17.05.2015 Views

Summary Sheet of EM Formula for Electrostatics and Magnetostatics

Summary Sheet of EM Formula for Electrostatics and Magnetostatics

Summary Sheet of EM Formula for Electrostatics and Magnetostatics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UIUC Physics 435 <strong>EM</strong> Fields & Sources I Fall Semester, 2007 Supp HO # 4 Pr<strong>of</strong>. Steven Errede<br />

Supplemental H<strong>and</strong>out #4<br />

<strong>Summary</strong> <strong>of</strong> <strong>Electrostatics</strong> & <strong>Magnetostatics</strong><br />

c<br />

=<br />

ε μ<br />

2 1<br />

o<br />

o<br />

<strong>Electrostatics</strong>:<br />

<br />

F = qE + qv × B<br />

E<br />

Gauss’ Law:<br />

ext<br />

1 q<br />

E = ˆ r<br />

2<br />

4πε<br />

o<br />

r<br />

<strong>Magnetostatics</strong>:<br />

1 <br />

F = g B− g v×<br />

E<br />

c<br />

m m 2 m ext<br />

<br />

B<br />

g<br />

⎛ μo<br />

⎞ g<br />

= ⎜ ⎟<br />

⎝4π<br />

⎠ r<br />

∇<br />

1 1<br />

E = ρTOT ( ρfree ρbound<br />

)<br />

ε<br />

= o<br />

ε<br />

+<br />

<br />

i ∇ i B = 0 (always - no magnetic charges/monopoles)<br />

o<br />

1 enclosed<br />

Φ<br />

E<br />

= ∫ Eda<br />

<br />

i = Q<br />

S<br />

TOT<br />

ε<br />

o<br />

1 encl. encl.<br />

= ( Qfree<br />

+ Qbound<br />

)<br />

Φ = m ∫ Bda<br />

<br />

i = 0 (n.b. closed surface S)<br />

S<br />

ε<br />

o<br />

<br />

<br />

∇× E = 0 always, ⇒ E =−∇V<br />

∇× B = μoJ TOT<br />

= μoJ free<br />

+ μoJ<br />

<br />

bound<br />

B<br />

= ∇× A<br />

<br />

Φ encl<br />

= Ad<br />

m ∫ i <br />

<br />

C<br />

Linear Media:<br />

D = εE = εoE<br />

+Ρ<br />

<br />

H = 1 <br />

B 1 B<br />

μ<br />

= <br />

μ<br />

−Μ<br />

<br />

= ( 1 + ),<br />

K = ( )<br />

ε ε χ ε ε<br />

Ρ=<br />

<br />

ε χ <br />

o e e o<br />

o<br />

e E<br />

<br />

∇× D =∇×Ρ<br />

ρ<br />

bound<br />

<br />

=−∇Ρ<br />

nˆ<br />

o<br />

μ = μ 1 + χ , K = μ μ<br />

Μ=<br />

<br />

χ H<br />

<br />

m<br />

i<br />

bound<br />

o m m o<br />

<br />

∇× H =−∇×Μ<br />

J<br />

= ∇×Μ<br />

ρ<br />

bound<br />

σ<br />

bound<br />

=Ρ i<br />

interface<br />

bound<br />

interface<br />

<br />

<br />

∇ i D = ρ free<br />

∇Ρ=−ρ i<br />

bound<br />

∇× H = J<br />

free<br />

Φ = Dda Q encl<br />

D ∫ <br />

=<br />

1 <br />

encl<br />

i<br />

S<br />

free<br />

B d = ITOT<br />

μ ∫ i ,<br />

C<br />

o<br />

encl<br />

Φ<br />

Ρ<br />

= ∫ Ρ <br />

<br />

encl<br />

ida<br />

=−Q<br />

S<br />

bound<br />

∫ Μ i d = I<br />

C<br />

bound<br />

χ<br />

<br />

e<br />

ρbound<br />

=− ρ<br />

free<br />

Jbound = χmJ<br />

free<br />

1 + χ<br />

( )<br />

e<br />

∂ρ <br />

free<br />

∂ρ <br />

bound<br />

∂ρTOT<br />

∇ i J free<br />

=− , ∇ i J bound<br />

=− , ∇ i J TOT<br />

=− ∂ t<br />

∂t<br />

∂ t<br />

<br />

ρTOT = ρfree + ρbound<br />

JTOT = J<br />

free<br />

+ Jbound<br />

m<br />

=−∇Μ<br />

i<br />

<br />

r<br />

m<br />

ˆ<br />

2<br />

K<br />

=Μ<br />

i bound<br />

nˆ<br />

σ ˆ<br />

m<br />

=Μ i n<br />

interface<br />

<br />

∇×Μ = J bound<br />

Hd<br />

<br />

= I encl<br />

∫ i <br />

C<br />

free ,<br />

©Pr<strong>of</strong>essor Steven Errede, Department <strong>of</strong> Physics, University <strong>of</strong> Illinois at Urbana-Champaign, Illinois<br />

