≠ 0, thus the forces act<strong>in</strong>g on the atomic electron are:<br />

<br />

net<br />

FEM = Felectrostatic + FB = F′<br />

centripetal<br />

<br />

2<br />

net<br />

1 Ze <br />

F ˆ<br />

EM<br />

= Felectrostatic + FB =− r− e<br />

2 ( ve × Bext<br />

)<br />

4πε<br />

o<br />

R<br />

<br />

Suppose ˆ <br />

Bext<br />

= Bz<br />

0<br />

and v ˆ<br />

e<br />

= vϕ<br />

e<br />

(as shown <strong>in</strong> above pix)<br />

ˆ ϕ × zˆ = ˆ ϕ× cosθrˆ<br />

− s<strong>in</strong>θθˆ<br />

<br />

θ = 90<br />

rˆ<br />

× ˆ θ = ˆ ϕ<br />

ˆ θ× ˆ ϕ = rˆ<br />

ˆ ϕ × rˆ<br />

= ˆ θ<br />

Then:<br />

Then: ( )<br />

( ˆr )<br />

=− ˆ ϕ× ˆ θ =− − = + ˆr<br />

2<br />

net 1 Ze<br />

<br />

v′<br />

2<br />

e<br />

ˆ<br />

EM<br />

=− −ev′<br />

2 eBor<br />

= ′<br />

centripetal<br />

=−<br />

e<br />

4πε<br />

o<br />

R<br />

R<br />

F<br />

F m rˆ<br />

<br />

s<strong>in</strong>θ<br />

= s<strong>in</strong> 90 = 1<br />

<br />

cosθ<br />

= cos90 = 0<br />

<br />

2<br />

2<br />

1 Ze<br />

v′<br />

e<br />

Then for Bext<br />

≠ 0 we have Equation B: + ev′<br />

2 eBo = me<br />

4πε<br />

o<br />

R<br />

R<br />

Note that s<strong>in</strong>ce we have an additional term on LHS of Equation B, then we see that:<br />

<br />

<br />

v′ B ≠0 ≠ v B = 0 .<br />

( ) ( )<br />

e ext e ext<br />

Subtract Equation A from Equation B:<br />

e 2 2<br />

ev′ <br />

eB0<br />

= m ( v′<br />

e<br />

−ve<br />

)<br />

0<br />

R <br />

for<br />

<br />

⇒ v′<br />

ˆ<br />

e<br />

> ve Bext<br />

=+ B z<br />

> 0<br />

If the change <strong>in</strong> ,<br />

e<br />

But: ve ve ve<br />

ˆ θ × rˆ<br />

=−ˆ<br />

ϕ<br />

ˆ ϕ× ˆ θ =−rˆ<br />

rˆ<br />

× ˆ ϕ =−ˆ<br />

θ<br />

> 0<br />

( v′ for ˆ<br />

e<br />

< ve Bext<br />

=−B0 z)<br />

v Δv ≡( v′<br />

− v ) is small, then: v′ 2 − v 2 = ( v′ − v )( v′ + v ) =Δ v ( v′<br />

+ v )<br />

e e e<br />

′ = +Δ (s<strong>in</strong>ce v ( v′<br />

v )<br />

Δ ≡ − )<br />

e e e<br />

2 2<br />

∴ v′ e<br />

− ve =Δ ve( ( ve +Δ ve)<br />

+ ve) =Δ ve( ve +Δ ve + ve) =Δ ve( 2ve +Δ ve)<br />

= 2v Δ v +Δv 2v Δv<br />

e e<br />

2<br />

e e e<br />

neglect<br />

m<br />

R<br />

e<br />

∴ ev′ B = e( v +Δv ) B ( v Δv<br />

)<br />

e 0 e e 0<br />

2<br />

e e<br />

2 v e<br />

me<br />

ve<br />

ev e<br />

B0<br />

Δ<br />

R<br />

eBo<br />

R<br />

or: Δve<br />

<br />

2m<br />

e<br />

e e e e e e e e e<br />

<br />

6<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

But if:<br />

eve<br />

ev′<br />

e<br />

I = and I′ = and v′<br />

e<br />

> v<br />

2πR<br />

2πR<br />

Then:<br />

e( v′ e<br />

− ve)<br />

eΔve<br />

Δ I = I′<br />

− I = = but:<br />

2π<br />

R 2π<br />

R<br />

∴<br />

2<br />

2<br />

eBo<br />

R eBo<br />

Δ I = =<br />

4 π me<br />

R 4π me<br />

Δ I =<br />

2<br />

eB0<br />

π m<br />

Then:<br />

4<br />

e<br />

m Ia Iπ<br />

R<br />

2<br />

= = and<br />

′ ′<br />

m′ Ia ′ I′π<br />

R<br />

e<br />

eBo<br />

R<br />

Δve<br />

<br />

2m<br />

2<br />

2<br />

= = ( a=<br />

π R )<br />

2<br />

Thus: Δ m= m − m= ( I − I) a=Δ Ia=Δ<br />

Iπ<br />

R<br />

2<br />

2<br />

⎛ eB<br />

∴ Δ m=Δ Iπ<br />

R = o<br />

⎜<br />

⎝4<br />

π me<br />

<br />

But recall that m=−mzˆ<br />

⎞<br />

⎟ π R<br />

⎠<br />

2<br />

eBR<br />

=<br />

4m<br />

2 2<br />

o<br />

e<br />

e<br />

Therefore:<br />

i.e. m po<strong>in</strong>ts down.<br />

2 2<br />

eBR <br />

o<br />

Δ m=− zˆ,<br />

B ˆ<br />

ext<br />

= Bo<br />

z<br />

4m<br />

e<br />

Or:<br />

2 2<br />

⎛eR<br />

⎞ <br />

Δ m=−⎜ ⎟B<br />

⎝ 4me<br />

⎠<br />

ext<br />

The po<strong>in</strong>t is, that for diamagnetic materials, the change <strong>in</strong> the magnetic dipole moment m , Δm<br />

<br />

is opposite to the direction of B <br />

ext<br />

- i.e. if B ˆ<br />

ext<br />

= Bz<br />

o<br />

<strong>in</strong>creases, then m also <strong>in</strong>creases, but <strong>in</strong> the<br />

opposite direction to try to cancel/buck the external/applied magnetic field, B <br />

ext<br />

. This is a<br />

simply a manifestation of Lenz’s Law at the atomic scale!!!<br />

This is what phenomenon of diamagnetism is due to, at least from a ≈ semi-classical perspective.<br />

The <strong>in</strong>duced dipole moments <strong>in</strong> diamagnetic materials (essentially every material) po<strong>in</strong>t <strong>in</strong> the<br />

direction opposite to the applied magnetic field. The macroscopic magnetization Μ result<strong>in</strong>g<br />

from diamagnetism is relatively speak<strong>in</strong>g very small. <strong>Dia</strong>magnetism (except <strong>in</strong> superconductors)<br />

is extremely weak.<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

7


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

<br />

THE MAGNETIC VECTOR POTENTIAL Ar ( ) , THE MAGNETIC FIELD B( r)<br />

=∇× A( r)<br />

OF A MAGNETIZED OBJECT WITH MAGNETIZATION Μ <br />

( r )<br />

<br />

Recall that the magnetic vector potential Ar ( ) of a magnetic dipole with magnetic dipole<br />

2<br />

moment ( Amp-m )<br />

m <br />

is:<br />

<br />

⎛ μo<br />

⎞m×<br />

rˆ<br />

Adipole<br />

( r) = ⎜ ⎟ 2<br />

⎝4π<br />

⎠ r<br />

{SI Units: Tesla-meters = Newtons/Ampere = F/I !!!}<br />

Thus, <strong>in</strong> a magnetized object with macroscopic magnetization<br />

(magnetic dipole moment per unit volume) Μ <br />

( r′ ) , each volume<br />

element dτ ′with<strong>in</strong> the volume v′ has a magnetic dipole moment<br />

<br />

m r′ =Μ <br />

r′ dτ ′.<br />

associated with it of: ( ) ( )<br />

Thus, the <strong>in</strong>f<strong>in</strong>itesimal contribution to the magnetic vector<br />

