13.07.2015 Views

Results of Monitoring at Olkiluoto in 2006 - Environment (pdf) - Posiva

Results of Monitoring at Olkiluoto in 2006 - Environment (pdf) - Posiva

Results of Monitoring at Olkiluoto in 2006 - Environment (pdf) - Posiva

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Work<strong>in</strong>g Report 2007-52<strong>Results</strong> <strong>of</strong> <strong>Monitor<strong>in</strong>g</strong><strong>at</strong> <strong>Olkiluoto</strong> <strong>in</strong> <strong>2006</strong><strong>Environment</strong>Editor:Reija HaapanenJuly 2007POSIVA OYFI-27160 OLKILUOTO, FINLANDTel +358-2-8372 31Fax +358-2-8372 3709


Work<strong>in</strong>g Report 2007-52<strong>Results</strong> <strong>of</strong> <strong>Monitor<strong>in</strong>g</strong><strong>at</strong> <strong>Olkiluoto</strong> <strong>in</strong> <strong>2006</strong><strong>Environment</strong>Editor:Reija HaapanenHaapanen Forest Consult<strong>in</strong>gJuly 2007Base maps: ©N<strong>at</strong>ional Land Survey, permission 41/MYY/07Work<strong>in</strong>g Reports conta<strong>in</strong> <strong>in</strong>form<strong>at</strong>ion on work <strong>in</strong> progressor pend<strong>in</strong>g completion.The conclusions and viewpo<strong>in</strong>ts presented <strong>in</strong> the reportare those <strong>of</strong> author(s) and do not necessarilyco<strong>in</strong>cide with those <strong>of</strong> <strong>Posiva</strong>.


ABSTRACTThis Work<strong>in</strong>g Report presents the ma<strong>in</strong> results <strong>of</strong> <strong>Posiva</strong> Oy's environmentalmonitor<strong>in</strong>g programme on <strong>Olkiluoto</strong> Island <strong>in</strong> <strong>2006</strong>. This is the third annual report. Theenvironmental monitor<strong>in</strong>g system supervised by <strong>Posiva</strong> Oy produces <strong>in</strong>put forbiosphere modell<strong>in</strong>g for long-term safety purposes as well as for monitor<strong>in</strong>g the st<strong>at</strong>e <strong>of</strong>the environment dur<strong>in</strong>g the construction (and l<strong>at</strong>er oper<strong>at</strong>ion) <strong>of</strong> ONKALOunderground characteriz<strong>at</strong>ion facility.Although some <strong>of</strong> the nuclear power production rel<strong>at</strong>ed monitor<strong>in</strong>g studies by TVO (thepower company) have been go<strong>in</strong>g on from the 1970s, the repository-rel<strong>at</strong>edenvironmental monitor<strong>in</strong>g <strong>of</strong> <strong>Olkiluoto</strong> Island has only recently been comprehensive.Consequently, the first Biosphere Description Report was written <strong>in</strong> <strong>2006</strong>. This workfurther produced some analyses belong<strong>in</strong>g to the environmental monitor<strong>in</strong>g programme,namely the estim<strong>at</strong>es <strong>of</strong> biomass <strong>in</strong> terrestrial veget<strong>at</strong>ion (forests) and a prelim<strong>in</strong>aryestim<strong>at</strong>e <strong>of</strong> the biomass <strong>in</strong> terrestrial fauna (moose).In the monitor<strong>in</strong>g d<strong>at</strong>a, the ongo<strong>in</strong>g construction work (OL3, ONKALO and rel<strong>at</strong>ed<strong>in</strong>frastructure) is seen for <strong>in</strong>stance <strong>in</strong> raised noise levels and deposition <strong>of</strong> base c<strong>at</strong>ionsand iron. The land-use cont<strong>in</strong>ues to change, but where there is n<strong>at</strong>ural environment, itresembles other coastal loc<strong>at</strong>ions. The nearby mar<strong>in</strong>e environment is affected by thecool<strong>in</strong>g w<strong>at</strong>er from the nuclear power plant.Keywords: environmental monitor<strong>in</strong>g, ecosystem, basel<strong>in</strong>e condition, change.


YMPÄRISTÖN MONITOROINTIOHJELMA OLKILUODOSSA VUONNA <strong>2006</strong>TIIVISTELMÄTässä työraportissa esitetään päätulokset <strong>Posiva</strong> Oy:n toim<strong>in</strong>taan liittyvästä Olkiluodonsaaren ympäristön monitoro<strong>in</strong>tiohjelmasta vuodelta <strong>2006</strong>. Raportti on järjestyksessäkolmas. <strong>Posiva</strong>n ympäristön monitoro<strong>in</strong>n<strong>in</strong> ohjelma tuottaa tietoa pitkän ajanturvallisuusanalyysien va<strong>at</strong>imaan mall<strong>in</strong>nukseen sekä ympäristön tilan seurantaanONKALOn rakennusaikana.Jotk<strong>in</strong> TVO:n ylläpitämät seurann<strong>at</strong> ov<strong>at</strong> olleet käynnissä 1970-luvulta saakka, muttakäytetyn yd<strong>in</strong>polttoa<strong>in</strong>een loppusijoitukseen liittyvä ympäristön monitoro<strong>in</strong>ti on vastanyt tuottanut a<strong>in</strong>eistoa kaikista suunnitelluista tutkimuksista. Näih<strong>in</strong> tutkimuksi<strong>in</strong>perustuen laaditti<strong>in</strong> ensimmä<strong>in</strong>en kuvaus Olkiluodon biosfääristä loppuvuonna <strong>2006</strong>.Tämä työ tuotti a<strong>in</strong>eistoa myös ympäristön monitoro<strong>in</strong>ti<strong>in</strong>: estima<strong>at</strong>it saaren metsiensisältämästä biomassasta sekä elä<strong>in</strong>ten, ensivaiheessa hirven, biomassasta.Monitoro<strong>in</strong>n<strong>in</strong> tuloksissa näkyy saarella käynnissä oleva rakennustyö (OL3, ONKALOja niih<strong>in</strong> liittyvät <strong>in</strong>frastruktuurit). Rakennustyö ja liikenne aiheuttav<strong>at</strong> melua janostav<strong>at</strong> esimerkiksi raudan määrää pölylaskeumassa. Saaren maankäyttö muuttuuedelleen, mutta suojaisemmissa paikoissa luonto muistuttaa muita rannikon seutuja.Voimalaitosten lauhdevedet vaikuttav<strong>at</strong> Olkiluodon lähivesien om<strong>in</strong>aisuuksi<strong>in</strong>.Ava<strong>in</strong>san<strong>at</strong>: ympäristön seuranta, ekosysteemi, perustilanne, muutos.


1TABLE OF CONTENTSABSTRACTTIIVISTELMÄ1. INTRODUCTION .................................................................................................... 32. MONITORING SYSTEM AND SCHEDULE............................................................ 53. RESULTS AND DISCUSSION ............................................................................... 73.1. Landscape Properties...................................................................................... 73.2. Input to Biosphere Modell<strong>in</strong>g ........................................................................ 113.2.1. Radionuclides..................................................................................... 113.2.2. Terrestrial Systems ............................................................................ 123.2.3. Limnic Systems .................................................................................. 413.2.4. Mar<strong>in</strong>e/Brackish Systems................................................................... 423.2.5. Historical Properties ........................................................................... 523.3. Input to <strong>Environment</strong>al Impact Assessments................................................ 533.3.1. Air Quality and Noise ......................................................................... 533.3.2. W<strong>at</strong>er Quality ..................................................................................... 543.3.3. Overburden ........................................................................................ 573.3.4. Flora and Fauna................................................................................. 573.3.5. Landscape, Land-Use and Traffic ...................................................... 583.4. Supplementary <strong>Environment</strong>al Inform<strong>at</strong>ion................................................... 584. SUMMARY................ ........................................................................................... 59REFERENCES.... ...................................................................................................... 61APPENDICES....................................................................................................... ..... 65A: LIST OF MONITORING LOCATIONS............................................................ 65B: FOREST AND MIRE MONITORING SYSTEM .............................................. 71C: RESULTS FROM RADIONUCLIDE MONITORING IN <strong>2006</strong> ......................... 81D: RESULTS FROM SOIL MICROBE STUDY IN <strong>2006</strong> ..................................... 89E: BULK PRECIPITATION AND STAND THROUGHFALL IN 2004-<strong>2006</strong> ......... 91F: SOIL SOLUTION IN FIP PLOTS IN 2004-<strong>2006</strong> ............................................. 95G: BIOMASS OF FIP SUB-PLOTS IN <strong>2006</strong> ..................................................... 101H: LITTERFALL PRODUCTION IN FIP PLOTS IN 2004-2005 ........................ 103I: GAME STATISTICS OF 2002-<strong>2006</strong> .............................................................. 105J: RESULTS FROM MONITORING OF SEA ENVIRONMENT IN <strong>2006</strong> .......... 107K: WATER QUALITY IN <strong>2006</strong>................ .......................................................... 111


31 INTRODUCTIONIn July 2004 <strong>Posiva</strong> began to construct an underground rock characteriz<strong>at</strong>ion facilitycalled ONKALO (Fig. 1), which is planned for use <strong>in</strong> the early 2010s. The construction<strong>of</strong> ONKALO and subsequently the construction <strong>of</strong> the repository, will affect the surround<strong>in</strong>grock mass and the groundw<strong>at</strong>er flow system as well as the environment. InDecember 2003, a programme for monitor<strong>in</strong>g <strong>at</strong> <strong>Olkiluoto</strong> dur<strong>in</strong>g construction and oper<strong>at</strong>ion<strong>of</strong> ONKALO was presented (<strong>Posiva</strong> 2003b). A summary <strong>of</strong> the observ<strong>at</strong>ions andmeasurements is reported annually for each discipl<strong>in</strong>e: Rock Mechanics, Hydrogeology,Hydrogeochemistry, <strong>Environment</strong> and Foreign m<strong>at</strong>erials.The aim <strong>of</strong> this report is to give an overview <strong>of</strong> the progress <strong>of</strong> monitor<strong>in</strong>g the environment.The environmental measurements and observ<strong>at</strong>ions <strong>in</strong> <strong>2006</strong> are presentedhere. The report is divided <strong>in</strong>to two parts: first, the d<strong>at</strong>a collected as <strong>in</strong>put for biospheremodell<strong>in</strong>g for long-term safety purposes are presented, followed by the d<strong>at</strong>a needed formonitor<strong>in</strong>g the st<strong>at</strong>e <strong>of</strong> the environment dur<strong>in</strong>g the construction work. N<strong>at</strong>urally, thesed<strong>at</strong>a partly overlap. The earlier results and progress <strong>of</strong> the environmental monitor<strong>in</strong>gwere presented by Haapanen (2005, <strong>2006</strong>).Figure 1. <strong>Olkiluoto</strong> site.


52 MONITORING SYSTEM AND SCHEDULEThe environmental monitor<strong>in</strong>g system is described <strong>in</strong> <strong>Posiva</strong> Report 2003-05 (<strong>Posiva</strong>2003b) and its supplement (Raitio et al. 2007). Ref<strong>in</strong>ements to the system have beendone based on experiences, which have been reported <strong>in</strong> the research-specific Work<strong>in</strong>gReports, as well as <strong>in</strong> previous summary reports on environmental monitor<strong>in</strong>g (Haapanen2005, <strong>2006</strong>). The current environmental monitor<strong>in</strong>g schedule is presented <strong>in</strong> Table1.Part <strong>of</strong> the monitor<strong>in</strong>g is performed by the company runn<strong>in</strong>g the nuclear power plantson the island, Teollisuuden Voima Oy (TVO). TVO's radionuclide sampl<strong>in</strong>g system iscomprehensively described by Ikonen (2003) and Roiva<strong>in</strong>en (2005) and TVO's mar<strong>in</strong>eenvironment monitor<strong>in</strong>g system, for example, by Ikonen et al. (2003). <strong>Monitor<strong>in</strong>g</strong> hasbeen carried out for vary<strong>in</strong>g periods <strong>of</strong> time depend<strong>in</strong>g on the sector: while some monitor<strong>in</strong>gactivities (performed by TVO) orig<strong>in</strong><strong>at</strong>e from the 1970s, the repository-rel<strong>at</strong>edenvironmental monitor<strong>in</strong>g <strong>of</strong> the <strong>Olkiluoto</strong> Island has only recently been comprehensive.Major po<strong>in</strong>ts <strong>of</strong> the monitor<strong>in</strong>g design as well as maps <strong>of</strong> monitor<strong>in</strong>g loc<strong>at</strong>ions (whenapplicable) are presented <strong>at</strong> the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> each result sector. More specific details <strong>of</strong>the comprehensive forest and mire monitor<strong>in</strong>g system are presented <strong>in</strong> Appendix B. Alist <strong>of</strong> monitor<strong>in</strong>g loc<strong>at</strong>ions is presented <strong>in</strong> Appendix A.The surface environment is <strong>in</strong> many ways affected by, e.g., the meteorological conditions<strong>in</strong> the area. Specific reports have been compiled <strong>of</strong> the meteorological d<strong>at</strong>a (Ikonen2002, 2005, 2007). The overburden studies <strong>at</strong> <strong>Olkiluoto</strong> with an emphasis on geosphere-biosphere<strong>in</strong>terface (for modell<strong>in</strong>g purposes) have been summarized by Lahdenperäet al. (2005).


6Table 1. <strong>Environment</strong>al monitor<strong>in</strong>g schedule: X = s<strong>in</strong>gle measurement or observ<strong>at</strong>ion,O = measurement campaign, grey cells = cont<strong>in</strong>uous.2004 2005 <strong>2006</strong> 2007 2008 2009 2010 2011 2012Aerial imagery X X X X X X XS<strong>at</strong>ellite imagery X XCharacteristics <strong>of</strong> observ<strong>at</strong>ion plots X X XSoil X X XTrees X XVeget<strong>at</strong>ion <strong>in</strong>ventory X X XNeedles and foliage X X X XBiomass (flora) X XSoil w<strong>at</strong>erWet depositionAnimals and birds (field <strong>in</strong>ventory) X XAnimals and birds (<strong>in</strong>terview study) X X X X X X X X XBiomass (fauna) X XAnthropogenic <strong>in</strong>fluencesHydrochemical characteris<strong>at</strong>ion <strong>of</strong>X X Xseaw<strong>at</strong>erSeaw<strong>at</strong>er quality O O O O O O O O OSea veget<strong>at</strong>ionOPhytoplankton O O O O O O O O OSea bottom animals X X X X X X X X XTest fish<strong>in</strong>gXFish<strong>in</strong>g <strong>in</strong>terviews X X X X XNoise X X X X X X X X XDra<strong>in</strong>age w<strong>at</strong>ers from rock heaps O O O O O O OW<strong>at</strong>ertable <strong>of</strong> the priv<strong>at</strong>e wells O O O O O O O O OW<strong>at</strong>er quality <strong>of</strong> the priv<strong>at</strong>e wells O O O O O O O O OVeget<strong>at</strong>ion <strong>of</strong> conserv<strong>at</strong>ion area X X X XScenery O O O O O O O O O


73 RESULTS AND DISCUSSION3.1 Landscape PropertiesThe landscape <strong>of</strong> <strong>Olkiluoto</strong> Island has been under rapid changes dur<strong>in</strong>g the time <strong>of</strong><strong>Posiva</strong>'s environmental monitor<strong>in</strong>g programme. Construction <strong>of</strong> the third nuclear powerplant on <strong>Olkiluoto</strong> (OL3) started <strong>in</strong> 2003. In recent gre<strong>at</strong> changes have occurred, part <strong>of</strong>which are rel<strong>at</strong>ed to power production and part to nuclear waste disposal (Table 2).Table 2. Recently f<strong>in</strong>ished or ongo<strong>in</strong>g construction activities on <strong>Olkiluoto</strong> Island.InfrastructureConstruction timeONKALO area 2003-<strong>2006</strong>-OL3 2003-Rock pil<strong>in</strong>g and crush<strong>in</strong>g area (OL3+ONKALO) 2004-Ma<strong>in</strong> road 2004-2005W<strong>in</strong>d gener<strong>at</strong>or 2004Gas turb<strong>in</strong>e reserve power plant <strong>2006</strong>-2007Ma<strong>in</strong> power l<strong>in</strong>es 2005-Roads, pipel<strong>in</strong>es, park<strong>in</strong>g areas etc. 2004-<strong>2006</strong>New g<strong>at</strong>ehouse and extension to ma<strong>in</strong> <strong>of</strong>fice 2004-2005New visitor centre 2005-<strong>2006</strong>Accommod<strong>at</strong>ion village 2005-Concrete st<strong>at</strong>ion extension, labor<strong>at</strong>ory extensionOngo<strong>in</strong>gTra<strong>in</strong><strong>in</strong>g simul<strong>at</strong>or, warehouse extension, new dump<strong>in</strong>g place PlannedD<strong>at</strong>a <strong>of</strong> the changes are be<strong>in</strong>g collected, as well as, aerial photographs taken <strong>at</strong> regular<strong>in</strong>tervals, most recently on June 27, <strong>2006</strong> (Table 3). They form the basis for mapp<strong>in</strong>gthe basel<strong>in</strong>e situ<strong>at</strong>ion and serve as a benchmark for the monitor<strong>in</strong>g <strong>of</strong> changes. In addition,visible band aerial imagery has been obta<strong>in</strong>ed for plann<strong>in</strong>g the construction <strong>of</strong>ONKALO. Some low oblique aerial images have also been taken, most recently onJune 7, <strong>2006</strong> (Fig. 2). No s<strong>at</strong>ellite images have so far been acquired.Table 3. Aerial photograph types and acquisition d<strong>at</strong>es.D<strong>at</strong>a type Time label CoverageFalse-colour aerial images May 23, 2002 <strong>Olkiluoto</strong> IslandVisible band aerial images May 10, 2003 <strong>Olkiluoto</strong> IslandFalse-colour aerial images July 16, 2004 <strong>Olkiluoto</strong> IslandFalse-colour aerial images June 8, 2005 <strong>Olkiluoto</strong> IslandFalse-colour aerial images June 17, <strong>2006</strong> <strong>Olkiluoto</strong> IslandLow oblique aerial images (plane) July 16, 2004 <strong>Olkiluoto</strong> IslandLow oblique aerial images (helicopter) August 31, 2005 <strong>Olkiluoto</strong> IslandLow oblique aerial images (plane) June 7, <strong>2006</strong> <strong>Olkiluoto</strong> Island


8Figure 2. <strong>Olkiluoto</strong> from the air on June 7, <strong>2006</strong> (Lentokuva Vallas Oy/Hannu Vallas).The veget<strong>at</strong>ion and forest <strong>in</strong>ventories by homogeneous polygons (VCP) <strong>in</strong> 2002 and2003 describe the veget<strong>at</strong>ed landscape <strong>at</strong> those time po<strong>in</strong>ts. The monitor<strong>in</strong>g <strong>of</strong> forestsand mires on the island is based on a system<strong>at</strong>ic grid with a density <strong>of</strong> 1 plot/ha, calledFET (see Appendix B for details). The first rounds <strong>of</strong> measurements on FET grid <strong>in</strong>2004 and its subset FEH plots <strong>in</strong> 2005 provide a st<strong>at</strong>istical basis for the monitor<strong>in</strong>g <strong>of</strong>forested parts <strong>of</strong> the landscape.As a first approach for estim<strong>at</strong><strong>in</strong>g the extent <strong>of</strong> all current land-use types, the FET networkwas extended to cover all land-use/land-cover classes and <strong>in</strong>termedi<strong>at</strong>e plots wereadded between the exist<strong>in</strong>g plots to cre<strong>at</strong>e a 50 x 50 m grid. The land-use/land-cover <strong>of</strong>each plot was visually <strong>in</strong>terpreted from the aerial photographs taken <strong>in</strong> 2005 (Haapanenet al. 2007). The classific<strong>at</strong>ion system was f<strong>in</strong>e-tuned <strong>in</strong> the spr<strong>in</strong>g <strong>of</strong> 2007. The<strong>in</strong>terpret<strong>at</strong>ion was upd<strong>at</strong>ed us<strong>in</strong>g the new classes, and the <strong>2006</strong> aerial photographs were<strong>in</strong>terpreted as well (Table 4, Figs. 3-4). The <strong>in</strong>terpret<strong>at</strong>ion <strong>of</strong> older photographs is underway. This work allows the land-use changes to be monitored on a st<strong>at</strong>istical basis.


9Table 4. Distribution <strong>of</strong> <strong>Olkiluoto</strong> Island (ma<strong>in</strong> island and Ilava<strong>in</strong>en) <strong>in</strong>to various landuse/land-coverclasses <strong>in</strong> 2005-<strong>2006</strong>. D<strong>at</strong>a by Ari Ikonen.Share <strong>of</strong> <strong>Olkiluoto</strong> Island, %Class 2005 <strong>2006</strong>Forests and wetlands 58.6 55.9Agriculture 5.5 5.3W<strong>at</strong>er areas 0.1 0.1Shore meadows 4.4 4.3Rock outcrops 5.4 5.4Traffic areas 4.4 4.3Power l<strong>in</strong>es 5.5 7.0Industrial areas and <strong>in</strong>frastructure 13.1 12.8Industry-support<strong>in</strong>g services 1.1 2.8Investig<strong>at</strong>ion arrangements 0.8 0.8Services/Commerce 0.0 0.0Priv<strong>at</strong>e lands 1.3 1.3Total area, km 2 10.4 10.4In <strong>2006</strong>, two sets <strong>of</strong> generic cartographic d<strong>at</strong>a were also acquired: the CORINE landcoverraster d<strong>at</strong>a and N<strong>at</strong>ional Forest Inventory GIS d<strong>at</strong>a (Table 5).Table 5. Generic GIS layers acquired <strong>in</strong> <strong>2006</strong>.D<strong>at</strong>a type Time label Coverage8th N<strong>at</strong>ional Forest Inventory GIS layers 1994 OL Island + surround<strong>in</strong>gs9th N<strong>at</strong>ional Forest Inventory GIS layers 1999 OL Island + surround<strong>in</strong>gs10th N<strong>at</strong>ional Forest Inventory GIS layers <strong>2006</strong> OL Island + surround<strong>in</strong>gsCORINE Land cover raster 2000 Whole F<strong>in</strong>land


10Figure 3. Land-use distribution <strong>in</strong> 2005.Figure 4. Land-use distribution <strong>in</strong> <strong>2006</strong>.


113.2 Input to Biosphere Modell<strong>in</strong>g3.2.1 RadionuclidesRadioactivity <strong>in</strong> the environment is monitored by the nuclear power plant oper<strong>at</strong>ed byTVO. Samples from air, terrestrial environment, terrestrial foodstuffs and mar<strong>in</strong>e environmentare relevant for <strong>Posiva</strong> as well. The results are collected <strong>in</strong> a d<strong>at</strong>abase. TVO'ssampl<strong>in</strong>g activities have focused on the mar<strong>in</strong>e ecosystem. Before the oper<strong>at</strong>ion <strong>of</strong> theencapsul<strong>at</strong>ion plant and the repository starts, the terrestrial basel<strong>in</strong>e must also be morecomprehensively studied regard<strong>in</strong>g radionuclides.The major anthropogenic sources <strong>of</strong> radionuclides <strong>in</strong> the area orig<strong>in</strong><strong>at</strong>e from the Chernobylfallout <strong>in</strong> April 1986 and from authorized effluents and air emissions from thenuclear power plant. The most common nuclides clearly orig<strong>in</strong><strong>at</strong><strong>in</strong>g from the powerplant <strong>in</strong>clude, for example, Mn-54, Co-60 and Ag-110m (not exclusively). N<strong>at</strong>urallyabundant nuclides, such as Be-7 and K-40 are found <strong>in</strong> every sample if determ<strong>in</strong>ed.Their concentr<strong>at</strong>ions represent n<strong>at</strong>ural vari<strong>at</strong>ions <strong>in</strong> the ecosystem and also reflect thequality <strong>of</strong> the measurement. In addition, the behaviour <strong>of</strong> these elements and nuclides isrel<strong>at</strong>ively well known enabl<strong>in</strong>g, for example, model adjustments aga<strong>in</strong>st the measurements.The results <strong>of</strong> radionuclide analyses <strong>in</strong> 2005 are shown <strong>in</strong> Appendix C. Some examples<strong>of</strong> radionuclides <strong>in</strong> terrestrial environment are given <strong>in</strong> Fig. 5. Radionuclides <strong>in</strong> soil,mushrooms and berries are be<strong>in</strong>g measured <strong>at</strong> four-year <strong>in</strong>tervals, the l<strong>at</strong>est results be<strong>in</strong>gfrom 2005 (reported <strong>in</strong> Haapanen <strong>2006</strong>). N<strong>at</strong>ional scale comparison values can beobta<strong>in</strong>ed from public<strong>at</strong>ions <strong>of</strong> the F<strong>in</strong>nish Radi<strong>at</strong>ion and Nuclear Safety Authority(STUK).700600Cs-137500Bq/KgDW400300200100Be-7K-40P<strong>in</strong>e needlesLichen020042005<strong>2006</strong>20042005<strong>2006</strong>20042005<strong>2006</strong>Figure 5. Radionuclides <strong>in</strong> terrestrial environment <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong> the we<strong>at</strong>her mast <strong>in</strong>2004–<strong>2006</strong>, Bq/kgDW (Haapanen 2005, <strong>2006</strong>). P<strong>in</strong>e needles <strong>in</strong> blue columns, lichen <strong>in</strong>green columns.


12Roiva<strong>in</strong>en (<strong>2006</strong>) studied the distribution <strong>of</strong> some radionuclides (K-40, Cs-137, Cs-134and Be-7) and stable elements (K, P, Ca and Cu) <strong>in</strong> three shorel<strong>in</strong>e alder forests <strong>of</strong><strong>Olkiluoto</strong>. Samples were collected from veget<strong>at</strong>ion and small mammals. Be-7 wasfound <strong>in</strong> litter and understorey samples only. It was found th<strong>at</strong> the behaviour <strong>of</strong> theelements did not differ from wh<strong>at</strong> is generally known from their behaviour <strong>in</strong> forests.Clear differences were found between the monitor<strong>in</strong>g plots <strong>in</strong> the distribution <strong>of</strong> theelements on the basis <strong>of</strong> concentr<strong>at</strong>ion r<strong>at</strong>ios.3.2.2 Terrestrial SystemsSoil Inventory by FEH PlotsThe FEH plots (Fig. 6), which were <strong>in</strong>ventoried for their veget<strong>at</strong>ion types and coverages<strong>in</strong> 2005 (Huhta & Korpela <strong>2006</strong>), were also <strong>in</strong>ventoried for their humus, m<strong>in</strong>eralsoil (0–60 cm) and pe<strong>at</strong> (0–30 cm) properties. Samples were taken for further analysesand the results reported by Tamm<strong>in</strong>en et al. (2007). Accord<strong>in</strong>g to the survey, the mostcommon soil types <strong>at</strong> <strong>Olkiluoto</strong> are weakly developed (<strong>of</strong>ten podzolised) coarse to medium-coarseArenosols or f<strong>in</strong>e-textured Regosols, shallow Leptosols and Gleysols characterisedby shallow groundw<strong>at</strong>er. In general, the groundw<strong>at</strong>er <strong>in</strong> FEH plots lay with<strong>in</strong>the depth <strong>of</strong> 0 to 40 cm on 15 plots, and 24 sample pits out <strong>of</strong> the 85 m<strong>in</strong>eral soil oneswere under 50 cm deep due to bedrock, big boulders or groundw<strong>at</strong>er. Organic layer wasclassified <strong>in</strong> most cases as mor, pe<strong>at</strong> or mull-like pe<strong>at</strong>. The thickness <strong>of</strong> the organiclayer varied from 2.3 to 21.1 cm and <strong>in</strong> the pe<strong>at</strong>land from 6 to 115 cm. The mediumparticle size class <strong>in</strong> m<strong>in</strong>eral soils was very f<strong>in</strong>e sand.Figure 6. Orig<strong>in</strong>al FEH sample plots (Huhta & Korpela <strong>2006</strong>) and land-use situ<strong>at</strong>ion<strong>in</strong> summer <strong>2006</strong>.


13The soils were acid. The organic layer pH ranged from 3.7 to 4.4 (from dry m<strong>in</strong>eral soilsites to groves or herb-rich forests, respectively). The concentr<strong>at</strong>ions <strong>of</strong> calcium, magnesiumand sodium <strong>in</strong> the surface soil were higher <strong>at</strong> <strong>Olkiluoto</strong> than on n<strong>in</strong>e controlplots <strong>in</strong>ventoried <strong>in</strong> <strong>in</strong>land loc<strong>at</strong>ions with<strong>in</strong> the same campaign. These control plotswere not exactly similar <strong>in</strong> forest characteristics, but were measured to serve as benchmark<strong>in</strong> monitor<strong>in</strong>g <strong>of</strong> possible changes on <strong>Olkiluoto</strong> soils. Concentr<strong>at</strong>ions <strong>of</strong> basec<strong>at</strong>ions, especially calcium, correl<strong>at</strong>ed with the forest site type. In alder stands <strong>at</strong><strong>Olkiluoto</strong>, the concentr<strong>at</strong>ions <strong>of</strong> base c<strong>at</strong>ions were even 30 to 40 times higher than <strong>in</strong><strong>in</strong>land p<strong>in</strong>e stands. These alder sites are the youngest, emerged some hundred years ag<strong>of</strong>rom the sea and still conta<strong>in</strong><strong>in</strong>g sea salts rich <strong>in</strong> sodium and magnesium and maybestill gett<strong>in</strong>g sea salts as droplets or spray dur<strong>in</strong>g storm events. The differences between<strong>Olkiluoto</strong> and the control plots decreased toward deeper soil layers.Both the <strong>Olkiluoto</strong> m<strong>in</strong>eral soil FEH plots and the control plots had higher nitrogenconcentr<strong>at</strong>ion and lower C/N r<strong>at</strong>io than F<strong>in</strong>nish forest soils on average, mean<strong>in</strong>g highersoil fertility (Table 6; see average values for F<strong>in</strong>nish m<strong>in</strong>eral soil sites <strong>in</strong> Tamm<strong>in</strong>en2000). C/N r<strong>at</strong>io <strong>of</strong> the organic layer discrim<strong>in</strong><strong>at</strong>ed between m<strong>in</strong>eral soil site types andalso between dom<strong>in</strong><strong>at</strong><strong>in</strong>g tree species (Table 7). Soils <strong>in</strong> the alder stands conta<strong>in</strong>ed morenitrogen compared with other stands, and had a very low C/N r<strong>at</strong>io <strong>in</strong> the organic layer,but also <strong>in</strong> the conifer stands nitrogen st<strong>at</strong>us was better than on average <strong>in</strong> F<strong>in</strong>nish forestsoils, where C/N r<strong>at</strong>io was <strong>in</strong> the organic layer 27 on the grove-like (OMT) sites and37 on the fresh (MT) sites (m<strong>in</strong>eral soils; Tamm<strong>in</strong>en 2000). Accord<strong>in</strong>g to Starr (1991),it takes a shorter time (200 to 300 years) for the N concentr<strong>at</strong>ions to reach equilibriumcompared with C concentr<strong>at</strong>ions (> 750 years) after the land has emerged from the sea.Table 6. Total concentr<strong>at</strong>ions (%) <strong>of</strong> carbon and nitrogen and C/N r<strong>at</strong>io by soil layer <strong>in</strong>the 85 m<strong>in</strong>eral soil FEH plots. Values <strong>of</strong> the control plots (n=9) are <strong>in</strong> italics (Tamm<strong>in</strong>enet al. 2007).Organic0-10cm10-30cmn C N C/NM<strong>in</strong> 85 20.4 17.5 1.08 0.71 13.5 23.5Median 39.5 40.2 1.62 1.34 23.2 25.4Max 48.7 41.6 2.71 1.73 36.6 35.2M<strong>in</strong> 76 0.5 1.1 0.05 0.06 9.0 17.0Median 1.7 3.4 0.11 0.15 15.7 20.6Max 7.3 5.2 0.46 0.31 22.3 24.3M<strong>in</strong> 75 0.2 0.7 0.03 0.04 6.5 12.3Median 0.6 1.8 0.06 0.10 11.4 18.3Max 5.8 2.5 0.45 0.13 22.9 20.3


14Table 7. Total concentr<strong>at</strong>ions (%) <strong>of</strong> carbon and nitrogen and C/N r<strong>at</strong>io by soil layerand by dom<strong>in</strong>ant tree species <strong>in</strong> the 85 m<strong>in</strong>eral soil FEH plots. Values <strong>of</strong> the controlplots (n=9) are <strong>in</strong> italics (Tamm<strong>in</strong>en et al. 2007). Equal mean values are marked withthe same letter (Bonferroni test).Organic0-10cm10-30 cmn C N C/NP<strong>in</strong>e 30 37.5 30.2 1.47 a 1.03 25.6 c 28.9Spruce 40 39.7 37.6 1.73 a 1.47 23.4 bc 25.8Birch 10 36.9 1.73 a 21.4 bAlder 5 36.0 2.32 b 15.5 aP<strong>in</strong>e 22 2.0 1.8 0.12 0.09 16.8 19.5Spruce 39 2.2 3.6 0.14 0.18 16.2 20.6Birch 10 2.1 0.14 15.0Alder 5 2.0 0.15 13.2P<strong>in</strong>e 22 1.1 1.1 0.08 0.06 12.8 17.6Spruce 39 0.7 1.9 0.06 0.11 11.6 17.9Birch 9 0.8 0.06 11.8Alder 5 0.7 0.07 10.0Total elemental concentr<strong>at</strong>ions were determ<strong>in</strong>ed only from the organic samples. Allelements, except for Mn, seemed to have higher concentr<strong>at</strong>ions <strong>at</strong> <strong>Olkiluoto</strong> than on thecontrol plots.N<strong>in</strong>e pe<strong>at</strong> plots were studied with<strong>in</strong> the survey. The pH <strong>in</strong> pe<strong>at</strong> ranged from 3.4 to 4.5,depend<strong>in</strong>g from dom<strong>in</strong>ant tree species, pe<strong>at</strong> layer and method. The nitrogen concentr<strong>at</strong>ionvaried between 1.36% and 2.92% (Table 8). Pe<strong>at</strong> C/N r<strong>at</strong>ios were mostly under 25-30, and <strong>in</strong>dic<strong>at</strong>ed s<strong>at</strong>isfactory nitrogen m<strong>in</strong>eralis<strong>at</strong>ion conditions. In pe<strong>at</strong>land p<strong>in</strong>estands, both low nitrogen concentr<strong>at</strong>ion and high C/N r<strong>at</strong>io <strong>in</strong> the pe<strong>at</strong> <strong>in</strong>dic<strong>at</strong>ed poorernutritional st<strong>at</strong>us than <strong>in</strong> deciduous tree stands (Table 9). Soil carbon and nitrogenamounts <strong>in</strong>creased from p<strong>in</strong>e-grow<strong>in</strong>g pe<strong>at</strong>land sites to alder forests. The total P, Caand Mn concentr<strong>at</strong>ions <strong>in</strong> pe<strong>at</strong> were rel<strong>at</strong>ively similar to the values reported for correspond<strong>in</strong>gdra<strong>in</strong>ed pe<strong>at</strong>land types and pe<strong>at</strong> layers <strong>in</strong> southern F<strong>in</strong>land (Kaunisto &Paavila<strong>in</strong>en 1988, Kaunisto & Moilanen 1998). In contrast, the K, Mg, Cu, Zn, B andFe concentr<strong>at</strong>ions <strong>in</strong> the pe<strong>at</strong> <strong>at</strong> <strong>Olkiluoto</strong> were 2 to 40 times gre<strong>at</strong>er than the values forsouthern F<strong>in</strong>land.Carex pe<strong>at</strong>s with pe<strong>at</strong> components <strong>of</strong> Cyperaceous, Sphagnum, Phragmites australis,lignum and Equisetum dom<strong>in</strong><strong>at</strong>ed <strong>in</strong> Olkiluodonjärvi. On two alder-dom<strong>in</strong><strong>at</strong>ed pe<strong>at</strong>landloc<strong>at</strong>ions, the dom<strong>in</strong><strong>at</strong><strong>in</strong>g pe<strong>at</strong> types were woody and Carex pe<strong>at</strong>s, i.e., Cyperaceouslignumor lignum-Cyperaceous pe<strong>at</strong>. Other typical pe<strong>at</strong> types were Sphagnum (p<strong>in</strong>edom<strong>in</strong><strong>at</strong>edLiiklansuo), and Sphagnum-lignum and lignum-Sphagnum.