2005 - 2008. All rights reserved.<br />

1


UIUC Physics 435 <strong>EM</strong> Fields & Sources I Fall Semester, 2007 Supp HO # 4 Pr<strong>of</strong>. Steven Errede<br />

Electrostatic Boundary Conditions Magnetostatic Boundary Conditions<br />

<br />

2 1 interface ( ⎡<br />

⊥ ⊥<br />

⎤<br />

2 1 interface<br />

0)<br />

( ⊥ ⊥<br />

B )<br />

2<br />

= B ⎡<br />

1 interface<br />

B2 − B ⎤<br />

1 interface<br />

= 0<br />

Ε =Ε ⎣Ε −Ε ⎦ =<br />

⎡<br />

⎣D<br />

− D ⎤<br />

⎦ = ⎡<br />

⎣Ρ −Ρ ⎤<br />

⎦<br />

ε ⎡<br />

o ⎣E<br />

<br />

2 1 interface 2 1 interface<br />

⎛∂V<br />

εo⎜<br />

⎝ ∂n<br />

− E ⎤<br />

⎦ = σ<br />

⊥ ⊥<br />

2 1 interface TOT interface<br />

⎣ ⎦<br />

⎡<br />

⎣ − ⎤<br />

⎦ =−⎡ ⎣ − ⎤<br />

⎦ =−<br />

o<br />

= ( σ<br />

free<br />

+ σbound<br />

)<br />

<br />

interface<br />

( free bound )<br />

∂V<br />

⎞<br />

− ⎟=−σ<br />

∂n<br />

⎠<br />

2 1<br />

interface interface<br />

TOT<br />

⊥ ⊥ ⊥ ⊥<br />

pole<br />

H2 H1 interface<br />

M2 M1 interface<br />

σ m<br />

interface<br />

1<br />

B B K n<br />

μ ⎡ ⎣ ⎦<br />

<br />

1 ⎛∂A<br />

⎜<br />

μo<br />

⎝ ∂n<br />

− ⎤ = <br />

× ˆ<br />

2 1 interface TOT interface<br />

= K + K × nˆ<br />

2 1<br />

interface interface<br />

interface<br />

<br />

∂A<br />

⎞ <br />

− ⎟=−K<br />

∂n<br />

⎠<br />

<br />

=− ( σ<br />

free<br />

+ σbound<br />

) interface<br />

=− ( K<br />

free<br />

+ Kbound<br />

)<br />

TOT<br />

For linear dielectric media:<br />

ε ∂V2 V1<br />

n<br />

ε ∂<br />

− =−<br />

∂<br />

∂n<br />

σ<br />

2 interface 1 interface free<br />

For linear magnetic media:<br />

<br />

<br />

1 ∂A2 1 ∂A<br />

<br />

1<br />

interface<br />

−<br />

interface<br />

=−K<br />

μ ∂n<br />

μ ∂n<br />

2 1<br />

free<br />

⊥ ⊥<br />

⎡<br />

⎣Ρ2 −Ρ ⎤<br />

1 ⎦ interface<br />

=−σ bound<br />

⎡<br />

interface<br />

⎣M ˆ<br />

2<br />

− M ⎤<br />

1 ⎦ interface<br />

= Kbound<br />

× n<br />

interface<br />

<br />

<br />

⊥ ⊥<br />

⎣<br />

⎡D2 − D ⎤<br />

1 ⎦ interface<br />

= σ free<br />

⎡<br />

interface<br />

⎣H ˆ<br />

2<br />

− H ⎤<br />

1 ⎦ interface<br />

= K<br />

free<br />

× n<br />

interface<br />

<br />

<br />

2<br />

©Pr<strong>of</strong>essor Steven Errede, Department <strong>of</strong> Physics, University <strong>of</strong> Illinois at Urbana-Champaign, Illinois<br />

2005 - 2008. All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!