<br />

Ar<br />

m r′<br />

<br />

potential ( ) due to the magnetic dipole moment ( )<br />

associated with the macroscopic magnetization Μ <br />

( r′ ) <strong>in</strong> the<br />

<strong>in</strong>f<strong>in</strong>itesimal volume element dτ ′is:<br />

<br />

<br />

<br />

<br />

⎛ μ m( r ) ˆ ( r ) d ˆ<br />

o ⎞ ′ × r ⎛ μ Μ ′ τ ′ ×<br />

o ⎞ r<br />

dA( r ) = ⎜ ⎟ =<br />

2 ⎜ ⎟ 2<br />

⎝4π<br />

⎠ r ⎝4π<br />

⎠ r<br />

<br />

with r = r − r′<br />

<br />

Then the total magnetic vector potential Ar ( ) is obta<strong>in</strong>ed by <strong>in</strong>tegrat<strong>in</strong>g this expression over the<br />

entire volume v′ of the magnetized material:<br />

<br />

<br />

<br />

⎛ μ ( r ) d ˆ<br />

o ⎞ Μ ′ τ ′ × r<br />

Ar ( ) = ∫ dAr ( ) =<br />

v′ ⎜ ⎟<br />

2<br />

4π<br />

∫v′<br />

⎝ ⎠ r<br />

⎛1⎞<br />

1 rˆ<br />

Now aga<strong>in</strong>: ∇ ′ ⎜ ⎟=∇ ′ =<br />

2<br />

⎝ r ⎠ r − r′<br />

r<br />

⎛ μ ⎞ ⎡ ⎛ 1 ⎞⎤<br />

Ar = ⎜ Μ r′ × ∇′ dτ<br />

′<br />

4π ⎟ ∫v′<br />

⎢ ⎜ ⎟⎥<br />

⎝ ⎠ ⎣ ⎝ r ⎠⎦<br />

<br />

∇× fA = f ∇× A − A× ∇f<br />

o<br />

Thus: ( ) ( )<br />

Integrat<strong>in</strong>g by parts, and us<strong>in</strong>g ( ) ( ) ( )<br />

<br />

μ ⎧<br />

<br />

⎛ ⎞⎪ 1 ⎡Μ<br />

( r′<br />

) ⎤ ⎫⎪<br />

Ar = ⎜ ⎨ ∇ ′ ×Μ r′ ⎤dτ<br />

′ − ∇ ′ × ⎢ ⎥dτ<br />

′ ⎬<br />

4π ⎟ ∫v′ ⎣ ⎦ ∫v′<br />

⎝ ⎠⎪ ⎩<br />

r<br />

⎣ r ⎦ ⎪⎭<br />

o<br />

Then: ( ) ⎡ ( )<br />

∫<br />

Then us<strong>in</strong>g: V ( r) dτ<br />

V ( r) da V( r)<br />

v<br />

<br />

∇× =− ∫ × =<br />

S<br />

(See Griffiths Problem 1.60 (b), page 56)<br />

:<br />

( Arbitrary Vector Po<strong>in</strong>t Function)<br />

8<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

Ar<br />

μ 1 1<br />

= ⎛ ⎞⎧ ⎡∇ ⎨ ′ ×Μ 4π r <br />

′ ⎤ d ′ + ⎡Μ <br />

r <br />

′ × da <br />

⎜ ⎟ ′ ⎤⎬<br />

⎫<br />

v′ ⎣ ⎦<br />

s′<br />

⎩ r<br />

<br />

r ⎣ ⎦<br />

⎭<br />

o<br />

Thus: ( ) ( ) τ ( )<br />

But:<br />

<br />

da′ = nda ˆ ′<br />

⎝ ⎠ ∫ ∫<br />

μ 1 <br />

o<br />

μo<br />

1<br />

Then: Ar ( ) ⎡<br />

<br />

<br />

= ( r)<br />

dτ<br />

( r)<br />

nˆ<br />

da ABound<br />

( r)<br />

4π∫<br />

∇ ′ ×Μ ′ ⎤ ′ + ⎡Μ ′ × ⎤ ′ =<br />

v′ r ⎣ ⎦ 4π<br />

∫S′<br />

⎣ ⎦<br />

<br />

r <br />

<br />

<br />

≡ JBound( r′ )<br />

≡ KBound( r′<br />

)<br />

<br />

<br />

<br />

<br />

<br />

μ JBound<br />

( r′ o<br />

) μ K<br />

o Bound ( r′<br />

) <br />

Or: ABound<br />

( r)<br />

= dτ<br />

′ +<br />

da′<br />

4π∫v′ r 4π∫<br />

with r = r −r′<br />

S′<br />

r<br />

<br />

Compare this result to that which we obta<strong>in</strong>ed for the magnetic vector potential Ar ( ) associated<br />

<br />

with a free volume current density J<br />

free ( r′ ) and a free surface/sheet current density K<br />

free ( r′ )<br />

(see P435 <strong>Lecture</strong> <strong>Notes</strong> 16, page 6):<br />

<br />

<br />

μ J<br />

free ( r′ ) K<br />

free ( r )<br />

o<br />

μ ′<br />

o<br />

<br />

Afree<br />

( r)<br />

= dτ<br />

′ +<br />

da′<br />

4π∫v′ r 4π∫<br />

with r = r −r′<br />

S′<br />

r<br />

Thus for a magnetized material with macroscopic magnetization (magnetic dipole moment per<br />

unit volume) Μ <br />

( r′ ) conta<strong>in</strong>ed with<strong>in</strong> <strong>in</strong> the enclos<strong>in</strong>g source volume v′ bounded by the surface<br />

aris<strong>in</strong>g from the sum total of<br />

S′ , the magnetic vector potential at the field/observation po<strong>in</strong>t Ar ( )<br />

the macroscopic magnetization ( r′ )<br />

<br />

contributions from an equivalent bound volume current density JBound<br />

( r′ ) ≡∇ ′ ×Μ( r′<br />

)<br />

<br />

equivalent bound surface current density K ( r′ ) ≡Μ ( r′<br />

) × nˆ<br />

Μ present <strong>in</strong> the material can be equivalently represented by<br />

Bound<br />

normal at the surface of the magnetized material.<br />

surface<br />

and an<br />

where ˆn = outward unit<br />

On the <strong>in</strong>terior of the magnetized material:<br />

<br />

JBound<br />

( r′ ) ≡∇ ′ ×Μ( r′<br />

) = equivalent bound volume current density, SI units = Amps/m2<br />

<br />

2<br />

Amps / m<br />

1/ m<br />

Amps / m<br />

On the surface(s) of the magnetized material:<br />

<br />

K ( ) ( ) ˆ<br />

Bound<br />

r′ ≡Μ r′<br />

× n = equivalent bound surface current density, SI units = Amps/m<br />

<br />

Then: ( )<br />

Amps / m Amps / m<br />

<br />

<br />

<br />

<br />

<br />

μ J<br />

o Bound ( r′ ) μ K<br />

o Bound ( r′<br />

) <br />

ABound<br />

r = dτ<br />

′ +<br />

da′<br />

4π∫v′ r 4π∫<br />

with r = r − r′<br />

S′<br />

r<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

9


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

MAGNETIC MATERIALS<br />

<br />

JBound<br />

( r′ ) ≡∇×Μ( r′<br />

)<br />

<br />

K r′ ≡Μ r′<br />

× n<br />

Bound<br />

( ) ( ) ˆ<br />

surface<br />

DIELECTRIC MATERIALS<br />

<br />

ρ<br />

Bound<br />

r′ =−∇Ρ i r′<br />

<br />

σ r′ =Ρ <br />

r′<br />

i n<br />

⇔ ( ) ( )<br />

⇔ ( ) ( ) ˆ<br />

Bound<br />

surface<br />

So aga<strong>in</strong>, <strong>in</strong>stead of <strong>in</strong>tegrat<strong>in</strong>g over the macroscopic magnetization Μ <br />

( r′ ) (or polarization<br />

Ρ <br />

( r′ ) ) aris<strong>in</strong>g from the direct contributions from the <strong>in</strong>f<strong>in</strong>itesimal magnetic (and/or electric)<br />

<br />

<br />

dipoles m( r′ ) (and/or p ( r′ )), we replace these by macroscopic bound volume and surface<br />

<br />

<br />

current distributions JBound<br />

( r′ ) and KBound<br />

( r′<br />

) (and/or ρ<br />

Bound ( r′<br />

) and σ<br />

Bound ( r<br />

′)<br />

); we can then<br />

<br />

obta<strong>in</strong> Ar ( ) (and/or V ( r <br />

)). Once Ar ( ) (and/or V ( r ) ) is known, we can then obta<strong>in</strong> B ( r )<br />

