24.05.2018 Views

differential equation

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

452 DIFFERENTIAL EQUATIONS<br />

Thus, the particular solution is: y x =−ln x + 2<br />

or y =−x(ln x − 2) or y = x(2 − ln x)<br />

Problem 2. Find the particular solution of the<br />

<strong>equation</strong>: x dy<br />

dx = x2 + y 2<br />

, given the boundary<br />

y<br />

conditions that y = 4 when x = 1.<br />

Using the procedure of section 47.2:<br />

(i) Rearranging x dy<br />

dx = x2 + y 2<br />

gives:<br />

y<br />

dy<br />

dx = x2 + y 2<br />

which is homogeneous in x and<br />

xy<br />

y since each of the three terms on the right hand<br />

side are of the same degree (i.e. degree 2).<br />

(ii) Let y = vx then dy<br />

dx = v + x dv<br />

dx<br />

(iii) Substituting for y and dy<br />

dx<br />

dy<br />

dx = x2 + y 2<br />

gives:<br />

xy<br />

v + x dv<br />

dx = x2 + v 2 x 2<br />

x(vx)<br />

= x2 + v 2 x 2<br />

vx 2<br />

(iv) Separating the variables gives:<br />

in the <strong>equation</strong><br />

= 1 + v2<br />

v<br />

x dv<br />

dx = 1 + v2<br />

− v = 1 + v2 − v 2<br />

= 1 v<br />

v v<br />

Hence, v dv = 1 x dx<br />

Integrating both sides gives:<br />

∫ ∫ 1 v2<br />

v dv = dx i.e.<br />

x 2 = ln x + c<br />

(v) Replacing v by y x gives: y 2<br />

= ln x + c, which<br />

2x2 is the general solution.<br />

16<br />

When x = 1, y = 4, thus: = ln 1 + c from<br />

2<br />

which, c = 8<br />

Hence, the particular solution is: y2<br />

2x 2 = ln x + 8<br />

or y 2 = 2x 2 (8 + ln x)<br />

Now try the following exercise.<br />

Exercise 181 Further problems on homogeneous<br />

first order <strong>differential</strong> <strong>equation</strong>s<br />

1. Find the general solution of: x 2 = y 2 dy<br />

dx<br />

[− 1 ( x 3<br />

3 ln − y 3 ) ]<br />

x 3 = ln x + c<br />

2. Find the general solution of:<br />

x − y + x dy<br />

dx = 0 [y = x(c − ln x)]<br />

3. Find the particular solution of the <strong>differential</strong><br />

<strong>equation</strong>: (x 2 + y 2 )dy = xy dx, given that<br />

x = 1 when y = 1.<br />

( [x 2 = 2y 2 ln y + 1 )]<br />

2<br />

4. Solve the <strong>differential</strong> <strong>equation</strong>: x + y<br />

y − x = dy<br />

dx<br />

⎡ (<br />

⎣ −1 2 ln 1 + 2y ) ⎤<br />

x − y2<br />

x 2 = ln x + c⎦<br />

or x 2 + 2xy − y 2 = k<br />

5. Find the particular ( solution ) of the <strong>differential</strong><br />

2y − x dy<br />

<strong>equation</strong>:<br />

= 1 given that y = 3<br />

y + 2x dx<br />

when x = 2. [x 2 + xy − y 2 = 1]<br />

47.4 Further worked problems on<br />

homogeneous first order<br />

<strong>differential</strong> <strong>equation</strong>s<br />

Problem 3. Solve the <strong>equation</strong>:<br />

7x(x − y)dy = 2(x 2 + 6xy − 5y 2 )dx<br />

given that x = 1 when y = 0.<br />

Using the procedure of section 47.2:<br />

dy<br />

(i) Rearranging gives:<br />

dx = 2x2 + 12xy − 10y 2<br />

7x 2 − 7xy<br />

which is homogeneous in x and y since each of<br />

the terms on the right hand side is of degree 2.<br />

(ii) Let y = vx then dy<br />

dx = v + x dv<br />

dx

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!