15Table 8. Total concentr<strong>at</strong>ions (%) <strong>of</strong> carbon and nitrogen and C/N r<strong>at</strong>io by pe<strong>at</strong> layer<strong>in</strong> the n<strong>in</strong>e FEH plots loc<strong>at</strong>ed on pe<strong>at</strong>land (Tamm<strong>in</strong>en et al. 2007).0-10cm10-20cm20-30cmn C N C/NM<strong>in</strong> 9 31.4 1.41 16.5Median 47.1 2.11 20.3Max 52.7 2.88 34.3M<strong>in</strong> 6 41.8 1.36 17.5Median 46.5 2.21 19.6Max 52.8 2.81 35.7M<strong>in</strong> 5 42.7 2.06 16.5Median 48.2 2.53 17.9Max 54.3 2.92 25.3Table 9. Total concentr<strong>at</strong>ions (%) <strong>of</strong> carbon and nitrogen and C/N r<strong>at</strong>io by pe<strong>at</strong> layerand by dom<strong>in</strong>ant tree species <strong>in</strong> the n<strong>in</strong>e FEH plots loc<strong>at</strong>ed on pe<strong>at</strong>land (Tamm<strong>in</strong>en etal. 2007). Equal mean values are marked with the same letter (Bonferroni test).n C N C/NP<strong>in</strong>e 2 50.6 1.52 33.3 a0-10cmBirch 5 45.7 2.23 20.6 bAlder 2 39.8 2.39 16.6 bP<strong>in</strong>e 2 50.5 1.50 a 33.8 a10-20cm20-30cmBirch 4 45.0 2.41 b 18.7 bAlder 0P<strong>in</strong>e 2 51.3 2.10 a 24.4Birch 3 45.4 2.66 b 17.1Alder 0Plant NutrientsNutrient analyses were carried out on the ground veget<strong>at</strong>ion and tree foliage <strong>of</strong> the 94FEH plots to map the current nutrient st<strong>at</strong>us <strong>of</strong> forest veget<strong>at</strong>ion on <strong>Olkiluoto</strong> Island.When possible, shoot samples <strong>of</strong> the most abundant or frequent evergreen and deciduousdwarf shrub, herb, grass, bryophyte and lichen species were collected from eachplot for chemical analysis (Huhta & Korpela <strong>2006</strong>). Leaf samples <strong>of</strong> trees were collectedfor chemical analysis <strong>in</strong> August 2005, and needle samples <strong>in</strong> March <strong>2006</strong> (Tamm<strong>in</strong>enet al. 2007). Samples were taken <strong>in</strong>dividually from the dom<strong>in</strong>ant tree species oneach plot. When possible, the rema<strong>in</strong><strong>in</strong>g part <strong>of</strong> the samples were archived for futureuse.The carbon and nitrogen concentr<strong>at</strong>ions <strong>of</strong> the samples were analysed us<strong>in</strong>g a CHNanalyser. The element concentr<strong>at</strong>ions (P, K, S, Ca, Mg, B, Cu, Zn, Mn, Na, Fe, Al, Cd,Cr, Ni, Pb and Mo) were determ<strong>in</strong>ed by wet digestion (HNO 3 /H 2 O 2 ) and analysed byICP-AES. The results were expressed as a concentr<strong>at</strong>ion per weight <strong>of</strong> dry m<strong>at</strong>ter (dry<strong>in</strong>g<strong>at</strong> +105°C). Concentr<strong>at</strong>ions <strong>of</strong> exchangeable c<strong>at</strong>ions, pH and exchangeable acidity


17bryophytes and Pb concentr<strong>at</strong>ions were higher than the detection level for analysis only<strong>in</strong> bryophytes and lichens.Foliage analyses <strong>in</strong>dic<strong>at</strong>ed ma<strong>in</strong>ly good nutritional st<strong>at</strong>us <strong>of</strong> studied forests on the<strong>Olkiluoto</strong> Island (Fig. 8, Tamm<strong>in</strong>en et al. 2007). However, calcium concentr<strong>at</strong>ion <strong>in</strong>Scots p<strong>in</strong>e needles, sulphur and copper <strong>in</strong> Norway spruce needles and phosphorus, potassiumand copper concentr<strong>at</strong>ions <strong>in</strong> birch leaves were below optimal values. Averagecarbon content was 52.8% <strong>in</strong> current needles <strong>of</strong> p<strong>in</strong>e and 51.4% <strong>in</strong> spruce. Birch andalder grow<strong>in</strong>g on pe<strong>at</strong>land sites have slightly higher carbon content <strong>in</strong> their leaves(53.2% for birch and 51.9% for alder) than trees grow<strong>in</strong>g on m<strong>in</strong>eral soils (52.5% and51.8%, respectively).Figure 8. Needle nitrogen (N), phosphorus (P), potassium (K), sulphur (S), calcium(Ca) and magnesium (Mg) concentr<strong>at</strong>ions (+standard error) <strong>in</strong> current (C) and previous-year(C+1) needles <strong>of</strong> Scots p<strong>in</strong>e and Norway spruce stands grouped by site fertilityand stand age (Tamm<strong>in</strong>en et al. 2007). See Table 11 for a def<strong>in</strong>ition <strong>of</strong> forest sitetypes. Here MT <strong>in</strong>cludes also site types less fertile than MT, and OMT also site typesmore fertile than OMT.


18Soil MicrobesCarbon (C) and nitrogen (N) cycles <strong>in</strong> the ecosystem are strongly coupled. Biomass,structure and activity <strong>of</strong> the bacterial and fungal community are the key factors <strong>in</strong>fluenc<strong>in</strong>gC and N cycles. Changes <strong>in</strong> the function <strong>of</strong> soil microbial community can be asignal <strong>of</strong> plant responses to environmental changes. Potila et al. (2007) measured dissolvedN compounds, microbial biomass, microbial activity, fungal community structureand functional diversity <strong>of</strong> microbial communities <strong>in</strong> the organic layer <strong>of</strong> forestsoils on <strong>Olkiluoto</strong> <strong>in</strong> September <strong>2006</strong> to obta<strong>in</strong> <strong>in</strong>form<strong>at</strong>ion about soil microbial communitystructure and activity. The measurements were performed <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong>MRK plots 1, 4, 6, 8, and 10 (see loc<strong>at</strong>ion map <strong>in</strong> Fig. 15 and explan<strong>at</strong>ion <strong>in</strong> AppendixB). Two samples were collected from each plot. Some ma<strong>in</strong> results are presented below.See Appendix D for an example <strong>of</strong> a result table, and Potila et al. (2007) for detailedresults.The concentr<strong>at</strong>ions <strong>of</strong> extractable dissolved organic carbon (DOC) <strong>in</strong> the organic layerwere higher <strong>in</strong> FIP4 (a Scots p<strong>in</strong>e plot) than <strong>in</strong> the other plots. On area basis, however,there was more DOC <strong>in</strong> the Norway spruce plots than <strong>in</strong> the Scots p<strong>in</strong>e plots. The samewas true for DON: the concentr<strong>at</strong>ion was higher under p<strong>in</strong>e, but on an area basis therewas more DON <strong>in</strong> spruce forests. There was high vari<strong>at</strong>ion <strong>in</strong> the net N m<strong>in</strong>eralis<strong>at</strong>ionbetween the samples (Fig. 9). It was higher <strong>in</strong> spruce stands than <strong>in</strong> p<strong>in</strong>e stands, andhigher <strong>in</strong> the younger spruce stands than <strong>in</strong> the old spruce stand (FIP10).Microbial biomass C (C mic ) varied from 7.2 to 13.2 mg/g OM <strong>in</strong> the organic layer, anddid not differ <strong>in</strong> p<strong>in</strong>e and spruce stands <strong>in</strong> average (Fig. 10). The same was true for microbialbiomass N (N mic ), which varied from 0.5 to 1.0 mg/g OM (Fig. 11). Fungalbiomass measured as ergosterol concentr<strong>at</strong>ion varied from 306 to 868 µg/g OM. Theconcentr<strong>at</strong>ion was higher <strong>in</strong> p<strong>in</strong>e stands than <strong>in</strong> spruce stands (Fig. 12).The number <strong>of</strong> studied DNA fragments (ITS), describ<strong>in</strong>g richness <strong>of</strong> taxa, varied between9 and 14. There were differences <strong>in</strong> the functional diversity between the plots, aswell. This is crucial for the long-term stability <strong>of</strong> an ecosystem.High with<strong>in</strong> and between vari<strong>at</strong>ion <strong>in</strong> the studied plots were detected. However, <strong>in</strong> thisstudy the values and their vari<strong>at</strong>ion <strong>in</strong> the level <strong>of</strong> N m<strong>in</strong>eralis<strong>at</strong>ion, dissolved N compounds,fungal biomass and microbial community structure <strong>in</strong> the studied plots werewith<strong>in</strong> a normal range <strong>in</strong> comparison with other published d<strong>at</strong>a <strong>of</strong> similar forest types <strong>in</strong>F<strong>in</strong>land.


194.543.53Norway spruceScots p<strong>in</strong>emg/kg OM/d2.521.510.50MRK8 MRK8 MRK6 MRK6 FIP10 FIP10 MRK1 MRK1 FIP4 FIP4Figure 9. Net m<strong>in</strong>eralis<strong>at</strong>ion per day (mg/kg OM/d) <strong>in</strong> the organic layer <strong>of</strong> studiedMRK plots (d<strong>at</strong>a by Potila et al. 2007).1412Norway spruceScots p<strong>in</strong>e10mg/g OM86420MRK8 MRK8 MRK6 MRK6 FIP10 FIP10 MRK1 MRK1 FIP4 FIP4Figure 10. Microbial biomass C (C mic ) <strong>in</strong> the organic layer <strong>of</strong> studied MRK plots, mg/gOM (d<strong>at</strong>a by Potila et al. 2007).


201.2Norway spruceScots p<strong>in</strong>e10.8mg/g OM0.60.40.20MRK8 MRK8 MRK6 MRK6 FIP10 FIP10 MRK1 MRK1 FIP4 FIP4Figure 11. Microbial biomass N (N mic ) <strong>in</strong> the organic layer <strong>of</strong> studied MRK plots, mg/gOM (d<strong>at</strong>a by Potila et al. 2007).1000900800700Norway spruceScots p<strong>in</strong>emicro-g/g OM6005004003002001000MRK8 MRK8 MRK6 MRK6 FIP10 FIP10 MRK1 MRK1 FIP4 FIP4Figure 12. Ergosterol <strong>in</strong> the organic layer <strong>of</strong> studied MRK plots, µg/g OM (d<strong>at</strong>a byPotila et al. 2007).


21Biomass <strong>of</strong> FloraThe biomass <strong>of</strong> terrestrial veget<strong>at</strong>ion was estim<strong>at</strong>ed for the <strong>Olkiluoto</strong> Biosphere DescriptionReport (Haapanen et al. 2007) by the F<strong>in</strong>nish Forest Research Institute. Twodifferent ways were used: Stand-based estim<strong>at</strong>ion, where the volumes for VCP units by Rautio et al.(2004) were converted to biomass us<strong>in</strong>g Biomass Expansion Factors (BEF) byLehtonen et al. (2004a) and understorey biomass models by Muukkonen andMäkipää (<strong>2006</strong>). Tree-based estim<strong>at</strong>ion, where the s<strong>in</strong>gle tree d<strong>at</strong>a measured from the FET plots(Saramäki & Korhonen 2005) was converted to biomasses us<strong>in</strong>g models byMarklund (1988), except for f<strong>in</strong>e roots, the biomass <strong>of</strong> which was calcul<strong>at</strong>ed accord<strong>in</strong>gto Helmisaari et al. (2007), and for leaves (models cre<strong>at</strong>ed <strong>in</strong> FFRI byJaakko Repola and Risto Ojansuu). Biomass <strong>of</strong> coarse roots and stumps <strong>of</strong> deciduoustrees were estim<strong>at</strong>ed us<strong>in</strong>g Marklund's (1988) models for p<strong>in</strong>e. The understoreyveget<strong>at</strong>ion coverages <strong>of</strong> the FEH plots were converted to biomassesus<strong>in</strong>g models cre<strong>at</strong>ed <strong>at</strong> the F<strong>in</strong>nish Forest Research Institute (Maija Salemaa).The carbon content <strong>of</strong> veget<strong>at</strong>ion was assumed to be 50% <strong>of</strong> dry mass. Net production<strong>of</strong> the tree layer was calcul<strong>at</strong>ed us<strong>in</strong>g measured growth estim<strong>at</strong>es (d<strong>at</strong>a from Rautio etal. 2004) and BEFs by Lehtonen et al. (2004a). Net production <strong>of</strong> ground veget<strong>at</strong>ionwas estim<strong>at</strong>ed with turnover r<strong>at</strong>es (Muukkonen & Lehtonen 2004). Litter productionestim<strong>at</strong>es are based on turnover r<strong>at</strong>e coefficients <strong>of</strong> biomass compartments (Lehtonen etal. 2004b, Muukkonen & Lehtonen 2004, Starr et al. 2005, Liski et al. <strong>2006</strong>,Muukkonen & Mäkipää <strong>2006</strong>).Accord<strong>in</strong>g to the calcul<strong>at</strong>ions by stands (VCP) the biomass <strong>of</strong> terrestrial veget<strong>at</strong>ion <strong>in</strong>the stands varied between 0.14 and 28.4 kg/m 2 , mean value be<strong>in</strong>g 7.3 kg/m 2 . Accord<strong>in</strong>gly,carbon content varied between 0.07 and 14.2 kg/m 2 , and the highest values wereobserved <strong>in</strong> the N<strong>at</strong>ura conserv<strong>at</strong>ion area (Fig. 13). The mean carbon content <strong>in</strong> Scotsp<strong>in</strong>e, Norway spruce and deciduous stands was 0.8, 1.2 and 1.5 kg/m 2 , while the maximumcarbon content was 9.1, 9.9 and 11.7 kg/m 2 , respectively. The correspond<strong>in</strong>g valuesfor understorey veget<strong>at</strong>ion were mean 0.13 and maximum 0.32 kg C/m 2 . The totalcarbon content was 24,139 Mg <strong>in</strong> the terrestrial veget<strong>at</strong>ion <strong>of</strong> the stands on the <strong>Olkiluoto</strong>Island. Based on FET plot measurements, the highest mean carbon content 10.2kg/m 2 was found <strong>in</strong> 81–100-year-old spruce-dom<strong>in</strong><strong>at</strong>ed forests (Table 10). Mean carboncontent <strong>in</strong>creased from young and <strong>in</strong>fertile sites to more fertile and older ones (Table11). On average, the stem with bark accounted for 43, branches for 22, foliage for 15,stump for 5 and roots for 15% <strong>of</strong> the total tree biomass on FET plots. The amount <strong>of</strong>carbon bound <strong>in</strong> ground veget<strong>at</strong>ion was clearly less than <strong>in</strong> trees (mean value 0.10kg/m 2 , Tables 12 and 13).The comb<strong>in</strong>ed net production <strong>of</strong> the trees and understorey veget<strong>at</strong>ion varied from 49 to763 be<strong>in</strong>g on average 302 g C/m 2 /a (Fig. 14). Estim<strong>at</strong>es <strong>of</strong> annual fluxes <strong>of</strong> net production(growth) and litter production by dom<strong>in</strong>ant tree species are presented <strong>in</strong> Tables 14and 15.


22Figure 13. The biomass distribution <strong>of</strong> the terrestrial veget<strong>at</strong>ion (kg C/m 2 ) by forestcompartments on <strong>Olkiluoto</strong> Island, based on Biomass Expansion Factors (Lehtonen etal. 2004a). (Haapanen et al. 2007).Figure 14. Net production <strong>of</strong> the tree layer and understorey veget<strong>at</strong>ion on <strong>Olkiluoto</strong>Island. (Haapanen et al. 2007).


23Table 10. Mean carbon content (kg/m 2 ) <strong>in</strong> tree stands (below-ground parts <strong>in</strong>cluded) <strong>of</strong>the forest study area on <strong>Olkiluoto</strong> ma<strong>in</strong> island by dom<strong>in</strong>ant tree species and age class(based on calcul<strong>at</strong>ed biomass distribution on FET plots and carbon coefficient estim<strong>at</strong>e0.50). (Haapanen et al. 2007).Age class, yearsSpecies 1- 21- 41- 61- 81- 101- 121 Total20 40 60 80 100 120 -P<strong>in</strong>e 2.1 4.9 5.0 6.3 3.1 3.5 4.0 3.9Spruce 2.3 5.0 6.8 7.7 10.2 8.9 9.5 6.4Birch 2.0 3.2 6.1 7.5 9.2 3.3Otherbroadl.2.5 5.5 6.0 8.1 5.1Table 11. Mean carbon content (kg/m 2 ) <strong>in</strong> tree stands (below-ground parts <strong>in</strong>cluded) <strong>of</strong>the forest study area on <strong>Olkiluoto</strong> ma<strong>in</strong> island by site types and age class (based oncalcul<strong>at</strong>ed biomass distribution on FET plots and carbon coefficient estim<strong>at</strong>e 0.50). Sitetypes: grove, grove-like, fresh, dryish, dry and extremely <strong>in</strong>fertile m<strong>in</strong>eral soil types, allwith correspond<strong>in</strong>g mire and dra<strong>in</strong>ed pe<strong>at</strong>land types. Rocky soils also <strong>in</strong>clude f<strong>in</strong>esandy soil and stony soil. F<strong>in</strong>nish site type abbrevi<strong>at</strong>ions appear <strong>in</strong> parentheses. (Haapanenet al. 2007).Age class, yearsSite type 1- 21- 41- 61- 81- 101- 121 Total20 40 60 80 100 120 -Grove (Lh) 1.8 4.9 6.8 4.3 5.5Grove-like (OMT) 2.6 5.4 7.0 8.8 14.3 14.3 6.3Fresh (MT) 2.2 4.8 6.4 7.6 8.5 8.9 5.9 5.0Dryish (VT) 1.7 4.1 5.0 4.8 6.0 7.5 10.7 3.3Dry (CT) 2.2 1.9 1.8 4.5 2.9 5.0 2.7Infertile (ClT) 1.3 2.7 3.7 2.6Rocky soils 1.6 2.1 1.4 1.9 5.2 2.4Table 12. Mean carbon content (g/m 2 ) <strong>in</strong> ground veget<strong>at</strong>ion (below-ground parts <strong>in</strong>cluded)<strong>of</strong> the forest study area on <strong>Olkiluoto</strong> ma<strong>in</strong> island by dom<strong>in</strong>ant tree species andage class (based on calcul<strong>at</strong>ed biomass distribution on FEH plots and carbon coefficientestim<strong>at</strong>e 0.50). (Haapanen et al. 2007).Age class, yearsSpecies 1-20 21- 41- 61- 81- 101- 121- Total40 60 80 100 120P<strong>in</strong>e 117.6 127.3 140.2 205.4 118.2 159.2 119.0 130.9Spruce 89.9 92.0 93.6 99.0 65.8 69.5 88.4Birch 112.1 90.1 179.1 107.7Otherbroadl.67.2 101.8 39.1 61.0


24Table 13. Mean carbon content (g/m 2 ) <strong>in</strong> ground veget<strong>at</strong>ion (below-ground parts <strong>in</strong>cluded)<strong>of</strong> the forest study area on <strong>Olkiluoto</strong> ma<strong>in</strong> island by site types and age class(based on calcul<strong>at</strong>ed biomass distribution on FEH plots and carbon coefficient estim<strong>at</strong>e0.50). Site types: grove, grove-like, fresh, dryish, dry and extremely <strong>in</strong>fertile m<strong>in</strong>eralsoil types, all with correspond<strong>in</strong>g mire and dra<strong>in</strong>ed pe<strong>at</strong>land types. Rocky soils also<strong>in</strong>clude f<strong>in</strong>e sandy soil and stony soil. F<strong>in</strong>nish site type abbrevi<strong>at</strong>ions are presented <strong>in</strong>parentheses. (Haapanen et al. 2007).Age class, yearsSite type 1-20 21- 41- 61- 81- 101- 121- Total40 60 80 100 120Grove (Lh) 102.2 102.2Grove-like (OMT) 108.7 84.5 73.5 58.6 62.9 69.5 82.1Fresh (MT) 86.8 132.8 103.5 144.5 69.6 110.7Dryish (VT) 196.1 196.1Dry (CT) 227.2 159.2 181.9Infertile (ClT) 163.2 163.2Rocky soils 128.1 118.2 74.7 114.3Table 14. Estim<strong>at</strong>ed net production <strong>of</strong> plants (below-ground parts <strong>in</strong>cluded) <strong>of</strong> the foreststudy area on <strong>Olkiluoto</strong> ma<strong>in</strong> island by plant species/group. (Haapanen et al. 2007).Net production Mg C/ha/yp<strong>in</strong>e spruce decid. g-veg. sumM<strong>in</strong>eral soils 0.74 0.83 0.54 0.75 2.86Pe<strong>at</strong>lands 0.22 0.63 0.54 1.04 2.42Table 15. Estim<strong>at</strong>ed litter production <strong>of</strong> plants (below-ground parts <strong>in</strong>cluded) <strong>of</strong> theforest study area on <strong>Olkiluoto</strong> ma<strong>in</strong> island by plant species/group. Litter production<strong>in</strong>cludes also n<strong>at</strong>ural mortality. (Haapanen et al. 2007).Litter production Mg C/ha/yp<strong>in</strong>e spruce decid. g-veg. sumM<strong>in</strong>eral soils 0.75 0.62 0.50 0.75 2.61Pe<strong>at</strong>lands 0.32 0.23 0.81 1.04 2.39Rough estim<strong>at</strong>es <strong>of</strong> the prevail<strong>in</strong>g n<strong>at</strong>ural carbon balance on <strong>Olkiluoto</strong> ma<strong>in</strong> island wereobta<strong>in</strong>ed by comb<strong>in</strong><strong>in</strong>g the results <strong>of</strong> net production and decomposition (Table 16).Table 16. Estim<strong>at</strong>ed carbon balances (below-ground parts <strong>in</strong>cluded) <strong>of</strong> the forest studyarea on <strong>Olkiluoto</strong> ma<strong>in</strong> island by plant species/group. Fell<strong>in</strong>gs are ignored. A neg<strong>at</strong>ivesign <strong>in</strong>dic<strong>at</strong>es carbon emission. (Haapanen et al. 2007).Carbon balance Mg C/ha/yp<strong>in</strong>e spruce decid. g-veg. emission sumM<strong>in</strong>eral soils 0.04 0.24 0.07 0.04 -0.18 0.20Pe<strong>at</strong>lands -0.05 0.43 -0.19 0.05 -0.73 -0.50


25Bulk Deposition and Stand Throughfall: MRKAnnual precipit<strong>at</strong>ion, <strong>in</strong>terception by the tree canopies, and the mean pH and amounts<strong>of</strong> a range <strong>of</strong> anions, c<strong>at</strong>ions and other elements <strong>in</strong> bulk deposition and <strong>in</strong> standthroughfall dur<strong>in</strong>g the period Jan 1, 2004–Dec 31, <strong>2006</strong> have been presented by Antti-Jussi L<strong>in</strong>droos and John Derome (F<strong>in</strong>nish Forest Research Institute) <strong>in</strong> a memo and aresummarized below. The result tables can be found <strong>in</strong> Appendix E. The plot network ispresented <strong>in</strong> Fig. 15.Figure 15. Loc<strong>at</strong>ion <strong>of</strong> MRK plots.The mean amount <strong>of</strong> precipit<strong>at</strong>ion dur<strong>in</strong>g <strong>2006</strong> on the plots <strong>in</strong> open areas (bulk deposition;plots MRK2, MRK7 and MRK9) was slightly higher (535 mm) than <strong>in</strong> 2005 (491mm), but clearly lower than the situ<strong>at</strong>ion <strong>in</strong> 2004 (632 mm) (Fig. 16, Table E-1). Therewas considerable vari<strong>at</strong>ion between the annual amounts <strong>of</strong> precipit<strong>at</strong>ion measured onthe <strong>in</strong>dividual plots <strong>in</strong> <strong>2006</strong>, as was the case <strong>in</strong> 2005. Plot MRK9 aga<strong>in</strong> had considerablylower precipit<strong>at</strong>ion than the other two plots. The difference between the amounts <strong>of</strong>precipit<strong>at</strong>ion was most probably rel<strong>at</strong>ed to topographic fe<strong>at</strong>ures.


26700600500400300200Open areaForested area20042005<strong>2006</strong>1000MRK2MRK7MRK9MRK1MRK3MRK4MRK5MRK6MRK8MRK10Figure 16. Amounts <strong>of</strong> precipit<strong>at</strong>ion <strong>in</strong> open areas (blue columns) and forested areas(green columns) on MRK plots <strong>in</strong> 2004-<strong>2006</strong>.The mean amount <strong>of</strong> precipit<strong>at</strong>ion <strong>in</strong> stand throughfall <strong>in</strong> <strong>2006</strong> was clearly lower thanth<strong>at</strong> measured <strong>in</strong> bulk deposition <strong>in</strong> open areas (Fig. 16, Table E-1). The mean amounts<strong>of</strong> both variables were higher than th<strong>at</strong> <strong>in</strong> 2005, but lower than <strong>in</strong> 2004. This clearlydemonstr<strong>at</strong>es th<strong>at</strong> the amount <strong>of</strong> precipit<strong>at</strong>ion fall<strong>in</strong>g on the forest floor with<strong>in</strong> thestands is strongly dependent on the precipit<strong>at</strong>ion above the tree canopies. Although thecanopy layer and forest structure have a major effect on the amount <strong>of</strong> w<strong>at</strong>er <strong>in</strong> standthroughfall, the precipit<strong>at</strong>ion <strong>in</strong> the open area is the most important factor regul<strong>at</strong><strong>in</strong>g theamount <strong>of</strong> w<strong>at</strong>er pass<strong>in</strong>g to the forest floor <strong>in</strong> F<strong>in</strong>nish conditions. However, a clear effect<strong>of</strong> the tree canopy layer can be seen <strong>in</strong> the mean <strong>in</strong>terception values (precipit<strong>at</strong>ion<strong>in</strong> the open – th<strong>at</strong> <strong>in</strong> the stand) (Fig. 17, Table E-2). The mean <strong>in</strong>terceptions <strong>of</strong> precipit<strong>at</strong>ionby the tree crowns as percentage <strong>of</strong> the precipit<strong>at</strong>ion <strong>in</strong> the open were 37, 28 and29% <strong>in</strong> 2004, 2005 and <strong>2006</strong>, respectively. The difference between 2004 and 2005-<strong>2006</strong> suggests th<strong>at</strong> a higher proportion <strong>of</strong> total precipit<strong>at</strong>ion occurred as snow dur<strong>in</strong>g2005-<strong>2006</strong>. For comparison, the <strong>in</strong>terception value was ca. 20% <strong>in</strong> the Scots p<strong>in</strong>e plotsloc<strong>at</strong>ed <strong>at</strong> Juupajoki and Tammela.The mean pH <strong>of</strong> bulk deposition <strong>at</strong> <strong>Olkiluoto</strong> dur<strong>in</strong>g <strong>2006</strong> was 5.1 (Fig. 18, Table E-3),and there were no clear changes <strong>in</strong> pH dur<strong>in</strong>g 2004-<strong>2006</strong>. The mean pH correspondsr<strong>at</strong>her well to the mean values measured <strong>in</strong> F<strong>in</strong>land <strong>in</strong> recent years. Deposition <strong>at</strong><strong>Olkiluoto</strong> conta<strong>in</strong>ed an appreciable <strong>in</strong>put <strong>of</strong> base c<strong>at</strong>ions (Ca, Mg, K, Na), and this willhave contributed to the ma<strong>in</strong>tenance <strong>of</strong> pH values <strong>at</strong> a level slightly above the n<strong>at</strong>ionallevel. In stand throughfall (Fig. 18, Table E-4), the pH cont<strong>in</strong>ued to <strong>in</strong>crease <strong>in</strong> <strong>2006</strong>compared with the pH <strong>in</strong> 2004 and 2005. However, the changes were m<strong>in</strong>imal.