B <br />

( r) =∇× <br />

A <br />

( r)<br />

(and/or E( r)<br />

from ( <br />

E r)<br />

=−∇V<br />

( r)<br />

) !<br />

Note that for a magnetized material with macroscopic magnetization Μ <br />

( r′ ) we can also<br />

obta<strong>in</strong> the equivalent bound current, IBound<br />

from:<br />

<br />

<br />

I = J r′ da′ + K r′ d<br />

′<br />

∫<br />

( ) ( )<br />

∫<br />

Bound Bound Bound surface<br />

S⊥′ ⊥<br />

⊥<br />

C⊥′<br />

surface<br />

from<br />

Consider the equivalent bound surface current K <br />

Bound<br />

associated with a th<strong>in</strong> slab of<br />

<br />

magnetized material that has been placed <strong>in</strong> uniform magnetic field B ˆ<br />

ext<br />

= Bz<br />

o<br />

, <strong>in</strong> turn produc<strong>in</strong>g<br />

a uniform macroscopic magnetization (magnetic dipole per unit volume) Μ <br />

=Μ z ˆ<br />

o<br />

. At the<br />

microscopic level, atoms and/or molecules will tend to have their <strong>in</strong>duced and/or permanent<br />

magnetic dipole moments l<strong>in</strong>ed up parallel/anti-parallel to B <br />

ext<br />

for paramagnetic / diamagnetic<br />

materials, respectively. Suppose that the material is paramagnetic, as shown <strong>in</strong> the figure below:<br />

<br />

B ˆ<br />

ext<br />

= Bz<br />

o<br />

produces<br />

m= Ia = Iazˆ<br />

uniform magnetization<br />

Μ <br />

=Μ z ˆ<br />

o<br />

It can be seen from the above figure that on the <strong>in</strong>terior of the uniformly magnetized material<br />

the atomic/molecular microscopic currents will cancel each other (for uniform magnetization,<br />

Μ=Μ <br />

z ˆ<br />

o<br />

) except on the periphery (i.e. the surface) of the magnetic material.<br />

For uniformly magnetized material(s), e.g. Μ <br />

=Μ z<br />

<br />

ˆ J r ≡ ∇×Μ r =∇× Μ zˆ = 0<br />

o<br />

.<br />

: ( ) ( ) ( )<br />

Bound<br />

o<br />

10<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

I<br />

K r <br />

= ∫<br />

′ d ′ for uniform magnetization, e.g. Μ=Μ <br />

z ˆ<br />

o<br />

.<br />

Then: ( )<br />

Bound Bound surface<br />

C⊥′<br />

⊥<br />

surface<br />

Example: Consider a cyl<strong>in</strong>drical rod of radius a and length of magnetized material immersed<br />

<br />

<strong>in</strong> a uniform B ˆ<br />

ext<br />

= Bz<br />

o<br />

as shown <strong>in</strong> the figure below. Then the magnetization is uniform, e.g.<br />

Μ=Μ<br />

<br />

z<br />

<br />

ˆ<br />

o<br />

. Thus, no equivalent bound volume current density JBound<br />

( r)<br />

exists, because<br />

<br />

J r =∇×Μ r =∇× Μ zˆ = 0 for uniform magnetization, Μ <br />

=Μ z ˆ<br />

o<br />

.<br />

Bound<br />

<br />

Μ=n m<br />

( ) ( ) ( )<br />

mol<br />

mol<br />

Uniform<br />

o<br />

Μ=Μ <br />

z ˆ<br />

o<br />

=Μ z ˆ<br />

a<br />

o<br />

<br />

Μ=<br />

<br />

Μ=<br />

<br />

m<br />

<br />

m<br />

Tot<br />

Tot<br />

Volume<br />

π a<br />

2<br />

ẑ<br />

bound<br />

<br />

B<br />

ext<br />

= Bzˆ<br />

produces uniform Μ=Μ <br />

z ˆ<br />

o<br />

K ( )<br />

o<br />

I<br />

K r <br />

= ∫<br />

′ d ′<br />

Bound<br />

C surface<br />

Bound ⊥ surface<br />

⊥′<br />

ŷ = K ˆ<br />

bound<br />

ϕ<br />

<br />

ˆϕ K = Μ× nˆ<br />

with nˆ<br />

= ˆ ρ<br />

<br />

m<br />

Tot<br />

= total dipole moment ˆx ˆρ =Μ ( ˆ ˆ)<br />

ˆ ˆ<br />

o<br />

z× ρ =Μ<br />

oϕ = Koϕ<br />

<br />

of magnetized ∴ I ˆ<br />

Bound<br />

= Kboundϕ =Μo<br />

ˆ, ϕ<br />

<br />

cyl<strong>in</strong>der i.e. K =Μ ˆ ϕ = K ˆ ϕ<br />

Bound<br />

surface<br />

Bound o o<br />

surface<br />

<br />

<br />

If Bext<br />

≠ uniform magnetic field, will result <strong>in</strong> a non-uniform magnetization, i.e. Μ≠uniform,<br />

<br />

which <strong>in</strong> turn also implies that the equivalent bound volume current density J<br />

Bound<br />

=∇×Μ≠0<br />

.<br />

This means that at microscopic level the atomic/molecular current loops no longer<br />

<br />

cancel each<br />

other (completely) <strong>in</strong> the <strong>in</strong>terior region of the magnetized material. Hence for Μ≠uniform:<br />

<br />

Volume<br />

<br />

JBound ( r′ ) =∇×Μ( r′ ) ≠0<br />

⇒ IBound =∫ JBound<br />

( r′<br />

) da<br />

′<br />

⊥<br />

Similarly, we also expect for non-uniform Μ that K ( r ) = Μ ( r ) × nˆ ≠0<br />

<br />

S⊥<br />

Bound<br />

<br />

′ ′<br />

surface<br />

and thus we<br />

will also have an equivalent bound surface current:<br />

then I Surface<br />

K <br />

Bound Bound ( r <br />

= ∫<br />

′)<br />

d ′<br />

′<br />

⊥ surface (for magnetized cyl<strong>in</strong>der <strong>in</strong> above figure: d ⊥′ = dz)<br />

C⊥<br />

surface<br />

Then us<strong>in</strong>g the pr<strong>in</strong>ciple of l<strong>in</strong>ear superposition:<br />

<br />

Tot Volume Surface<br />

<br />

I = I + I = J r′ da + K r′ d<br />

′<br />

∫<br />

( ) ( )<br />

Bound Bound Bound Bound Bound surface<br />

S⊥′ ⊥<br />

⊥<br />

C⊥′<br />

surface<br />

Note that these equivalent bound currents are flow<strong>in</strong>g <strong>in</strong> different places <strong>in</strong>/on the magnetized<br />

material – one is flow<strong>in</strong>g <strong>in</strong>side the material, the other is flow<strong>in</strong>g on the surface of the material.<br />

∫<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

11


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

<br />

<br />

( ) 0<br />

Note also that: ∇ i JBound<br />

( r) =∇× ∇×Μ ( r)<br />

= always <strong>in</strong> magnetostatics, because i J ( r)<br />

is the LHS of the Cont<strong>in</strong>uity Equation for equivalent bound currents (i.e. conservation of bound<br />

charge):<br />

<br />

<br />

∂ρBound<br />

( rt , )<br />

<br />

∇ i JBound<br />

( r, t)<br />

=− = 0 if ρBound<br />

( rt , ) ≠ fcn(t).<br />

∂t<br />

Note also that (here): ( )<br />

<br />

∇× ∇×Μ =∇ ∇ Μ −∇ Μ = 0<br />

2 <br />

( r ) ( ( r)<br />

) ( r)<br />

i i.e.: ∇∇Μ i ( r)<br />

{We will come back to this relation <strong>in</strong> the near future…}<br />

∇ <br />

Bound<br />

<br />

2 <br />

( ) =∇Μ( r)<br />

<br />

Griffiths Example 6.1:<br />

<br />

Determ<strong>in</strong>e the magnetic field B ( r ) associated with a uniformly magnetized sphere of radius R<br />

with uniform magnetization Μ=Μ <br />

z ˆ<br />

o<br />

as show <strong>in</strong> the figure below. Choose the local orig<strong>in</strong>ϑ<br />

to be at the center of the magnetized sphere:<br />

Μ=Μ<br />

<br />

z ˆ<br />

o<br />

ϑ<br />

ẑ<br />

ϕ<br />

θ<br />

ˆϕ<br />

ˆr<br />

ˆ θ<br />

P( r ) Field/Observation Po<strong>in</strong>t<br />

ŷ<br />

ˆϕ<br />

ˆx<br />

<br />

ˆ<br />

Bound<br />

= ∇×Μ =∇× Μ<br />

o<br />

= 0 .<br />

<br />

K r r n z r θ ϕ where: nˆ<br />

= rˆ<br />

S<strong>in</strong>ce the magnetization of the sphere is uniform, then: J ( r) ( r) ( z)<br />

However: ( ) =Μ ( ) × ˆ =Μ ( ˆ× ˆ) =Μ s<strong>in</strong> ˆ<br />

Bound<br />

surface<br />

o o<br />

Note: z rˆ ( rˆ ) rˆ ( rˆ)<br />

surface<br />

ˆ × = cosθ − s<strong>in</strong>θθˆ × = 0 − s<strong>in</strong>θ ˆ θ × =+ s<strong>in</strong> θ ˆ ϕ s<strong>in</strong>ce: rˆ× rˆ= 0, ˆ θ × rˆ=−<br />

