14.09.2015 Views

Matvec Users’ Guide

Matvec Users' Guide

Matvec Users' Guide

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

13.3. DISCRETE DISTRIBUTION 105<br />

<strong>Matvec</strong> interface<br />

An object of P (λ) can be created by<br />

D = StatDist("Poisson",lambda);<br />

<strong>Matvec</strong> provided several standard member functions to allow user to access most of properties and<br />

functions of P (λ):<br />

pdf D.pdf(x) returns the probability density function (pdf) values of x which could be a vector or matrix.<br />

cdf D.cdf(x) returns the cumulative distribution function (cdf) values of x which could be a vector or<br />

matrix<br />

mgf D.mgf(t) returns the moment-generating function (mgf) values of t which could be a vector or matrix.<br />

inv D.inv(p) is the inverse function of D.cdf(x), where p could be a vector or matrix. That is if p =<br />

D.cdf(x), then x = D.inv(p).<br />

sample D.sample(), D.sample(n), and D.sample(m,n) return a random scalar or a vector of size n or a matrix<br />

of size m by n.<br />

parameter D.parameter(1) returns λ.<br />

mean D.mean() returns the expected value.<br />

variance D.variance() returns the variance.<br />

Examples<br />

> D = StatDist("Poisson",10)<br />

PoissonDist(10)<br />

> D.sample(1000).mean()<br />

10.199<br />

> D.sample(1000).variance()<br />

9.98214<br />

> D.pdf([0,10,100])<br />

Col 1 Col 2 Col 3<br />

Row 1 4.53999e-05 0.125110 4.86465e-63<br />

> D.cdf([0,10,100])<br />

Col 1 Col 2 Col 3<br />

Row 1 4.53999e-05 0.583040 1.00000<br />

> D.inv(0.5)<br />

***ERROR***<br />

PoissonDist::inv(): not available<br />

13.3.3 Geometric distribution<br />

Definition<br />

The random variable X has a geometric distribution if its probability density function (pdf) is defined by<br />

f(x) = (1 − p) x p, x = 0, 1, 2, . . . , (13.16)<br />

where p (real) is the parameter with its range 0 ≤ p ≤ 1. In short, we say X ∼ g(p).<br />

For example, let X be the number of failures before the first success in a sequence of Bernoulli trials with<br />

probability of success p, then X ∼ g(p).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!