27Interception <strong>of</strong> precipit<strong>at</strong>ion by tree crowns, %50.0045.0040.0035.0030.0025.0020.0015.0010.005.000.00MRK1 MRK3 MRK4 MRK5 MRK6 MRK8 MRK1020042005<strong>2006</strong>Figure 17. Interception <strong>of</strong> precipit<strong>at</strong>ion by the tree crowns as percentage <strong>of</strong> precipit<strong>at</strong>ion<strong>in</strong> the open on MRK plots <strong>in</strong> 2004-<strong>2006</strong>.6Open areaForested area5pH20042005<strong>2006</strong>43MRK2MRK7MRK9REFMRK1MRK3MRK4MRK5MRK6MRK8MRK10REFFigure 18. pH <strong>in</strong> bulk deposition (blue columns) and stand throughfall (green columns)on MRK plots <strong>in</strong> 2004-<strong>2006</strong> and correspond<strong>in</strong>g reference areas <strong>in</strong> 2004.The deposition <strong>of</strong> total nitrogen <strong>in</strong> bulk deposition decreased between 2004 and <strong>2006</strong>(Fig. 19, Table E-3). NH 4 -N deposition <strong>in</strong> bulk deposition was also lower <strong>in</strong> <strong>2006</strong> than<strong>in</strong> 2004 or 2005, but NO 3 -N deposition <strong>in</strong> bulk deposition rema<strong>in</strong>ed rel<strong>at</strong>ively constantdur<strong>in</strong>g the 2004-<strong>2006</strong> period. The deposition <strong>of</strong> nitrogen compounds <strong>in</strong> stand through-


28fall (Table E-4) was lower than th<strong>at</strong> <strong>in</strong> bulk deposition <strong>in</strong> <strong>2006</strong>, as was also the case <strong>in</strong>2004 and 2005. This is a well-documented phenomenon <strong>in</strong> coniferous stands <strong>in</strong> F<strong>in</strong>land,where the deposition <strong>of</strong> nitrogen compounds is rel<strong>at</strong>ively low.400Open areaForested areaTotal N, mg/m230020020042005<strong>2006</strong>1000MRK2MRK7MRK9REFMRK1MRK3MRK4MRK5MRK6MRK8MRK10REFFigure 19. Total nitrogen <strong>in</strong> bulk deposition (blue columns) and stand throughfall(green columns) <strong>in</strong> 2004-<strong>2006</strong> on MRK plots and reference areas.Sulphur (SO 4 -S) deposition <strong>in</strong> bulk deposition was <strong>at</strong> the same level <strong>in</strong> <strong>2006</strong> as <strong>in</strong> 2005,but clearly lower than <strong>in</strong> 2004. There was a decreas<strong>in</strong>g trend <strong>in</strong> SO 4 -S deposition <strong>in</strong>stand throughfall dur<strong>in</strong>g 2004 to <strong>2006</strong>. Sulph<strong>at</strong>e deposition was clearly higher <strong>in</strong> standthroughfall than <strong>in</strong> bulk deposition due to the wash-<strong>of</strong>f <strong>of</strong> dry deposition from the treecanopies. Sulph<strong>at</strong>e deposition <strong>in</strong> stand throughfall is considered to r<strong>at</strong>her well representthe total deposition <strong>of</strong> sulph<strong>at</strong>e from the <strong>at</strong>mosphere to forest ecosystems.The deposition <strong>of</strong> base c<strong>at</strong>ions (Ca, Mg, K and Na) <strong>in</strong> both bulk deposition andthroughfall were high on all the plots (Tables E-3 and E-4) compared with the situ<strong>at</strong>ionelsewhere <strong>in</strong> F<strong>in</strong>land. This is presumably due to the rel<strong>at</strong>ively dense network <strong>of</strong> forestroads and the commencement <strong>of</strong> construction work <strong>in</strong> the area; dust from unsurfacedroads and stone-crush<strong>in</strong>g plants is a major source <strong>of</strong> base c<strong>at</strong>ion deposition. The deposition<strong>of</strong> base c<strong>at</strong>ions <strong>in</strong> <strong>2006</strong> <strong>in</strong> bulk deposition and stand throughfall did not differmarkedly from the situ<strong>at</strong>ion <strong>in</strong> 2004 or 2005. The rel<strong>at</strong>ively high deposition <strong>of</strong> Cl (withassoci<strong>at</strong>ed Na) <strong>at</strong> <strong>Olkiluoto</strong> is due to the proximity <strong>of</strong> the sea, and this is also seen <strong>in</strong> theresults for <strong>2006</strong>. The higher values for base c<strong>at</strong>ions and chloride <strong>in</strong> stand throughfall aredue to the leach<strong>in</strong>g and wash-<strong>of</strong>f processes tak<strong>in</strong>g place <strong>in</strong> the tree canopies.The deposition <strong>of</strong> PO 4 -P, Al, Fe, Mn, Cu, Zn and Si <strong>in</strong> bulk deposition and standthroughfall showed some <strong>in</strong>terest<strong>in</strong>g trends <strong>in</strong> <strong>2006</strong>, as was also the case <strong>in</strong> 2004 and2005 (Tables E-5 and E-6): <strong>in</strong> stand throughfall Al and Cu decreased and PO 4 -P, Fe,Mn, Zn and Si <strong>in</strong>creased compared with the values <strong>in</strong> bulk deposition. The deposition


29<strong>of</strong> both PO 4 -P and Mn <strong>in</strong> stand throughfall is normally higher than th<strong>at</strong> <strong>in</strong> bulk deposition.However, the other elements are not normally measured <strong>in</strong> bulk deposition <strong>in</strong> studieson ecosystem function<strong>in</strong>g, and therefore it is difficult to f<strong>in</strong>d comparable resultsfrom the liter<strong>at</strong>ure. An <strong>in</strong>crease <strong>in</strong> Fe, Mn and Si is understandable because these elementsare associ<strong>at</strong>ed with m<strong>in</strong>eral dust (e.g. from forest roads), but Al would also havebeen expected to <strong>in</strong>crease correspond<strong>in</strong>gly. The deposition <strong>of</strong> PO 4 -P, Al, Fe, Mn, Cu,Zn and Si <strong>in</strong> bulk deposition and stand throughfall was rel<strong>at</strong>ively similar <strong>in</strong> <strong>2006</strong> to thelevels <strong>in</strong> 2004 and 2005.Forest Intensive <strong>Monitor<strong>in</strong>g</strong> Plot: FIPSoil SolutionThe results <strong>of</strong> the soil solution monitor<strong>in</strong>g <strong>in</strong> 2004-<strong>2006</strong> were orig<strong>in</strong>ally reported byJohn Derome (F<strong>in</strong>nish Forest Research Institute) <strong>in</strong> a memo and are summarized below.The result tables can be found <strong>in</strong> Appendix F.The pl<strong>at</strong>e lysimeters <strong>at</strong> a depth <strong>of</strong> 5 cm functioned well on FIP4 dur<strong>in</strong>g the monitor<strong>in</strong>gperiod, the samples hav<strong>in</strong>g been obta<strong>in</strong>ed on almost all sampl<strong>in</strong>g occasions (<strong>at</strong> ca. fourweek <strong>in</strong>tervals). Despite the rel<strong>at</strong>ively dry summer <strong>in</strong> 2005, and especially <strong>in</strong> <strong>2006</strong>, thesuction-cup lysimeters also provided samples on seven sampl<strong>in</strong>g occasions (ca. fourweek <strong>in</strong>tervals) from 24.5.2005 to 7.11.2005 and on five occasions from 23.5. to2.11.<strong>2006</strong>. In July <strong>2006</strong>, no samples were obta<strong>in</strong>ed because precipit<strong>at</strong>ion was only 1.6mm. The pl<strong>at</strong>e lysimeters <strong>in</strong>stalled <strong>at</strong> a depth <strong>of</strong> 5 cm on the spruce plot yielded samplesonly on two occasions <strong>in</strong> 2005 (5.8. and 6.9.), but on five occasions <strong>in</strong> <strong>2006</strong> (19.6.,14.8., 11.9., 10.10. and 2.11.).In FIP4 the amount <strong>of</strong> percol<strong>at</strong>ion w<strong>at</strong>er pass<strong>in</strong>g down to a depth <strong>of</strong> 5 cm dur<strong>in</strong>g thesnow-free period (Fig. 20, Table F-1) was ca. 17% <strong>of</strong> the <strong>in</strong>put to the forest floor (standthroughfall) <strong>in</strong> 2004, ca. 21% <strong>in</strong> 2005, and ca. 16% <strong>in</strong> <strong>2006</strong>. There was considerablevari<strong>at</strong>ion between the sampl<strong>in</strong>g d<strong>at</strong>es due primarily to the vary<strong>in</strong>g amounts <strong>of</strong> standthroughfall. The amounts were especially low after snowmelt <strong>in</strong> the l<strong>at</strong>ter half <strong>of</strong> Mayand the first half <strong>of</strong> June <strong>in</strong> 2004, and <strong>in</strong> July and August <strong>in</strong> <strong>2006</strong>. Overall, the proportion<strong>of</strong> w<strong>at</strong>er pass<strong>in</strong>g down to a depth <strong>of</strong> 5 cm was rel<strong>at</strong>ively similar <strong>in</strong> all years, withslightly lower values <strong>in</strong> the dry parts <strong>of</strong> summer <strong>in</strong> 2004 and <strong>2006</strong>.


30160140120Percol<strong>at</strong>ion w<strong>at</strong>erStand throughfall100mm8060402020042005<strong>2006</strong>018.5-31.531.5-14.614.6-5.75.7-12.712.7-26.726.7-10.810.8-8.98.9-4.104.10-5.116.6-21.621.6-19.719.7-4.84.8-6.96.9-12.1012.10-7.1123.5-19.619.6-17.717.7-14.814.8-11.911.9-10.1010.10-2.11Figure 20. The amount <strong>of</strong> percol<strong>at</strong>ion w<strong>at</strong>er pass<strong>in</strong>g down to a depth <strong>of</strong> 5 cm dur<strong>in</strong>gthe snow-free period <strong>in</strong> 2004-<strong>2006</strong> <strong>in</strong> FIP4. The amount <strong>of</strong> stand throughfall is alsoshown.Percol<strong>at</strong>ion w<strong>at</strong>er collection started on plot FIP10 dur<strong>in</strong>g July 2005, and the results forthis plot are only <strong>in</strong>dic<strong>at</strong>ive. However, it is clear th<strong>at</strong> only very small amounts <strong>of</strong> standthroughfall passed down to a depth <strong>of</strong> 5 cm <strong>in</strong> the soil <strong>in</strong> 2005 (Fig. 21, Table F-2). In<strong>2006</strong>, when sampl<strong>in</strong>g covered the whole snow-free period, the proportion <strong>of</strong> percol<strong>at</strong>ionw<strong>at</strong>er pass<strong>in</strong>g down to a depth <strong>of</strong> 5 cm was ca. 7% <strong>of</strong> the <strong>in</strong>put to the forest floor. However,the actual amount was most probably much higher, because samples could not beobta<strong>in</strong>ed <strong>in</strong> June and early July ow<strong>in</strong>g to the fact th<strong>at</strong> the groundw<strong>at</strong>er table/sea levelwas above the ground surface on part <strong>of</strong> the plot.


31706050Percol<strong>at</strong>ion w<strong>at</strong>erStand throughfallmm403020102005<strong>2006</strong>019.7-5.85.8-22.822.8-6.96.9-13.923.5-19.619.6-17.717.7-14.814.8-11.911.9-10.1010.10-7.11Figure 21. The amount <strong>of</strong> percol<strong>at</strong>ion w<strong>at</strong>er pass<strong>in</strong>g down to a depth <strong>of</strong> 5 cm dur<strong>in</strong>gthe snow-free period <strong>in</strong> 2005-<strong>2006</strong> <strong>in</strong> FIP10. The amount <strong>of</strong> stand throughfall is alsoshown.The chemical composition <strong>of</strong> the soil solution dur<strong>in</strong>g the snow-free period <strong>in</strong> both plotswas compared with correspond<strong>in</strong>g values <strong>in</strong> a Scots p<strong>in</strong>e (FIP4) or Norway spruce(FIP10) stand grow<strong>in</strong>g on a site <strong>of</strong> similar fertility (Tammela, period 1998-2000, depths<strong>of</strong> 5, 20 and 40 cm). S<strong>in</strong>ce the monitor<strong>in</strong>g <strong>in</strong> FIP4 began earlier, the values could alsobe compared with those from 2004.In FIP4, the acidity <strong>of</strong> the soil solution was rel<strong>at</strong>ively similar <strong>at</strong> all depths <strong>in</strong> all threeyears, apart from a sharp drop <strong>at</strong> 10 cm <strong>in</strong> <strong>2006</strong> (Fig. 22, Table F-3). However, this wasdue to rel<strong>at</strong>ively low values (average 4.0) on the three sampl<strong>in</strong>g occasions <strong>in</strong> autumn.Otherwise the pH values <strong>at</strong> all depths were fully comparable to a site <strong>of</strong> similar fertility<strong>at</strong> Tammela. In FIP10 the pH <strong>of</strong> the soil solution <strong>at</strong> all depths <strong>in</strong> both years was considerablyhigher than th<strong>at</strong> <strong>in</strong> the reference spruce stand <strong>at</strong> Tammela, grow<strong>in</strong>g on similarsite type (Fig. 23, Table F-4). The ma<strong>in</strong> reason for this is th<strong>at</strong> the soil <strong>at</strong> <strong>Olkiluoto</strong> isconsiderably younger than th<strong>at</strong> <strong>at</strong> Tammela, and therefore conta<strong>in</strong>s much higher concentr<strong>at</strong>ions<strong>of</strong> base c<strong>at</strong>ions (Ca, Mg, K) (see Tables F-11 to F-14). Soil solution pH andbase c<strong>at</strong>ion concentr<strong>at</strong>ions are strongly neg<strong>at</strong>ively correl<strong>at</strong>ed <strong>in</strong> forest soils.


3265pH43220042005<strong>2006</strong>Ref. 1998-2000105 10 20 30 40Depth, cmFigure 22. pH <strong>of</strong> soil solution on FIP4 <strong>in</strong> 2004-<strong>2006</strong> and on the reference site <strong>in</strong> Tammela<strong>in</strong> 1998-2000. Note th<strong>at</strong> the reference d<strong>at</strong>a has been collected from depths 5, 20and 40 cm, while FIP4 d<strong>at</strong>a is from depths 5, 10, 20 and 30 cm.65pH4322005<strong>2006</strong>Ref. 1998-2000105 10 20 30 40Depth, cmFigure 23. pH <strong>of</strong> soil solution on FIP10 <strong>in</strong> 2005-<strong>2006</strong> and on the reference site <strong>in</strong>Tammela <strong>in</strong> 1998-2000. Note th<strong>at</strong> the reference d<strong>at</strong>a has been collected from depths 5,20 and 40 cm, while FIP10 d<strong>at</strong>a is from depths 5, 10, 20 and 30 cm.In FIP4, the DOC concentr<strong>at</strong>ions <strong>in</strong> 2004 and 2005 were considerably higher <strong>at</strong> a depth<strong>of</strong> 5 cm than <strong>at</strong> the reference site (Fig. 24), but not excessively high for organic m<strong>at</strong>terrichforest soils under a coniferous tree stand. The same was true for FIP10 <strong>in</strong> 2005-<strong>2006</strong> (Fig. 25). Install<strong>at</strong>ion <strong>of</strong> the suction-cup lysimeters undoubtedly caused short-termflushes <strong>of</strong> DOC <strong>at</strong> the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> monitor<strong>in</strong>g periods, but DOC is also strongly af-


33fected by precipit<strong>at</strong>ion and soil temper<strong>at</strong>ure. The <strong>in</strong>crease <strong>at</strong> depths <strong>of</strong> 10, 20 and 30 cm<strong>in</strong> <strong>2006</strong> on FIP4 may be rel<strong>at</strong>ed to the rel<strong>at</strong>ively dry, hot summer.160140120DOC, mg/l100806020042005<strong>2006</strong>Ref. 1998-2000402005 10 20 30 40Depth, cmFigure 24. DOC <strong>in</strong> soil solution on FIP4 <strong>in</strong> 2004-<strong>2006</strong> and on the reference site <strong>in</strong>Tammela <strong>in</strong> 1998-2000. Note th<strong>at</strong> the reference d<strong>at</strong>a has been collected from depths 5,20 and 40 cm, while FIP4 d<strong>at</strong>a is from depths 5, 10, 20 and 30 cm.140120100DOC, mg/l80602005<strong>2006</strong>Ref. 1998-2000402005 20 30 40De pth, cmFigure 25. DOC <strong>in</strong> soil solution on FIP10 <strong>in</strong> 2005-<strong>2006</strong> and on the reference site <strong>in</strong>Tammela <strong>in</strong> 1998-2000. Note th<strong>at</strong> the reference d<strong>at</strong>a has been collected from depths 5,20 and 40 cm, while FIP10 d<strong>at</strong>a is from depths 5, 10, 20 and 30 cm.


34Total nitrogen (Tables F-5 and F-6), which, <strong>in</strong> addition to ammonium and nitr<strong>at</strong>e, also<strong>in</strong>cludes organic dissolved nitrogen, obviously closely followed the p<strong>at</strong>tern for the DOCconcentr<strong>at</strong>ions on both plots. In FIP4, the NH 4 -N, and especially the NO 3 -N concentr<strong>at</strong>ions,were extremely low <strong>at</strong> all depths <strong>in</strong> the m<strong>in</strong>eral soil throughout the three yearperiod (Tables F-5 and F-7). The low concentr<strong>at</strong>ions are primarily due to the fact th<strong>at</strong>nitrogen is the ma<strong>in</strong> factor limit<strong>in</strong>g tree growth <strong>in</strong> coniferous stands <strong>in</strong> F<strong>in</strong>land; theavailable nitrogen (NH 4 and NO 3 ) m<strong>in</strong>eralized from the organic layer is rapidly takenup by the roots <strong>of</strong> the trees and ground veget<strong>at</strong>ion. In FIP10 the NH 4 -N and NO 3 -Nconcentr<strong>at</strong>ions were somewh<strong>at</strong> elev<strong>at</strong>ed <strong>at</strong> a depth <strong>of</strong> 5 cm compared to the referencesite (Tables F-6 and F-8).In FIP4, sulph<strong>at</strong>e concentr<strong>at</strong>ions <strong>at</strong> a depth <strong>of</strong> 5 cm (Table F-7) were considerablylower <strong>in</strong> all three years than those <strong>at</strong> the reference site but, but <strong>at</strong> other depths wererel<strong>at</strong>ively similar. There was a clear overall <strong>in</strong>crease <strong>in</strong> sulph<strong>at</strong>e concentr<strong>at</strong>ions with<strong>in</strong>creas<strong>in</strong>g depth, apart from <strong>at</strong> 20 and 30 cm <strong>in</strong> <strong>2006</strong>. Similar trends <strong>in</strong> the sulph<strong>at</strong>econcentr<strong>at</strong>ion have been reported <strong>at</strong> all the ICP Forests Level II plots <strong>in</strong> F<strong>in</strong>land(Derome et al. 2007). In FIP10, sulph<strong>at</strong>e concentr<strong>at</strong>ions were approxim<strong>at</strong>ely the sameas the reference site <strong>at</strong> a depth <strong>of</strong> 5 cm (Table F-8), but strongly elev<strong>at</strong>ed <strong>at</strong> 20 and 30cm. Chloride concentr<strong>at</strong>ions were extremely high <strong>at</strong> all depths throughout the monitor<strong>in</strong>gperiod <strong>in</strong> both plots (Tables F-9 and F-10); it is clear th<strong>at</strong> there is a considerable<strong>in</strong>put <strong>of</strong> NaCl <strong>in</strong> deposition derived from the sea. In FIP4, chloride concentr<strong>at</strong>ions <strong>at</strong> adepth <strong>of</strong> 5 cm showed a considerably <strong>in</strong>crease over the three-year period. Phosph<strong>at</strong>econcentr<strong>at</strong>ions were <strong>at</strong> approxim<strong>at</strong>ely normal levels on both plots (Tables F-9 and F-10). Phosph<strong>at</strong>e concentr<strong>at</strong>ions are very low <strong>in</strong> soil solution <strong>at</strong> most forested sites <strong>in</strong>F<strong>in</strong>land (Derome et al. 2007).In FIP4, the concentr<strong>at</strong>ions <strong>of</strong> the three important plant nutrients (Ca, Mg, K) were rel<strong>at</strong>ivelyelev<strong>at</strong>ed, especially <strong>in</strong> the m<strong>in</strong>eral soil (10, 20 and 30 cm) <strong>at</strong> the start <strong>of</strong> themonitor<strong>in</strong>g period <strong>in</strong> 2004 (Tables F-11 to F-14). S<strong>in</strong>ce then the concentr<strong>at</strong>ions <strong>in</strong> them<strong>in</strong>eral soil have fallen and are now approach<strong>in</strong>g the levels for the reference site. Thissuggests th<strong>at</strong> there has been a short-term flush <strong>of</strong> these nutrients follow<strong>in</strong>g <strong>in</strong>stall<strong>at</strong>ion<strong>of</strong> the lysimeters (as for DOC). The K concentr<strong>at</strong>ion below the organic layer <strong>in</strong> <strong>2006</strong><strong>in</strong>creased considerably. In FIP10 the concentr<strong>at</strong>ions <strong>of</strong> all three nutrients were stronglyelev<strong>at</strong>ed <strong>at</strong> all depths <strong>in</strong> the soil (Tables F-12 and F-14). The soil <strong>at</strong> the spruce plot <strong>at</strong><strong>Olkiluoto</strong> is very young, and we<strong>at</strong>her<strong>in</strong>g processes <strong>in</strong> the m<strong>in</strong>eral soil will be rel<strong>at</strong>ivelystrong and release abundant amounts <strong>of</strong> these three nutrients.The concentr<strong>at</strong>ions <strong>of</strong> Na <strong>at</strong> all depths cont<strong>in</strong>ued to be elev<strong>at</strong>ed on both plots, due to theproximity <strong>of</strong> the sea, we<strong>at</strong>her<strong>in</strong>g <strong>of</strong> m<strong>in</strong>erals (FIP10) and there was a rel<strong>at</strong>ively strong<strong>in</strong>crease (as for K) below the organic layer <strong>in</strong> FIP4 <strong>in</strong> <strong>2006</strong>.In FIP4 the concentr<strong>at</strong>ions <strong>of</strong> total Al <strong>at</strong> all depths were similar <strong>in</strong> all three years (TableF-15), and higher than the values for the reference site <strong>at</strong> deeper (10 – 30 cm) depths.The concentr<strong>at</strong>ion <strong>of</strong> Al 3+ , which is a form <strong>of</strong> Al th<strong>at</strong> is toxic to plant roots and mycorrhizas,was still extremely low <strong>at</strong> a depth <strong>of</strong> 5 cm, but considerably higher <strong>at</strong> theother depths compared with the reference site. However, they are still much lower thanthe widely accepted toxicity level <strong>of</strong> 2 mg/l. In FIP10 the total Al concentr<strong>at</strong>ions werelower <strong>at</strong> a depth <strong>of</strong> 5 cm, but the Al 3+ (Table F-16) and Mn concentr<strong>at</strong>ions (Table F-18)were rel<strong>at</strong>ively similar to the reference values <strong>at</strong> all depths. The Mn concentr<strong>at</strong>ions <strong>of</strong>


35FIP4 <strong>at</strong> all depths were very similar <strong>in</strong> all three years (Table F-17), and also similar tothe concentr<strong>at</strong>ions <strong>at</strong> the reference site.The Fe concentr<strong>at</strong>ions were higher <strong>at</strong> deeper depths than <strong>at</strong> the reference site, and FIP4.showed considerable year-to-year vari<strong>at</strong>ion (Table F-17). The Si concentr<strong>at</strong>ions <strong>at</strong>depths <strong>of</strong> 5 and 10 cm <strong>in</strong> 2005 and <strong>2006</strong> were considerably higher than the correspond<strong>in</strong>gvalues <strong>in</strong> 2004 (Table F-19), and higher than the correspond<strong>in</strong>g concentr<strong>at</strong>ions <strong>at</strong>the reference site. The values <strong>in</strong> FIP10 <strong>at</strong> depths <strong>of</strong> 20 and 30 cm were also stronglyelev<strong>at</strong>ed (Table F-20). The high silicon values are undoubtedly due to the young age <strong>of</strong>the soil: silicon plays an important role <strong>in</strong> soil-form<strong>in</strong>g processes (podzolis<strong>at</strong>ion) underconiferous tree species.The Cu concentr<strong>at</strong>ions <strong>at</strong> all depths <strong>of</strong> FIP10 and <strong>at</strong> the reference site, were below thelimit <strong>of</strong> quantific<strong>at</strong>ion <strong>of</strong> the analytical <strong>in</strong>strument (Table F-22). The same was true forFIP4 and the reference site, except the depth <strong>of</strong> 10 cm <strong>in</strong> 2005 <strong>in</strong> <strong>Olkiluoto</strong> (Table F-21). In FIP4 the Zn concentr<strong>at</strong>ions were rel<strong>at</strong>ively constant, and higher than the referencevalues throughout the monitor<strong>in</strong>g period. In FIP10, the Zn concentr<strong>at</strong>ions werealso slightly higher than the reference (Table F-22).The concentr<strong>at</strong>ions <strong>of</strong> heavy metals <strong>at</strong> all depths <strong>in</strong> FIP4 cont<strong>in</strong>ued to be below the limit<strong>of</strong> quantific<strong>at</strong>ion. In FIP10 the nickel concentr<strong>at</strong>ions <strong>at</strong> 20 and 30 cm were slightly elev<strong>at</strong>ed<strong>in</strong> 2005 (Table F-22), which is a rel<strong>at</strong>ively common f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> soils th<strong>at</strong> have developedfrom mar<strong>in</strong>e sediments. The Ni is derived from the bedrock <strong>in</strong> the region andnot a sign <strong>of</strong> pollution from <strong>in</strong>dustrial sources.Biomass and Carbon DistributionBiomass <strong>of</strong> different tree compartments on FIP plots was derived us<strong>in</strong>g tree-basedmodels, as presented above <strong>in</strong> the case <strong>of</strong> whole island. The results have been reported<strong>in</strong> a memo by Lasse Aro and Timo Kare<strong>in</strong>en (F<strong>in</strong>nish Forest Research Institute). Meancarbon content <strong>in</strong> Scots p<strong>in</strong>e stands <strong>of</strong> the FIP4 plot was 7.978 kg C m -2 (Table G-1).Mean carbon content <strong>in</strong> tree stands <strong>of</strong> the FIP10 plot was 16.946 kg C m -2 (from whichspruce counted 13.540 and birch 3.406 kg C m -2 , Table G-2).LitterfallLitterfall collection was started on the plot FIP4 <strong>in</strong> summer 2004 and on the plot FIP10<strong>in</strong> spr<strong>in</strong>g 2005, thus the results for litterfall production are <strong>in</strong>complete for 2004 on FIP4and for 2005 on FIP10. The results have been reported <strong>in</strong> a memo by Lasse Aro andTimo Kare<strong>in</strong>en (F<strong>in</strong>nish Forest Research Institute). Annual total litterfall productionwas 293 g m -2 <strong>in</strong> the Scots p<strong>in</strong>e stand FIP4 <strong>in</strong> 2005. This corresponded well with theresults from ICP Level II plot <strong>in</strong> Tammela (average 329 g m -2 dur<strong>in</strong>g 1996-2003; Ukonmaanaho2007). Detailed results are presented <strong>in</strong> Appendix H. The nutrient content<strong>of</strong> litter has also been analysed, but the report<strong>in</strong>g was underway.


36Defoli<strong>at</strong>ionThe degree <strong>of</strong> defoli<strong>at</strong>ion <strong>of</strong> Scots p<strong>in</strong>e and Norway spruce was determ<strong>in</strong>ed on FIPplots <strong>in</strong> August <strong>2006</strong>, and reported <strong>in</strong> a memo by Lasse Aro and Timo Kare<strong>in</strong>en(F<strong>in</strong>nish Forest Research Institute). The average defoli<strong>at</strong>ion level <strong>of</strong> p<strong>in</strong>es was 3.7%(±0.7) and <strong>of</strong> spruces 17.8% (±2.7) <strong>in</strong>dic<strong>at</strong><strong>in</strong>g good crown condition: p<strong>in</strong>es wereclassified as not defoli<strong>at</strong>ed and spruces as slightly defoli<strong>at</strong>ed. See Table 17 for results.Defoli<strong>at</strong>ion levels were also <strong>in</strong> agreement with the results from ICP Level II plots <strong>in</strong>Tammela (L<strong>in</strong>dgren et al. 2007).Table 17. Number <strong>of</strong> assessed trees (No) and defoli<strong>at</strong>ion degree (DEF, %) on the FIPplots.Plot Sub-plot Species No DEFFIP4 1 Scots p<strong>in</strong>e 20 3.22 Scots p<strong>in</strong>e 20 3.23 Scots p<strong>in</strong>e 20 4.24 Scots p<strong>in</strong>e 20 4.5Mean 3.7Tree GrowthFIP10 1 Norway spruce 20 15.82 Norway spruce 20 18.83 Norway spruce 20 15.54 Norway spruce 20 21.3Mean 17.8Tree characteristics are measured every fifth year. In addition, the diameter growth <strong>of</strong>two trees <strong>of</strong> both FIP plots is be<strong>in</strong>g measured cont<strong>in</strong>uously with girth bands, andrecorded once an hour (Figs. 26-27).Figure 26. A girth band measur<strong>in</strong>g diameter growth cont<strong>in</strong>uously <strong>in</strong> FIP4. Photo byReija Haapanen (May 2007).


375045403530mm252015105001/08/200409/11/200417/02/200528/05/200505/09/200514/12/200524/03/<strong>2006</strong>02/07/<strong>2006</strong>10/10/<strong>2006</strong>18/01/2007Figure 27. D<strong>at</strong>a from girth band <strong>of</strong> tree 395 <strong>in</strong> FIP4. Daily averages betweenSeptember 1, 2004 and December 12, <strong>2006</strong>.Stand MicrometeorologyStand meteorological measurements are recorded once an hour. The parameters are airtemper<strong>at</strong>ure, m<strong>in</strong>imum and maximum temper<strong>at</strong>ure <strong>in</strong>side the crown layer and above thecanopy, rel<strong>at</strong>ive humidity, precipit<strong>at</strong>ion (1 m above ground level), soil moisturecontent, and soil temper<strong>at</strong>ure. Depth <strong>of</strong> ground frost and the thickness <strong>of</strong> the snowcover are measured manually on FIP4. Photosynthetically active radi<strong>at</strong>ion (PAR), solarradi<strong>at</strong>ion, air pressure, w<strong>in</strong>d speed and its direction are measured only on FIP4. See Fig.28 for an example <strong>of</strong> recorded d<strong>at</strong>a.


38302520Temper<strong>at</strong>ure <strong>at</strong> 9 mPAR <strong>at</strong> 24 m600500Temper<strong>at</strong>ure, ºC151050-5-10400300200-15-20-2501/09/200417/10/200402/12/200417/01/200504/03/200519/04/200504/06/200520/07/200504/09/2005PAR, micromol/s/m220/10/200505/12/200520/01/<strong>2006</strong>07/03/<strong>2006</strong>22/04/<strong>2006</strong>07/06/<strong>2006</strong>23/07/<strong>2006</strong>07/09/<strong>2006</strong>23/10/<strong>2006</strong>08/12/<strong>2006</strong>1000Figure 28. Examples <strong>of</strong> d<strong>at</strong>a from meteorological measurements on FIP4: temper<strong>at</strong>ure<strong>at</strong> 9 m and PAR <strong>at</strong> 24 m. Daily averages between September 1, 2004 and December 12,<strong>2006</strong>.Terrestrial AnimalsAnimal life on <strong>Olkiluoto</strong> Island is <strong>in</strong>ventoried <strong>in</strong> the field (track counts, l<strong>in</strong>e transects,traps for small animals) <strong>at</strong> <strong>in</strong>tervals <strong>of</strong> ca. 10 years. Local hunters are <strong>in</strong>terviewedannually. Inventory results are reported <strong>in</strong> <strong>Posiva</strong> Work<strong>in</strong>g Reports and <strong>in</strong>terviews <strong>in</strong>memos or Work<strong>in</strong>g Reports. Accord<strong>in</strong>g to the plan, the game st<strong>at</strong>istics were upd<strong>at</strong>ed by<strong>in</strong>terview<strong>in</strong>g local hunters and the local hunt<strong>in</strong>g group (Olkiluodon metsästysseura) <strong>in</strong>March 2007 by Suomen Luontotieto Oy and have been reported by S<strong>at</strong>u Oja and JyrkiOja <strong>in</strong> a memo. The game c<strong>at</strong>ches <strong>in</strong> 2002-<strong>2006</strong> are presented <strong>in</strong> Appendix I where apopul<strong>at</strong>ion estim<strong>at</strong>e <strong>in</strong> <strong>2006</strong> is also given. The vari<strong>at</strong>ion <strong>of</strong> c<strong>at</strong>ches <strong>of</strong> mammals aregiven <strong>in</strong> Fig. 29.


392018C<strong>at</strong>ch, <strong>in</strong>dividuals1614121086MooseWhite-tailed deerRoe deerAmerican m<strong>in</strong>kRaccoon dogRed foxBadgerBrown hare & Mounta<strong>in</strong> hare4202002 2003 2004 2005 <strong>2006</strong>Figure 29. C<strong>at</strong>ches <strong>of</strong> mammals on <strong>Olkiluoto</strong> Island.The hunt<strong>in</strong>g season varies with respect to the game animals and the d<strong>at</strong>a are presentedaccord<strong>in</strong>g to these hunt<strong>in</strong>g seasons, and not calendar years. The ma<strong>in</strong> po<strong>in</strong>ts to be notedconcern<strong>in</strong>g the c<strong>at</strong>ches and popul<strong>at</strong>ions <strong>of</strong> game are as follows:CervidsOn <strong>Olkiluoto</strong>, the home ranges <strong>of</strong> moose are smaller than on the ma<strong>in</strong>land, where theytypically are 5-10 km 2 . On <strong>Olkiluoto</strong>, the home ranges overlap with other <strong>in</strong>dividuals'home ranges. There is also migr<strong>at</strong>ion from the coastal area to w<strong>in</strong>ter<strong>in</strong>g areas on thema<strong>in</strong>land. On <strong>Olkiluoto</strong>, most <strong>of</strong> the forests are ideal habit<strong>at</strong>s for white-tailed deer andthe popul<strong>at</strong>ion density is much higher than average <strong>in</strong> southern F<strong>in</strong>land; <strong>in</strong> fact, it is<strong>in</strong>creas<strong>in</strong>g. Only one roe deer was brought down <strong>in</strong> <strong>2006</strong>, while, <strong>in</strong> 2005, the number <strong>of</strong>c<strong>at</strong>ches was five to ten. The hunt<strong>in</strong>g <strong>of</strong> roe deer has not been regul<strong>at</strong>ed s<strong>in</strong>ce 2005,which cre<strong>at</strong>es uncerta<strong>in</strong>ty <strong>in</strong> the figures. The popul<strong>at</strong>ion on <strong>Olkiluoto</strong> (and generally <strong>in</strong>F<strong>in</strong>land) has grown <strong>in</strong> recent years. In the w<strong>in</strong>ter <strong>of</strong> 2005-<strong>2006</strong>, the popul<strong>at</strong>ion size wasabout 15-20 <strong>in</strong>dividuals, and there has been <strong>at</strong> least four road kill<strong>in</strong>gs with<strong>in</strong> a s<strong>in</strong>gleyear.Pred<strong>at</strong>ors <strong>of</strong> Small MammalsThe popul<strong>at</strong>ions <strong>of</strong> small mammal pred<strong>at</strong>ors (American m<strong>in</strong>k, raccoon dog, red fox)were smaller than last year. In <strong>Olkiluoto</strong>, the home ranges <strong>of</strong> red foxes probably overlapwidely, and foxes move freely to and from the ma<strong>in</strong>land. The red fox popul<strong>at</strong>ion mayhave grown on <strong>Olkiluoto</strong>. In 2002, two red fox dens were reported, but there have beenno reported observ<strong>at</strong>ions l<strong>at</strong>er.