ˆ ϕ<br />

Now recall that we learned <strong>in</strong> Griffiths Example 5.11 (p. 236-7)/P435 <strong>Lecture</strong> Note 16 p. 18-<strong>19</strong><br />

<br />

(the charged sp<strong>in</strong>n<strong>in</strong>g hollow sphere) that: K = σ v = σω × r′<br />

= σωRs<strong>in</strong><br />

ϕ ˆ ϕ<br />

free<br />

Uniformly Magnetized Sphere:<br />

<br />

K s<strong>in</strong> ˆ<br />

Bound<br />

=Μo<br />

θ ϕ<br />

<br />

2 2 <br />

B<strong>in</strong>side ( r < R)<br />

= μoΜ ozˆ<br />

= μoΜ<br />

3 3<br />

<br />

⎛ μo<br />

⎞ m<br />

B ( )<br />

3 ( 2cos ˆ s<strong>in</strong> ˆ<br />

outside<br />

r > R = ⎜ ⎟ θr+<br />

θθ )<br />

⎝4π<br />

⎠r<br />

4 <br />

3 4 3<br />

m= πR Μ = πR Μ ˆ<br />

oz<br />

3 3<br />

vs.<br />

Charged Sp<strong>in</strong>n<strong>in</strong>g Hollow Sphere:<br />

<br />

K s<strong>in</strong> ˆ<br />

free<br />

= σωR<br />

θϕ ⇒ Μ o<br />

= σωR<br />

<br />

2<br />

B<strong>in</strong>side<br />

r < R = μo<br />

σωR zˆ<br />

3<br />

<br />

⎛ μo<br />

⎞ m<br />

B 2cos ˆ s<strong>in</strong> ˆ<br />

outside<br />

r > R = ⎜ ⎟ θr+<br />

θθ<br />

3<br />

⎝4π<br />

⎠r<br />

4 4<br />

m= π R 3 σωR zˆ<br />

= π R 4 σωzˆ<br />

3 3<br />

⇐ ( ) ( )<br />

⇐ ( ) ( )<br />

vs. ( )<br />

12<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

For magnetic media, we have obta<strong>in</strong>ed the follow<strong>in</strong>g relations:<br />

<br />

<br />

∂ρBound<br />

rt ,<br />

Bound current cont<strong>in</strong>uity equation: ∇ i JBound<br />

( r,<br />

t)<br />

=−<br />

∂t<br />

<br />

( )<br />

Equivalent bound volume current density JBound<br />

( r ) =∇×Μ( r<br />

) , where ( r )<br />

<br />

magnetic dipole moment per unit volume) Μ ( ) = ( ) = ( )<br />

<br />

Μ = magnetization (a.k.a.<br />

r nmo <br />

mmol r mTot<br />

r volumeand the<br />

<br />

KBound<br />

r = Μ r × n ≠ with correspond<strong>in</strong>g relations<br />

surface<br />

I Surface<br />

K r <br />

d<br />

Bound<br />

= ∫<br />

Bound<br />

<br />

⊥ surface<br />

equivalent bound surface current density ( ) ( ) ˆ 0<br />

<br />

Volume<br />

<br />

I<br />

Bound<br />

= ∫ JBound<br />

( r)<br />

da<br />

S⊥<br />

⊥<br />

and ( )<br />

C⊥<br />

surface<br />

Us<strong>in</strong>g the pr<strong>in</strong>ciple of l<strong>in</strong>ear superposition: total current density = free current + bound current<br />

density:<br />

<br />

Jtot ( r) = J<br />

free ( r) + JBound<br />

( r)<br />

<br />

K r = K r + K r<br />

( ) ( ) ( )<br />

tot free Bound<br />

Ampere’s Circuital Law becomes (<strong>in</strong> differential form) for the magnetic field B ( r)<br />

<br />

∇× B ( r) = μ J ( r) = μ J ( r) + μ J ( r)<br />

o Tot o free o Bound<br />

Note that this is the analog of Gauss’ Law (<strong>in</strong> differential form) for the electric field E( r)<br />

∇<br />

1 1<br />

E r = <br />

Tot<br />

r<br />

free<br />

r<br />

Bound<br />

r<br />

ε<br />

= <br />

ε<br />

+ <br />

i<br />

( )<br />

( ) ρ ( ) ρ ( ) ρ ( )<br />

o<br />

o<br />

<br />

:<br />

<br />

:<br />

<br />

Now: J ( r) ≡∇×Μ( r)<br />

Bound<br />

<br />

<br />

( )<br />

∴ ∇× B ( r) = μ J ( r) + μ ∇×Μ( r)<br />

o free o<br />

<br />

∇× B r − ∇×Μ r = J r<br />

or: ( ) μ ( )<br />

<br />

<br />

( ) μ ( )<br />

o o free<br />

1 <br />

μ<br />

or: ∇× B ( r) −∇×Μ ( r) = J ( r)<br />

o<br />

⎧ 1 ⎫ <br />

⎨<br />

⎬<br />

⎩μo<br />

⎭<br />

free<br />

or: ∇× B ( r) −Μ ( r) = J ( r)<br />

free<br />

<br />

<br />

1 <br />

μ<br />

We now def<strong>in</strong>e the auxiliary field: H( r) ≡ B( r) −Μ( r)<br />

o<br />

SI Units of H = Amperes/meter<br />

– the same as that for Μ !!!<br />

<br />

We could call H( r)<br />

the magnetic displacement, <strong>in</strong> analogy to the electric displacement:<br />

But usually we just call H “the H -field”.<br />

<br />

D r E r r<br />

( ) = ε ( ) +Ρ( )<br />

o<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

13


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

Ampere’s Law for the H -field (<strong>in</strong> differential form) then becomes:<br />

<br />

<br />

∇× H( r) = J<br />

free ( r)<br />

where: ( ) 1 <br />

H r ≡ B( r) −Μ( r)<br />

μ<br />

o<br />

Ampere’s Law for the H -field is the analog of Gauss’ Law for the D -field, <strong>in</strong> differential form:<br />

<br />

∇ D r = ρ r<br />

D <br />

r ≡ ε E <br />

r +Ρ<br />

<br />

r<br />

i ( ) ( ) where: ( ) ( ) ( )<br />

<br />

free<br />

<br />

n.b. both H( r<br />

) and D( r<br />

) are auxiliary fields, B ( r ) and E ( r )<br />

In <strong>in</strong>tegral form, these relations become:<br />

H<br />

<br />

r d <br />

i I<br />

C<br />

enclosed<br />

∫ ( ) = free<br />

( )<br />

∫ D r <br />

da <br />

Q<br />

S<br />

o<br />

<br />

<br />

<br />

<br />

are fundamental fields.<br />

1 enclosed enclosed enclosed<br />

∫ B r d = I Tot<br />

= I I<br />

free<br />

+<br />

Bound<br />

C<br />

0<br />

μ<br />

<br />

i <br />

enclosed<br />

( ) i = free<br />

( )<br />

ε ∫ E r <br />

da <br />

i = Q = Q + Q<br />

S<br />

enclosed enclosed enclosed<br />

o ToT free Bound<br />

We also have the relations:<br />

<br />

JBound<br />

( r′ ) =∇×Μ( r′<br />

)<br />

<br />

K ( ) ( ) ˆ<br />

Bound<br />

r′ =Μ r′<br />

× n<br />

<br />

Volume<br />

<br />

I<br />

Bound<br />

= ∫ JBound<br />

( r′ ) da′<br />

⊥<br />

S⊥<br />

<br />

surface<br />

<br />

I<br />

Bound<br />

= ∫ KBound<br />

( r′ ) d′<br />

C⊥<br />

<br />

Volume <br />

I<br />

free<br />

= ∫ J<br />

free ( r′ ) da′<br />

S<br />

⊥<br />

⊥<br />

<br />

Surface <br />

I = K r′ d′<br />

free<br />

∫<br />

C⊥<br />

free<br />

( )<br />

surface<br />

⊥<br />

⊥<br />

ρ<br />

σ<br />

Bound<br />

Bound<br />

Surface<br />

Bound<br />

<br />

<br />

<br />

( r′ ) =−∇Ρ i ( r′<br />

)<br />

<br />

( r′ ) =Ρ( r′<br />

) i nˆ<br />

S′<br />

Bound<br />

( )<br />

surface<br />

Volume <br />

QBound<br />

= ∫ ρBound<br />

( r′ ) dτ<br />

′<br />

v′<br />

<br />

Q = σ r′ da′<br />

Surface<br />

free<br />

∫<br />

Volume <br />

Qfree<br />

= ∫ ρ<br />

free ( r′ ) dτ<br />

′<br />

v′<br />

<br />

Q = σ r′ da′<br />

∫<br />

S′<br />

free<br />

( )<br />

And the-time dependent Cont<strong>in</strong>uity Equations – separate conservation of bound and free charge:<br />

