29.09.2015 Views

BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI

buletinul institutului politehnic din iaşi - Universitatea Tehnică ...

buletinul institutului politehnic din iaşi - Universitatea Tehnică ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

20 Ion Crăciun<br />

Ψ r<br />

Having assumed that in (30) only does not vanishes, we obtain the following<br />

representation for a regular solution in B of the governing Eqs. (30) of the<br />

second axially-symmetric problem<br />

0<br />

⎧ uθ = −2 α<br />

3<br />

∂zΨr,<br />

⎪<br />

0 0 0 2 −1<br />

⎨φr<br />

= {<br />

2 3− [( β+ γ−ε) 2−4 α ] ∂<br />

r( r +∂r)<br />

} Ψ<br />

r,<br />

⎪<br />

2 −1<br />

⎪⎩ φz<br />

= − {[( β+ γ−ε) 2<br />

−4 α ] ∂<br />

z( r +∂r)<br />

} Ψ<br />

r,<br />

where the stress function<br />

Ψ z<br />

satisfies the differential equation<br />

(45)<br />

0 0<br />

3<br />

Ω Ψ + Y = 0.<br />

(46)<br />

r<br />

r<br />

For Y = Y = 0, the relationship between the stress functions Ψ and Ψ takes<br />

r<br />

z<br />

0<br />

the form<br />

3<br />

( ∂<br />

rΨz +∂<br />

zΨr)<br />

= 0.<br />

Finally, let us consider that the body loadings are<br />

X= (0, X ,0), Y = (0, Y ,0).<br />

(47)<br />

The body force<br />

Y θ<br />

θ<br />

θ<br />

is connected to the displacements and rotation fields of the<br />

first axially-symmetric problem. Assuming that only Φ<br />

θ<br />

does not vanishes<br />

identically in Eqs. (36), we obtain the following representation for u θ<br />

, ϕ<br />

r<br />

, and<br />

ϕ<br />

z<br />

in B :<br />

⎧<br />

0<br />

uθ<br />

=<br />

4Φθ,<br />

⎪<br />

⎨φr = 2 α∂zΦθ<br />

,<br />

(48)<br />

⎪<br />

−1<br />

⎪⎩ φz = − 2 α( r +∂r)<br />

Φθ<br />

,<br />

where Φ<br />

θ<br />

is a solution in B of the equation<br />

0<br />

Ω + =<br />

Φ r<br />

X θ<br />

7. Concentrated Loadings<br />

Supposing that Yr<br />

= X θ<br />

= 0, the corresponding solutions of the second<br />

axially-symmetric problem can be obtained by means of differential equation<br />

(43) which can be write in the form<br />

( μ + α)( β+ 2 γ)( ∇ + k )( ∇ + k )( ∇ + σˆ<br />

) Ψ = Y .<br />

(49)<br />

2 2 2 2 2 2<br />

1 2 3<br />

Having applied Fourier transformations, direct and inverse,<br />

⎧<br />

1 +∞<br />

f%<br />

(, r η) = f(,)exp(i r z ηz)d,<br />

z<br />

⎪<br />

2π<br />

∫−∞<br />

⎨<br />

1 +∞<br />

⎪ f(,) r z = f%<br />

(, r η)exp(i − ηz)dη<br />

⎪⎩<br />

2π<br />

∫−∞<br />

over z and Hankel transformations<br />

z<br />

0.<br />

z<br />

r<br />

z<br />

(50)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!