40Exceptionally, only two raccoon dogs were killed on <strong>Olkiluoto</strong> <strong>in</strong> <strong>2006</strong>, because <strong>of</strong> lowhunt<strong>in</strong>g pressure caused by mild we<strong>at</strong>her. The number <strong>of</strong> c<strong>at</strong>ches does not necessary<strong>in</strong>dic<strong>at</strong>e the popul<strong>at</strong>ion size. In the autumn raccoon dogs move around a lot (especiallyyoung <strong>in</strong>dividuals) and hunt<strong>in</strong>g pressure also varies depend<strong>in</strong>g on we<strong>at</strong>her, snow, etc.It is probable th<strong>at</strong> the number <strong>of</strong> raccoon dogs on <strong>Olkiluoto</strong> has been <strong>in</strong>creas<strong>in</strong>g, or <strong>at</strong>least has not been decreas<strong>in</strong>g.There were no sight<strong>in</strong>gs <strong>of</strong> p<strong>in</strong>e martens <strong>at</strong> <strong>Olkiluoto</strong> between 2003-<strong>2006</strong>. However, itcan be assumed th<strong>at</strong> a pair or a solitary p<strong>in</strong>e marten live on the island.Small and Medium-Sized MammalsThere were no c<strong>at</strong>ches <strong>of</strong> brown hare or mounta<strong>in</strong> hare <strong>in</strong> <strong>Olkiluoto</strong> area <strong>in</strong> <strong>2006</strong>. Theirpopul<strong>at</strong>ions have probably been stable on <strong>Olkiluoto</strong>. N<strong>at</strong>ionally their c<strong>at</strong>ches have decreased,most probably because the low level <strong>of</strong> vole popul<strong>at</strong>ions (which has cont<strong>in</strong>uedfor a long time) forces carnivores, such as red foxes, to f<strong>in</strong>d other food sources.There is no detailed <strong>in</strong>form<strong>at</strong>ion <strong>of</strong> the red squirrel popul<strong>at</strong>ion on <strong>Olkiluoto</strong>. Redsquirrel popul<strong>at</strong>ions typically experience gre<strong>at</strong> vari<strong>at</strong>ions, follow<strong>in</strong>g the production <strong>of</strong>spruce cones. In the long run, the red squirrel popul<strong>at</strong>ion is believed to have rema<strong>in</strong>edstable. Hunt<strong>in</strong>g the red squirrel for fur has practically ceased, although hunt<strong>in</strong>g thisanimal is permitted dur<strong>in</strong>g the hunt<strong>in</strong>g season.There are no large badger setts <strong>in</strong> the <strong>Olkiluoto</strong> area, probably because the soil is notideal for digg<strong>in</strong>g. The last badger kill was reported <strong>in</strong> 2003. There were still no reportedobserv<strong>at</strong>ions <strong>of</strong> muskr<strong>at</strong>. It is possible th<strong>at</strong> the popul<strong>at</strong>ion cont<strong>in</strong>ued to decl<strong>in</strong>e due tothe <strong>in</strong>crease <strong>of</strong> American m<strong>in</strong>k or some virus <strong>in</strong>fection.BirdsW<strong>at</strong>erfowls were hunted moder<strong>at</strong>ely and the c<strong>at</strong>ch is small.Biomass <strong>of</strong> FaunaA first approach to estim<strong>at</strong><strong>in</strong>g the biomass and carbon content <strong>of</strong> the fauna <strong>in</strong> <strong>Olkiluoto</strong>was done for the <strong>Olkiluoto</strong> Biosphere Description Report (Haapanen et al. 2007). Thed<strong>at</strong>a were, however, partly lack<strong>in</strong>g: the distribution <strong>of</strong> fauna on the island was notknown, some animal groups had not been <strong>in</strong>ventoried, there were no parameters concern<strong>in</strong>ganimal weights, element concentr<strong>at</strong>ions, consumption habits and amounts, orproduction. Thus it was decided to present a model <strong>of</strong> moose, which is the largestmammal on the island. The carbon budget was calcul<strong>at</strong>ed for 2002 and is presented <strong>in</strong>Fig. 30. For parameters and details, see Haapanen et al. 2007.


41Figure 30. Prelim<strong>in</strong>ary estim<strong>at</strong>es <strong>of</strong> the carbon cycl<strong>in</strong>g <strong>in</strong> the moose popul<strong>at</strong>ion <strong>in</strong><strong>Olkiluoto</strong> (Haapanen et al. 2007).Anthropogenic and Social EffectsChanges <strong>in</strong> land ownership, settlement and land-use are recorded annually. Historicald<strong>at</strong>a are also <strong>of</strong> importance. W<strong>at</strong>er supply <strong>in</strong>form<strong>at</strong>ion is monitored when check<strong>in</strong>g thew<strong>at</strong>er quality <strong>of</strong> priv<strong>at</strong>e wells. Much <strong>of</strong> this <strong>in</strong>form<strong>at</strong>ion is available from n<strong>at</strong>ional <strong>in</strong>stitutesand authorities, which also have <strong>in</strong>form<strong>at</strong>ion about potential food resources.The land register map has been added to <strong>Posiva</strong>'s GIS d<strong>at</strong>abase and a review <strong>of</strong> otheravailable registers and st<strong>at</strong>istics <strong>of</strong> use has been started. The changes <strong>in</strong> land-use due tothe new nuclear power plant (OL3) and its <strong>in</strong>frastructure are also cont<strong>in</strong>uously monitored.3.2.3 Limnic SystemsThere are few limnic systems <strong>in</strong> <strong>Olkiluoto</strong> <strong>at</strong> the moment. The Korvensuo fresh-w<strong>at</strong>erreservoir is the most important, but it is artificial and heavily controlled. Its hydrogeochemistryis monitored weekly by TVO, and the results <strong>of</strong> the analyses are submitted tothe w<strong>at</strong>er works. No further summary <strong>of</strong> the f<strong>in</strong>d<strong>in</strong>gs is compiled. The Eurajoki River ismonitored by <strong>in</strong>dustrial companies oper<strong>at</strong><strong>in</strong>g on its upper course.


42The discharge and the nutrients <strong>of</strong> the Eurajoki River are presented by Turkki (2007).The average discharge <strong>in</strong> <strong>2006</strong> was <strong>at</strong> the same level as <strong>in</strong> 2005, both be<strong>in</strong>g slightlyhigher than the average for 1990-2002 (Table 18). The discharge was <strong>at</strong> its highest <strong>in</strong>November-December. The discharge <strong>in</strong> December was gre<strong>at</strong>est s<strong>in</strong>ce the 1980s. Thedischarges were lowest <strong>in</strong> July-September, be<strong>in</strong>g also lower than usual. The amounts <strong>of</strong>phosphorus, nitrogen and substance m<strong>at</strong>ter carried by the river to the sea were similarto 2005, but considerably higher than <strong>in</strong> 2004. Most <strong>of</strong> the nutrients (65% <strong>of</strong> N, 50% <strong>of</strong>P) and substance m<strong>at</strong>ter (57%) were carried <strong>in</strong> October-December by the exceptionallyhigh discharges. Compared with the average values for 1990-2002, the amount <strong>of</strong> phosphoruswas lower but th<strong>at</strong> <strong>of</strong> nitrogen higher.Table 18. Amounts <strong>of</strong> nutrients and substance m<strong>at</strong>ter carried by the Eurajoki River tothe sea and the average, m<strong>in</strong> and max discharges <strong>in</strong> 2004-<strong>2006</strong>. * = Mode <strong>of</strong> months.D<strong>at</strong>a by Turkki (2007) and Haapanen (<strong>2006</strong>).P, kg N, kg Substance Discharge, m 3 /sm<strong>at</strong>ter, tonnes Average M<strong>in</strong>(month)Max(month)2004 7 320 563 680 3 341 5.8 1.4 (8) 16.4 (12)2005 20 630 848 080 8 802 9.3 1.5 (7) 26.3 (1)<strong>2006</strong> 21 500 781 000 8 440 9.2 0.3 (8) 29.4 (12)1990-2002 23 900 640 000 8.8 1.9 (8*) 20.8 (4*)3.2.4 Mar<strong>in</strong>e/Brackish SystemsIn <strong>Posiva</strong>'s own monitor<strong>in</strong>g programme seaw<strong>at</strong>er samples from four selected sites areanalysed for hydrochemical modell<strong>in</strong>g purposes once every three years. W<strong>at</strong>er qualitysamples will be collected three times a year from three or four sites, either as part <strong>of</strong> themonitor<strong>in</strong>g programme <strong>of</strong> the nuclear power plant or by <strong>Posiva</strong>. In this connection, thetemper<strong>at</strong>ure <strong>of</strong> the seaw<strong>at</strong>er and its thermal str<strong>at</strong>ific<strong>at</strong>ion will also be recorded. The <strong>in</strong>tensity<strong>of</strong> mar<strong>in</strong>e system d<strong>at</strong>a acquisition required for monitor<strong>in</strong>g the repository is lowerthan th<strong>at</strong> required by the nuclear power production regul<strong>at</strong>ions.The mar<strong>in</strong>e ecosystem has been monitored by TVO s<strong>in</strong>ce the 1970s. The study areamostly extends to a distance <strong>of</strong> 5-6 km from the nuclear power plant cool<strong>in</strong>g w<strong>at</strong>er dischargesite. Ten monitor<strong>in</strong>g plots have been established <strong>in</strong> the study area to be used fora vary<strong>in</strong>g number <strong>of</strong> analyses. Detailed methods and annual results are published <strong>in</strong> theresearch report series <strong>of</strong> Lounais-Suomen vesi- ja ympäristötutkimus Oy. <strong>Results</strong> fromthe <strong>2006</strong> studies are presented by Turkki (2007). The ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs are summarizedhere, and the study loc<strong>at</strong>ions are shown <strong>in</strong> Fig. 31. Result Tables are <strong>in</strong> Appendix J.The st<strong>at</strong>e <strong>of</strong> the nearby w<strong>at</strong>ers is partly connected with the nuclear power productionactivity. The capacity factor <strong>of</strong> OL1 <strong>in</strong> <strong>2006</strong> was 93.8% and th<strong>at</strong> <strong>of</strong> OL2 96.9%. Cool<strong>in</strong>gw<strong>at</strong>er consumption was 1.81 billion m 3 , and 98.8 PJ/a <strong>of</strong> he<strong>at</strong> was conducted to thesea.


43Figure 31. Loc<strong>at</strong>ions <strong>of</strong> established seaw<strong>at</strong>er sampl<strong>in</strong>g sites.Physical and Chemical PropertiesW<strong>at</strong>er samples from seven observ<strong>at</strong>ion plots were taken <strong>at</strong> four <strong>in</strong>stances <strong>in</strong> February-November as vertical series with 5 m distances. The samples were analysed by Lounais-Suomenvesi- ja ympäristötutkimus Oy for oxygen, pH, alkal<strong>in</strong>ity, eletrical conductivityand sal<strong>in</strong>ity, colour, cloud<strong>in</strong>ess, ammonium N (NH 4 ), total N, total P and substancem<strong>at</strong>ter. The temper<strong>at</strong>ure was recorded <strong>at</strong> all physical-chemical and biologicalsampl<strong>in</strong>g <strong>in</strong>stances.In the monitor<strong>in</strong>g performed <strong>in</strong> l<strong>at</strong>e February, the nearby w<strong>at</strong>ers were mostly free <strong>of</strong> icecover, but some loc<strong>at</strong>ions could not be reached due to pack ice. In the surface w<strong>at</strong>er the<strong>in</strong>crease <strong>in</strong> the temper<strong>at</strong>ures due to the cool<strong>in</strong>g w<strong>at</strong>ers <strong>of</strong> the power plant (SEA08 vs.SEA03/06) was 5-7ºC and close to the bottom 1-5ºC. The difference between SEA05and SEA03/06 was 0.1- 1.6ºC. A slight temper<strong>at</strong>ure rise due to the cool<strong>in</strong>g w<strong>at</strong>er dischargecould be seen with<strong>in</strong> a distance <strong>of</strong> 2-3 km, both <strong>in</strong> w<strong>in</strong>ter and open w<strong>at</strong>er season.The temper<strong>at</strong>ures <strong>at</strong> the observ<strong>at</strong>ion plots dur<strong>in</strong>g the open w<strong>at</strong>er season are presented <strong>in</strong>Appendix Table J-1.The oxygen s<strong>at</strong>ur<strong>at</strong>ion <strong>of</strong> sea w<strong>at</strong>er <strong>at</strong> the observ<strong>at</strong>ion plots is presented <strong>in</strong> AppendixTable J-2. There was overs<strong>at</strong>ur<strong>at</strong>ion <strong>in</strong> l<strong>at</strong>e w<strong>in</strong>ter (February), but the results were <strong>in</strong>l<strong>in</strong>e with the reference values (close to Rauma and Pyhäranta). The production maximum<strong>of</strong> plankton caused overs<strong>at</strong>ur<strong>at</strong>ion <strong>of</strong> oxygen <strong>in</strong> the surface w<strong>at</strong>er <strong>in</strong> May, as <strong>in</strong>previous years. In August the oxygen situ<strong>at</strong>ion was good, and <strong>in</strong> November excellent.


44In general, the open w<strong>at</strong>er season values <strong>of</strong> the nearby w<strong>at</strong>ers <strong>of</strong> <strong>Olkiluoto</strong> conformedto the reference values.The opacity <strong>of</strong> w<strong>at</strong>er (visible depth) varied from 2.4 m <strong>in</strong> SEA08 to 3.7 m <strong>in</strong> SEA10.The with<strong>in</strong>-plot vari<strong>at</strong>ion dur<strong>in</strong>g the open w<strong>at</strong>er season was small (standard devi<strong>at</strong>ion0.5-0.7 m). The opacity is nowadays clearly better than <strong>at</strong> the end <strong>of</strong> the 1990s, butworse than <strong>at</strong> the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the 1990s (Fig. 32).65Visible depth, m432SEA05SEA06SEA03SEA08SEA07SEA08SEA10Reference site101990-941995-992000 2001 2002 2003 2004 2005 <strong>2006</strong>Figure 32. Opacity <strong>of</strong> w<strong>at</strong>er dur<strong>in</strong>g the open w<strong>at</strong>er season <strong>in</strong> 1990-<strong>2006</strong>. The referencesite is <strong>in</strong> Pyhäranta. ( Turkki 2007).W<strong>in</strong>tertime N concentr<strong>at</strong>ions were rel<strong>at</strong>ively similar <strong>at</strong> the monitor<strong>in</strong>g loc<strong>at</strong>ions (280-360 µg/l; Table J-3), and lower than usual. The average background concentr<strong>at</strong>ion <strong>in</strong>coastal w<strong>at</strong>ers <strong>of</strong> the Bothnian Sea was 350 µg/l <strong>in</strong> 1997-1999. The concentr<strong>at</strong>ions <strong>of</strong>total N <strong>in</strong> the study loc<strong>at</strong>ions were between 240-390 µg/l dur<strong>in</strong>g the open w<strong>at</strong>er season.The concentr<strong>at</strong>ions were similar or slightly higher compared with the average <strong>of</strong> 1996-2005, except <strong>at</strong> SEA03 and SEA09, where the concentr<strong>at</strong>ions were clearly higher thantypical. The background concentr<strong>at</strong>ion <strong>in</strong> coastal w<strong>at</strong>ers <strong>of</strong> the Bothnian Sea (d<strong>at</strong>a fromPyhäranta reference site) was 280 µg/l <strong>in</strong> 2000-<strong>2006</strong>. The ammonium N concentr<strong>at</strong>ionvaried between 2-15 µg/l dur<strong>in</strong>g the open w<strong>at</strong>er season. In May and August the amountswere generally under the detectable amount.In the production layer, the total N concentr<strong>at</strong>ions varied between 220-730 µg/l dur<strong>in</strong>gthe grow<strong>in</strong>g season, and were approx. 10% higher than the average for 1996-2005. Thetotal N concentr<strong>at</strong>ion was highest <strong>at</strong> SEA09, and due to nutrients carried by River Eurajoki.


45In w<strong>in</strong>ter (February) the averages P concentr<strong>at</strong>ions <strong>of</strong> w<strong>at</strong>er columns were between 23-25 µg/l (Table J-4). The concentr<strong>at</strong>ions were slightly higher than the average for 1996-2005 and higher than the background concentr<strong>at</strong>ion <strong>in</strong> coastal w<strong>at</strong>ers <strong>of</strong> the BothnianSea measured <strong>at</strong> Pyhäranta (19 µg/l <strong>in</strong> 2004-<strong>2006</strong>). The w<strong>in</strong>tertime P concentr<strong>at</strong>ionshave <strong>in</strong>creased significantly between 1979 and 2002. In 2003-2004 the P concentr<strong>at</strong>ionswere lower, but grew aga<strong>in</strong> <strong>in</strong> 2005-<strong>2006</strong>. The average P concentr<strong>at</strong>ions <strong>of</strong> the nearbyw<strong>at</strong>ers dur<strong>in</strong>g the open w<strong>at</strong>er season (13-26 µg/l) were higher than <strong>in</strong> 2005, and theaverage for SEA09 was exceptionally high (Fig. 33). This was caused by the nutrientscarried by River Eurajoki <strong>in</strong> October.4035Total P, mg/m33025201510SEA05SEA06SEA03SEA09SEA10SEA08SEA07Reference site501979-841985-891990-941995-992000 2001 2002 2003 2004 2005 <strong>2006</strong>Figure 33. The concentr<strong>at</strong>ions <strong>of</strong> total P (µg/l) dur<strong>in</strong>g open w<strong>at</strong>er seasons 1979-<strong>2006</strong>.W<strong>at</strong>er columns 0-10 m <strong>in</strong> loc<strong>at</strong>ions SEA03, 06 and 10, and 0-6, 7.5, 8.5, and 8 m for therest, respectively. The reference site is <strong>in</strong> Pyhäranta. (Turkki 2007).The w<strong>in</strong>tertime concentr<strong>at</strong>ions <strong>of</strong> substance m<strong>at</strong>ter were clearly lower than the averagefor 2001-2005 (Table J-5). Also dur<strong>in</strong>g the open w<strong>at</strong>er season the values <strong>of</strong> substancem<strong>at</strong>ter was low (Fig. 34). The cloud<strong>in</strong>ess values <strong>of</strong> w<strong>at</strong>er were unusually low <strong>in</strong> thew<strong>in</strong>ter (February, 0.7-1.7 FNU). In May the values were 0.7-2.3 FNU, <strong>in</strong> August 0.7-2.8 FNU and <strong>in</strong> November 2.3-4.5 FNU. The average open w<strong>at</strong>er season values weresmall, 26-51% lower than <strong>in</strong> 1996-2005 on average.


4665Substance m<strong>at</strong>ter, mg/l432SEA03SEA05SEA06SEA07SEA08SEA09SEA10102004 2005 <strong>2006</strong>Figure 34. The concentr<strong>at</strong>ions <strong>of</strong> substance m<strong>at</strong>ter (mg/l) <strong>at</strong> the sampl<strong>in</strong>g loc<strong>at</strong>ionsdur<strong>in</strong>g the open w<strong>at</strong>er season. W<strong>at</strong>er columns 0-10 m <strong>in</strong> loc<strong>at</strong>ions SEA03, 06 and 10,and 0-5.5, 7, 9, and 8 m for the rest, respectively (Turkki 2007).Veget<strong>at</strong>ionA number <strong>of</strong> survey sites have been established as part <strong>of</strong> the nuclear power plant'smonitor<strong>in</strong>g programme for the monitor<strong>in</strong>g <strong>of</strong> mar<strong>in</strong>e veget<strong>at</strong>ion. Phytoplankton is sampledannually on the w<strong>at</strong>er quality monitor<strong>in</strong>g sites. Macrophytes grow<strong>in</strong>g <strong>at</strong> sea bottomare observed by divers us<strong>in</strong>g l<strong>in</strong>e transects. Also po<strong>in</strong>t survey methods will be used tomonitor any changes <strong>in</strong> the annual cycle <strong>of</strong> the veget<strong>at</strong>ion. The survey <strong>in</strong>terval for<strong>Posiva</strong>'s needs is 5-10 years, and is def<strong>in</strong>ed by <strong>Posiva</strong>'s activities and TVO's ongo<strong>in</strong>gmonitor<strong>in</strong>g programme.The primary production <strong>of</strong> phytoplankton was measured eight times by radiocarbonmethod (C-14) <strong>in</strong> April-September <strong>in</strong> the production layers <strong>of</strong> SEA06 and SEA08. Thew<strong>at</strong>er column samples were analysed for total P, phosph<strong>at</strong>e P, N compounds, chlorophyll-a,amount and composition <strong>of</strong> phytoplankton and the production capacity <strong>of</strong>plankton. In order to establish the annual vari<strong>at</strong>ion <strong>in</strong> phytoplankton, the samples taken<strong>at</strong> various sampl<strong>in</strong>g <strong>in</strong>stances <strong>at</strong> SEA08 were microscopied separ<strong>at</strong>ely. On other sampl<strong>in</strong>gsites, the summer season phytoplankton samples were comb<strong>in</strong>ed.At the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> May it was sunny and warm, and the conditions for primary production<strong>of</strong> phytoplankton were good. The P concentr<strong>at</strong>ions were on average level. Theseasonal vari<strong>at</strong>ion <strong>of</strong> phytoplankton biomasses by species on SEA08 is presented <strong>in</strong>Table J-6 and Fig. 35.


47908070605040302010010/04/200724/04/200708/05/200722/05/200705/06/200719/06/200703/07/200717/07/200731/07/200714/08/200728/08/2007% <strong>of</strong> biomass11/09/200725/09/2007CyanophyceaeCryptoph.Chrysoph.Prymnesioph.Bacillarioph.Pras<strong>in</strong>oph.MonadsD<strong>in</strong>oph.Figure 35. Vari<strong>at</strong>ion <strong>of</strong> dom<strong>in</strong><strong>at</strong><strong>in</strong>g phytoplankton species by sampl<strong>in</strong>g d<strong>at</strong>e <strong>at</strong> SEA08<strong>in</strong> <strong>2006</strong>. Species with m<strong>in</strong>or shares have been removed for clarity. Figure after Turkki(2007).Due to the fact th<strong>at</strong> the cool<strong>in</strong>g w<strong>at</strong>er discharge area with its surround<strong>in</strong>gs stays openalso dur<strong>in</strong>g the w<strong>in</strong>ter, considerable amounts <strong>of</strong> cool season planktons (Bacillariophyceaeand D<strong>in</strong>ophyceae) grow <strong>in</strong> the w<strong>at</strong>ers even <strong>in</strong> mid-w<strong>in</strong>ter. The abundant spr<strong>in</strong>gtimeproduction <strong>of</strong> Bacillariophyceae therefore usually starts <strong>at</strong> least a month earlierthan <strong>in</strong> other coastal w<strong>at</strong>er areas and the grow<strong>in</strong>g season is longer. The spr<strong>in</strong>gtimesampl<strong>in</strong>g caught the maximum spr<strong>in</strong>gtime bloom <strong>in</strong> <strong>2006</strong>, and the total biomass <strong>in</strong>April-May was considerably gre<strong>at</strong>er than <strong>in</strong> previous years. The average biomass onSEA08 dur<strong>in</strong>g the whole grow<strong>in</strong>g season (1787 mg/m 3 ) was over 2 times th<strong>at</strong> <strong>of</strong> 2005(Fig. 36), and also larger than the 5-year averages from 1985 to 2004. Annual differenceshave been gre<strong>at</strong> s<strong>in</strong>ce 1985 (370-1830 mg/m 3 ). The <strong>in</strong>crease <strong>of</strong> grow<strong>in</strong>g seasonbiomasses have mostly been due to mild w<strong>in</strong>ters (extend<strong>in</strong>g the grow<strong>in</strong>g season) andgeneral eutrophic<strong>at</strong>ion <strong>of</strong> the Baltic Sea.


48Biomass, mg/m320001800160014001200100080060040020001985-89 1990-94 1995-99 2000-04 2005 <strong>2006</strong>Figure 36. The average phytoplankton biomass on SEA08 dur<strong>in</strong>g the whole grow<strong>in</strong>gseason <strong>in</strong> 1985-<strong>2006</strong> (Turkki 2007).Total summertime phytoplankton biomasses (190-506 mg/m 3 ) were <strong>in</strong> general similarto previous years, except <strong>in</strong> SEA05, where the biomass was gre<strong>at</strong>er (Fig. 37). TheCryptophyceae, Cyanophyceae, and Chrysophyceae dom<strong>in</strong><strong>at</strong>ed the summertime biomasses(Table J-7).600mg/m3500400300200SEA08SEA05SEA06SEA07SEA031001985-891990-941995-99200020012002200320042005<strong>2006</strong>0Figure 37. Summertime phytoplankton biomass <strong>in</strong> 1985-<strong>2006</strong> (Turkki 2007).Chlorophyll-a concentr<strong>at</strong>ions showed only small sp<strong>at</strong>ial or temporal vari<strong>at</strong>ion (1.6-2.9µg/l, local standard devi<strong>at</strong>ions 0.3-1.1), be<strong>in</strong>g <strong>at</strong> the same levels with the backgroundvalues <strong>in</strong> the coastal w<strong>at</strong>ers <strong>of</strong> the Bothnian Sea, except <strong>at</strong> SEA05 and 09 (Table J-8).The average primary production capacity was 150-230 mg C/m 3. d dur<strong>in</strong>g the grow<strong>in</strong>g


49season, the smallest values be<strong>in</strong>g <strong>at</strong> the outermost plot SEA10. The primary productioncapacity was highest <strong>at</strong> the end <strong>of</strong> April (260-450 mg C/m 3. d). The summertime capacity,100-175 mg C/m 3. d was typical <strong>of</strong> slightly eutrophic coastal w<strong>at</strong>ers. In 2003-2005the primary production capacity <strong>of</strong> the nearby w<strong>at</strong>ers <strong>of</strong> <strong>Olkiluoto</strong> was <strong>at</strong> the same levelas the measurements from the mid-1980s, but has aga<strong>in</strong> <strong>in</strong>creased to the levels <strong>of</strong> mid-1990s. The recent drop may have been due to dry summers and consequent small run<strong>of</strong>fs.The average primary production <strong>of</strong> phytoplankton <strong>in</strong> shown <strong>in</strong> Appendix Table J-9. Thecumul<strong>at</strong>ed productions <strong>of</strong> the grow<strong>in</strong>g season (1 April - 30 September) were 56 and 69g C/m 2 for plots SEA06 and 08, respectively. The primary production <strong>in</strong> the nearbyw<strong>at</strong>ers <strong>of</strong> <strong>Olkiluoto</strong> was similar to the average production <strong>in</strong> 1990-1999 (61 g/m 2. a),while <strong>in</strong> 2003-2005 the values were 13-34% lower. Over the long term, primary productiongrew until the year 2002, with some annual vari<strong>at</strong>ion.FaunaBottom fauna samples are taken <strong>in</strong> TVO's monitor<strong>in</strong>g programme once a year on theseaw<strong>at</strong>er quality monitor<strong>in</strong>g sites. The species are identified and their proportions(measured <strong>in</strong> abundance), total number (<strong>in</strong>dividuals/m 2 ) and biomass are calcul<strong>at</strong>ed. Inaddition, the size distribution <strong>of</strong> Baltic clam (Macoma balthica) is measured. Balticclams and blue mussels are sampled on one seaw<strong>at</strong>er quality site for radionuclideanalyses, as well. TVO monitors fish stocks by test fish<strong>in</strong>g every five years for determ<strong>in</strong><strong>in</strong>gthe age and growth <strong>of</strong> trout, whitefish and perch. In addition, pike, perch, roachand Baltic herr<strong>in</strong>g are caught twice a year for radionuclide analysis.Bottom fauna were <strong>in</strong>ventoried on November 15-16, <strong>2006</strong> on six <strong>of</strong> the w<strong>at</strong>er qualitysample plots. On four sites the bottom sediments were clay sludge (SEA09, SEA05,SEA06, SEA08), and on two sites gravel and sand (SEA03, SEA07). On average therewere 11 species <strong>in</strong> sludge bottoms and the average number <strong>of</strong> <strong>in</strong>dividuals per m 2 was3730 ± 2055. The biomass <strong>in</strong> sludge bottoms was 143 ± 63 g/m 2 , which was ca. 70%higher than <strong>in</strong> 2005 (52 g/m 2 ). Baltic clam (Macoma balthica) accounted for most <strong>of</strong>the biomass (97%) and <strong>in</strong>dividuals (47%). The numbers <strong>of</strong> species, <strong>in</strong>dividuals andbiomass <strong>in</strong> <strong>2006</strong> by bottom type are presented <strong>in</strong> Appendix Table J-10. The averagenumber <strong>of</strong> species, density (Fig. 38) and biomass (Fig. 39) on sludge/clay bottoms weregre<strong>at</strong>er <strong>in</strong> <strong>2006</strong> than <strong>in</strong> the 2000s <strong>in</strong> average. Especially the biomass has <strong>in</strong>creased dueto larger Baltic clams. The smallest sludge bottom biomasses were found <strong>in</strong> SEA05 (94g/m 2 ) and the largest <strong>in</strong> SEA08 (234 g/m 2 ).


50450040003500Individuals/m23000250020001500100050001982-841985-891990-941995-992000 2001 2002 2003 2004 2005 <strong>2006</strong>Figure 38. The density (number <strong>of</strong> <strong>in</strong>dividuals per m 2 ) <strong>of</strong> bottom fauna on sludge bottoms<strong>in</strong> 1982-<strong>2006</strong> (Turkki 2007).250200Biomass, g/m21501005001982-841985-891990-941995-992000 2001 2002 2003 2004 2005 <strong>2006</strong>Figure 39. The biomass <strong>of</strong> bottom fauna on sludge bottoms <strong>in</strong> 1982-<strong>2006</strong> (Turkki2007).An amphipod species typical to undisturbed bottoms, Monoporeia aff<strong>in</strong>is, has not beenfound <strong>in</strong> samples <strong>in</strong> 2003-<strong>2006</strong>. It has, however, also disappeared from large areas <strong>in</strong>the Northern Baltic Sea. In the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the 1990s the North-American polychaete(Marenzelleria viridis) spread fast <strong>in</strong>to the coastal w<strong>at</strong>ers <strong>of</strong> Southwestern F<strong>in</strong>land. In<strong>2006</strong>, it was the third most common species on sludge/clay bottoms <strong>in</strong> <strong>Olkiluoto</strong>, measuredby the number <strong>of</strong> <strong>in</strong>dividuals, follow<strong>in</strong>g the Jenk<strong>in</strong>'s spire snail (Potamopyrgusjenk<strong>in</strong>si). Tubifex cost<strong>at</strong>us, typical <strong>of</strong> dirty bottoms was not found. Another <strong>in</strong>dic<strong>at</strong>orspecies for dirty bottoms, larvae <strong>of</strong> the buzzer midge (Chironomus plumosus) wasfound <strong>in</strong> small amounts <strong>in</strong> SEA08.


51The standard devi<strong>at</strong>ion <strong>of</strong> the measured fauna values <strong>in</strong> sludge bottoms has grown s<strong>in</strong>cethe mid-1990s. This <strong>in</strong>dic<strong>at</strong>es more unstable sea bottom communities and an <strong>in</strong>creasedrisk <strong>of</strong> significant changes. With<strong>in</strong> several years large amounts <strong>of</strong> dead algae m<strong>at</strong>erialwas found carpet<strong>in</strong>g the bottom. The decay<strong>in</strong>g rema<strong>in</strong>s consumed much oxygen caus<strong>in</strong>g<strong>at</strong> least occasional lacks <strong>of</strong> oxygen <strong>in</strong> the near-bottom w<strong>at</strong>ers. In some years clam popul<strong>at</strong>ionshave probably been destroyed by the lack <strong>of</strong> oxygen. In <strong>2006</strong> sampl<strong>in</strong>g, no largeamounts <strong>of</strong> algae or other plant debris were found.The hard bottoms with gravel-sand-clay mixture showed an average biomass <strong>of</strong> 208g/m 2 , with 3797 <strong>in</strong>dividuals/m 2 . Species composition was vers<strong>at</strong>ile. Some sludgeworms were found on SEA03. The samples from hard bottoms are not fully reliable andcomparable, and part <strong>of</strong> the annual vari<strong>at</strong>ion may be caused by measurement errors. Alarge amount <strong>of</strong> dead algae has also accumul<strong>at</strong>ed <strong>in</strong> recent years on the bottom <strong>of</strong> plotSEA07, caus<strong>in</strong>g lack <strong>of</strong> oxygen and changes <strong>in</strong> the species composition.Test fish<strong>in</strong>g was not performed <strong>in</strong> <strong>2006</strong>, <strong>in</strong> concordance with the programme.Anthropogenic and Social EffectsAs part <strong>of</strong> the nuclear power plant's monitor<strong>in</strong>g programme, fish<strong>in</strong>g activities are followedup by <strong>in</strong>terview<strong>in</strong>g fishermen every other year. In addition, three fishermen carryout cont<strong>in</strong>uous account fish<strong>in</strong>g. For <strong>Posiva</strong>'s biosphere modell<strong>in</strong>g needs, <strong>in</strong>terviewsshould <strong>in</strong>clude questions on the consumption <strong>of</strong> crustaceans, crayfish and molluscs.Pr<strong>of</strong>essional fishermen were <strong>in</strong>terviewed <strong>in</strong> <strong>2006</strong>, concern<strong>in</strong>g the c<strong>at</strong>ches <strong>in</strong> 2005. S<strong>in</strong>cethe report was not available while complet<strong>in</strong>g the previous environmental monitor<strong>in</strong>greport, these results are summarized here. The <strong>in</strong>terview study was performed by OtsoL<strong>in</strong>t<strong>in</strong>en from Ramboll F<strong>in</strong>land Oy. The results have been presented <strong>in</strong> an <strong>in</strong>ternal reportfor TVO. The ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs are summarized <strong>in</strong> the follow<strong>in</strong>g:In 2005, five people were <strong>in</strong>volved <strong>in</strong> pr<strong>of</strong>essional fish<strong>in</strong>g <strong>in</strong> the <strong>of</strong>fshore area close to<strong>Olkiluoto</strong>. Of these two were full-time pr<strong>of</strong>essional fishermen and the rest were fish<strong>in</strong>gas a secondary occup<strong>at</strong>ion. In addition, some household fishermen had m<strong>in</strong>or sales <strong>in</strong>comefrom fish. Some fishermen were fish<strong>in</strong>g also <strong>in</strong> other areas. The presented figuresconcern those five pr<strong>of</strong>essional fishermen.Pr<strong>of</strong>essional fish<strong>in</strong>g is performed year round <strong>in</strong> the <strong>of</strong>fshore area close to <strong>Olkiluoto</strong>.However, fish<strong>in</strong>g <strong>in</strong> some areas may be prevented by ice conditions. Largest amount <strong>of</strong>pr<strong>of</strong>essional fishermen are engaged <strong>in</strong> fish<strong>in</strong>g <strong>in</strong> June-October. In 2003, the fish<strong>in</strong>g <strong>of</strong>salmon us<strong>in</strong>g nets had totally ceased, but us<strong>in</strong>g seal-safe salmon fyke nets brought thefigures up <strong>in</strong> 2005. Accord<strong>in</strong>g to this study, the total fish c<strong>at</strong>ch <strong>of</strong> the pr<strong>of</strong>essional fishermenwas ca. 13 000 kg <strong>in</strong> 2005 (Fig. 40), <strong>of</strong> which 47% was perch. The total c<strong>at</strong>chwas under half <strong>of</strong> the c<strong>at</strong>ch <strong>in</strong> 2003. The c<strong>at</strong>ch per fisherman <strong>in</strong> 2005 was 2590 kg,while <strong>in</strong> 2003 it was 3215 kg, and <strong>in</strong> 2001 2872 kg (figures concern the group <strong>of</strong> thefive rema<strong>in</strong><strong>in</strong>g fishermen). The c<strong>at</strong>ch per fisherman has thus also slightly decreased.