∂ρ<br />

∇ =−<br />

( r,<br />

t)<br />

( rt , )<br />

free<br />

i J<br />

free<br />

⇐ Free charge is conserved.<br />

∂ρ<br />

∇ =−<br />

( r,<br />

t)<br />

∂t<br />

<br />

( rt , )<br />

Bound<br />

i JBound<br />

⇐ Bound charge is conserved.<br />

∂t<br />

<br />

n.b. There are actually two<br />

separate bound charge cont<strong>in</strong>uity<br />

equations here, because we have<br />

bound charges <strong>in</strong> dielectric media<br />

and effective bound currents <strong>in</strong><br />

magnetic media!<br />

Then us<strong>in</strong>g the pr<strong>in</strong>ciple of l<strong>in</strong>ear superposition:<br />

<br />

JTot ( r, t) = J<br />

free ( r, t) + JBound<br />

( r,<br />

t)<br />

<br />

<br />

<br />

∂ρ free ∂ρBound ∂ρTot<br />

⇒ ∇ iJTot ( r, t) =∇ iJ free ( r, t) +∇ i JBound<br />

( r,<br />

t)<br />

=− − =−<br />

∂t ∂t ∂t<br />

<br />

<br />

∂ρTot<br />

( rt , )<br />

⇒ ∇ i JTot<br />

( r,<br />

t)<br />

=−<br />

⇐ Total charge is conserved.<br />

∂t<br />

( rt , ) ( rt , ) ( rt , )<br />

14<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

Griffiths Example 6.2: A long copper rod of radius R carries a steady, uniformly-distributed<br />

<br />

<br />

<br />

free current I ˆ<br />

free<br />

= I<br />

freez<br />

with J ˆ<br />

free<br />

= Jo free<br />

z as shown <strong>in</strong> the figure below. Determ<strong>in</strong>e H ( ρ )<br />

<strong>in</strong>side and outside the copper rod. Note that copper is weakly diamagnetic, so at the microscopic<br />

level the magnetic dipoles of the copper atoms will align opposite/antiparallel to the magnetic<br />

<br />

field B ~ ˆ ϕ , result<strong>in</strong>g <strong>in</strong> a bound volume current I <br />

runn<strong>in</strong>g antiparallel to the free current<br />

Volume<br />

free<br />

Volume<br />

Bound<br />

I . All currents are longitud<strong>in</strong>al ( ie . . <strong>in</strong> the zˆ<br />

direction)<br />

2<br />

2<br />

enclosed<br />

⎛ρ<br />

⎞<br />

o<br />

=<br />

free free<br />

π with I<br />

free ( ρ ≤ R)<br />

= I<br />

free ⎜ ⎟<br />

J I R<br />

⎝R<br />

⎠<br />

± .<br />

where<br />

Use Ampere’s Circuital Law for the H <br />

-field: zI ˆ,<br />

free,<br />

J<br />

H<br />

<br />

enclosed<br />

( r <br />

) d <br />

∫ i = I<br />

C<br />

free<br />

R<br />

<br />

<strong>in</strong>side 1 ρ<br />

H ( ρ ≤ R) = I ˆ<br />

2 free<br />

ϕ<br />

2π<br />

R<br />

<br />

outside 1<br />

H ( ρ ≥ R)<br />

= I free<br />

ˆ ϕ<br />

2πρ<br />

Note that:<br />

<br />

<br />

<strong>in</strong>side<br />

outside<br />

H ρ = R = H ρ = R<br />

( ) ( )<br />

ϑ<br />

ϕ<br />

2 2<br />

ρ = x + y (<strong>in</strong> cyl<strong>in</strong>drical coords.)<br />

free<br />

<br />

H( r)<br />

ŷ<br />

ˆϕ<br />

~ ρ<br />

ρ = R<br />

<br />

H<br />

= I<br />

max<br />

( ρ = R)<br />

free<br />

2π<br />

R<br />

~1 ρ<br />

ρ<br />

ˆx<br />

ˆρ<br />

1 <br />

thus: B( r) = μoH( r) +Μ( r)<br />

μo<br />

<br />

<br />

outside outside μ<br />

<br />

o<br />

B ρ > R = μoH ρ > R = I<br />

freeϕ<br />

Because Μ outside<br />

( ρ > R)<br />

≡0<br />

2πρ<br />

outside<br />

= same as B <br />

for non-magnetized wire!<br />

<strong>in</strong>side<br />

B ρ ≤ R ?<br />

<br />

<br />

<br />

<strong>in</strong>side <strong>in</strong>side <strong>in</strong>side<br />

B ρ ≤ R = μ H ρ ≤ R + μ Μ ρ ≤ R = μ H ρ ≤ R +Μ ρ ≤ R<br />

Now: H( r) ≡ B( r) −Μ( r)<br />

Then: ( ) ( ) ˆ<br />

( )<br />

What is ( )<br />

( ) ( ) ( ) ( ) ( )<br />

0 0 0<br />

We don’t (yet) have the “tools” <strong>in</strong> hand to know/determ<strong>in</strong>e Μ ( ρ ≤ R)<br />

<strong>in</strong>side<br />

when we have these, we can then determ<strong>in</strong>e B ( ρ ≤ R)<br />

.<br />

( )<br />

<br />

- but we will, shortly….<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

15


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

H<br />

r d <br />

i I<br />

C<br />

Note that from Ampere’s Circuital Law for the H enclosed<br />

-field: ( ) =<br />

enclosed<br />

This relation says that if we measure I<br />

free<br />

then we can compute H . This makes H more<br />

useful e.g. than D (the electric displacement).<br />

In the “old” days (e.g. 1800’s), it was easier to reliably measure a free current I ( <strong>in</strong> Amps) than<br />

voltage V ( <strong>in</strong> Volts). Reliably measur<strong>in</strong>g a current required the use of galvanometer (an early<br />

type of ammeter – which is a very low <strong>in</strong>put impedance device – ideally zero Ohms), whereas<br />

reliably measur<strong>in</strong>g the voltage V (with respect to a local ground) required the use of a voltmeter<br />

with a very high <strong>in</strong>put impedance (ideally <strong>in</strong>f<strong>in</strong>ite Ohms), which was very difficult to achieve<br />

back then! In the “old” days, a good galvanometer was easy to make a good ammeter, but a good<br />

voltmeter was very difficult to make. These days, garden-variety/“vanilla” digital voltmeters<br />

typically have <strong>in</strong>put impedances of ~ 10 Meg-Ohms.<br />

Measur<strong>in</strong>g a current thus enabled the monitor<strong>in</strong>g of the H -field, e.g. for an electro-magnet<br />

(big fields ⇒ big magnet coils ⇒ lots of current!)<br />

∫<br />

free<br />

The <strong>Magnetic</strong> Permeability μ and <strong>Magnetic</strong> Susceptibility χ of L<strong>in</strong>ear <strong>Magnetic</strong> Materials<br />

Recall that for l<strong>in</strong>ear dielectric materials <strong>in</strong> electrostatics, that:<br />

D = ε<br />

oE <br />

+Ρ= ε E<br />

<br />

where ε is the electric permittivity of the material and ε = εo( 1+ χe)<br />

.<br />

<br />

= εo( 1+<br />

χe)<br />

E where χ<br />

e<br />

is the electric susceptibility of the dielectric material.<br />

= ε E<br />

+ ε χ E<br />

⇒ Ρ= <br />

ε χ E<br />

<br />

. o e<br />

o o e<br />

It would seem reasonable/logical/rational for l<strong>in</strong>ear magnetic materials <strong>in</strong> magnetostatics, that<br />

we could def<strong>in</strong>e a magnetic permeability μ and related magnetic susceptibility χ m<br />

<strong>in</strong> a manner<br />

similar to that for howε and χ<br />

e<br />

were def<strong>in</strong>ed for l<strong>in</strong>ear dielectric materials <strong>in</strong> electrostatics, i.e.:<br />

1 1 <br />

H ≡ B−Μ = B with μ = μo<br />

( 1 + χm<br />

) .<br />

μo<br />

μ<br />

<br />

However, the 1 μ factor really messes th<strong>in</strong>gs up!!! For if H = B μ and we want to have<br />

1 <br />

μ= μo( 1+ χm)<br />

then H = B and mathematically there is no rigorous way to separate<br />

μo( 1+<br />

χm)<br />

the RHS of this relation <strong>in</strong>to two separate pieces that would enable us to relate the magnetization<br />

