21.06.2015 Views

Nonlinear Equations - UFRJ

Nonlinear Equations - UFRJ

Nonlinear Equations - UFRJ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

62 [CH. 5: REPRODUCING KERNEL SPACES<br />

Denote by dF, dF x the zero-average, unit variance Gaussian probability<br />

distributions. Note that in F x , π1dF ∗ = 1<br />

(2π)<br />

dF n x . The coarea<br />

formula for (V, M, π 2 , F ) (Theorem 4.9) is<br />

E(#(Z(f) ∩ K)) = 1<br />

∫<br />

(2π)<br />

∫K<br />

n dM(x) NJ(f, ix) −2 dF x<br />

F x<br />

with Normal Jacobian NJ(f, x) = det(Dπ 2 (f, x)Dπ 2 (f, x) ∗ ) 1/2 .<br />

The Normal Jacobian can be computed by<br />

⎛ ⎡<br />

⎤ ⎞<br />

K 1 (x, x)<br />

NJ(f, x) 2 ⎜<br />

= det ⎝Df(x) −∗ ⎢<br />

⎣<br />

. ..<br />

⎥<br />

⎦ Df(x) −1 ⎟<br />

⎠<br />

K n (x, x)<br />

=<br />

∏<br />

Ki (x, x)<br />

| det Df(x)| 2<br />

We pick an arbitrary system of coordinates around x.<br />

Lemma 4.3,<br />

Using<br />

| det Df(x)| 2 dM =<br />

Thus,<br />

E(#(Z(f) ∩ K)) =<br />

=<br />

= 1<br />

= 1<br />

1<br />

n∧<br />

(2π) n ∫K<br />

n∑<br />

i=1 j,k=1<br />

i=1<br />

∂<br />

f i (x) ∂ f i (x)<br />

∂x j ∂x k<br />

jk<br />

√ −1<br />

2 dx j ∧ d¯x k<br />

n∧ ∑ 〈Df(x)<br />

∫F ∂<br />

∂x j<br />

, Df(x) ∂<br />

∂x k<br />

〉<br />

ix<br />

n∧ ∑<br />

π<br />

∫K<br />

n i=1 jk<br />

π<br />

∫K<br />

n i=1<br />

using Proposition 5.9.<br />

n∧<br />

ω i (x)<br />

K i (x, x)<br />

√ −1<br />

2 dx j ∧ d¯x k dF ix (f i )<br />

ω i<br />

( ∂<br />

∂x j<br />

, J ∂<br />

∂x k<br />

) √ −1<br />

2 dx j ∧ d¯x k

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!