5212000kg100008000600040002000Baltic herr<strong>in</strong>gWhitefishSalmon, troutPikeBreamIdeRoachBurbotPike-perchPerchFl<strong>at</strong>fishRa<strong>in</strong>bow troutOther02001 2003 2005Figure 40. C<strong>at</strong>ches <strong>of</strong> fish ( pr<strong>of</strong>essional fishermen) <strong>in</strong> 2001, 2003 and 2005.3.2.5 Historical PropertiesKnowledge <strong>of</strong> historical properties is ga<strong>in</strong>ed either through separ<strong>at</strong>e research efforts oras a bi-product <strong>of</strong> cont<strong>in</strong>uous monitor<strong>in</strong>g. The Basel<strong>in</strong>e Condition Report (<strong>Posiva</strong>2003a) summarizes the results <strong>of</strong> studies carried out ma<strong>in</strong>ly dur<strong>in</strong>g the environmentalimpact assessment process toward the end <strong>of</strong> the 1990s.GIS tools and d<strong>at</strong>abases have been established to allow comparisons and other analyses<strong>of</strong> current and older d<strong>at</strong>a. The terra<strong>in</strong> development study by Mäkiaho (2005), the studies<strong>of</strong> sea bottom sediments (Rant<strong>at</strong>aro 2001), soils (Rautio et al. 2004, Lahdenperä etal. 2005, Tamm<strong>in</strong>en et al. 2007), and veget<strong>at</strong>ion (Miett<strong>in</strong>en & Haapanen 2002, Rautioet al. 2004, Saramäki & Korhonen 2005, Huhta & Korpela <strong>2006</strong>, Tamm<strong>in</strong>en et al. 2007)allow simul<strong>at</strong>ions <strong>of</strong> the past and future. In 2005 a study was performed, where the futureveget<strong>at</strong>ion types were estim<strong>at</strong>ed based on some <strong>of</strong> these d<strong>at</strong>a (Rautio et al. 2005).The development <strong>of</strong> a GIS toolbox called UNTAMO is underway (Ikonen <strong>2006</strong>).


533.3 Input to <strong>Environment</strong>al Impact Assessments3.3.1 Air Quality and NoiseSurface excav<strong>at</strong>ion, rock crush<strong>in</strong>g and traffic gener<strong>at</strong>e dust and noise. The effects <strong>of</strong>dust are studied with deposition collectors and needle sampl<strong>in</strong>g <strong>at</strong> MRK plots. The results<strong>of</strong> the effects <strong>of</strong> the construction <strong>of</strong> ONKALO on the element concentr<strong>at</strong>ions <strong>of</strong>needles were reported <strong>in</strong> 2005 <strong>in</strong> a memo by the F<strong>in</strong>nish Forest Research Institute(summarized by Haapanen <strong>2006</strong>).Noise has been monitored once a year dur<strong>in</strong>g w<strong>in</strong>ter by TVO us<strong>in</strong>g direct measurements.In 2005, a more comprehensive survey was performed by Ins<strong>in</strong>ööritoimistoPaavo Ristola Oy (three occasions, 45 loc<strong>at</strong>ions). TVO staff recorded noise <strong>in</strong> early2007. Some new loc<strong>at</strong>ions were added <strong>in</strong> this occasion, as well: Olkiluodonvesi icebuoy, OL3 harbour, OL3 park<strong>in</strong>g area, OL3 truck g<strong>at</strong>e, west end <strong>of</strong> the ma<strong>in</strong> g<strong>at</strong>e, harbourroad fac<strong>in</strong>g Onkalo, and the visitor centre.The 2007 measurements by TVO staff were planned to take place <strong>in</strong> December <strong>2006</strong>,but had to be cancelled due to excess w<strong>in</strong>d. Noise was thus measured on January 11,2007, <strong>at</strong> 1-4 pm. The temper<strong>at</strong>ure was -0.9ºC and w<strong>in</strong>d was blow<strong>in</strong>g from north (to184º) 3-4 m/s. The nearby sea was free <strong>of</strong> ice, and there was no snow on the ground.The device was a CESVA model SC-160 type 2 record<strong>in</strong>g digital device. L AT (cont<strong>in</strong>uousmean noise level) and L Cpeak (maximum pressure level <strong>of</strong> the noise) were recorded.Record<strong>in</strong>g time <strong>at</strong> one spot was ten m<strong>in</strong>utes, <strong>at</strong> one second <strong>in</strong>tervals. Earlier measurementsby TVO have been performed with less sensitive analogue device, mean<strong>in</strong>g th<strong>at</strong>the results cannot be directly compared. The results are presented <strong>in</strong> Fig. 41.The noise models developed by Ins<strong>in</strong>ööritoimisto Paavo Ristola Oy <strong>in</strong> 2005 were partlyupd<strong>at</strong>ed <strong>in</strong> <strong>2006</strong>, with more detailed d<strong>at</strong>a concern<strong>in</strong>g the properties <strong>of</strong> OL3 unit.


54Figure 41. Noise levels (L AT , dB) on January 11, 2007, <strong>at</strong> 1-4 pm.At loc<strong>at</strong>ions NMP01-NMP02, the L AT values were 5-6 dB higher compared with those<strong>of</strong> Ins<strong>in</strong>ööritoimisto Paavo Ristola Oy <strong>in</strong> 2005. At loc<strong>at</strong>ions NMP48 and NMP51, theL AT values were similar to the 2005 values. In loc<strong>at</strong>ion MNP46, L AT values had <strong>in</strong>creasedfrom the previous occasion (from 35 dB to 54.9 dB), mostly because <strong>of</strong> trafficon Olkiluodontie, w<strong>in</strong>d and ongo<strong>in</strong>g tree logg<strong>in</strong>g between the road and measur<strong>in</strong>gpo<strong>in</strong>t. At loc<strong>at</strong>ion NMP51, there was constant traffic, which raised the noise values by20 dB compared with the previous, which was recorded <strong>in</strong> the even<strong>in</strong>g (less traffic). Atthe new loc<strong>at</strong>ion NMP52 L AT ja L Cpeak , values were risen especially due to traffic <strong>at</strong> theharbour road and ONKALO construction area.3.3.2 W<strong>at</strong>er QualityAs st<strong>at</strong>ed above, TVO monitors seaw<strong>at</strong>er quality, nutrient and chemical load<strong>in</strong>g and theEurajoki River is monitored by companies oper<strong>at</strong><strong>in</strong>g on its upper course. <strong>Results</strong> for thequality, nutrient load and chemical load<strong>in</strong>g <strong>of</strong> seaw<strong>at</strong>er are presented <strong>in</strong> Section 3.2.4and the results for the Eurajoki River <strong>in</strong> Section 3.2.3. Sampl<strong>in</strong>g <strong>of</strong> sump w<strong>at</strong>er foranalysis <strong>of</strong> possible residues from blasted rock is performed <strong>in</strong> connection with the hydrogeochemicalmonitor<strong>in</strong>g <strong>of</strong> ONKALO, and reported <strong>in</strong> another sector report, withother hydrogeochemical results. Dra<strong>in</strong>age w<strong>at</strong>er from rock heaps is sampled <strong>in</strong> observ<strong>at</strong>ionwells or ditches.A sample was taken from the dra<strong>in</strong>age w<strong>at</strong>er orig<strong>in</strong><strong>at</strong><strong>in</strong>g from rock heaps on May 4,<strong>2006</strong>, and analysed <strong>at</strong> TVO's labor<strong>at</strong>ory for substance m<strong>at</strong>ter, the content <strong>of</strong> which was16 mg/l, compared with 12.2 mg/l <strong>in</strong> November 2005. In reference samples taken byTVO <strong>in</strong> 2004 from the ditch runn<strong>in</strong>g to Flutanperä bay, the values were 23 mg/l (May)


55and 13 mg/l (Sep). Due to changes <strong>in</strong> the rock pil<strong>in</strong>g area, two new loc<strong>at</strong>ions were established<strong>in</strong> l<strong>at</strong>e <strong>2006</strong>, and the first samples were taken on November 9, <strong>2006</strong>. Theanalyses were also considerably extended. See Appendix Table K-1 for detailed results<strong>of</strong> the samples.Seven <strong>of</strong> a total <strong>of</strong> 11 priv<strong>at</strong>e drilled wells could theoretically be <strong>in</strong>fluenced by the construction<strong>of</strong> ONKALO, although this is unlikely, and four <strong>of</strong> these are used as a primaryw<strong>at</strong>er source. These four have been chosen for monitor<strong>in</strong>g the w<strong>at</strong>er table, chemicalcomposition and radon content. Wells DWH1 and DWH2 are used all year round, whileDWH3 and DWH4 are ma<strong>in</strong>ly used dur<strong>in</strong>g the summer. The sampl<strong>in</strong>g frequency ishigher for the wells <strong>in</strong> full-time use.In <strong>2006</strong>, the priv<strong>at</strong>e well w<strong>at</strong>er tables were measured as planned, and the results arepresented <strong>in</strong> Fig. 42. Reference d<strong>at</strong>a from three shallow wells <strong>in</strong> bedrock (PP) not affectedby ONKALO are given as well. PP values show w<strong>at</strong>er level above the sea level,whereas the DWH measurements give difference to the top <strong>of</strong> the well. The fluctu<strong>at</strong>ion<strong>of</strong> priv<strong>at</strong>e wells generally follows th<strong>at</strong> <strong>of</strong> reference d<strong>at</strong>a and no unexpla<strong>in</strong>ed changes oreffects from ONKALO were observed. The low level <strong>in</strong> well DWH1 is due to heavyconsumption just before the measurement.12.0010.008.006.00Reference d<strong>at</strong>a: above sea levelW<strong>at</strong>er level (m)4.002.000.00-2.00DWH d<strong>at</strong>a: measured from the top <strong>of</strong> the wellDWH1DWH2DWH3DWH4PP9PP1PP10-4.00-6.00-8.00-10.0001/01/2003 01/01/2004 01/01/2005 01/01/<strong>2006</strong> 02/01/2007Figure 42. The w<strong>at</strong>er tables <strong>in</strong> wells DWH1-DWH4 <strong>in</strong> 2003 - 2007.The chemical contents were analysed <strong>in</strong> <strong>2006</strong> by the <strong>Environment</strong>al Labor<strong>at</strong>ory <strong>of</strong>Rauma. As <strong>in</strong> 2005, none <strong>of</strong> the analysed bacteria was found (Escherichia coli +44ºC,Coliform bact. +37ºC, He<strong>at</strong> resistant Coliform bact. +44ºC). The chloride, iron, manganeseand pH results from 2003-<strong>2006</strong> are presented <strong>in</strong> Figures 43-46. Other results arepresented <strong>in</strong> Appendix Table K-2. The chloride, humus, iron and manganese contents<strong>of</strong> DWH1 and DWH4 exceeded the limits set by the M<strong>in</strong>istry <strong>of</strong> Social Affairs andHealth. In DWH1, there was a hydrogen sulphide odour <strong>in</strong> the w<strong>at</strong>er, which is a normal


56phenomenon, especially <strong>in</strong> dry summers. The chloride, iron and manganese limits wereexceeded <strong>in</strong> DWH2, where there was also a hydrogen sulphide odour.160014001200Chloride, mg/l100080060040020020032005<strong>2006</strong>0DWH1 DWH2 DWH3 DWH4Figure 43. Chloride contents <strong>of</strong> the w<strong>at</strong>er <strong>in</strong> monitored priv<strong>at</strong>e wells <strong>in</strong> 2003-<strong>2006</strong>.Iron, mg/l54.543.532.521.510.50DWH1 DWH2 DWH3 DWH420032005<strong>2006</strong>Figure 44. Iron contents <strong>of</strong> the w<strong>at</strong>er <strong>in</strong> monitored priv<strong>at</strong>e wells <strong>in</strong> 2003-<strong>2006</strong>.


570.60.5Manganese, mg/l0.40.30.220032005<strong>2006</strong>0.10DWH1 DWH2 DWH3 DWH4Figure 45. Manganese contents <strong>of</strong> the w<strong>at</strong>er <strong>in</strong> monitored priv<strong>at</strong>e wells <strong>in</strong> 2003-<strong>2006</strong>.987pH654320032005<strong>2006</strong>2101 2 3 4Figure 46. pH <strong>of</strong> the w<strong>at</strong>er <strong>in</strong> monitored priv<strong>at</strong>e wells <strong>in</strong> 2003-<strong>2006</strong>.3.3.3 OverburdenThe current monitor<strong>in</strong>g d<strong>at</strong>a for nutrients, radionuclides and other substances <strong>in</strong> soilhave been presented <strong>in</strong> the modell<strong>in</strong>g <strong>in</strong>put (Subsections 3.2.1 and 3.2.2).3.3.4 Flora and FaunaA n<strong>at</strong>ure survey th<strong>at</strong> covers the island is considered adequ<strong>at</strong>e for the environmentalimpact evalu<strong>at</strong>ions with respect to flora and fauna. However, the FET and especiallythe FEH plots will provide much more detailed veget<strong>at</strong>ion <strong>in</strong>form<strong>at</strong>ion.


58On the southern part <strong>of</strong> the island, there is a conserv<strong>at</strong>ion area <strong>of</strong> old forest, which hasl<strong>at</strong>er been <strong>in</strong>cluded <strong>in</strong> the N<strong>at</strong>ura 2000 programme. The construction <strong>of</strong> ONKALOcould affect veget<strong>at</strong>ion with<strong>in</strong> this area through a change <strong>in</strong> groundw<strong>at</strong>er level. Theveget<strong>at</strong>ion sub-plots <strong>of</strong> the FIP system are also used to monitor these potential effects.The flora and fauna results obta<strong>in</strong>ed so far have been presented <strong>in</strong> Subsection 3.2.2.3.3.5 Landscape, Land-Use and TrafficA log <strong>of</strong> observ<strong>at</strong>ions on landscape and land-use is to be ma<strong>in</strong>ta<strong>in</strong>ed. For this frequentlytaken aerial images are <strong>of</strong> gre<strong>at</strong> value, as well as digital photos taken on the ground.The acquisition <strong>of</strong> aerial imagery has been presented <strong>in</strong> Section 3.1. Ground-based digitalphotographs were taken, e.g., from the construction sites.Basel<strong>in</strong>e landscape and land-use <strong>of</strong> the veget<strong>at</strong>ed areas have been documented <strong>in</strong> theveget<strong>at</strong>ion <strong>in</strong>ventory (Miett<strong>in</strong>en & Haapanen 2002) and <strong>in</strong> the forest <strong>in</strong>ventory by compartments(Rautio et al. 2004). A st<strong>at</strong>istical description <strong>of</strong> the forest and mire regions isavailable <strong>in</strong> the FET <strong>in</strong>ventory results (Saramäki & Korhonen 2005). The new 50 x 50m photo <strong>in</strong>terpret<strong>at</strong>ion grid presented <strong>in</strong> section 3.1 is employed <strong>in</strong> land-use changedetection.The potential <strong>of</strong> pick<strong>in</strong>g berries can be assessed on the basis <strong>of</strong> FEH <strong>in</strong>ventories, n<strong>at</strong>ionald<strong>at</strong>abases and knowledge <strong>of</strong> forest habit<strong>at</strong>s.Traffic conditions and changes <strong>in</strong> traffic levels are studied by means <strong>of</strong> s<strong>in</strong>gle surveysas needed dur<strong>in</strong>g the construction <strong>of</strong> ONKALO. The ongo<strong>in</strong>g construction <strong>of</strong> the OL3nuclear power plant, however, has a much gre<strong>at</strong>er effect on traffic.3.4 Supplementary <strong>Environment</strong>al Inform<strong>at</strong>ionSupplementary environmental <strong>in</strong>form<strong>at</strong>ion outside <strong>Posiva</strong>'s current scope, reportedwith<strong>in</strong> other site characteriz<strong>at</strong>ion discipl<strong>in</strong>es or acquired by specific campaigns beyondthe actual monitor<strong>in</strong>g programme, is taken <strong>in</strong>to consider<strong>at</strong>ion as needed. Sources <strong>of</strong> this<strong>in</strong>form<strong>at</strong>ion <strong>in</strong>clude TVO's monitor<strong>in</strong>g programme (parts not considered here), the futuremonitor<strong>in</strong>g programme <strong>of</strong> the power plant for safeguard purposes, as well as environmentalstudies carried out <strong>at</strong> the regional, n<strong>at</strong>ional or <strong>in</strong>tern<strong>at</strong>ional level by authorities,research <strong>in</strong>stitutes, etc., and topical surveys for biosphere modell<strong>in</strong>g, for example.Two-year-old sea trout has been marked and planted <strong>in</strong> 1999, 2001 and 2002, and theirgeographic distribution <strong>in</strong> the c<strong>at</strong>ch has been followed by Riista- ja kal<strong>at</strong>alouden tutkimuslaitoss<strong>in</strong>ce 1999. The results were also added to the fish<strong>in</strong>g <strong>in</strong>terview report. Thesea trout <strong>in</strong> the Bothnian Sea tend to travel northward.


594 SUMMARYThis report presents the annual environmental monitor<strong>in</strong>g results for the year <strong>2006</strong>. Themonitor<strong>in</strong>g system is described <strong>in</strong> the <strong>Posiva</strong> Report 2003-05 and more detailed methodologycan be found <strong>in</strong> Raitio et al. (2007). The construction <strong>of</strong> ONKALO undergroundrock characteriz<strong>at</strong>ion facility was started <strong>in</strong> July 2004 by <strong>Posiva</strong>. Part <strong>of</strong> themeasurements are targeted for monitor<strong>in</strong>g the effects <strong>of</strong> this construction work. Most,however, are meant for produc<strong>in</strong>g <strong>in</strong>put for biosphere modell<strong>in</strong>g for long-term safetypurposes. Many <strong>of</strong> the studies have been runn<strong>in</strong>g s<strong>in</strong>ce the 1970s with<strong>in</strong> TVO's monitor<strong>in</strong>gprogramme. Some <strong>of</strong> the monitor<strong>in</strong>g is cont<strong>in</strong>uous, some is performed annuallyand some is carried out <strong>in</strong> campaigns <strong>at</strong> <strong>in</strong>tervals <strong>of</strong> 1-10 years.The monitor<strong>in</strong>g was accomplished as planned <strong>in</strong> <strong>2006</strong>. Activities completed for the firsttime were the analyses <strong>of</strong> FEH soil, pe<strong>at</strong>, plant and foliage samples and the <strong>in</strong>vestig<strong>at</strong>ions<strong>of</strong> soil microbes. The biomasses were estim<strong>at</strong>ed for the whole forest study areaand separ<strong>at</strong>ely for plots FIP4 and FIP10. The third <strong>in</strong>tensive monitor<strong>in</strong>g plot (FIP11)was established, but was not yet <strong>in</strong> use.The FEH soil analyses confirmed the results <strong>of</strong> earlier <strong>in</strong>ventories and produced detailed<strong>in</strong>form<strong>at</strong>ion <strong>of</strong> the soil pr<strong>of</strong>iles and chemical properties. The soils are young andon average acid. M<strong>in</strong>eral soil sites have higher nitrogen concentr<strong>at</strong>ion and lower C/Nr<strong>at</strong>io than average F<strong>in</strong>nish forest soils, mean<strong>in</strong>g higher soil fertility. The mires are shallow.The macronutrient concentr<strong>at</strong>ions <strong>in</strong> vascular species were rel<strong>at</strong>ively similar to the concentr<strong>at</strong>ionsmeasured <strong>in</strong> southern F<strong>in</strong>land. The Fe concentr<strong>at</strong>ions <strong>of</strong> bryophytes andlichens were high. The particul<strong>at</strong>e and dust accumul<strong>at</strong>ion on veget<strong>at</strong>ion, especially onforest floor bryophytes, has been <strong>in</strong>creased due to emissions caused by soil constructionand <strong>in</strong>dustrial activities on <strong>Olkiluoto</strong> Island. The foliage analyses <strong>in</strong>dic<strong>at</strong>ed ma<strong>in</strong>lygood nutritional st<strong>at</strong>us <strong>of</strong> studied forests on the <strong>Olkiluoto</strong> Island. In the crown conditionstudy p<strong>in</strong>es were classified as not defoli<strong>at</strong>ed and spruces as slightly defoli<strong>at</strong>ed. Accord<strong>in</strong>gto the biomass calcul<strong>at</strong>ions, there was on average 7.3 kg/m 2 <strong>of</strong> terrestrial veget<strong>at</strong>ionbiomass <strong>in</strong> forests. The first soil microbe study showed th<strong>at</strong> the characteristics associ<strong>at</strong>edwith the structure and function<strong>in</strong>g <strong>of</strong> microbial communities were with<strong>in</strong> a normalrange <strong>in</strong> comparison with other published d<strong>at</strong>a <strong>of</strong> similar forest types <strong>in</strong> F<strong>in</strong>land.In the studies th<strong>at</strong> have already produced repetitive d<strong>at</strong>a, no drastic changes were observed<strong>in</strong> <strong>2006</strong>, as were also the cases <strong>in</strong> 2004 and 2005. The proximity <strong>of</strong> the sea anddust from construction activities is seen <strong>in</strong> the soil solution and deposition results. Theanimal and bird life on the island rema<strong>in</strong>s rich and typical <strong>of</strong> a coastal region. The gamec<strong>at</strong>ches vary accord<strong>in</strong>g to hunt<strong>in</strong>g pressure and n<strong>at</strong>ural vari<strong>at</strong>ion <strong>in</strong> popul<strong>at</strong>ions.Phytoplankton biomasses and primary production were higher than <strong>in</strong> 2005. Mar<strong>in</strong>ebottom fauna has suffered on the observ<strong>at</strong>ion sites closest to the cool<strong>in</strong>g w<strong>at</strong>er dischargesite, but <strong>in</strong> 2004-<strong>2006</strong> the situ<strong>at</strong>ion has been slightly better due to improvedoxygen conditions.


60The w<strong>at</strong>er quality <strong>of</strong> the monitored priv<strong>at</strong>e drilled wells was poor, as <strong>in</strong> previous years.The w<strong>at</strong>er level fluctu<strong>at</strong>ion follows th<strong>at</strong> <strong>of</strong> reference sites, shallow wells <strong>in</strong> bedrock notaffected by ONKALO. Noise read<strong>in</strong>gs <strong>in</strong> <strong>2006</strong> (early 2007) varied between 40.7 and62.4 dB, be<strong>in</strong>g <strong>in</strong> many loc<strong>at</strong>ions higher than <strong>in</strong> 2005. This was mostly due to heaviertraffic and w<strong>in</strong>d.


61REFERENCESDerome, J. L<strong>in</strong>droos, A-J. & Derome, K. 2007. Soil percol<strong>at</strong>ion w<strong>at</strong>er quality dur<strong>in</strong>g2001-2004 on 11 Level II plos. In: Merilä, P., Kilponen, T. & Derome, J. (eds.). ForestCondition <strong>Monitor<strong>in</strong>g</strong> <strong>in</strong> F<strong>in</strong>land – N<strong>at</strong>ional report 2002-2005. Work<strong>in</strong>g Papers <strong>of</strong> theF<strong>in</strong>nish Forest Research Institute 45. pp. 93-98.Haapanen, R. 2005. <strong>Results</strong> <strong>of</strong> <strong>Monitor<strong>in</strong>g</strong> <strong>at</strong> <strong>Olkiluoto</strong> <strong>in</strong> 2004. <strong>Environment</strong>. <strong>Posiva</strong>Work<strong>in</strong>g Report 2005-31. 127 p. http://www.posiva.fi/Haapanen, R. <strong>2006</strong>. <strong>Results</strong> <strong>of</strong> <strong>Monitor<strong>in</strong>g</strong> <strong>at</strong> <strong>Olkiluoto</strong> <strong>in</strong> 2004. <strong>Environment</strong>. <strong>Posiva</strong>Work<strong>in</strong>g Report <strong>2006</strong>-68. 99 p. http://www.posiva.fi/Haapanen, R., Aro, L., Ilvesniemi, H., Kare<strong>in</strong>en, T., Kirkkala, T., Lahdenperä A-M.,Mykrä, S., Turkki, H. & Ikonen, A., <strong>2006</strong>. <strong>Olkiluoto</strong> Biosphere description. <strong>Posiva</strong> Oy,Report 2007-02. 181 p. http://www.posiva.fi/Helmisaari, H-S., Derome, J., Nöjd, P. and Kukkola, M. 2007. F<strong>in</strong>e root biomass <strong>in</strong>rel<strong>at</strong>ion to site and stand characteristics <strong>in</strong> Norway spruce and Scots p<strong>in</strong>e stands. Acceptedfor public<strong>at</strong>ion <strong>in</strong> Tree Physiology.Huhta, A-P. & Korpela, L. <strong>2006</strong>. Permanent Veget<strong>at</strong>ion Quadr<strong>at</strong>s on <strong>Olkiluoto</strong> Island.Establishment and <strong>Results</strong> from the First Inventory. <strong>Posiva</strong> Work<strong>in</strong>g Report <strong>2006</strong>-33.76 p. http://www.posiva.fi/Ikonen, A.T.K. 2002. Meteorological d<strong>at</strong>a <strong>of</strong> <strong>Olkiluoto</strong> <strong>in</strong> period <strong>of</strong> 1992-2001. <strong>Posiva</strong>Work<strong>in</strong>g Report 2002-44. 26 p.Ikonen, A.T.K. 2003. <strong>Environment</strong>al Radioactivity D<strong>at</strong>a <strong>of</strong> <strong>Olkiluoto</strong> <strong>in</strong> 1984-2001.<strong>Posiva</strong> Work<strong>in</strong>g Report 2003-14.Ikonen, A.T.K. 2005. Meteorological d<strong>at</strong>a <strong>of</strong> <strong>Olkiluoto</strong> <strong>in</strong> period <strong>of</strong> 2002-2004. <strong>Posiva</strong>Work<strong>in</strong>g Report 2005-35. 53 p.Ikonen, A.T.K. <strong>2006</strong>. <strong>Posiva</strong> Biosphere Assessment: Revised structure and st<strong>at</strong>us <strong>2006</strong>.<strong>Posiva</strong> Oy, POSIVA <strong>2006</strong>-07. http://www.posiva.fi/Ikonen, A.T.K. 2007. Meteorological d<strong>at</strong>a and upd<strong>at</strong>e <strong>of</strong> clim<strong>at</strong>e st<strong>at</strong>istics <strong>of</strong> <strong>Olkiluoto</strong>,2005. <strong>Posiva</strong> Work<strong>in</strong>g report (<strong>in</strong> prepar<strong>at</strong>ion).Ikonen, A.T.K., Kaapu, J., Lehtonen, K., M<strong>at</strong>tila, J., Räisänen, R., Sauvonsaari, J. &Turkki, H. 2003. <strong>Environment</strong> Studies <strong>in</strong> the <strong>Olkiluoto</strong> area. <strong>Posiva</strong> Work<strong>in</strong>g Report2003-15. 114 p. http://www.posiva.fi/Kaunisto, S. & Paavila<strong>in</strong>en, E. 1988. Nutrient stores <strong>in</strong> old dra<strong>in</strong>age areas and growth<strong>of</strong> stands. Communic<strong>at</strong>iones Instituti Forestalis Fenniae. Vol. 145, 39 p.


62Kaunisto, S. & Moilanen, M. 1998. Kasvualustan, puuston ja harvennuspoistumansisältämät rav<strong>in</strong>nemäärät neljällä vanhalla ojitusalueella. Folia Forestalia. Vol. 1998,no. 3, p. 393-410.Lahdenperä, A-M., Palmén, J. & Hellä, P. 2005. Summary <strong>of</strong> Overburden Studies <strong>at</strong><strong>Olkiluoto</strong> with an Emphasis on Geosphere-Biosphere Interface. <strong>Posiva</strong> Oy, Work<strong>in</strong>gReport 2005-11. 85 p.Lehtonen, A., Mäkipää, R., Heikk<strong>in</strong>en, J., Sievänen, R. & Liski, J. 2004a. Biomass expansionfactors (BEFs) for Scots p<strong>in</strong>e, Norway spruce and birch accord<strong>in</strong>g to stand agefor boreal forests. Forest Ecology and Management. Vol. 188, p. 211-224. ISSN 0378-1127.Lehtonen, A., Sievänen, R., Mäkelä, A., Mäkipää, R., Korhonen, K. T., & Hokkanen, T.2004b. Potential litterfall <strong>of</strong> Scots p<strong>in</strong>e branches <strong>in</strong> southern F<strong>in</strong>land. EcologicalModell<strong>in</strong>g. Vol. 180, p. 305–315. ISSN 0304-3800.L<strong>in</strong>dgren, M., Nevala<strong>in</strong>en, S. & Pouttu, A. 2007. Crown condition on the Level II network2001-2004. In: Merilä, P., Kilponen, T. & Derome, J. (eds.). Forest Condition<strong>Monitor<strong>in</strong>g</strong> <strong>in</strong> F<strong>in</strong>land. N<strong>at</strong>ional report 2002-2005. Work<strong>in</strong>g Papers <strong>of</strong> the F<strong>in</strong>nish ForestResearch Institute 45: 41-45.L<strong>in</strong>t<strong>in</strong>en, O. <strong>2006</strong>. Olkiluodon edustan merialueen kal<strong>at</strong>aloudell<strong>in</strong>en tarkkailu vuonna2005. Amm<strong>at</strong>tikalastuskysely, meritaimenen merk<strong>in</strong>tätutkimus. (In F<strong>in</strong>nish: <strong>Monitor<strong>in</strong>g</strong><strong>of</strong> the fish<strong>in</strong>g <strong>in</strong> the sea areas near <strong>Olkiluoto</strong>. Questionnaire <strong>of</strong> pr<strong>of</strong>essional fish<strong>in</strong>g,mark<strong>in</strong>g study <strong>of</strong> Salmo trutta trutta). Ramboll F<strong>in</strong>land Oy.Liski, J. 1997. Carbon storage <strong>of</strong> forest soils <strong>in</strong> F<strong>in</strong>land. University <strong>of</strong> Hels<strong>in</strong>ki Department<strong>of</strong> Forest Ecology Public<strong>at</strong>ions 16. Academic dissert<strong>at</strong>ion.Mäkiaho, J-P. 2005. Development <strong>of</strong> Shorel<strong>in</strong>e and Topography <strong>in</strong> the <strong>Olkiluoto</strong> Area,Western F<strong>in</strong>land, 2000 BP - 8000 AP. <strong>Posiva</strong> Work<strong>in</strong>g Report 2005-70. 47 p.http://www.posiva.fi/Mäkipää, R. 1994. Effects <strong>of</strong> nitrogen fertiliz<strong>at</strong>ion on the humus layer and ground veget<strong>at</strong>ionunder closed canopy <strong>in</strong> boreal coniferous stands. Silva Fennica. Vol. 28, no. 2, p.81–94. ISSN 0037-5330.Marklund, L.G. 1988. Biomassafunktioner för tall, gran och björk i Sverige. Summary:Biomass functions for p<strong>in</strong>e, spruce and birch <strong>in</strong> Sweden. Swedish University <strong>of</strong> AgriculturalSciences, Department <strong>of</strong> Forest Survey, Report 45. 71 p.Miett<strong>in</strong>en, T. & Haapanen, R. 2002. Veget<strong>at</strong>ion Types on <strong>Olkiluoto</strong> Island. <strong>Posiva</strong>Work<strong>in</strong>g Report 2002-54. 54 p.Muukkonen, P. & Lehtonen, A. 2004. Needle and branch biomass turnover r<strong>at</strong>es <strong>of</strong>Norway spruce (Picea abies). Canadian Journal <strong>of</strong> Forest Research. Vol. 34, no. 12, p.2517–2527. ISSN 0045-5067.