Μ directly to the magnetic field B , analogous to obta<strong>in</strong><strong>in</strong>g the relation Ρ= <br />

εχE<br />

<br />

o e<br />

for l<strong>in</strong>ear<br />

dielectric media.<br />

If χm<br />

1 then:<br />

1<br />

1<br />

m<br />

1+ χ ≈ −χ<br />

Thus, we see that for χm<br />

1 , that<br />

m<br />

and then: ( 1 χ )<br />

m<br />

1 1 1 1 <br />

H ≈ −<br />

m<br />

B= B− χmB= B−Μ<br />

μo μo μo μo<br />

1 <br />

Μ χmB<br />

<strong>in</strong> analogy to o e<br />

μ<br />

Ρ= <br />

ε χ E<br />

<br />

.<br />

o<br />

16<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

o<br />

= 1+ m<br />

1 i.e. χm<br />

1 so<br />

therefore we cannot use this approximation!!! We must do “someth<strong>in</strong>g” else!!!<br />

However, there are many l<strong>in</strong>ear magnetic materials where μ μ ( χ )<br />

−7<br />

We could e.g. re-def<strong>in</strong>e the magnetic permeability of free space, μo<br />

= 4π<br />

× 10 Henrys/meter<br />

(=N/A 2 1 1 7<br />

) <strong>in</strong> terms of its <strong>in</strong>verse, e.g. def<strong>in</strong>e: ξ ≡ o<br />

10<br />

μ<br />

= o<br />

4π<br />

× meters/Henry (= A 2 /N),<br />

1 <br />

Then H ≡ B−Μ<br />

⇒ H ≡ξoB <br />

−Μ = ξB<br />

<br />

, whereξ is a “new” <strong>in</strong>verse magnetic permeability<br />

μo<br />

*<br />

def<strong>in</strong>ed such that ξ = ξo( 1− χm)<br />

with “new” magnetic susceptibility χ * m<br />

such that<br />

<br />

* *<br />

*<br />

H ≡ξoB−Μ = ξB= ξo( 1− χm)<br />

B= ξoB−ξoχmB<br />

and thus Μ= <br />

ξ χ B<br />

<br />

o m <strong>in</strong> analogy to Ρ= <br />

ε χ E<br />

<br />

o e<br />

for l<strong>in</strong>ear dielectrics. But note that s<strong>in</strong>ce ξ ~ 1/ μ , then as (old) μ <strong>in</strong>creases, the<br />

(new)ξ decreases (and vice-versa)! So this approach has some troubles also… see Appendix at<br />

end of this lecture note for a bit more <strong>in</strong>fo on this….<br />

However, we shouldn’t get too hung-up on this, because e.g. we have already seen that there<br />

is a vast difference between the nature of the electric field E vs. the nature of the magnetic field<br />

B <strong>in</strong> terms of how they are specified by their respective divergences and curls, and thus we have<br />

absolutely every reason to believe that there is also a vast difference between the nature of the<br />

two auxiliary fields D and H <strong>in</strong> terms of how they are specified by their respective divergences<br />

and curls. Hence <strong>in</strong>sist<strong>in</strong>g on (or want<strong>in</strong>g) “symmetry” between relations associated with E vs.<br />

those for B is illusory. In fact, only the macroscopic matter fields Ρ (the electric polarization /<br />

electric dipole moment per unit volume) and Μ ( the magnetic polarization/magnetic dipole<br />

moment per unit volume) are analogous/similar fields (by deliberate construction on our part)!<br />

What people (Maxwell, et al.) actually did was to start with the auxiliary relation:<br />

Multiply both sides by μ : μoH<br />

= B−μoΜ<br />

o<br />

<br />

<br />

, then rearrange: B= μ ( )<br />

o<br />

H +Μ<br />

1 <br />

H ≡ B−Μ<br />

μ<br />

n.b. This latter relation erroneously causes people to (wrongly) th<strong>in</strong>k that the H -field is the<br />

fundamental field and therefore that the B -field is the auxiliary field. ⇒ WRONG !!! ⇐<br />

For l<strong>in</strong>ear magnetic materials, the magnetic permeability μ can then be def<strong>in</strong>ed such that μ<br />

connects H to B <br />

<br />

via the relation H = B μ (the magnetic analog of D= ε E ).<br />

The magnetic susceptibility can then be def<strong>in</strong>ed as: μ μo( 1 χm)<br />

l<strong>in</strong>ear dielectrics: ε ≡ ε ( 1+<br />

χ )<br />

≡ + parallel<strong>in</strong>g that done for<br />

o e<br />

<br />

= μ = μo + χ m<br />

= μ o<br />

+ μoχ<br />

but: ( <br />

)<br />

<br />

m<br />

B μo H μoH<br />

μo<br />

<br />

Then we see that: B H ( 1 ) H H H = +Μ = + Μ<br />

Then “viola”: Μ= <br />

χ H<br />

<br />

<br />

m , which is not analogous to: Ρ=ε χ E <br />

o e because we don’t have a direct<br />

relationship between Μ and (the fundamental field) B .<br />

o<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

17


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

<br />

However, s<strong>in</strong>ce H<br />

<br />

= B μ<br />

<br />

<br />

χmH χmB μ ⎣χm χm ⎤⎦B<br />

μo<br />

.<br />

then Μ= = = ⎡ ( 1+<br />

)<br />

χ , then the factor ⎡⎣χ m ( 1+ χm)<br />

⎤⎦ ≈ χm, and ( 1 )<br />

Now if<br />

m<br />

1<br />

<br />

Thus: Μ= χmH<br />

≈χmB<br />

μo<br />

for χm<br />

1.<br />

μ = μ + χ ≈ μ .<br />

o m o<br />

The follow<strong>in</strong>g table lists the magnetic susceptibilities for a few typical types of diamagnetic and<br />

paramagnetic materials. Note that systematically, χm<br />

1for both types of magnetic materials<br />

(except for gadol<strong>in</strong>ium).<br />

In this course, we want to “hang on to” the follow<strong>in</strong>g:<br />

<br />

E( r) and B( r)<br />

are fundamental fields.<br />

<br />

D( r) and H( r)<br />

are auxiliary fields associated with the E & M properties of matter.<br />

<br />

⎧D( r) = ε E( r)<br />

⎫<br />

⎪<br />

⎪<br />

For l<strong>in</strong>ear dielectrics and l<strong>in</strong>ear magnetic materials: ⎨ 1 ⎬<br />

⎪H( r) = B( r)<br />

μ<br />

⎪<br />

⎩<br />

⎭<br />

ε<br />

ε = electric permittivity of matter = Keε K<br />

o<br />

e<br />

= ε<br />

rel<br />

≡ = ( 1+<br />

χe)<br />

ε<br />

o<br />

dielectric “constant” electric susceptibility<br />

(a.k.a. relative electric permittivity)<br />

μ = magnetic permeability of matter Kmμo<br />

= K = μ ≡ = ( 1+<br />

χ )<br />

μ<br />

m rel m<br />

μo<br />

relative magnetic permeability<br />

magnetic susceptibility<br />

18<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

For <strong>Dia</strong>magnetic Materials:<br />

dia<br />

dia<br />

dia dia dia μ<br />

dia<br />

χ<br />

m<br />

< 0 ⇒ μ = μo( 1+ χm ) < μo, Km = = ( 1+ χm<br />

) < 1<br />

μo<br />

For <strong>Para</strong>magnetic Materials:<br />

para<br />

para<br />

para para para μ<br />

para<br />

χ<br />

μ<br />

> 0 ⇒ μ = μo( 1+ χm ) > μo, Km = = ( 1+ χm<br />

) > 1<br />

μ<br />

For <strong>Ferro</strong>magnetic Materials:<br />

ferro<br />

χm<br />

0 but is <strong>in</strong> fact dependent on past magnetic history of material !!!<br />

A non-l<strong>in</strong>ear hystesis-type relation exists between Μ vs. H (and/or Μ vs. B ) for ferromagnetic<br />

materials.<br />

<br />

<strong>Magnetic</strong> materials that obey the relation B= μH = μo( 1+ χm)<br />

H = μoH<br />

+ μoΜ<br />

⇒ Μ= <br />

χ H<br />

<br />

m<br />

are known as l<strong>in</strong>ear magnetic materials, i.e. μ = the magnetic permeability of the magnetic<br />

<br />

material and μ = constant of proportionality between B and H,<br />

whereas χ<br />

m<br />

= magnetic<br />

<br />

susceptibility of the magnetic material and χ = constant of proportionality between Μ and H.<br />

