12.07.2015 Views

"Frontmatter". In: Analysis of Financial Time Series

"Frontmatter". In: Analysis of Financial Time Series

"Frontmatter". In: Analysis of Financial Time Series

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

376 MULTIVARIATE VOLATILITY MODELSrho(t)0.2 0.4 0.6 0.8• • •• •• •• •• • •• •• •• ••• • • • • • •••• • •••• ••• •• • • • • •••• ••••• • •• •••• •• • •••••• • • •• ••••• •••• •••• • • •• ••• • •••• • •••••• • •• •• • ••• •• • • •• • • • ••• • •• • ••• • • • ••• •• •• •• •••• •• ••• • •• •••• • • • ••• •• •• ••• •• •••••••• •• • •• • • •••• • • • • ••• •••• • • ••• •• • •• •••• • • • •••• •• ••• •• •• • •• ••• • •••••••••• • •• • • ••• •• •• •• •••• • • •• • •• • • • •• ••• •• ••• • •• •• • • •• • •• •• •1940 1960 1980 2000yearFigure 9.7. The fitted conditional correlation coefficient between monthly log returns <strong>of</strong> IBMstock and the S&P 500 index using the time-varying correlation GARCH(1, 1) model <strong>of</strong>Example 9.2 with Cholesky decomposition. The horizontal line denotes the average 0.612<strong>of</strong> the estimated coefficients.Remark: <strong>In</strong> a recent manuscript, Tse and Tsui (1998) consider a multivariateGARCH model with time-varying correlations. For a k-dimensional returns, theseauthors assume that the conditional correlation matrix ρ t follows the modelρ t = (1 − θ 1 − θ 2 )ρ + θ 1 ρ t−1 + θ 2 ψ t−1 ,where θ 1 and θ 2 are scalar parameters, ρ is a k × k positive definite matrix with unitdiagonal elements, and ψ t−1 is the k × k sample correlation matrix using shocksfrom t − m,...,t − 1 for a prespecified m. Estimation <strong>of</strong> the two scalar parametersθ 1 and θ 2 requires special constraints to ensure positive definiteness <strong>of</strong> the correlationmatrix. This approach seems much more complicated than the two methodsconsidered in this chapter.9.3 HIGHER DIMENSIONAL VOLATILITY MODELS<strong>In</strong> this section, we make use <strong>of</strong> the sequential nature <strong>of</strong> Cholesky decomposition tosuggest a strategy for building a high-dimensional volatility model. Again, write thevector return series as r t = µ t + a t . The mean equations for r t can be specified by

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!