63Muukkonen, P. & Mäkipää, R. <strong>2006</strong>. Empirical biomass models <strong>of</strong> understorey veget<strong>at</strong>ion<strong>in</strong> boreal forests accord<strong>in</strong>g to stand and site <strong>at</strong>tributes. Boreal <strong>Environment</strong>al Research.Vol. 11, no. 5, p. 355-369. ISSN 1239-6095.Poikola<strong>in</strong>en, J., Lippo, H., Hongisto, M., Kub<strong>in</strong>, E., Mikkola, K. & L<strong>in</strong>dgren, M. 1998.On the abundance <strong>of</strong> epiphytic green algae <strong>in</strong> rel<strong>at</strong>ion to the nitrogen concentr<strong>at</strong>ions <strong>of</strong>biomonitors and nitrogen deposition <strong>in</strong> F<strong>in</strong>land. <strong>Environment</strong>al Pollution 102: 85-92.<strong>Posiva</strong> 2003a. Basel<strong>in</strong>e Conditions <strong>at</strong> <strong>Olkiluoto</strong>. <strong>Posiva</strong> Oy. <strong>Posiva</strong> Report POSIVA2003-02. 127 p. http://www.posiva.fi/<strong>Posiva</strong> 2003b. Programme <strong>of</strong> <strong>Monitor<strong>in</strong>g</strong> <strong>at</strong> <strong>Olkiluoto</strong> Dur<strong>in</strong>g Construction and Oper<strong>at</strong>ion<strong>of</strong> the Onkalo. <strong>Posiva</strong> Oy. <strong>Posiva</strong> Report POSIVA 2003-05. http://www.posiva.fi/Potila, H., Sarjala, T., & Aro, L. 2007. Dissolved nitrogen transform<strong>at</strong>ions and microbialcommunity structure <strong>in</strong> the organic layer <strong>of</strong> forest soils <strong>in</strong> <strong>Olkiluoto</strong> <strong>in</strong> <strong>2006</strong>.<strong>Posiva</strong> Work<strong>in</strong>g Report 2007-08. http://www.posiva.fi/Raitio, H., Saramäki, J., Aro, L. Ranta, P., Siitonen, M., & Oja, J. 2007. Methods forenvironmental monitor<strong>in</strong>g and studies <strong>at</strong> <strong>Olkiluoto</strong> site. Supplement to the environmentalmonitor<strong>in</strong>g programme. <strong>Posiva</strong> Oy, Work<strong>in</strong>g Report (<strong>in</strong> prepar<strong>at</strong>ion).Rant<strong>at</strong>aro, J. 2001. Acoustic-Seismic Research <strong>in</strong> the Sea Area near <strong>Olkiluoto</strong> <strong>in</strong> theYear 2000 (<strong>in</strong> F<strong>in</strong>nish with English abstract). <strong>Posiva</strong> Work<strong>in</strong>g Report 2002-19.Rautio, P., L<strong>at</strong>vajärvi, H., Jokela, A. & Kangas-Korhonen, P. 2004. Forest Resourceson <strong>Olkiluoto</strong> Island. <strong>Posiva</strong> Work<strong>in</strong>g Report 2004-35. 109 p.Rautio, P., Aro, L. & Ikonen, A. 2005. Terra<strong>in</strong> development <strong>at</strong> <strong>Olkiluoto</strong> site and implic<strong>at</strong>ionsto biosphere assessment. In: Strand, P., Børretzen, P. & Jølle, T. (eds.). The 2ndIntern<strong>at</strong>ional Conference on Radioactivity <strong>in</strong> the <strong>Environment</strong>, 2-6 October 2005, Nice,France. Proceed<strong>in</strong>gs. Norwegian Radi<strong>at</strong>ion Protection Authority, pp. 372-375.Roiva<strong>in</strong>en, P. <strong>2006</strong>. Stable Elements and Radionuclides <strong>in</strong> Shorel<strong>in</strong>e Alder Stands <strong>at</strong><strong>Olkiluoto</strong> <strong>in</strong> 2005. <strong>Posiva</strong> Oy, Work<strong>in</strong>g Report <strong>2006</strong>-70. 103 p.Roiva<strong>in</strong>en, P. 2005. <strong>Environment</strong>al Radioactivity D<strong>at</strong>a <strong>of</strong> <strong>Olkiluoto</strong> <strong>in</strong> 1977-1983 and2002-2003. <strong>Posiva</strong> Work<strong>in</strong>g Report 2005-26. 121 p. http://www.posiva.fi/Salemaa, M., Derome. J. Helmisaari, H.-S., Niem<strong>in</strong>en, T. & Vanha-Majamaa, I. 2004.Element accumul<strong>at</strong>ion <strong>in</strong> boreal bryophytes, lichens and vascular plants exposed toheavy metal and sulfur deposition <strong>in</strong> F<strong>in</strong>land. The Science <strong>of</strong> the Total <strong>Environment</strong>.Vol. 324, p. 141-160. ISSN 0048-9697.Saramäki, J. & Korhonen, K. 2005. St<strong>at</strong>e <strong>of</strong> the Forests on <strong>Olkiluoto</strong> <strong>in</strong> 2004. Comparisonsbetween <strong>Olkiluoto</strong> and the rest <strong>of</strong> Southwest F<strong>in</strong>land. <strong>Posiva</strong> Work<strong>in</strong>g Report2005-39. 79 p. http://www.posiva.fi/


64Starr, M. 1991. Soil form<strong>at</strong>ion and fertility along a 5000 year chronosequence. In:Pulkk<strong>in</strong>en, E. (ed.). <strong>Environment</strong>al geochemistry <strong>in</strong> northern Europe. Geological Survey<strong>of</strong> F<strong>in</strong>land, Special Paper 9, p. 99-104.Starr, M., Saarsalmi, A., Hokkanen, T., Merilä, P. & Helmisaari, H-S. 2005. Models <strong>of</strong>litterfall production for Scots p<strong>in</strong>e (P<strong>in</strong>us sylvestris L.) <strong>in</strong> F<strong>in</strong>land us<strong>in</strong>g stand, site andclim<strong>at</strong>e factors. Forest Ecology and Management. Vol. 205, p. 215–225. ISSN 0378-1127.Tamm<strong>in</strong>en, P. 2000. Soil factors. In: Mälkönen, E. (ed.). Forest condition <strong>in</strong> a chang<strong>in</strong>genvironment - The F<strong>in</strong>nish case. Forestry Sciences. Kluwer Academic Publishers,Dordrecht, p. 72-86.Tamm<strong>in</strong>en, P., Aro, L. & Salemaa, M. 2007. Forest soil survey and mapp<strong>in</strong>g <strong>of</strong> veget<strong>at</strong>ionnutrition on <strong>Olkiluoto</strong> Island. <strong>Results</strong> from the first <strong>in</strong>ventory on FEH plots. <strong>Posiva</strong>Work<strong>in</strong>g Report (<strong>in</strong> prepar<strong>at</strong>ion).Turkki, H. 2007. Olkiluodon lähivesien fysikaalis-kemiall<strong>in</strong>en ja biolog<strong>in</strong>en tarkkailututkimusvuonna <strong>2006</strong>. Vuosiyhteenveto. (In F<strong>in</strong>nish: The physiochemical and biologicalmonitor<strong>in</strong>g <strong>of</strong> nearby w<strong>at</strong>ers <strong>of</strong> <strong>Olkiluoto</strong> <strong>in</strong> <strong>2006</strong>. Annual report.) Lounais-Suomenvesi- ja ympäristötutkimus Oy. Tutkimusseloste 270. 42 p. + appendixes.Ukonmaanaho, L. 2007. Litterfall production on 14 Level II plots dur<strong>in</strong>g 1996-2003. In:Merilä, P., Kilponen, T. & Derome, J. (eds.). Forest Condition <strong>Monitor<strong>in</strong>g</strong> <strong>in</strong> F<strong>in</strong>land.N<strong>at</strong>ional report 2002-2005. Work<strong>in</strong>g Papers <strong>of</strong> the F<strong>in</strong>nish Forest Research Institute 45:63-68.


65APPENDIX A: LIST OF MONITORING LOCATIONSTable A-1. <strong>Monitor<strong>in</strong>g</strong> sites, their codes and descriptions.Sampl<strong>in</strong>g site type(s) Code Former code NameDrilled well DWH1 W1 TyrnirantaDWH2 W2 Majaham<strong>in</strong>aDWH3 W3 HirvikallioDWH4 W4 HilakariW<strong>at</strong>erfowl count<strong>in</strong>g po<strong>in</strong>t <strong>of</strong>1997 FAL01-FAL12Carabid beetles <strong>in</strong>ventory FAL13 N<strong>at</strong>ure conserv<strong>at</strong>ion area2004 FAL14 Commercial conifer forestFAL15Cutt<strong>in</strong>g area with birches stand<strong>in</strong>gFAL16Black alder forest <strong>at</strong> Rumm<strong>in</strong>peräSmall animal qu<strong>at</strong>r<strong>at</strong> 2004 FAL17 Old spruce forest 1FAL18 Old spruce forest 2FAL19Coniferous forest near the old forestFAL20Cutt<strong>in</strong>g areaFAL21 Commercial forest 1FAL22 Commercial forest 2FAL23Black alder forest <strong>at</strong> Rumm<strong>in</strong>peräFAL24Seashore meadowFAL25Abandoned fieldFAL26HayfieldFAL27Commercial forest near shoreBird <strong>in</strong>ventory transect <strong>of</strong> FAT01 Ulkopää1997 FAT02 Flutanperä-SelkänummenharjuFAT03SelkänummenharjuFAT04<strong>Olkiluoto</strong>FAT05LiiklankallioFAT06KorpiB<strong>at</strong> <strong>in</strong>ventory transect <strong>of</strong> FAT07 Ulkopää2004 FAT08 outlet channelFAT09SelkänummenharjuFAT10MunakariFAT11FlutanperäFAT12LiiklankallioFAT13Itäranta (road to Kornamaa)FAT14S<strong>at</strong>am<strong>at</strong>ieFAT15Karhunkar<strong>in</strong>rauma reedbedsForest <strong>in</strong>ventory, sampl<strong>in</strong>g, FEH931256Black alder plot <strong>at</strong> the switchyardradioactivityRadioactivity (forests) FEH931256-FT1 ...small animal qu<strong>at</strong>r<strong>at</strong>FEH931256-FT2FEH931256-FT3FEH931256-FT4


66Table A-1 cont'd. <strong>Monitor<strong>in</strong>g</strong> sites, their codes and descriptions.Sampl<strong>in</strong>g site type(s) Code Former code NameRadioactivity (forests) FEH931256-GL1 ...litter sampl<strong>in</strong>gFEH931256-GL2FEH931256-GL3FEH931256-WA1...earthworm sampl<strong>in</strong>gRadioactivity (fish) FIA01-FIA04 F1, F2 Old fish<strong>in</strong>g areasFIA05Lippo fish<strong>in</strong>g areaFIA06Susikari southern shoreFIA07-FIA8 F1, F2 Old fish<strong>in</strong>g areasFIA09 F1r reserve fish<strong>in</strong>g area 1FIA10 F2r reserve fish<strong>in</strong>g area 2FIA11 FI fish<strong>in</strong>g area FIFIA12 FII fish<strong>in</strong>g area FIIFishery survey FIA13 Account fish<strong>in</strong>g sub-area AFIA14Account fish<strong>in</strong>g sub-area BFIA15Account fish<strong>in</strong>g sub-area C- FIA16FIA17FIA18Test fish<strong>in</strong>g FIA19 Test fish<strong>in</strong>g area 1 (1997, <strong>2006</strong>, 2010)FIA20 Test fish<strong>in</strong>g area 2 (1997, <strong>2006</strong>, 2010)FIA21 Test fish<strong>in</strong>g area 3 (1997, <strong>2006</strong>, 2010)Forest <strong>in</strong>tensive FIP04 IP4 Liiklanperä p<strong>in</strong>e standmonitor<strong>in</strong>g FIP10 IP10 Liiklanperä spruce standForest deposition MRK01-MRK10MRK93-MRK96 MRK3-MRK6<strong>Environment</strong>al noise, NMP01 Nousia<strong>in</strong>en, northern shorecurrent number<strong>in</strong>g as <strong>in</strong> NMP02 Kuusisenmaa, eastern endTVO survey 2005 NMP03 LeppäkartaNMP04OL3 support area <strong>in</strong>side power plant areaNMP05OL3 support area <strong>in</strong>side power plant areaNMP06OL3 constr. site/g<strong>at</strong>e to guest saunaNMP07...08OL3 support area <strong>in</strong>side power plant areaNMP09...15OL3 construction siteNMP16...18Power plant areaNMP19 NMP01 Inlet channel <strong>of</strong> OL1, trash rackNMP20...23Power plant areaNMP24 NMP02 Middle <strong>of</strong> tra<strong>in</strong><strong>in</strong>g centre and swicthyardNMP25...30Power plant areaNMP31 NMP04 Between OL1/OL2, w<strong>at</strong>erworks levelNMP32...35Power plant areaNMP36...41Rock pil<strong>in</strong>g and crush<strong>in</strong>g areaNMP42...45ONKALO excav<strong>at</strong>ion siteNMP46 NMP03 Raunela/Luoto crossroadsNMP47Ice buoy


67Table A-1 cont'd. <strong>Monitor<strong>in</strong>g</strong> sites, their codes and descriptions.Sampl<strong>in</strong>g site type(s) Code Former code Name<strong>Environment</strong>al noise NMP48 OL3 harbourNMP49OL3 park<strong>in</strong>g areaNMP50OL3 truck g<strong>at</strong>eNMP51West end <strong>of</strong> the ma<strong>in</strong> g<strong>at</strong>eNMP52Harbour road fac<strong>in</strong>g OnkaloNMP53Visitor CentreN<strong>at</strong>ure survey 1997 NSS01…49 survey square 01…49Precip. chemistry (1990s) PCC01Snow chemistry (1990s) PCC02Precipit<strong>at</strong>ion chemistry PCC03 precipit<strong>at</strong>ion sampler for isotope studiesRadioactivity: Soil gamma RNM01 AH Ahtola Aerosol RNM02-AS1 KU (KUa) Kuivalahti aerosol sampler Deposition RNM02-DC1 KU (KUa) Kuivalahti Aerosol RNM03-AS1 HA Hankkila aerosol sampler Deposition RNM03-DC1 HA Hankkila deposition collector 1 Deposition RNM03-DC2 HA Hankkila deposition collector 2 Aerosol RNM04-AS1 HS Haapasaari aerosol collector Deposition RNM04-DC1 HS Haapasaari deposition collector Dr<strong>in</strong>k<strong>in</strong>g w<strong>at</strong>er RNM05-DW1 RA Rauma w<strong>at</strong>erworks Deposition RNM06-DC1 WM we<strong>at</strong>her mast collector 1 Deposition RNM06-DC2 WM we<strong>at</strong>her mast collector 2 Aerosol RNM07-AS1 KO Korvensuo aerosol sampler Dr<strong>in</strong>k<strong>in</strong>g w<strong>at</strong>er RNM07-DW1 KO Korvensuo dr<strong>in</strong>k<strong>in</strong>g w<strong>at</strong>erEurajoki River monitor<strong>in</strong>g RWS01 PappilankoskiLap<strong>in</strong>joki River monitor<strong>in</strong>g RWS02 Yl<strong>in</strong>enkoskiRadioactivity (sea biota) SBP01 KPb KalliopölläSBP02 KA Kaalonpuhti shoalRadioactivity SBP03 IP Iso-Pietari(bladderwrack) SBP04 VE VähäkrunnitTest fish<strong>in</strong>g SBP05 Fyke net, Iso-SiiliöSBP06Fyke net, Susikari NSBP07Fyke net, Susikari SESBP08Fyke net, PyrekariSBP09Fyke net, Uskal<strong>in</strong>maaSBP10Fyke net, PujonsärkkäSBP11Fyke net, Marsk<strong>in</strong>karitSeabottom veget<strong>at</strong>ion SBT01 A Piertransect SBT02 B OtpääSBT03 C shoalSBT04 D Kuus<strong>in</strong>enSBT05 E SusikariSBT06 F ReimargrundSBT07 G Pihlavakari


68Table A-1 cont'd. <strong>Monitor<strong>in</strong>g</strong> sites, their codes and descriptions.Sampl<strong>in</strong>g site type(s) Code Former code NameW<strong>at</strong>er chemistry SEA01 ER EteläriuttaSEA02 PK PuskakariSEA03 RK, SU, 525 Susikari (Rääp<strong>in</strong>kivet)SEA04 ES, 490 Pitkäkar<strong>in</strong>kulma (Marsk<strong>in</strong>kari N)W<strong>at</strong>er quality SEA05 500 LiiklankariSEA06 505 Kuus<strong>in</strong>enW<strong>at</strong>er quality SEA07 515 PuskkariSEA08 510 UlkopääSEA09 480 EurajoensalmensuuSEA10 530 PyrekariRadioactivity: Seaw<strong>at</strong>er SEA11 IKa Iso Kaalonperä A Seaw<strong>at</strong>er, sediment, suspended,sea biota SEA12 LL Lippo (Liponluoto) Seaw<strong>at</strong>er SEA13 KPa Kalliopöllä (Pussikari) Sediment SEA14 OV Olkiluodonvesi Sediment SEA15 TA Tankarit Seaw<strong>at</strong>er, sea biota SEA16 IS Iso-Siiliö Sediment, sea biota SEA17 IKb Iso Kaalonperä B Sediment, suspended SEA18 VK Vähä Kivikkokari Sediment SEA19 PF Piskerfäärti Seaw<strong>at</strong>er, suspended SEA20 SA Santakari Sediment SEA21 KK Kaksoiskivet Sediment SEA22 HV Haapasaarenvesi Sediment SEA23 KJ KuuskajaskariSpr<strong>in</strong>g TMA01 PistolaTMA02KaukenpieliWell TMA03 Varv<strong>in</strong>nokkaTMA04HelmirantaB<strong>at</strong> <strong>in</strong>ventory area <strong>of</strong> 2004 +others TMA05 N<strong>at</strong>ure conserv<strong>at</strong>ion areaW<strong>at</strong>er sampl<strong>in</strong>g / reservoir TMA06 Korvensuo reservoirFor l<strong>at</strong>er needsTMA07-TMA10W<strong>at</strong>erfowl count<strong>in</strong>g sector 1997 TMA11-TMA22Associ<strong>at</strong>ed to FAL01-FAL12Radioactivity: Milk TMA23 Zone I (0-5 km from NPP) Milk TMA24 Zone II (5-10 km from NPP) Milk TMA25 Zone III (10-20 km from NPP) Graz<strong>in</strong>g grass, milk TMA26 0-10 km from NPP Graz<strong>in</strong>g grass, cereals TMA27 0-20 km from NPP Milk, beef TMA28 0-40 km from NPP Hair moss TMA29 HA Hankkila forest Soil TMA30 Hankkila, soil sampl<strong>in</strong>g site Blackcurrant, lettuce TMA31 HA Hankkila, Laaksonen farm


69Table A-1 cont'd. <strong>Monitor<strong>in</strong>g</strong> sites, their codes and descriptions.Sampl<strong>in</strong>g site type(s) Code Former code NameRadioactivity: Garden products TMA32 HA Hankkila, farm <strong>at</strong> Olkiluodontie cross<strong>in</strong>g Garden products TMA33 LM L<strong>in</strong>namaa farm Cereals TMA34 Vuojoki farm Birch leaves/C-14 TMA35 LJ Lapijoki Wild berries TMA36 KS Kaalonpuhti N shore Needles, wild berries, mushroomsTMA37 WM We<strong>at</strong>her mast area Lichen, wild berries, mushr. TMA38 WN We<strong>at</strong>her mast N area Soil, wild berries TMA39 MU Munakari Soil, wild berries TMA40 MU Munakari Mushrooms TMA41 MR Munakari road junction Soil TMA42 FL Flutanperä Wild berries, mushrooms TMA43 SR Santalahti road side Soil TMA44 LU Luonto farm Soil TMA45 IR ItärantaRadioactivity TMA46 OA Otpää areaRadioactivity (hair moss) TMA47 LK Liiklankari areaTMA48 SL Santalahti areaRadioactivity (soil gamma, suppl.aerosol) TMA49 IL Ilava<strong>in</strong>en areaRadioactivity TMA50 OL <strong>Olkiluoto</strong>Radioactivity (soil) TMA51 MaaselkäTMA52Flutanperä NRadioactivity (shore TMA53 Kaalonpuhti N shore, l<strong>in</strong>e 1transects 2005) TMA54 Kaalonpuhti N shore, l<strong>in</strong>e 3TMA55 Kuusisenmaa, l<strong>in</strong>e 2Radioactivity TVO01 PI Pier(exposure r<strong>at</strong>e) TVO02 WM We<strong>at</strong>her mast dosemeterTVO03 KO Korvensuo dosemeterTVO04 PN Pujonnokka (pujo)TVO05 KUb Kuivalahti dosemeter (Ellilä)TVO06 LM L<strong>in</strong>namaaTVO07 HA Hankkila dosemeterTVO08 TM Taipalmaa (Humm<strong>at</strong>us)TVO09 RE ReksaariTVO09old AI AikkoTVO10 RA RaumaTVO11 OP OtpääVeget<strong>at</strong>ion survey 2002 VCP02-001…435 Veget<strong>at</strong>ion compartment polygon 1…435N<strong>at</strong>ure survey TVO 5/05 VCP05-501…513 N<strong>at</strong>. survey compartment polygon 1…13N<strong>at</strong>ure survey TVO 6/05 VCP05-601…611 N<strong>at</strong>. survey compartment polygon 1…11We<strong>at</strong>her WOM1 We<strong>at</strong>her mast, TVOWOM2We<strong>at</strong>her mast, forest


71APPENDIX B: FOREST AND MIRE MONITORING SYSTEMForest monitor<strong>in</strong>g was started <strong>in</strong> 2002 accord<strong>in</strong>g to a plan compiled <strong>in</strong> l<strong>at</strong>e 2001. Theplan has l<strong>at</strong>er been f<strong>in</strong>e-tuned (Raitio et al. 2007). The forest monitor<strong>in</strong>g system consists<strong>of</strong> several levels (Fig. B-1) and it allows cont<strong>in</strong>uous follow-up <strong>of</strong> the veget<strong>at</strong>ion,soil, and processes affect<strong>in</strong>g them, as well as comparisons with areas further awayfrom the island. The first steps aimed <strong>at</strong> describ<strong>in</strong>g present situ<strong>at</strong>ion, but with repe<strong>at</strong>edmeasurements changes can be detected, and processes modelled.Figure B-1. Forest monitor<strong>in</strong>g levels. The outermost land-use grid consists <strong>of</strong> plots <strong>at</strong>50 m <strong>in</strong>tervals. These have been visually <strong>in</strong>terpreted for land-use. VCP conta<strong>in</strong>s theveget<strong>at</strong>ion polygons, from which also the forest resources have been <strong>in</strong>ventoried. Thenumbers <strong>of</strong> monitor<strong>in</strong>g plots are 560 (FET), 94 (FEH), 11 (MRK), and 3 (FIP). TheFEH plots are a sub-sample <strong>of</strong> the FET plots and the FIP plots are a sub-sample <strong>of</strong> theMRK plots. The number <strong>of</strong> FET and FEH plots has been reduced due to expand<strong>in</strong>g <strong>in</strong>frastructure.Veget<strong>at</strong>ion Classific<strong>at</strong>ion and Mapp<strong>in</strong>g: VCPThe purpose <strong>of</strong> veget<strong>at</strong>ion-type mapp<strong>in</strong>g was to classify the veget<strong>at</strong>ion and its distributionfor use as a basis <strong>in</strong> the monitor<strong>in</strong>g <strong>of</strong> primary plant succession caused by land uplift<strong>at</strong> the plant community level and the possible anthropogenic environmental impact.Mapp<strong>in</strong>g also provides additional <strong>in</strong>form<strong>at</strong>ion for long-term safety monitor<strong>in</strong>g and isuseful for valid<strong>at</strong><strong>in</strong>g the results <strong>of</strong> separ<strong>at</strong>e succession studies. The task was performed<strong>in</strong> 2002 by the F<strong>in</strong>nish Forest Research Institute (FFRI), cover<strong>in</strong>g the ma<strong>in</strong> island <strong>of</strong><strong>Olkiluoto</strong>, and reported by Miett<strong>in</strong>en & Haapanen (2002).


72Forest Inventory by VCP UnitsThe forest <strong>in</strong>ventory by veget<strong>at</strong>ion polygons, together with veget<strong>at</strong>ion mapp<strong>in</strong>g, providesa basis for the division <strong>of</strong> the area <strong>in</strong>to homogeneous parts and facilit<strong>at</strong>es optimaltarget<strong>in</strong>g <strong>of</strong> <strong>in</strong>tensive monitor<strong>in</strong>g measurements. At the same time, it also serves forestry<strong>in</strong> the <strong>Olkiluoto</strong> area by provid<strong>in</strong>g up-to-d<strong>at</strong>e <strong>in</strong>form<strong>at</strong>ion for the plann<strong>in</strong>g <strong>of</strong> silviculturaltre<strong>at</strong>ment. The veget<strong>at</strong>ion/tree map allows monitor<strong>in</strong>g <strong>of</strong> changes <strong>in</strong> the veget<strong>at</strong>edlandscape. The <strong>in</strong>ventory by forest compartments was performed <strong>in</strong> 2003 by theFFRI, and the results have been reported by Rautio et al. (2004).Figure B-2. Forest monitor<strong>in</strong>g plots <strong>in</strong> <strong>2006</strong>.Forest Extensive <strong>Monitor<strong>in</strong>g</strong> Plots: FETFET grid (Fig. B-2) was established <strong>in</strong> autumn 2003 by loc<strong>at</strong><strong>in</strong>g 560 plots with the help<strong>of</strong> GPS and mark<strong>in</strong>g them out with a pole <strong>at</strong> the centre. The ma<strong>in</strong> purpose <strong>of</strong> this grid isto describe the biomass, to monitor the changes <strong>in</strong> it and the damage manifest<strong>in</strong>g itself<strong>in</strong> tree stands. Furthermore, the FET grid provides a flexible <strong>in</strong>tercoord<strong>in</strong><strong>at</strong>ed frameworkfor other studies.Field measurement <strong>of</strong> tree stand variables along FET plots is based on the use <strong>of</strong> threeconcentric circular sample plots <strong>of</strong> a fixed radius: the <strong>in</strong>clusion area varies accord<strong>in</strong>g tothe breast height diameter <strong>of</strong> the trees. The guidel<strong>in</strong>es for <strong>in</strong>ventory<strong>in</strong>g the forests andmires are <strong>in</strong> accordance with the N<strong>at</strong>ional Forest Inventory <strong>of</strong> F<strong>in</strong>land, with the exception<strong>of</strong> the actual layout <strong>of</strong> the plot, modified to better fit the purposes <strong>of</strong> <strong>Posiva</strong>. A


73comprehensive measurement <strong>of</strong> forest parameters is to be carried out <strong>at</strong> <strong>in</strong>tervals <strong>of</strong>about 10 years (started <strong>in</strong> 2004; Saramäki & Korhonen 2005), but a lighter <strong>in</strong>ventorywill be performed more <strong>of</strong>ten.Forest Extensive High-Level <strong>Monitor<strong>in</strong>g</strong> Plots: FEHPart <strong>of</strong> the FET plots have been further selected as Forest Extensive High-level monitor<strong>in</strong>gplots (FEH, Fig. B-2). Orig<strong>in</strong>ally, 94 FEH plots were established, but l<strong>at</strong>er somehave been lost due to the ongo<strong>in</strong>g construction. In these plots the veget<strong>at</strong>ion is <strong>in</strong>ventoriedand the soil, needles and veget<strong>at</strong>ion are sampled <strong>at</strong> <strong>in</strong>tervals <strong>of</strong> 5-10 years. Thesevariables describe soil properties and nutrient balances. The veget<strong>at</strong>ion <strong>in</strong>ventory andsampl<strong>in</strong>g was performed for the first time <strong>in</strong> 2005 by the FFRI (Huhta & Korpela<strong>2006</strong>). The m<strong>in</strong>eral soil, pe<strong>at</strong> and needle samples were also collected <strong>in</strong> 2005 by theFFRI.Bulk Deposition and Stand Throughfall: MRKIntensive monitor<strong>in</strong>g <strong>of</strong> bulk deposition and stand throughfall was started <strong>in</strong> <strong>Olkiluoto</strong><strong>in</strong> June 2003 with<strong>in</strong> a plot network called MRK (Fig. B-2). The sampl<strong>in</strong>g is concentr<strong>at</strong>ed<strong>in</strong> 11 plots (Table B-1) loc<strong>at</strong>ed <strong>at</strong> vary<strong>in</strong>g distances from the dust-produc<strong>in</strong>g activities:excav<strong>at</strong>ion <strong>of</strong> ONKALO and rock pil<strong>in</strong>g and crush<strong>in</strong>g.Table B-1. Stand types and oper<strong>at</strong><strong>in</strong>g times <strong>of</strong> MRK plots. FIP = Forest Intensive monitor<strong>in</strong>gPlot (expla<strong>in</strong>ed <strong>in</strong> next paragraph).Plot Started Stand typeMRK1MRK2MRK3MRK4 = FIP4MRK5MRK6MRK7MRK8MRK9MRK10 = FIP10MRK11 = FIP112.6.20032.6.20032.6.20032.6.200326.8.200326.8.20032.6.20032.6.200320.4.200423.5.2005not yetScots p<strong>in</strong>eOpenScots p<strong>in</strong>eScots p<strong>in</strong>eNorway spruceNorway spruceOpenNorway spruceOpenNorway spruceYoung Norwayspruce/birchA total <strong>of</strong> 10 ra<strong>in</strong>fall collectors were loc<strong>at</strong>ed system<strong>at</strong>ically on the plots established <strong>in</strong>2003. This was l<strong>at</strong>er changed to 20 collectors <strong>in</strong> the forested plots. Dur<strong>in</strong>g w<strong>in</strong>ter, depositionis monitored with five system<strong>at</strong>ically loc<strong>at</strong>ed snow collectors (2 <strong>in</strong> open areas;Fig. B-3). Two <strong>of</strong> the orig<strong>in</strong>al plots had to be moved because <strong>of</strong> fell<strong>in</strong>g activities on theplots and new plots (MRK5 and MRK6) were established on August 25, 2003. Ra<strong>in</strong>w<strong>at</strong>ersamples are collected by <strong>Posiva</strong> every two and snow samples every four weeks.Needles are sampled <strong>at</strong> regular <strong>in</strong>tervals from forested loc<strong>at</strong>ions by the F<strong>in</strong>nish ForestResearch Institute, and all samples are analysed <strong>in</strong> the labor<strong>at</strong>ory <strong>of</strong> the FFRI's Ro-


74vaniemi Research St<strong>at</strong>ion. <strong>Results</strong> <strong>of</strong> the first needle analyses <strong>of</strong> the MRK plots werereported <strong>in</strong> 2005 <strong>in</strong> a memo by F<strong>in</strong>nish Forest Research Institute, and the next memo isdue <strong>in</strong> l<strong>at</strong>e 2007.Figure B-3. Layout <strong>of</strong> an open area MRK plot. Photo by Jere Lahdenperä (October2005).Forest Intensive <strong>Monitor<strong>in</strong>g</strong> Plots: FIPThe function<strong>in</strong>g <strong>of</strong> forest ecosystems on the island is studied <strong>in</strong> Forest Intensive monitor<strong>in</strong>gPlots (FIP). Three plots have now been established (Fig. B-4) <strong>in</strong> the Liiklansuoc<strong>at</strong>chment area: FIP4 (Scots p<strong>in</strong>e forest), FIP10 (Norway spruce forest) and FIP11(young Norway spruce/birch forest). FIP4 and FIP10 represent Oxalis-Myrtillus/grovelikem<strong>in</strong>eral soil forest site types grow<strong>in</strong>g on f<strong>in</strong>e-textured till. The third <strong>in</strong>tensivemonitor<strong>in</strong>g plot (FIP11) was established <strong>in</strong> a young Norway spruce and birch standnearby <strong>in</strong> l<strong>at</strong>e <strong>2006</strong>, and the <strong>in</strong>stall<strong>at</strong>ion <strong>of</strong> equipment was f<strong>in</strong>ished dur<strong>in</strong>g 2007. Thebasic stand characteristics <strong>of</strong> FIP11 will be <strong>in</strong>ventoried <strong>in</strong> summer 2007.


75Figure B-4. Top: FIP10, middle: FIP4, bottom: FIP11. Photos by Reija Haapanen(May 2007).


76The establishment and basic characteristics <strong>of</strong> the current plots have been reported <strong>in</strong> amemo by F<strong>in</strong>nish Forest Research Institute, and summarized by Haapanen (<strong>2006</strong>). EachFIP plot consists <strong>of</strong> three 30 x 30 m sub-plots (OA). A 5-10 m wide zone between andaround the sub-plots constitutes OA4. The monitored variables are presented <strong>in</strong> TableB-2.Table B-2. Activities performed <strong>at</strong> FIP plots. = cont<strong>in</strong>uous.FIP4 FIP10 FIP11Establishment 2003 2003 <strong>2006</strong>Veget<strong>at</strong>ion <strong>in</strong>ventory (OA3) 2003, 2004, 2005 2003, 2004, 2005Loc<strong>at</strong>ion and measurement <strong>of</strong> trees 2004 2005Stand throughfall and precipit<strong>at</strong>ion 2003 2005 2007measurements (MRK, OA2)Soil w<strong>at</strong>er sampl<strong>in</strong>g (OA2) 2003 2005 2007Litterfall sampl<strong>in</strong>g (OA2) 2004 2005 2007Needle sampl<strong>in</strong>g (OA2) 2003, 04, 05, 06 2004, 05, 06Micrometeorology (OA2) 2004 2005 2007Diameter growth measurements 2004 2005 (OA2)Sap flow measurements 2007 2007 Tree growth measurements (OA1) 2009 2010Crown condition survey <strong>2006</strong> <strong>2006</strong>Veget<strong>at</strong>ionSub-plot OA3 <strong>in</strong> each FIP is reserved for analyses <strong>of</strong> understorey veget<strong>at</strong>ion, whichplays a very important role <strong>in</strong> the annual biomass production, nutrient and w<strong>at</strong>er cycl<strong>in</strong>g,and biodiversity <strong>of</strong> boreal forests. Long-term study <strong>of</strong> the understorey veget<strong>at</strong>ionprovides <strong>in</strong>form<strong>at</strong>ion on changes <strong>in</strong> other forest ecosystem variables (soil, microclim<strong>at</strong>eetc.). Responses to anthropogenic impacts may be detectable sooner <strong>in</strong> the understoreythan <strong>in</strong> trees. Veget<strong>at</strong>ion has been studied annually by botanists <strong>of</strong> the F<strong>in</strong>nish ForestResearch Institute and reported <strong>in</strong> a yearly memo. Due to <strong>in</strong>itial experiences the <strong>in</strong>tervalwas changed to 3 years <strong>in</strong> 2005.The sub-plot (30 x 30 m) is divided <strong>in</strong>to 16 smaller sampl<strong>in</strong>g units (1.41 x 1.41 m = 2m 2 ). Visual coverage <strong>of</strong> the plant species is assessed us<strong>in</strong>g the follow<strong>in</strong>g scale: 0.01,0.1, 0.2, 0.5, 1, 2, ...99, 100%. The analysis is performed by layers (bottom layer, fieldlayer, shrub layer and trees). Species occurr<strong>in</strong>g with<strong>in</strong> the sub-plot, but not with<strong>in</strong> thesample units, are also recorded. The botanists carry<strong>in</strong>g out the work cross-check theirassessment levels <strong>in</strong> order to keep them uniform. Samples <strong>of</strong> unknown species are l<strong>at</strong>eridentified by specialists. The start<strong>in</strong>g situ<strong>at</strong>ion <strong>in</strong> 2003 is presented <strong>in</strong> Table B-3.