If<br />

m<br />

B <br />

ext<br />

becomes extremely large, then the relation between B and H,<br />

and Μ and H can/does<br />

<br />

<br />

<br />

2<br />

2<br />

B = μ 1+ c μ+ c μ + H Μ= χ 1+ a χ + a χ + … H<br />

become non-l<strong>in</strong>ear, e.g. ( 2 3<br />

…)<br />

and<br />

m( 2 m 3 m )<br />

<br />

Note that various crystall<strong>in</strong>e magnetic materials are anisotropic, hence: B = μH<br />

and<br />

o<br />

Μ= <br />

χ <br />

m H<br />

⎛μxx μxy μ ⎞<br />

xz<br />

⎜ ⎟<br />

μ = ⎜μyx μyy μyz<br />

⎟<br />

⎜ ⎟<br />

⎝μzx μzy μzz<br />

⎠<br />

m m m<br />

⎛χxx χxy χ ⎞<br />

xxz<br />

⎜ ⎟<br />

m m m<br />

χm = ⎜χyx χyy χyz<br />

⎟<br />

⎜ m m m<br />

χzx χzy χ ⎟<br />

⎝<br />

zz ⎠<br />

magnetic<br />

permeability<br />

tensor<br />

magnetic<br />

susceptibility<br />

tensor<br />

Note also that: μij = μ<br />

ji<br />

and μxx + μyy + μzz<br />

= 0 and likewise:<br />

χ<br />

m<br />

ij<br />

= χ and χ m + χ m + χ<br />

m = 0 .<br />

m<br />

ji<br />

xx yy zz<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

<strong>19</strong>


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

<br />

B r<br />

We have the Maxwell relation: ∇ i ( ) = 0 (no magnetic charges/no magnetic monopoles)<br />

<br />

and the constitutive relation: H( r ) 1 <br />

= B( r <br />

) −Μ( r<br />

<br />

) . Then: ( ) 1 <br />

∇ H r = ∇ B ( <br />

r ) <br />

−∇ Μ ( <br />

i i i r )<br />

μo<br />

μ <br />

o<br />

= 0<br />

<br />

i i ⇐ These divergences do not necessarily vanish!!! Often they don’t!<br />

(especially on the surfaces of magnetized materials)<br />

<br />

<br />

∇Μ i r = , does ∇ i H( r) = 0 (and not vice-versa!!!)<br />

or: ∇ H( r) =−∇ Μ( r)<br />

Only when ( ) 0<br />

Consider a bar magnet (permanent magnet) with uniform Μ ( r ) ≠ 0<br />

or outside:<br />

S<br />

Μ <br />

N<br />

Consider Ampere’s Circuital Law for H : ( )<br />

enclosed<br />

∫<br />

<br />

H<br />

r d <br />

i = I<br />

C<br />

free<br />

<br />

<br />

<strong>in</strong>side, thus B( r) ≠ 0<br />

<br />

H r H r<br />

<strong>in</strong>side<br />

outside<br />

But: ∃ no free current(s) <strong>in</strong> a bar magnet – does this mean that ( ) = ( ) = 0<br />

<br />

Μ =Μ<br />

<br />

( r) zˆ<br />

B ( r )<br />

o<br />

<strong>in</strong>side the bar magnet.<br />

for a cyl<strong>in</strong>drical bar magnet = B ( r )<br />

!!! NONSENSE !!!<br />

for a short solenoid (w/ no pitch angle).<br />

<strong>in</strong>side<br />

!!!???<br />

L<strong>in</strong>es of B :<br />

<strong>in</strong>side<br />

B is <strong>in</strong> the same direction as Μ=Μ z ˆ<br />

o<br />

<br />

L<strong>in</strong>es of H :<br />

Outside:<br />

<br />

H<br />

out<br />

1 <br />

= B<br />

μ<br />

0<br />

out<br />

<strong>in</strong><br />

Inside: H <br />

is <strong>in</strong> the opposite<br />

direction to Μ !!!<br />

<br />

Compare these pix to that for ED , and Ρ for the bar electret – see P435 <strong>Lecture</strong> <strong>Notes</strong> 10, p. 33.<br />

20<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

<br />

Note that s<strong>in</strong>ce J ( r) =∇×Μ( r)<br />

Bound<br />

<br />

However: ∇× H( r) = J ( r)<br />

free<br />

<br />

<br />

<br />

<br />

and Μ ( r) = χ H( r)<br />

⇒ J ( r) = χ J ( r)<br />

m<br />

.<br />

Bound m free<br />

,<br />

then: J ( r) = χ ∇× H( r)<br />

Bound<br />

m<br />

This relation says that unless a free current actually flows through a l<strong>in</strong>ear magnetic material of<br />

<br />

susceptibility χ m<br />

, with free volume current density J<br />

free ( r)<br />

, then (and only then) will there be /<br />

<br />

arise a correspond<strong>in</strong>g non-zero equivalent bound volume current density JBound<br />

( r)<br />

which is<br />

related to J<br />

free ( r<br />

<br />

) via ( ) <br />

( <br />

J )<br />

Bound<br />

r = χmJ free<br />

r . This is analogous to the relationship that we found<br />

<br />

between ρ Bound ( r ) and ρ free ( r<br />

) for l<strong>in</strong>ear dielectric materials: ( ) ⎛ 1 ⎞<br />

1 ( <br />

ρ<br />

)<br />

Bound<br />

r =−⎜<br />

− ⎟ρfree<br />

r<br />

⎝ Ke<br />

⎠<br />

<br />

{See P435 <strong>Lecture</strong> <strong>Notes</strong> 10, page 21}. If J<br />

free ( r ) = 0 <strong>in</strong>side a magnetic material, then<br />

<br />

Jbound<br />

( r ) = 0 <strong>in</strong>side the magnetic material, also. In this situation, any/all non-zero effective<br />

bound currents can only exist on the surfaces of the magnetic material!!!<br />

MAGNETOSTATIC BOUNDARY CONDITIONS FOR MAGNETIC MEDIA<br />

⊥ = normal (i.e. perpendicular) component<br />

relative to plane of <strong>in</strong>terface<br />

= parallel component relative to plane of<br />

<strong>in</strong>terface (tangential component)<br />

<br />

From ∇ i B( r) = 0 (no magnetic charges/no monopoles) <strong>in</strong> <strong>in</strong>tegral form: ∫ B ( r <br />

) i nda ˆ = 0 .<br />

S<br />

Use a Gaussian pillbox for the enclos<strong>in</strong>g surface S, vertically centered on the <strong>in</strong>terface between<br />

the two magnetic media. We then shr<strong>in</strong>k the height of pillbox to <strong>in</strong>f<strong>in</strong>itesimally above/below the<br />

<strong>in</strong>terface – then only the top/bottom portions of the surface <strong>in</strong>tegral will contribute anyth<strong>in</strong>g.<br />

<br />

We thus obta<strong>in</strong> a condition on the perpendicular components of B ( r ) above/below <strong>in</strong>terface:<br />

⊥ <br />

above<br />

⊥ <br />

above<br />

B r = B r<br />

( ) ( )<br />

2<br />

surface<br />

1<br />

<br />

We also have the constitutive relation: B ( r) μ<br />

o<br />

= H( r) +Μ( r)<br />

and thus ∇ B( r) = 0<br />

<br />

<br />

<br />

∇ iH( r) =−∇i Μ( r)<br />

. In <strong>in</strong>tegral form this relation becomes: ( ) iˆ<br />

=− Μ( )<br />

surface<br />

<br />

i ⇒<br />

∫<br />

H r nda r nda ˆ<br />

S ∫ i .<br />

S<br />

Us<strong>in</strong>g the same Gaussian pillbox, we obta<strong>in</strong> the follow<strong>in</strong>g condition on the perpendicular<br />

<br />

H r Μ r above/below <strong>in</strong>terface:<br />

<br />

components of ( ) and ( )<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

21


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

⎡H ( r ) − H ( r ) ⎤ =−⎡Μ ( r ⎣ ⎦ ⎣ ) −Μ ( r<br />

) ⎤<br />

⎦<br />

⊥ above ⊥ above ⊥ above ⊥ below<br />

2 1<br />

surface<br />

2 1<br />

<br />

<br />

Ampere’s Law for B ( r ) is: ∇× B ( r ) = μoJTot<br />

( r<br />

) , with ( ) ( ) ( <br />

J )<br />

Tot<br />

r = J<br />

free<br />

r + JBound<br />

r<br />

<br />

enclosed<br />

<strong>in</strong> <strong>in</strong>tegral form becomes: ( ) i = μ<br />

enclosed enclosed enclosed<br />

I I I<br />

∫<br />

B r d I<br />

C<br />

o Tot<br />

, with<br />

surface<br />

<br />

Tot free Bound<br />

which<br />

= + . We can take<br />

a (rectangular) contour vertically centered above/below the <strong>in</strong>terface between the two magnetic<br />

media; we then shr<strong>in</strong>k the height of this contour to be <strong>in</strong>f<strong>in</strong>itesimally above/below the <strong>in</strong>terface,<br />

thus only the tangential portions of the l<strong>in</strong>e <strong>in</strong>tegral above/below the <strong>in</strong>terface will contribute.<br />