77Table B-3. Coverage (%) and number <strong>of</strong> species <strong>in</strong> 2003 (first <strong>in</strong>ventory).FIP4FIP10Cover % Nbr <strong>of</strong> species Cover % Nbr <strong>of</strong> speciesShrub layer 5.23 3 8.81 2Field layer 73.75 31 43.4 25Bottom layer 32.24 27 48.97 35Soil SolutionChanges <strong>in</strong> the chemical composition <strong>of</strong> ra<strong>in</strong>fall are be<strong>in</strong>g followed as the w<strong>at</strong>er firstpasses down through the tree canopy, and then down the soil pr<strong>of</strong>ile <strong>in</strong> the form <strong>of</strong> soilsolution. Soil solution gives <strong>in</strong>form<strong>at</strong>ion <strong>of</strong> soil form<strong>at</strong>ion processes, the effects <strong>of</strong> airpollution and other stress factors on soil properties. The concentr<strong>at</strong>ions <strong>of</strong> <strong>in</strong>dividualions and the amount <strong>of</strong> w<strong>at</strong>er pass<strong>in</strong>g down through the soil are be<strong>in</strong>g monitored cont<strong>in</strong>uouslydur<strong>in</strong>g the snow-free period <strong>in</strong> sub-plot OA2 <strong>of</strong> each FIP. Two sampl<strong>in</strong>g techniquesare be<strong>in</strong>g used (Table B-4): pl<strong>at</strong>e lysimeters (<strong>in</strong>stalled immedi<strong>at</strong>ely below theorganic layer) and suction-cup lysimeters (<strong>in</strong>stalled <strong>at</strong> different depths, primarily <strong>in</strong> them<strong>in</strong>eral soil). The soil <strong>in</strong> FIP4 is extremely stony, and the tension lysimeters weretherefore <strong>in</strong>stalled <strong>at</strong> depths <strong>of</strong> 10, 20 and 30 cm, <strong>in</strong>stead <strong>of</strong> 20 and 40 cm as orig<strong>in</strong>allyplanned.In addition to the chemical composition, also the amount <strong>of</strong> percol<strong>at</strong>ion w<strong>at</strong>er is be<strong>in</strong>gmonitored us<strong>in</strong>g the pl<strong>at</strong>e lysimeters loc<strong>at</strong>ed <strong>at</strong> a depth <strong>of</strong> 5 cm. The collection periodfor the first time th<strong>at</strong> percol<strong>at</strong>ion w<strong>at</strong>er is collected follow<strong>in</strong>g snowmelt starts <strong>in</strong> thespr<strong>in</strong>g when the ground is no longer frozen. The amount <strong>of</strong> w<strong>at</strong>er percol<strong>at</strong><strong>in</strong>g down todifferent depths <strong>in</strong> the soil is determ<strong>in</strong>ed by a number <strong>of</strong> factors:1) The amount <strong>of</strong> w<strong>at</strong>er fall<strong>in</strong>g on the forest floor as ra<strong>in</strong> or snow. In a treestand, this is the amount <strong>of</strong> stand throughfall.2) Some <strong>of</strong> the w<strong>at</strong>er <strong>in</strong> stand throughfall is lost from the snow cover dur<strong>in</strong>gthe w<strong>in</strong>ter through evapor<strong>at</strong>ion directly from the snow surface. This can beespecially high dur<strong>in</strong>g spr<strong>in</strong>g when, even though the air temper<strong>at</strong>ure is belowfreez<strong>in</strong>g po<strong>in</strong>t, solar radi<strong>at</strong>ion causes the sublim<strong>at</strong>ion <strong>of</strong> ice directly <strong>in</strong>tow<strong>at</strong>er vapour th<strong>at</strong> is released <strong>in</strong>to the <strong>at</strong>mosphere.3) Some <strong>of</strong> the w<strong>at</strong>er (as snow) fall<strong>in</strong>g on the forest floor is lost dur<strong>in</strong>g snowmelt<strong>in</strong> the form <strong>of</strong> horizontal run<strong>of</strong>f out <strong>of</strong> the stand. This can be considerableif the ground immedi<strong>at</strong>ely below the melt<strong>in</strong>g snow cover is still frozen,thus prevent<strong>in</strong>g the w<strong>at</strong>er from pass<strong>in</strong>g down <strong>in</strong>to the soil.4) Dur<strong>in</strong>g the period extend<strong>in</strong>g from spr<strong>in</strong>g to autumn, a variable proportion <strong>of</strong>the w<strong>at</strong>er fall<strong>in</strong>g onto the forest floor is recyled back <strong>in</strong>to the <strong>at</strong>mospherethough the uptake <strong>of</strong> w<strong>at</strong>er by the tree stand and ground veget<strong>at</strong>ion (asevapo-transpir<strong>at</strong>ion). The pl<strong>at</strong>e lysimeters are loc<strong>at</strong>ed below the organiclayer, which is the layer <strong>in</strong> the soil th<strong>at</strong> conta<strong>in</strong>s the highest proportion <strong>of</strong>plant roots.5) Some <strong>of</strong> the w<strong>at</strong>er (as ra<strong>in</strong>) th<strong>at</strong> collects on the surface <strong>of</strong> the ground veget<strong>at</strong>iondur<strong>in</strong>g the snowfree period may evapor<strong>at</strong>e directly <strong>in</strong>to the <strong>at</strong>mosphere,especially dur<strong>in</strong>g warm periods.


786) Dur<strong>in</strong>g the summer especially, the <strong>in</strong>tensity (amount) <strong>of</strong> stand throughfallstrongly affects the amount <strong>of</strong> percol<strong>at</strong>ion w<strong>at</strong>er: high precipit<strong>at</strong>ion eventsresult <strong>in</strong> more percol<strong>at</strong>ion w<strong>at</strong>er ow<strong>in</strong>g to the proportionally smaller amount<strong>of</strong> w<strong>at</strong>er lost through evapo-transpir<strong>at</strong>ion.In addition to the abovementioned n<strong>at</strong>ural factors, there are also technical problemsdur<strong>in</strong>g the snowmelt period: the capacity (volume) <strong>of</strong> the bottles used to collect the w<strong>at</strong>ersamples may not always be sufficient to hold all the w<strong>at</strong>er runn<strong>in</strong>g out <strong>of</strong> the pl<strong>at</strong>elysimeters. Under such conditions, the amount <strong>of</strong> percol<strong>at</strong>ion w<strong>at</strong>er will be underestim<strong>at</strong>ed.On plot FIP10 there are also problems <strong>in</strong> the spr<strong>in</strong>g with an excessively highw<strong>at</strong>er table and <strong>in</strong>und<strong>at</strong>ion by sea w<strong>at</strong>er; the plot is loc<strong>at</strong>ed only a few meters above sealevel.<strong>Posiva</strong>'s field personnel collects the samples and the chemical analyses are carried out<strong>in</strong> the labor<strong>at</strong>ory <strong>of</strong> the F<strong>in</strong>nish Forest Research Institute, Rovaniemi Research St<strong>at</strong>ion.<strong>Monitor<strong>in</strong>g</strong> <strong>of</strong> soil solution started <strong>in</strong> FIP4 on October 20, 2003, and <strong>in</strong> FIP10 on May24, 2005. The results are reported annually <strong>in</strong> a memo.Table B-4. Soil solution sampl<strong>in</strong>g design. FIP11 has been established, but it was notyet <strong>in</strong> use <strong>in</strong> <strong>2006</strong>.FIP4 FIP10 FIP11Lysimeter layout 4 clusters System<strong>at</strong>ic layout System<strong>at</strong>ic layoutDepth Pl<strong>at</strong>e lysimeters Suction-cuplysimetersNumber Pl<strong>at</strong>e lysimeters Suction-cuplysimetersLitterfall Sampl<strong>in</strong>g5 cm10, 20 and 30 cm2 replic<strong>at</strong>ions/cluster = 81/cluster <strong>at</strong> each depth= 125 cm20 and 30 cm1212 <strong>at</strong> each depth = 245 cm10, 20 and 30 cm812 <strong>at</strong> each depth= 36The amount and chemical composition <strong>of</strong> litterfall <strong>in</strong> the stands is monitored us<strong>in</strong>g 12litterfall collectors loc<strong>at</strong>ed on sub-plot OA2 (Fig B-5).


79Figure B-5. Litterfall samplers (green) and a deposition collector used <strong>in</strong> snowfreeperiod (orange). Photo by Reija Haapanen (May 2007).Nutrient St<strong>at</strong>us <strong>of</strong> the TreesTen p<strong>in</strong>es on FIP4 and ten spruces on FIP10 have been selected around sub-plot OA2for monitor<strong>in</strong>g the nutrient st<strong>at</strong>us <strong>of</strong> the trees. Because a new electric power l<strong>in</strong>e wasconstructed through plot FIP4, seven p<strong>in</strong>es were changed <strong>in</strong> 2004. Four spruces werechanged due to their unsuitable loc<strong>at</strong>ion <strong>in</strong> 2005. Needle samples have now been collectedfour times from FIP4, and three times from FIP10. Needle sampl<strong>in</strong>g is repe<strong>at</strong>edannually <strong>in</strong> w<strong>in</strong>ter, until the major construction works on the island have been f<strong>in</strong>ished.Tree GrowthTree characteristics will be measured every fifth year. In addition, the diameter growth<strong>of</strong> two trees on sub-plot OA2 <strong>of</strong> both FIP plots is be<strong>in</strong>g measured cont<strong>in</strong>uously withgirth bands (Fig. 26).Stand MicrometeorologyStand meteorological measurements are recorded once an hour <strong>in</strong> OA2. The parametersare air temper<strong>at</strong>ure, m<strong>in</strong>imum and maximum temper<strong>at</strong>ure <strong>in</strong>side the crown layer andabove the canopy, rel<strong>at</strong>ive humidity, precipit<strong>at</strong>ion (1 m above ground level), soil moisturecontent, and soil temper<strong>at</strong>ure. Depth <strong>of</strong> ground frost and the thickness <strong>of</strong> the snowcover are measured manually on FIP4. Photosynthetically active radi<strong>at</strong>ion (PAR), solarradi<strong>at</strong>ion, air pressure, w<strong>in</strong>d speed and its direction are measured only on FIP4.


81APPENDIX C: RESULTS FROM RADIONUCLIDE MONITORING IN <strong>2006</strong><strong>Results</strong> from the radionuclide monitor<strong>in</strong>g from the year <strong>2006</strong> are presented <strong>in</strong> this Appendix.In the d<strong>at</strong>a tables the uncerta<strong>in</strong>ty <strong>of</strong> the measurement is shown <strong>in</strong> the column onthe right-hand side <strong>of</strong> the activity concentr<strong>at</strong>ion as a percentage <strong>of</strong> the concentr<strong>at</strong>ion.The uncerta<strong>in</strong>ties reported do not <strong>in</strong>clude the uncerta<strong>in</strong>ty aris<strong>in</strong>g out <strong>of</strong> the sampl<strong>in</strong>gmethod and practice. For sampl<strong>in</strong>g periods longer than one day, the start<strong>in</strong>g and end<strong>in</strong>gd<strong>at</strong>es are reported. Activity concentr<strong>at</strong>ions are decay-corrected to correspond with themiddle <strong>of</strong> the sampl<strong>in</strong>g period. The d<strong>at</strong>es have been pr<strong>in</strong>ted as day.month not<strong>at</strong>ions, e.g.1.3 is March 1. For sampl<strong>in</strong>g periods started <strong>in</strong> 2005 or ended <strong>in</strong> 2007 the year is alsogiven: 1.3.05. Measurement results below the m<strong>in</strong>imum detectable activity (MDA) aremarked with the symbol < <strong>in</strong> the tables. Lost and contam<strong>in</strong><strong>at</strong>ed samples are <strong>in</strong>dic<strong>at</strong>ed. Ifno mark has been presented <strong>in</strong> the d<strong>at</strong>a table cell, gammanuclides have not been detected<strong>in</strong> significant amounts <strong>in</strong> the sample.Table C-1. Radionuclides <strong>in</strong> deposition <strong>in</strong> <strong>2006</strong>, Bq/m 2 . Tritium (H-3) deposition <strong>in</strong>ra<strong>in</strong>w<strong>at</strong>er <strong>in</strong> RNM03-DC2 and RNM06-DC2 was below detectable limits <strong>in</strong> all samples.Loc<strong>at</strong>ion Start d<strong>at</strong>e End d<strong>at</strong>e Be-7 ±% Cs-137 ±% Sr-90 ±%RNM02-DC1 29.12.05 29.3. 62 10 0.31 44 -30.3. 28.6. 24.7 10 0.087 20 -28.6. 27.9. 219 6 0.75 18 -2.10. 27.12. 273 10 0.36 60 -RNM03-DC1 29.12.05 29.3. 56 8 0.26 38 -30.3. 28.6. 28.2 12 0.099 24 -28.6. 27.9. 201 10 0.65 34 -2.10. 27.12. 410 14 0.41 28 -RNM04-DC1 29.12.05 29.3. 63 10 0.22 40 -30.3. 28.6. 29.0 20 0.11 20 -28.6. 27.9. 160 6 0.38 20 -2.10. 27.12. 380 14 0.53 24 -RNM06-DC1 29.12.05 1.2. 35 6 0.086 12 0.080 1 401.2. 1.3. 14 10 0.054 221.3. 29.3. 17 6 0.055 1830.3. 26.4. 78 6 0.088 14 0.03 2 161.5. 1.6. 102 6 0.51 61.6. 28.6. 59 6 0.56 628.6. 2.8. 38 6 0.34 6 < 32.8. 30.8. 69 12 0.24 1430.8. 27.9. 47 12 0.12 162.10. 1.11. 136 6 0.26 6


Table C-2. Radionuclides <strong>in</strong> air <strong>in</strong> <strong>2006</strong>, Bq/m 3 .Loc<strong>at</strong>ion Start d<strong>at</strong>e End d. Be-7 ±% Cs-137 ±% Mn-54 ±% Co-60 ±%RNM04 4.1. 18.1. 1800 8 1.5 34 - --AS1 18.1. 1.2. 2500 11 1.3 52 - -1.2. 15.2. 2300 9 2.9 22 - -15.2. 1.3. 1700 7 3.5 12 - -1.3. 15.3. 1900 6 4.3 14 - -15.3. 29.3. 1800 20 2.5 24 - -29.3. 12.4. 1200 9 1.4 38 <


Table C-2 cont'd. Radionuclides <strong>in</strong> air <strong>in</strong> <strong>2006</strong>, Bq/m 3 .Loc<strong>at</strong>ion Start d<strong>at</strong>e End d. Be-7 ±% Cs-137 ±% Mn-60 ±% Co-60 ±%RNM07 4.1. 18.1. 2000 11 1.7 36 - --AS1 18.1. 1.2. 2700 9 1.2 28 - -1.2. 15.2. 2400 8 2.5 16 - -16.5. 1.3. 1600 11 1.5 44 - -1.3. 15.3. 2100 20 4.1 22 - -15.3. 29.3. 1700 7 1.6 24 - -29.3. 12.4. 1200 8 0.9 44 <


84Table C-3. Radionuclides <strong>in</strong> milk <strong>in</strong> <strong>2006</strong>, Bq/dm 3 .Loc<strong>at</strong>ion Start d<strong>at</strong>e End d<strong>at</strong>e Sr-90 ±% I-131 ±% K-40 ±% Cs-137 ±%TMA26 1.1. 29.1. - < a 49 6 0.28 125.2. 26.2. - < b 48 12 0.32 205.3. 26.3. - < c 48 6 0.54 82.4. 30.4. - < d 53 8 0.49 67.5. 28.5. - < e 51 6 0.33 104.6. 25.6. - < f 50 8 0.34 122.7. 30.7. - < g 53 14 0.44 166.8. 27.8. - < h 49 8 0.44 83.9. 24.9. - < i 51 8 0.67 81.10. 29.10. -


85Table C-4. Radionuclides <strong>in</strong> food <strong>in</strong> <strong>2006</strong>, Bq/kgDW.Type Loc<strong>at</strong>ionSampl<strong>in</strong>gd<strong>at</strong>e Sr-90 ±% Be-7 ±% K-40 ±% Cs-134 ±% Cs-137 ±%Beef TMA28 21.4. - - 84 5 - 0.86 524.10. - - 285 4 - 1.74 7Blackcurrant TMA31 10.8. - 3.6 34 530 14 < 1.22 20Lettuce TMA49 10.8. - 200 10 1980 8 < 2.4 287.9. - 101 10 1790 8 < 14.3 10Table C-5. Radionuclides <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g w<strong>at</strong>er <strong>in</strong> <strong>2006</strong>, Bq/m 3 .Loc<strong>at</strong>ion Sampl. d<strong>at</strong>e H-3 ±% Sr-90 ±% K-40 ±% Cs-137 ±%RNM05-DW1 9.1.


86Table C-7. Radionuclides <strong>in</strong> fish <strong>in</strong> <strong>2006</strong>, Bq/kgFW.Species Loc<strong>at</strong>ion Start d<strong>at</strong>e End d<strong>at</strong>e K-40 ±% Sr-90 ±% Cs-134 ±% Cs-137 ±%Perch FIA11 9.5. 25.5. 113 14 - - 22.8 12FIA11 17.8. 8.9 125 14 0.36 14 - 17.9 12FIA12 12.5. 28.5. 99 8 - - 29.5 8FIA12 27.8. 23.10. 125 14 - - 22.3 12Pike FIA11 9.5. 25.5. 118 8 - - 18.7 8FIA11 15.9. 15.10. 116 6 - - 18.5 8FIA12 12.5. 28.5. 128 20 - - 18.0 20FIA12 17.8. 23.10. 126 14 - - 17.1 12Baltic FIA12 12.5. 28.5. 117 8 - - 6.6 6herr<strong>in</strong>g FIA11 17.8. 8.9. 129 6 0.022 18 - 6.9 8FIA12 8.11. 9.11. 140 8 - - 9.7 6Roach FIA11 9.5. 25.5. 110 8 - - 4.7 8FIA12 12.5. 28.5. 102 6 - - 6.9 8FIA11 17.8. 8.9. 105 8 - - 10.4 8FIA12 17.8. 8.9. 119 14 - - 6.7 12Table C-8. Radionuclides <strong>in</strong> seaw<strong>at</strong>er <strong>in</strong> <strong>2006</strong>, Bq/m 3 , except for H-3, Bq/l.Sampl. d<strong>at</strong>e H-3 ±% Sr-90 ±% K-40 ±% Cs-137 ±%SEA11 16.3. 58 12 11.2 14 2050 10 46 10SEA11 11.5. 12.5 13 10.5 16 2010 10 51 10SEA11 19.7.


Table C-9. Radionuclides <strong>in</strong> sea <strong>in</strong>dic<strong>at</strong>ors and suspended m<strong>at</strong>ter <strong>in</strong> <strong>2006</strong>, Bq/kgDW.Type Loc. Sampl<strong>in</strong>g d<strong>at</strong>e Be-7 ±% K-40 ±% Mn-54 ±% Co-58 ±% Co-60 ±% Sr-90 ± % Sr-89 ±% Cs-137 ±% Pu-238 ±%Pu-239,240 ±%Bladder- SBP02 11.5. 31 10 730 10 < 0 - 1.13 12 - - 39 10 - -wrack SBP02 10.8. 18.5 10 680 10 .25 54 0.11 56 1.57 10 6.9 12 - 31 10 < 0.037 36SBP01 11.5. 29.2 10 660 10 < - 0.43 16 - - 37 8 - -SBP01 10.8. 16.8 12 630 10 < < 0.55 18 - - 23.8 8 - -SBP03 10.5. 14.2 12 740 10 < - < - - 28.4 10 - -SBP03 9.8. 15.1 14 760 8 < < < 5.4 12 - 26.2 8 < 0.034 36SEA16 10.5. 10.1 12 620 10 < - < - - 27.2 10 - -SEA16 9.8. 16.5 14 720 10 < < < - - 24.9 10 - -SBP04 11.5. 21.6 10 740 8 < - < - - 31 8 - -SBP04 9.8. 14.2 14 730 10 < < < - - 27.1 10 - -Green alga SBP02 10.8. 75 12 1240 10 < < < - - 31 10 - -Baltic clam SEA17 18.7. - 84 14 - - - 10.1 12 3.4 24 8.7 10 - -Blue mussel SBP02 19.7. - 74 26 - - - - - 2.16 30 - -Suspended SEA03 9.11.05-10.5. 229 14 760 8 - - 2.61 22 - - 360 8 - -m<strong>at</strong>ter SEA03 10.5.-27.6 330 20 550 20 - - < - - 213 20 - -SEA03 27.6-7.9. 340 10 680 10 - - 2.21 30 - - 295 6 - -SEA03 7.9.-24.10. 400 6 710 8 - - 1.95 18 - - 298 6 - -SEA20 11.11.05-9.5. 241 20 800 20 - - 0.85 36 - - 380 20 0.032* 56 1.18* 14SEA20 9.5.-27.6. 295 20 620 20 - - < - - 237 20 - -SEA20 27.6.-6.9. 210 14 820 14 - - < - - 370 12 - -SEA20 6.9.-26.10. 380 14 800 14 - - 0.78 46 - - 360 12 - -SEA15 9.11.05-9.5. 173 14 690 8 - - 1.86 24 - . 340 6 - -SEA15 9.5.-27.6. 235 16 520 12 - - < - < 237 10 - -SEA15 27.6.-6.9. 300 14 720 14 - - 1.95 32 - - 360 14 - -SEA15 6.9.25.10. 360 14 740 14 - - 2.72 28 - - 370 14SEA18 10.11.05-10.5. 271 10 740 8 - - 3.5 12 - - 400 6 0.084* 36 1.12* 14SEA18 10.5.-27.6. 281 16 560 12 - - < - - 232 10 - -SEA18 27.6.-6.9. 300 14 690 14 - - 1.59 40 - - 320 12 - -SEA18 6.9.-24.10. 360 6 600 8 - - 5.6 12 - - 340 6 - -*<strong>Results</strong> for 10.11.05-24.10.0687


APPENDIX D. RESULTS FROM SOIL MICROBE STUDY IN <strong>2006</strong>Table D-1. Thickness <strong>of</strong> the organic layer, pH, organic m<strong>at</strong>ter content (OM), C/N r<strong>at</strong>io, concentr<strong>at</strong>ions and amounts <strong>of</strong> ammonium andtotal N and dissolved N and C compounds (DON, DOC), microbial biomass C and N (Cmic , Nmic ), ergosterol and net N m<strong>in</strong>eralis<strong>at</strong>ion <strong>in</strong>the organic layer <strong>of</strong> each sampl<strong>in</strong>g po<strong>in</strong>t (Potila et al. 2007).Sample1 2 3 4 5 6 7 8 9 10PlotMRK8 MRK8 MRK6 MRK6 MRK1 MRK1 FIP4 FIP4 FIP10 FIP10Thickness, cm 39.6 42.2 41.5 57.8 97.5 81.8 31.2 27.8 107 69.4pH, H 2 O 4.20 4.20 3.84 4.17 4.27 3.88 3.99 4.08 3.93 3.95pH, CaCl 3.71 3.66 3.37 3.74 3.77 3.31 3.40 3.58 3.45 3.48OM, % 86.5 76.6 82.2 81.0 71.4 70.3 83.4 72.6 90.4 80.6C to N r<strong>at</strong>io 28.9 28.8 23.8 20.7 25.6 27.4 33.4 27.6 24.9 22.8NH 4 -N, mg g -1 OM 0.062 0.010 0.025 0.017 0.008 0.009 0.017 0.028 0.005 0.006g m -2 0.289 0.051 0.143 0.178 0.091 0.080 0.058 0.086 0.073 0.063TOT-N, mg g -1 OM 0.197 0.132 0.145 0.093 0.068 0.092 0.138 0.240 0.065 0.106g m -2 0.916 0.648 0.839 0.947 0.814 0.848 0.463 0.737 0.964 1.041DON, mg g -1 OM 0.135 0.122 0.120 0.075 0.060 0.083 0.121 0.212 0.060 0.010g m -2 0.627 0.598 0.696 0.769 0.723 0.767 0.405 0.651 0.891 0.978DOC, mg g -1 OM 1.59 1.39 1.20 1.06 0.832 0.960 1.35 3.32 0.873 1.39g m -2 7.41 6.81 6.97 10.83 10.04 8.86 4.54 10.22 13.01 13.65C mic, mg g -1 OM 12.59 13.18 12.01 8.89 11.93 9.25 10.03 11.75 9.75 7.24g m -2 58.7 64.8 69.7 90.7 143.8 85.3 33.7 36.1 145.3 70.9N mic, mg g -1 OM 1.013 0.938 1.016 0.711 0.695 0.786 0.793 0.990 0.536 0.580g m -2 4.72 4.61 5.89 7.25 8.38 7.25 2.66 3.04 7.98 5.68ergosterol, µg g -1 OM 421 422 509 369 463 369 868 696 306 405g m -2 1.96 2.08 2.95 3.76 5.58 3.40 2.91 2.14 4.56 3.97Net N m<strong>in</strong>., mg kg -1 OM d -1 3.11 1.39 3.99 3.39 0.28 0.60 0.42 1.26 0.58 0.76mg m -2 d -1 14.5 6.84 23.1 34.5 3.43 5.54 1.40 3.88 8.60 7.4689


91APPENDIX E. BULK PRECIPITATION AND STAND THROUGHFALL IN2004-<strong>2006</strong>In this Appendix the annual bulk precipit<strong>at</strong>ion and stand throughfall results for theMRK plots are given for the years 2004 - <strong>2006</strong>. Orig<strong>in</strong>al d<strong>at</strong>a has been presented <strong>in</strong> amemo by Antti-Jussi L<strong>in</strong>droos and John Derome (F<strong>in</strong>nish Forest Research Institute).Precipit<strong>at</strong>ion collection on MRK9 was started on 20.4.2004, and on MRK10 on23.5.2005. Reference values for Forest Focus/ICP Forests plots <strong>at</strong> Juupajoki andTammela are given for comparison when possible.Table E-1. Annual precipit<strong>at</strong>ion <strong>in</strong> the open (MRK2, MRK7 and MRK9) and annualstand throughfall (MRK1, MRK3, MRK4, MRK5, MRK6, MRK8 and MRK10) <strong>in</strong> 2004-<strong>2006</strong>. NM = no measurements cover<strong>in</strong>g the whole year.Annual precipit<strong>at</strong>ion(mm)Plot 2004 2005 <strong>2006</strong>MRK2 659 517 586MRK7 604 464 535MRK9 NM 385 484632 491* 535MeanMRK1 460 393 394MRK3 397 324 347MRK4 (FIP4) 381 303 364MRK5 381 374 396MRK6 409 365 380MRK8 362 320 373MRK10 (FIP10) NM NM 404Mean 398 347 380*exclud<strong>in</strong>g plot MRK9Open areaStand throughfallTable E-2. Interception <strong>of</strong> precipit<strong>at</strong>ion by the tree canopies dur<strong>in</strong>g 2004-<strong>2006</strong>.Interception was calcul<strong>at</strong>ed as: (annual precipit<strong>at</strong>ion <strong>in</strong> the open) – (stand throughfall)/ (annual precipit<strong>at</strong>ion <strong>in</strong> the open) x 100, and expressed as %. NM = no measurementscover<strong>in</strong>g the whole year.PlotYear MRK1 MRK3 MRK4 MRK5 MRK6 MRK8 MRK10 Mean2004 27% 37% 40% 40% 35% 43% NM 37%2005 20% 34% 38% 24% 26% 29% NM 28%<strong>2006</strong> 26% 35% 32% 26% 29% 30% 24% 29%


Table E-3. Annual amount <strong>of</strong> precipit<strong>at</strong>ion, pH and annual bulk deposition <strong>of</strong> DOC (dissolved organic carbon), Na, NH 4 -N, K, Mg, Ca, Cl, NO 3 -N, SO 4 -S and Ntot (total nitrogen) measured <strong>in</strong> open areas (MRK2, MRK7 and MRK9) on <strong>Olkiluoto</strong> <strong>in</strong> 2004-<strong>2006</strong>. NM = no measurements cover<strong>in</strong>gthe whole year.YearPlot Precip. pH DOC Na NH 4 -N K Mg Ca Cl NO 3 -N SO 4 -S Ntotmm 25º C mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 22004 MRK2 659 5.1 1481 363 119 195 73 189 530 175 222 3772005 MRK2 517 5.4 1030 212 175 104 47 195 325 170 188 439<strong>2006</strong> MRK2 586 5.1 944 188 114 87 62 145 278 163 162 3282004 MRK7 604 5.0 894 269 127 160 78 183 390 167 202 3442005 MRK7 464 5.3 745 183 118 75 46 148 284 146 153 293<strong>2006</strong> MRK7 535 5.1 921 179 94 120 73 165 256 159 158 2982004 MRK9 NM NM NM NM NM NM NM NM NM NM NM NM2005 MRK9 385 5.1 695 150 112 84 38 134 245 128 134 290<strong>2006</strong> MRK9 484 5.1 697 187 85 67 63 158 274 147 142 2632004 Mean 632 5.1 1188 316 123 178 75 186 460 171 212 3612005 Mean 491 5.3 823 182 135 88 44 159 285 148 158 341<strong>2006</strong> Mean 535 5.1 854 185 98 91 66 156 269 156 154 296Juupajoki 1998- Mean 673 4.9 1501 99 157 44 15 68 104 182 241 372Tammela 2000 Mean 669 4.9 1533 173 169 40 24 74 213 209 253 417Juupajoki 2004 640 4.8 895 96 100 43 28 92 120 131 168 278Tammela 2004 758 4.8 998 175 139 49 41 131 216 197 212 359<strong>Olkiluoto</strong>92


Table E-4. Annual amount <strong>of</strong> precipit<strong>at</strong>ion, pH and annual deposition <strong>of</strong> DOC (dissolved organic carbon), Na, NH 4 -N, K, Mg, Ca, Cl, NO 3 -N,SO 4 -S and Ntot (total nitrogen) <strong>in</strong>side the stand (stand throughfall) on MRK1, MRK3, MRK4, MRK5, MRK6, MRK8 and MRK10 on <strong>Olkiluoto</strong> <strong>in</strong>2004-<strong>2006</strong>. NM = no measurements cover<strong>in</strong>g the whole year.Year Plot Precip. pH DOC Na NH 4 -N K Mg Ca Cl NO 3 -N SO 4 -S Ntotmm 25º C mg/m2 mg/m2 mg/m2 mg/m2 mg/m2 mg/m2 mg/m2 mg/m2 mg/m2 mg/m22004 MRK1 460 4.9 4425 315 48 398 82 195 466 114 202 2252005 MRK1 393 4.9 3276 255 99 355 69 262 400 134 195 265<strong>2006</strong> MRK1 394 4.9 4210 251 62 518 88 190 399 102 154 2142004 MRK3 397 4.9 4074 348 45 472 97 220 546 110 202 2182005 MRK3 324 5.2 3238 293 45 416 80 252 492 136 185 255<strong>2006</strong> MRK3 347 5.1 3917 336 28 666 107 203 601 129 183 2252004 MRK4 381 4.6 5736 503 35 609 111 244 827 108 246 2522005 MRK4 303 4.9 4047 385 43 482 87 231 661 159 220 294<strong>2006</strong> MRK4 364 4.8 5041 444 17 672 111 205 764 123 225 2362004 MRK5 381 5.1 5300 424 70 848 96 212 704 84 272 2912005 MRK5 374 5.2 3916 380 40 638 94 258 643 126 247 267<strong>2006</strong> MRK5 396 5.3 5307 417 55 1086 125 255 730 106 272 2662004 MRK6 409 5.4 3839 466 80 1121 86 195 883 120 289 3032005 MRK6 365 5.4 3144 413 32 829 87 215 801 149 245 271<strong>2006</strong> MRK6 380 5.5 4278 416 24 1165 99 193 770 115 242 2742004 MRK8 362 5.0 6776 703 29 1244 126 305 1295 95 406 2862005 MRK8 320 5.0 4572 593 51 850 113 295 1131 179 365 380<strong>2006</strong> MRK8 373 5.3 5764 437 39 1272 112 256 900 133 315 3432004 MRK10 NM NM NM NM NM NM NM NM NM NM NM NM2005 MRK10 NM NM NM NM NM NM NM NM NM NM NM NM<strong>2006</strong> MRK10 404 5.2 5957 402 55 1089 107 236 728 142 244 3762004 Mean 398 5.0 5025 460 51 782 99 229 787 105 269 2622005 Mean 347 5.1 3699 386 52 595 88 252 688 147 243 289<strong>2006</strong> Mean 380 5.2 4925 386 40 924 107 220 699 121 234 276Juupajoki 1998- Mean 545 4.8 5321 173 84 316 44 140 205 136 255 297Tammela 2000 Mean 519 4.8 5813 263 68 507 78 239 397 171 319 346Juupajoki 2004 515 4.6 4693 160 59 326 49 148 225 94 181 239Tammela 2004 541 4.6 5725 214 79 460 53 166 315 113 216 264<strong>Olkiluoto</strong>93


94Table E-5. Annual bulk deposition <strong>of</strong> PO 4 -P, Al, Fe, Mn, Cu, Zn and Si <strong>in</strong> open areas(MRK2, MRK7 and MRK9) and <strong>in</strong>side the stand (stand throughfall; MRK1, MRK3,MRK4, MRK5, MRK6, MRK8 and MRK10) on <strong>Olkiluoto</strong> <strong>in</strong> 2004-<strong>2006</strong>. NM = no measurementscover<strong>in</strong>g the whole year.YearPlot PO 4 -P Al Fe Mn Cu Zn Simg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m2 mg/m 2 mg/m 22004 MRK2 18 32 10 6 11 9 162005 MRK2 18 25 10 4 8 5 14<strong>2006</strong> MRK2 8 30 7 2 9 6 142004 MRK7 11 30 6 3 10 6 142005 MRK7 7 23 6 3 7 5 14<strong>2006</strong> MRK7 7 27 6 3 9 7 132004 MRK9 NM NM NM NM NM NM NM2005 MRK9 9 20 7 3 6 5 10<strong>2006</strong> MRK9 7 25 5 2 8 5 112004 Mean 15 31 8 4 10 8 152005 Mean 12 23 8 3 7 5 13<strong>2006</strong> Mean 7 27 6 2 9 6 13Year Plot PO 4 -P Al Fe Mn Cu Zn Simg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m2 mg/m 2 mg/m 22004 MRK1 26 23 11 30 7 8 232005 MRK1 8 19 11 24 6 6 23<strong>2006</strong> MRK1 18 21 9 30 6 7 182004 MRK3 35 20 15 18 6 9 332005 MRK3 14 19 14 14 5 7 32<strong>2006</strong> MRK3 23 20 14 18 6 8 362004 MRK4 7 19 9 29 6 9 262005 MRK4 6 19 11 20 5 6 29<strong>2006</strong> MRK4 5 21 9 23 6 8 272004 MRK5 54 19 14 39 6 10 382005 MRK5 31 19 18 33 6 7 49<strong>2006</strong> MRK5 68 21 20 38 6 11 532004 MRK6 16 20 5 31 7 10 252005 MRK6 7 19 9 31 6 6 31<strong>2006</strong> MRK6 8 19 8 24 6 8 352004 MRK8 30 18 15 46 6 14 552005 MRK8 21 16 14 42 5 8 42<strong>2006</strong> MRK8 55 19 13 41 6 10 372004 MRK10 NM NM NM NM NM NM NM2005 MRK10 NM NM NM NM NM NM NM<strong>2006</strong> MRK10 17 20 10 20 6 10 272004 Mean 28 20 12 32 6 10 332005 Mean 15 19 13 27 6 6 34<strong>2006</strong> Mean 28 20 12 28 6 9 33


95APPENDIX F. SOIL SOLUTION RESULTS IN FIP PLOTS IN 2004-<strong>2006</strong>In this appendix the results <strong>of</strong> soil solution monitor<strong>in</strong>g from years 2004, 2005 and <strong>2006</strong>are presented. Orig<strong>in</strong>al d<strong>at</strong>a was reported <strong>in</strong> a memo by John Derome, <strong>of</strong> the F<strong>in</strong>nishForest Research Institute. The collection period for the first time th<strong>at</strong> percol<strong>at</strong>ion w<strong>at</strong>eris collected follow<strong>in</strong>g snowmelt starts <strong>in</strong> the spr<strong>in</strong>g follow<strong>in</strong>g snowmelt when theground is no longer frozen. In the tables subscript denotes the standard error <strong>of</strong> themean. Values marked with a “


96Table F-3. Mean pH and dissolved organic carbon (DOC, mg/l) concentr<strong>at</strong>ions <strong>in</strong> soilsolution collected <strong>at</strong> depths <strong>of</strong> 5, 10, 20 and 30 cm <strong>in</strong> the Scots p<strong>in</strong>e stand <strong>at</strong> <strong>Olkiluoto</strong>dur<strong>in</strong>g the snowfree period <strong>in</strong> 2004, 2005 and <strong>2006</strong>. Reference values are from a Scotsp<strong>in</strong>e stand <strong>in</strong> Tammela.FIP4 Ref. FIP4 Ref.Depth 2004 2005 <strong>2006</strong> 1998-20002005 2005 <strong>2006</strong> 1998-2000cm pH pH pH pH DOC DOC DOC DOC5 4.23 0.07 4.12 0.04 4.32 0.11 4.31 0.03 119.4 10.2 114.7 8.1 99.9 8.4 60.5 4.510 4.93 0.07 5.01 0.05 4.67 0.30 136.0 39.1 60.7 12.4 78.3 20.520 5.19 0.04 5.18 0.05 5.22 0.06 4.90 0.08 40.5 9.4 28.1 2.5 38.3 9.4 29.0 4.230 5.51 0.06 5.24 0.11 5.38 0.08 33.4 9.7 19.9 1.9 34.5 10.340 5.15 0.11 24.4 3.6Table F-4. Mean pH and dissolved organic carbon (DOC, mg/l) concentr<strong>at</strong>ions <strong>in</strong> soilsolution collected <strong>at</strong> depths <strong>of</strong> 5, 20 and 30 cm <strong>in</strong> the Norway spruce stand <strong>at</strong> <strong>Olkiluoto</strong>dur<strong>in</strong>g the snowfree period <strong>in</strong> 2005 and <strong>2006</strong>. Reference values are from a Norwayspruce stand <strong>in</strong> Tammela.FIP10 Reference FIP10 ReferenceDepth 2005 <strong>2006</strong> 1998-2000 2005 <strong>2006</strong> 1998-2000cm pH pH pH DOC DOC DOC5 4.81 0.35 4.69 0.19 4.16 0.02 129.7 36.7 125.4 14.4 33.0 1.81020 5.41 0.12 5.19 0.21 4.51 0.03 77.0 6.9 60.6 2.9 24.1 4.630 5.60 0.19 5.36 0.25 59.8 14.9 50.9 5.940 4.69 0.03 4.5 0.2Table F-5. Mean total nitrogen (Ntot, mg/l) and ammonium (NH 4 -N, mg/l)concentr<strong>at</strong>ions <strong>in</strong> soil solution collected <strong>at</strong> depths <strong>of</strong> 5, 10, 20 and 30 cm <strong>in</strong> the Scotsp<strong>in</strong>e stand <strong>at</strong> <strong>Olkiluoto</strong> dur<strong>in</strong>g the snowfree period <strong>in</strong> 2004, 2005 and <strong>2006</strong>. Referencevalues are from a Scots p<strong>in</strong>e stand <strong>in</strong> Tammela.FIP4 Ref. FIP4 Ref.Depth 2004 2005 <strong>2006</strong> 1998-20002004 2005 <strong>2006</strong> 1998-2000cm Ntot Ntot Ntot Ntot NH 4 -N NH 4 -N NH 4 -N NH 4 -N5 3.51 0..34 2.76 0.20 2.52 0.20 1.85 0.14 0.37 0.09 0.21 0.04 0.48 0.19 0.26 0.0510 2.21 0.19 1.58 0.42 1.77 0.60 0.08 0.06 0.12 0.07 0.06 0.0220 1.03 0.25 0.61 0.05 1.61 0.99 1.62 0.28 0.11 0.08 0.03 0.02 0.03 0.02 0.59 0.1630 0.64 0.06 0.41 0.09 0.62 0.09 0.02 0.02 0.05 0.03 0.02 0.0040 1.12 0.30 0.43 0.18Table F-6. Mean total nitrogen (Ntot, mg/l) and ammonium (NH 4 -N, mg/l)concentr<strong>at</strong>ions <strong>in</strong> soil solution collected <strong>at</strong> depths <strong>of</strong> 5, 20 and 30 cm <strong>in</strong> the Norwayspruce stand <strong>at</strong> <strong>Olkiluoto</strong> dur<strong>in</strong>g the snowfree period <strong>in</strong> 2005 and <strong>2006</strong>. Referencevalues are from a Norway spruce stand <strong>in</strong> Tammela.FIP10 Reference FIP10 ReferenceDepth 2005 <strong>2006</strong> 1998-2000 2005 <strong>2006</strong> 1998-2000cm Ntot Ntot Ntot NH 4 -N NH 4 -N NH 4 -N5 6.40 1.64 4.86 0.60 1.08 0.08 1.68 0.39 0.36 0.12 0.30 0.061020 2.52 0.51 1.48 0.03 0.97 0.30 0.07 0.02 0.03 0.01 0.19 0.0530 1.78 0.75 1.37 0.17 0.10 0.22 0.04 0.0140 0.30 0.02 0.10 0.01


97Table F-7. Mean nitr<strong>at</strong>e (NO 3 -N, mg/l) and sulph<strong>at</strong>e (SO 4 -S, mg/l) concentr<strong>at</strong>ions <strong>in</strong>soil solution collected <strong>at</strong> depths <strong>of</strong> 5, 10, 20 and 30 cm <strong>in</strong> the Scots p<strong>in</strong>e stand <strong>at</strong> <strong>Olkiluoto</strong>dur<strong>in</strong>g the snowfree period <strong>in</strong> 2004, 2005 and <strong>2006</strong>. Reference values are from aScots p<strong>in</strong>e stand <strong>in</strong> Tammela.FIP4 Ref. FIP4 Ref.Depth 2004 2005 <strong>2006</strong> 1998-20002004 2005 <strong>2006</strong> 1998-2000cm NO 3 -N NO 3 -N NO 3 -N NO 3 -N SO 4 -S SO 4 -S SO 4 -S SO 4 -S5 0.04 0.01 0.01 0.00 0.03 0.01


98Table F-11. Mean calcium (Ca, mg/l) and magnesium (Mg, mg/l) concentr<strong>at</strong>ions <strong>in</strong> soilsolution collected <strong>at</strong> depths <strong>of</strong> 5, 10, 20 and 30 cm <strong>in</strong> the Scots p<strong>in</strong>e stand <strong>at</strong> <strong>Olkiluoto</strong>dur<strong>in</strong>g the snowfree period <strong>in</strong> 2004, 2005 and <strong>2006</strong>. Reference values are from a Scotsp<strong>in</strong>e stand <strong>in</strong> Tammela.FIP4 Ref. FIP4 Ref.Depth 2004 2005 <strong>2006</strong> 1998-20002004 2005 <strong>2006</strong> 1998-2000cm Ca Ca Ca Ca Mg Mg Mg Mg5 4.84 0.65 5.74 0.67 4.33 0.52 3.40 0.19 0.58 0.06 0.74 0.10 0.73 0.09 0.40 0.0210 6.99 2.91 3.92 1.39 3.06 0.41 2.36 1.23 1.07 0.27 0.95 0.1420 3.74 0.73 2.25 0.10 2.41 0.11 2.15 0.18 1.35 0.18 0.79 0.04 0.96 0.05 0.39 0.0330 3.42 0.96 1.97 0.11 2.56 0.21 1.15 0.25 0.79 0.04 0.95 0.0140 2.16 0.15 0.34 0.02Table F-12. Mean calcium (Ca, mg/l) and magnesium (Mg, mg/l) concentr<strong>at</strong>ions <strong>in</strong> soilsolution collected <strong>at</strong> depths <strong>of</strong> 5, 20 and 30 cm <strong>in</strong> the Norway spruce stand <strong>at</strong> <strong>Olkiluoto</strong>dur<strong>in</strong>g the snowfree period <strong>in</strong> 2005 and <strong>2006</strong>. Reference values are from a Norwayspruce stand <strong>in</strong> Tammela.FIP10 Ref. FIP10 Ref.Depth 2005 <strong>2006</strong> 1998-2000 2005 <strong>2006</strong> 1998-2000cm Ca Ca Ca Mg Mg Mg5 6.9 1.7 8.6 1.0 0.8 0.1 1.73 0.29 2.33 0.36 0.42 0.041020 13.1 0.5 11.8 0.9 1.2 0.1 4.91 0.52 4.54 0.71 0.54 0.0330 14.0 1.2 11.9 0.3 5.04 0.44 4.46 0.3440 1.1 0.0 0.45 0.02Table F-13. Mean potassium (K, mg/l) and sodium (Na, mg/l) concentr<strong>at</strong>ions <strong>in</strong> soilsolution collected <strong>at</strong> depths <strong>of</strong> 5, 10, 20 and 30 cm <strong>in</strong> the Scots p<strong>in</strong>e stand <strong>at</strong> <strong>Olkiluoto</strong>dur<strong>in</strong>g the snowfree period <strong>in</strong> 2004, 2005 and <strong>2006</strong>. Reference values are from a Scotsp<strong>in</strong>e stand <strong>in</strong> Tammela.FIP4 Ref. FIP4 Ref.Depth 2004 2005 <strong>2006</strong> 1998-20002004 2005 <strong>2006</strong> 1998-2000cm K K K K Na Na Na Na5 3.95 0.44 2.28 0.52 6.98 1.21 1.44 0.27 1.17 0.11 1.39 0.14 1.71 0.13 0.70 0.0410 4.78 0.86 2.73 1.17 2.15 0.84 3.63 1.01 3.93 0.96 3.38 0.4820 2.10 0.42 0.94 0.07 0.98 0.11 1.65 0.25 3.73 0.26 4.05 0.29 3.36 0.39 1.06 0.0830 1.79 0.63 0.70 0.06 1.50 0.84 5.41 0.84 4.15 0.24 3.42 0.2040 0.99 0.18 1.07 0.07Table F-14. Mean potassium (K, mg/l) and sodium (Na, mg/l) concentr<strong>at</strong>ions <strong>in</strong> soilsolution collected <strong>at</strong> depths <strong>of</strong> 5, 20 and 30 cm <strong>in</strong> the Norway spruce stand <strong>at</strong> <strong>Olkiluoto</strong>dur<strong>in</strong>g the snowfree period <strong>in</strong> 2005 and <strong>2006</strong>. Reference values are from a Norwayspruce stand <strong>in</strong> Tammela.FIP10 Ref. FIP10 Ref.Depth 2005 <strong>2006</strong> 1998-2000 2005 <strong>2006</strong> 1998-2000cm K K K Na Na Na5 7.07 0.71 8.52 1.84 0.42 0.07 3.3 0.8 4.9 0.9 1.33 0.101020 1.63 0.05 1.67 0.12 1.54 0.57 17.8 1.1 15.2 1.5 2.89 0.5530 1.94 0.58 1.51 0.07 17.5 1.6 15.1 0.940 0.23 0.03 2.51 0.12


99Table F-15. Mean total alum<strong>in</strong>ium (Altot, mg/l) and monomeric alum<strong>in</strong>ium (Al 3+ , mg/l)concentr<strong>at</strong>ions <strong>in</strong> soil solution collected <strong>at</strong> depths <strong>of</strong> 5, 10, 20 and 30 cm <strong>in</strong> the Scotsp<strong>in</strong>e stand <strong>at</strong> <strong>Olkiluoto</strong> dur<strong>in</strong>g the snowfree period <strong>in</strong> 2004, 2005 and <strong>2006</strong>. Referencevalues are from a Scots p<strong>in</strong>e stand <strong>in</strong> Tammela.FIP4 Ref. FIP4 Ref.Depth 2004 2005 <strong>2006</strong> 1998-20002004 2005 <strong>2006</strong> 1998-2000cm Altot Altot Altot Altot Al 3+ Al 3+ Al 3+ Al 3+5 0.85 0.10 0.77 0.07 0.63 0.06 0.75 0.05


100Table F-19. Mean silicon (Si, mg/l) concentr<strong>at</strong>ions <strong>in</strong> soil solution collected <strong>at</strong> depths<strong>of</strong> 5, 10, 20 and 30 cm <strong>in</strong> the Scots p<strong>in</strong>e stand <strong>at</strong> <strong>Olkiluoto</strong> dur<strong>in</strong>g the snowfree period <strong>in</strong>2004, 2005 and <strong>2006</strong>. Reference values are from a Scots p<strong>in</strong>e stand <strong>in</strong> Tammela.FIP4Ref.Depth 2004 2005 <strong>2006</strong> 1998-2000cm Si Si Si Si5 0.85 0.11 1.63 0.17 1.74 0.23 0.80 0.0410 2.65 0.56 6.14 1.07 6.94 1.1720 8.76 0.41 8.02 0.56 6.35 0.78 2.92 0.2430 7.84 0.60 7.64 0.41 5.21 0.9940 2.92 0.26Table F-20. Mean silicon (Si, mg/l) concentr<strong>at</strong>ions <strong>in</strong> soil solution collected <strong>at</strong> depths<strong>of</strong> 5, 20 and 30 cm <strong>in</strong> the Norway spruce stand <strong>at</strong> <strong>Olkiluoto</strong> dur<strong>in</strong>g the snowfree period<strong>in</strong> 2005 and <strong>2006</strong>. Reference values are from a Norway spruce stand <strong>in</strong> Tammela.FIP10Ref.Depth 2005 <strong>2006</strong> 1998-2000cm Si Si Si5 4.6 0.6 5.3 0.7 2.97 0.141020 10.8 0.6 10.5 1.0 3.67 0.2430 10.6 0.7 10.8 1.040 3.92 0.08Table F-21. Mean copper (Cu, mg/l) and z<strong>in</strong>c (Zn, mg/l) concentr<strong>at</strong>ions <strong>in</strong> soil solutioncollected <strong>at</strong> depths <strong>of</strong> 5, 10, 20 and 30 cm <strong>in</strong> the Scots p<strong>in</strong>e stand <strong>at</strong> <strong>Olkiluoto</strong> dur<strong>in</strong>g thesnowfree period <strong>in</strong> 2004, 2005 and <strong>2006</strong>. Reference values are from a Scots p<strong>in</strong>e stand<strong>in</strong> Tammela.FIP4 Ref. FIP4 Ref.Depth 2004 2005 <strong>2006</strong> 1998-20002004 2005 <strong>2006</strong> 1998-2000cm Cu Cu Cu Cu Zn Zn Zn Zn5


APPENDIX G. BIOMASS OF FIP SUB-PLOTS IN <strong>2006</strong>In this appendix the biomass estim<strong>at</strong>es <strong>of</strong> FIP plots are presented (orig<strong>in</strong>al d<strong>at</strong>a by Lasse Aro and Timo Kare<strong>in</strong>en (FFRI).Table G-1. Biomass distribution (kg/m 2 ) <strong>in</strong> Scots p<strong>in</strong>e stands by sub-plot on FIP4. Coarse roots > 2mm, f<strong>in</strong>e roots < 2mm.CompartmentBranches RootsSubplotNeedles Liv<strong>in</strong>g Dead Stem Bark Stump Coarse F<strong>in</strong>e Total1 0.57 2.08 0.30 8.68 0.67 1.02 1.65 0.13 15.102 0.57 2.00 0.32 9.89 0.75 1.07 1.72 0.19 16.503 0.60 2.10 0.34 10.13 0.78 1.09 1.76 0.11 16.904 0.54 1.91 0.31 9.13 0.70 0.10 1.60 0.13 15.32Mean 0.57 2.02 0.32 9.46 0.73 1.04 1.68 0.14 15.96Table G-2. Biomass distribution (kg/m 2 ) by sub-plot and by tree species on FIP10. Coarse roots > 2mm, f<strong>in</strong>e roots < 2mm.101CompartmentBranches RootsSub-plot(species)Needles Liv<strong>in</strong>g Dead Stem Bark Stump Coarse F<strong>in</strong>e Leaves Total1 (Norway spruce) 1.58 4.17 0.38 13.83 1.11 1.34 2.68 0.40 25.481 (Birch) 0.97 0.02 4.05 0.65 0.34 0.54 0.07 0.13 6.772 (Norway spruce) 1.78 4.74 0.43 15.86 1.26 1.56 3.08 0.46 29.162 (Birch) 1.13 0.02 4.65 0.74 0.39 0.62 0.08 0.15 7.783 (Norway spruce) 2.07 5.50 0.54 19.46 1.52 1.82 3.66 0.53 35.133 (Birch) 0.76 0.02 3.18 0.51 0.26 0.41 0.05 0.11 5.304 (Norway spruce) 1.25 3.37 0.27 9.61 0.80 0.98 1.96 0.32 18.554 (Birch) 1.12 0.03 4.34 0.70 0.38 0.60 0.08 0.16 7.41Mean (Norway spruce) 1.67 4.45 0.40 14.69 1.17 1.43 2.84 0.43 27.08Mean (Birch) 0.10 0.02 4.05 0.65 0.34 0.54 0.07 0.14 6.81


102


103APPENDIX H. LITTERFALL PRODUCTION ON FIP PLOTS IN 2004-2005In this appendix the litterfall production estim<strong>at</strong>es <strong>of</strong> FIP plots are presented (orig<strong>in</strong>ald<strong>at</strong>a by Lasse Aro and Timo Kare<strong>in</strong>en (FFRI).Table H-1. Litterfall production (g/m 2 ) on the FIP plots by sampl<strong>in</strong>g occasions (d<strong>at</strong>e) <strong>in</strong>2004 and 2005.Litter fraction 1)Plot Year D<strong>at</strong>e 1 2 3 4 5 TotalFIP4 2004 29 June 1.186 0.143 0.000 0.000 4.188 5.51720 July 3.561 0.536 0.000 0.000 10.975 15.07310 Aug 4.564 0.677 0.005 0.000 16.907 22.15326 Aug 6.753 0.680 0.000 0.000 4.885 12.3198 Sep 20.485 0.516 0.000 0.000 7.410 28.41120 Sep 37.481 0.546 0.000 0.000 7.005 45.0334 Oct 11.317 0.091 0.000 0.000 0.915 12.32220 Oct 24.304 0.281 0.008 0.009 1.512 26.1145 Nov 10.200 0.088 0.003 0.000 1.145 11.436Total 119.851 3.559 0.017 0.009 54.942 178.378FIP4 2005 13 Apr 4.768 2.362 0.000 0.000 17.311 24.4419 May 0.463 0.331 0.023 0.000 4.346 5.16323 May 1.348 0.333 0.009 0.000 2.766 4.4567 June 2.731 0.749 0.020 0.000 2.302 5.8014 July 7.822 0.253 0.031 0.000 28.875 36.9814 Aug 9.160 0.487 0.001 0.000 33.032 42.68130 Aug 15.127 1.927 0.060 0.000 25.790 42.90413 Sep 20.956 3.610 0.000 0.016 15.458 40.04012 Oct 6.342 0.319 0.000 0.014 2.832 9.5079 Nov 63.468 0.966 0.057 0.043 16.974 81.507Total 132.185 11.337 0.200 0.073 149.687 293.482FIP10 2005 7 June 0.000 0.000 13.141 0.085 4.925 18.1514 July 0.000 0.000 9.690 0.321 6.870 16.8815 Aug 0.000 0.000 6.453 0.753 4.285 11.49130 Aug 0.000 0.000 6.403 1.766 11.576 19.74513 Sep 0.000 0.005 2.735 2.026 6.085 10.85012 Oct 0.007 0.000 6.651 23.843 12.431 42.9329 Nov 0.001 0.000 18.880 20.513 11.411 50.804Total 0.007 0.005 63.952 49.307 57.584 170.8541) Litter fractions: 1= p<strong>in</strong>e brown needles, 2= p<strong>in</strong>e green needles, 3= spruce needles, 4= leaves, 5= rema<strong>in</strong><strong>in</strong>glitter


104


105APPENDIX I. GAME STATISTICS OF 2002-<strong>2006</strong>Table I-1. Game c<strong>at</strong>ches (number <strong>of</strong> <strong>in</strong>dividuals) and popul<strong>at</strong>ion estim<strong>at</strong>es <strong>at</strong> <strong>Olkiluoto</strong>.Hooded Crow is not a game bird, but is hunted for game protection reasons (it destroysnests <strong>of</strong> other birds). Table accord<strong>in</strong>g to <strong>in</strong>terview study by S<strong>at</strong>u Oja and Jyrki Oja,popul<strong>at</strong>ions partly based on earlier estim<strong>at</strong>es, summarized <strong>in</strong> Haapanen (2005). " - "=miss<strong>in</strong>g, "* " = before hunt<strong>in</strong>g season.Species 2002 2003 2004 2005 <strong>2006</strong> Popul<strong>at</strong>ionAmerican m<strong>in</strong>k (Mustela vison) 2 8 - 9 3 >15Badger (Meles meles) 0 1 0 0 0 one pair?Brown hare (Lepus europaeus) - 1 0 2 0 10-15Moose (Alces alces) 10 - 5 7 6 16*Mounta<strong>in</strong> hare (Lepus timidus) 3 2 0 2 0 20-25Muskr<strong>at</strong> (Ond<strong>at</strong>ra zibethicus) 0 0 0 0 0 0P<strong>in</strong>e marten (Martes martes) 0 0 0 0 0 one pair?Raccoon dog (Nyctereutes procyonoides)12 19 10 9 2 >20Red fox (Vulpes vulpes) 1 7 - 1 3 >20Red squirrel (Sciurus vulgaris) 0 0 0 0 0 60-100Roe deer (Capreolus capreolus) 0 1 0 5-10 1 15-20White-tailed deer (Odocoileus - - 5 10 14 20-25*virg<strong>in</strong>ianus)Black grouse (Tetrao tetrix) - - 1 0 1Hazel grouse (Bonasa bonasia) - - 5 0 0Hooded crow (Corvus corone) - - 2 2 0Mallard (Anas pl<strong>at</strong>yrhynchos) - - 18 5 10Teal (Anas crecca) - - 4 0 0Woodcock (Scolopax rusticola) - - 2 0 0


106


107APPENDIX J: RESULTS FROM MONITORING OF SEA ENVIRONMENT IN <strong>2006</strong>Detailed result tables from monitor<strong>in</strong>g <strong>of</strong> sea environment are presented <strong>in</strong> this Appendix.Table J-1. Temper<strong>at</strong>ures (ºC) on w<strong>at</strong>er quality observ<strong>at</strong>ion plots <strong>in</strong> <strong>2006</strong> <strong>in</strong> the openw<strong>at</strong>er season sampl<strong>in</strong>g (physical-chemical; Turkki 2007). " - " = no samples.Loc<strong>at</strong>ion Depth, m 8-9 May 7-8 August 15 NovemberSEA03 0-257-10SEA05 0-25-5.5SEA06 0-257-13.5SEA07 0-257SEA08 0-258.5-9SEA09 0-257.5-8SEA10 0-257-1310.47.05.512.68.712.87.04.811.05.85.312.36.55.8---7.55.43.620.914.810.520.613.420.314.79.521.015.110.120.917.49.620.219.112.518.918.410.35.04.94.93.23.23.03.03.13.83.73.79.05.23.53.94.34.6---Table J-2. Oxygen s<strong>at</strong>ur<strong>at</strong>ion (%) <strong>of</strong> w<strong>at</strong>er <strong>in</strong> w<strong>in</strong>ter and open w<strong>at</strong>er season <strong>2006</strong>(Turkki 2007). Subscript = standard devi<strong>at</strong>ion, " - " = no samples. Pran and Raum arereference loc<strong>at</strong>ions <strong>in</strong> Pyhäranta and Rauma.Loc<strong>at</strong>ion Depth, m W<strong>in</strong>ter Open w<strong>at</strong>er seasonSEA03 0-10 - 105 13SEA05 0-5.5 94 1 105 11SEA06 0-1012.5-13.595 191104 1093 15SEA07 0-7 99 1 107 10SEA08 0-9 107 6 106 11SEA09 0-8 91 4 96 10SEA10 0-1013--109 994 12Raum 435 0-1015-16--100 793 9Pran 319 15-16 97 84


108Table J-3. The concentr<strong>at</strong>ions <strong>of</strong> total N and NH 4 -N (µg/l) dur<strong>in</strong>g w<strong>in</strong>ter and open w<strong>at</strong>erseason <strong>2006</strong> (Turkki 2007). Subscript = standard devi<strong>at</strong>ion, " - " = no samples.W<strong>in</strong>terOpen w<strong>at</strong>er seasonLoc<strong>at</strong>ion Depth, m Total N NH 4 -N Total N NH 4 -NSEA03 0-10 - - 360 110 8 10SEA05 0-5.5 290 7 3 2 300 40 12 2SEA06 0-1012-13.5280 63002 09290 50330 1107 88 12SEA07 0-7 290 17 3 2 310 50 14 9SEA08 0-9 290 10 4 2 320 40 8 10SEA09 0-8 360 60 29 34 390 90 15 14SEA10 0-1013----260 30240 142 02 0Table J-4. The concentr<strong>at</strong>ions <strong>of</strong> total P (µg/l) dur<strong>in</strong>g w<strong>in</strong>ter and open w<strong>at</strong>er season<strong>2006</strong> (Turkki 2007). Subscript = standard devi<strong>at</strong>ion, " - " = no samples.Loc<strong>at</strong>ion Depth, m W<strong>in</strong>ter Open w<strong>at</strong>er seasonSEA03 0-10 - 17 3SEA05 0-5.5 24 1 18 5SEA06 0-1012.5-13.523 02718 420 3SEA07 0-7 24 2 18 4SEA08 0-9 23 1 20 4SEA09 0-8 25 1 38 50SEA10 0-1013--Table J-5. The concentr<strong>at</strong>ions <strong>of</strong> substance m<strong>at</strong>ter (mg/l) dur<strong>in</strong>g w<strong>in</strong>ter and open w<strong>at</strong>erseason <strong>2006</strong> (Turkki 2007). Subscript = standard devi<strong>at</strong>ion, " - " = no samples.15 215 1Loc<strong>at</strong>ion Depth, m W<strong>in</strong>ter Open w<strong>at</strong>er seasonSEA03 0-10 - 3.2 2.3SEA05 0-5.5 0.5 0 2.7 1SEA06 0-1012.5-13.50.7 0.41.02.4 0.72.1 1.4SEA07 0-7 0.8 0.5 4.0 3.5SEA08 0-9 0.7 0.5 3.0 0.7SEA09 0-8 1.2 1.2 3.7 0.9SEA10 0-1013--1.8 1.01.1 0.8


109Table J-6. Species composition (% <strong>of</strong> total biomass) and total phytoplankton biomasses<strong>in</strong> loc<strong>at</strong>ion SEA08 <strong>in</strong> year <strong>2006</strong> ( Turkki 2007).%Species 10-Apr 24-Apr 8-May 22-May 12-Jun 10-Jul 07-Aug 25-SepCyanophyceae 0.0 0.0 0.0 0.6 1.1 38.9 20.1 0.7Cryptoph. 0.9 1.2 1.1 0.6 28.5 11.4 14.3 35.8D<strong>in</strong>oph. 9.9 23.0 7.8 3.2 10.7 7.9 4.8 4.8Chrysoph. 0.5 0.3 0.5 3.3 19.3 4.5 4.4 0.8Prymnesioph. 0.0 0.0 0.1 1.1 0.5 3.8 15.1 1.4Bacillarioph. 81.8 63.5 81.6 77.5 10.9 4.7 6.7 18.3Euglenoph. 1.9 0.9 0.2 0.6 0.7 2.3 0.0 0.0Pras<strong>in</strong>oph. 0.5 1.6 0.8 0.1 9.0 9.9 13.8 0.7Chloroph. 0.1 0.1 0.1 0.1 0.8 4.6 5.8 3.6Monads 2.3 3.3 2.3 9.1 13.1 11.7 14.2 29.3Mesod<strong>in</strong>ium 2.1 6.2 5.6 3.7 5.6 0.4 1.0 4.7Total, mg/m 3 2931.4 4728.7 4807.9 790.0 452.6 263.2 199.3 120.3Table J-7. Phytoplankton biomass and its composition <strong>in</strong> the comb<strong>in</strong>ed samples <strong>of</strong>summer <strong>2006</strong> (12 June – 25 September; Turkki 2007). W<strong>at</strong>er column 0-6 m, exceptSEA03 0-8m.SEA08mg/m 3 %SEA05mg/m 3 %SEA06mg/m 3 %SEA07mg/m 3 %SEA03mg/m 3 %Cyanophyceae 37.0 14 168.3 33 37.4 14 14.2 8 12.4 6Cryptophyceae 57.6 22 52.3 10 29.5 11 41.1 22 32.4 17D<strong>in</strong>ophyceae 21.2 8 24.2 5 15.5 6 17.6 9 15.8 8Chrysophyceae 27.2 11 43.1 9 20.0 7 14.2 8 35.4 18Bacillariophyceae 24.2 9 26.5 5 39.3 14 19.3 10 16.7 9Chlorophyceae 8.0 3 15.4 3 7.2 3 7.9 4 5.8 3Other 83.7 32 176.3 35 125.3 46 75.4 40 77.2 39Total 258.9 100 506.3 100 274.1 100 189.6 100 195.8 100Table J-8. Chlorophyll-a and primary production capacity <strong>in</strong> June-September <strong>2006</strong>(Turkki 2007). W<strong>at</strong>er column samples 0-4, 0-6, 0-8 and 0-10 m; n=4 except SEA09 andSEA10 n=3. Subscript = standard devi<strong>at</strong>ion. Pran and Raum are reference loc<strong>at</strong>ions <strong>in</strong>Pyhäranta and Rauma.Loc<strong>at</strong>ion Chlorophyll a, µg/l Primary production capacity, mg C/m 3. dSEA03 2.0 0.3 130 24SEA05 2.8 1.1 175 65SEA06 1.9 0.6 120 30SEA07 1.6 0.3 130 54SEA08 2.0 0.7 130 10SEA09 2.9 0.6 160 47SEA10 1.6 0.4 100 20Pran 310 2.2 120Raum 435 1.6 100


110Table J-9. Primary production (mg C/m 2. d) <strong>of</strong> phytoplankton <strong>in</strong> <strong>2006</strong> (Turkki 2007).D<strong>at</strong>e SEA06 SEA08April 10 378 441April 24 308 527May 8 328 488May 22 225 251June 12 300 357July 10 363 375August 7 366 425September 25 214 210Mean for grow<strong>in</strong>g season <strong>2006</strong> 310 384Mean for grow<strong>in</strong>g season 2005 238 292Mean for grow<strong>in</strong>g season 2004 225 275Table J-10. The numbers <strong>of</strong> species, <strong>in</strong>dividuals and biomass <strong>of</strong> bottom fauna <strong>in</strong> <strong>2006</strong>by sea bottom type (Turkki 2007). Subscript = standard devi<strong>at</strong>ion.Sludge bottom(SEA05, 06, 08, 09)Hard bottom(SEA03, 07)Number <strong>of</strong> species 11 5 14 3Density, <strong>in</strong>dividuals/m 2 3730 2055 3797 528Biomass g/m 2 143.0 63 208.5 54Ma<strong>in</strong> species, % <strong>of</strong> <strong>in</strong>dividual numbers:Baltic clam (Macoma balthica) 47 51Spionid polychaetes <strong>of</strong> sp. Marenzelleria viridis 6 20Sludge worms (Tubificidae) 2 0Nemert<strong>in</strong>e worm (Prostoma obscurum) 1


111APPENDIX K. WATER QUALITY IN <strong>2006</strong>Table K-1. Chemical analyses <strong>of</strong> the samples from rock pil<strong>in</strong>g areas (new sampl<strong>in</strong>gloc<strong>at</strong>ions) on November 9, <strong>2006</strong>. Orig<strong>in</strong>al results by TVO's labor<strong>at</strong>ory.Ditch w<strong>at</strong>er from landfill siteEP5Analysis Unit Result RSD% Result RSD%Ion balance +5.24 -12.64TDS mg/l 290 920W<strong>at</strong>er type Ca-Na-Mg-So 4 -No 3 Na-Ca-HCO 3Alum<strong>in</strong>ium Al mg/l 1.25 0.79


112Table K-2. Chemical analyses <strong>of</strong> samples from priv<strong>at</strong>e wells <strong>in</strong> <strong>2006</strong>. The wells weresampled on July 24. Orig<strong>in</strong>al results by the <strong>Environment</strong>al Labor<strong>at</strong>ory <strong>of</strong> Rauma.Analysis DWH1 DWH2 DWH3 DWH4pH 6.9±0.3 7.9±0.3 8.1±0.3 7.9±0.3Electrical conductivity +25ºC, 1400±200 5000±400 740±60 5000±400µS/cmTemp. for EC measurement, ºC 19 17.9 18 18.2Colour <strong>in</strong>dex, mg/l Pt 80±30 40±10 25±10 60±20Cloud<strong>in</strong>ess, NTU 3.1±0.9 2.4±0.8 1.6±0.5 6.9±2.1Chloride, mg/l 360±40 1400±200 44±4 240±30Ammonia, mg/l 0.11±0.02 0.31±0.04 0.024±0.004 0.20±0.03Nitrite, mg/l 0.013±0.001

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!