We obta<strong>in</strong> the follow<strong>in</strong>g condition on the tangential components of B ( r )<br />

<br />

<strong>in</strong>terface, where K ( r) = K ( r) + K ( r)<br />

Tot free Bound<br />

1<br />

above below<br />

⎣<br />

2 1<br />

o<br />

B r B r KTot<br />

r<br />

μ ⎡ <br />

⎦surface<br />

( ) − ( ) ⎤ = ( )<br />

We can write this more compactly/succ<strong>in</strong>ctly <strong>in</strong> vector form as:<br />

<br />

<br />

=∇× <br />

S<strong>in</strong>ce B ( r) A( r)<br />

<br />

above / below the<br />

and ˆn is shown <strong>in</strong> the figure above:<br />

surface<br />

1 above<br />

below<br />

B2 ( r) B1<br />

( r) K ( ) ˆ<br />

Tot<br />

r n<br />

μ ⎡ − <br />

⎣<br />

⎤ ⎦<br />

= <br />

×<br />

surface<br />

o<br />

surface<br />

, this relation can also be equivalently written as:<br />

<br />

above <br />

below <br />

1 ⎡∂A2 ( r) ∂A1<br />

( r)<br />

⎤ <br />

⎢ − ⎥ =−K<br />

μo<br />

⎢⎣<br />

∂n<br />

∂n<br />

⎥⎦<br />

surface<br />

<br />

Similarly, Ampere’s Law for H ( r<br />

) is: ( ) ( <br />

∇× H r = J ) free<br />

r<br />

<br />

enclosed<br />

( ) i =<br />

Tot<br />

<br />

( r)<br />

surface<br />

which <strong>in</strong> <strong>in</strong>tegral form becomes:<br />

∫<br />

free . Aga<strong>in</strong>, we can take a (rectangular) contour vertically centered above /<br />

H r d I<br />

C<br />

below the <strong>in</strong>terface between the two magnetic media; we then shr<strong>in</strong>k the height of this contour to<br />

be <strong>in</strong>f<strong>in</strong>itesimally above/below the <strong>in</strong>terface, thus only the tangential portions of the l<strong>in</strong>e <strong>in</strong>tegral<br />

above/below the <strong>in</strong>terface will contribute. We obta<strong>in</strong> the follow<strong>in</strong>g condition on the tangential<br />

components of H( r)<br />

above/below the <strong>in</strong>terface: ⎡<br />

above<br />

( ) below<br />

H r − H ( r ) ⎤ = K ( r<br />

)<br />

⎣<br />

2 1<br />

⎦<br />

free<br />

surface<br />

which can also be written compactly/succ<strong>in</strong>ctly <strong>in</strong> vector form as:<br />

<br />

above <br />

below <br />

⎡H2 ( r) H1 ( r) ⎤<br />

⎣<br />

−<br />

⎦<br />

= K ( ) ˆ<br />

free<br />

r × n<br />

surface<br />

surface<br />

<br />

S<strong>in</strong>ce B ( r) = μH( r)<br />

or: H( r) = B( r)<br />

μ and B <br />

( r) =∇× <br />

A <br />

( r)<br />

, this relation can also be<br />

equivalently written as:<br />

<br />

above <br />

below <br />

⎡⎛ 1 ⎞∂A2 ( r) ⎛ 1 ⎞∂A1<br />

( r)<br />

⎤ <br />

⎢⎜ ⎟ − ⎜ ⎟ ⎥ =−K<br />

free ( r)<br />

μ<br />

surface<br />

⎢⎣⎝ 2 ⎠ ∂n<br />

⎝μ1⎠<br />

∂n<br />

⎥⎦<br />

surface<br />

surface<br />

22<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.


UIUC Physics 435 EM <strong>Fields</strong> & Sources I Fall Semester, 2007 <strong>Lecture</strong> <strong>Notes</strong> <strong>19</strong> Prof. Steven Errede<br />

Appendix:<br />

If we wanted to/needed to def<strong>in</strong>e the macroscopic magnetization Μ (auxiliary macroscopic<br />

matter field) <strong>in</strong> terms of the fundamental field B <br />

, <strong>in</strong> analogy to Ρ ( r) =εχ<br />

o eE( r)<br />

. We have seen<br />

(above) that given the constitutive relation H <br />

( r) = B <br />

( r) μo<br />

−Μ<br />

<br />

( r)<br />

we are unable to do so.<br />

The problem here actually focuses squarely on μ<br />

o<br />

, the magnetic permeability of free space:<br />

Note that μ<br />

o<br />

is actually derived/def<strong>in</strong>ed from:<br />

c<br />

1<br />

= ⇒ μo<br />

≡<br />

2<br />

ε μ ε<br />

2 1<br />

o<br />

o<br />

o c<br />

−12<br />

The electric permittivity of free space is ε o<br />

= 8.85× 10 Farads/meter. The Farad is the SI unit<br />

of capacitance, C (<strong>in</strong> electrostatics) – the ability of someth<strong>in</strong>g (<strong>in</strong> this case, the vacuum) to store<br />

energy <strong>in</strong> the electric field of that someth<strong>in</strong>g. Note thatε o<br />

has the dimensions of capacitance/unit<br />

length – Farads/meter.<br />

The numerical value of the magnetic permittivity of free space μo<br />

is def<strong>in</strong>ed from the<br />

8<br />

experimental measurement of c= 3× 10 m s (speed of light <strong>in</strong> free space) and the electric<br />

−12<br />

permittivity of free spaceε o<br />

= 8.85× 10 Farads/meter, thus:<br />

−7<br />

μo<br />

≡ 4π× 10 Newtons/Ampere 2 = (kg-meter/sec 2 )/Ampere 2 = Henrys/meter<br />

{1 Newton/ Ampere 2 = 1 Henry = 1 Tesla-m 2 /Ampere = 1 Weber/Ampere}<br />

The Henry is the SI unit of <strong>in</strong>ductance, L (<strong>in</strong> magnetostatics) – the ability of someth<strong>in</strong>g (<strong>in</strong> this<br />

case, the vacuum) to store energy <strong>in</strong> the magnetic field of that someth<strong>in</strong>g. Note that μo<br />

has the<br />

dimensions of <strong>in</strong>ductance/unit length – Henrys/meter.<br />

7<br />

However, if we alternatively def<strong>in</strong>e 1 10<br />

ξo<br />

≡ = Amperes<br />

μ<br />

2 /Newton = meters/Henry,<br />

o 4π<br />

Thenξ o<br />

= <strong>in</strong>verse magnetic permeability (magnetic “reluctance”??) of free space.<br />

2 ξo<br />

2<br />

Then: c = ε<br />

or: ξo<br />

= c ε<br />

o<br />

o<br />

1 <br />

Then the magnetic constitutive relation becomes: H = B−<br />

M ⇒ H = ξoB −M<br />

<strong>in</strong> analogy<br />

μo<br />

to D<br />

= ε<br />

oE<br />

+Ρ<br />

and we also have (for l<strong>in</strong>ear materials) H = ξ B <strong>in</strong> analogy to D= ε E .<br />

*<br />

ξ ξ 1 χ<br />

μ ≡ μ 1+ χ .<br />

However, here we will def<strong>in</strong>e o( m)<br />

Then: ( 1 )<br />

≡ − <strong>in</strong> contrast to ( )<br />

* *<br />

H ≡ξoB <br />

−Μ = ξB = ξo − χm B = ξoB −ξoχmB<br />

<br />

and thus<br />

Ρ=<br />

<br />

εχ <br />

for l<strong>in</strong>ear dielectrics.<br />

o<br />

e E<br />

<br />

<br />

χmH χmB μ χm χm ⎤⎦B<br />

μo<br />

S<strong>in</strong>ce: Μ= = = ⎡⎣<br />

( 1+<br />

)<br />

*<br />

or: χ = χ ( 1+ χ ).<br />

m m m<br />

o<br />

o<br />

m<br />

Μ=<br />

<br />

ξ χ <br />

<strong>in</strong> analogy to<br />

*<br />

B m<br />

*<br />

we see that = ( 1+<br />

)<br />

ξχ χ χ μ<br />

o m m m o<br />

© Professor Steven Errede, Department of Physics, University of Ill<strong>in</strong>ois at Urbana-Champaign, Ill<strong>in</strong>ois<br />

2005-2008. All Rights Reserved.<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!