24.05.2018 Views

differential equation

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

448 DIFFERENTIAL EQUATIONS<br />

8. The rate of cooling of a body is given by<br />

dθ<br />

dt = kθ, where k is a constant. If θ = 60◦ C<br />

when t = 2 minutes and θ = 50 ◦ C when<br />

t = 5 minutes, determine the time taken for θ<br />

to fall to 40 ◦ C, correct to the nearest second.<br />

[8 m 40 s]<br />

46.5 The solution of <strong>equation</strong>s of the<br />

form dy = f (x) · f ( y)<br />

dx<br />

A <strong>differential</strong> <strong>equation</strong> of the form dy = f (x) · f (y),<br />

dx<br />

where f (x) is a function of x only and f (y) is a function<br />

of y only, may be rearranged as dy<br />

f (y) = f (x)dx,<br />

and then the solution is obtained by direct integration,<br />

i.e.<br />

∫<br />

Problem 9.<br />

∫ dy<br />

f (y) =<br />

f (x)dx<br />

Solve the <strong>equation</strong> 4xy dy<br />

dx = y2 −1<br />

Separating the variables gives:<br />

( ) 4y<br />

y 2 dy = 1 − 1 x dx<br />

Integrating both sides gives:<br />

∫ ( ) ∫ ( )<br />

4y<br />

1<br />

y 2 dy = dx<br />

− 1<br />

x<br />

Using the substitution u = y 2 − 1, the general<br />

solution is:<br />

2ln(y 2 − 1) = ln x + c (1)<br />

or ln (y 2 − 1) 2 − ln x = c<br />

{ (y 2 − 1) 2 }<br />

from which, ln<br />

= c<br />

x<br />

( y 2 − 1) 2<br />

and<br />

= e c (2)<br />

x<br />

If in <strong>equation</strong> (1), c = ln A, where A is a different<br />

constant,<br />

then<br />

ln (y 2 − 1) 2 = ln x + ln A<br />

i.e. ln (y 2 − 1) 2 = ln Ax<br />

i.e. ( y 2 − 1) 2 = Ax (3)<br />

Equations (1) to (3) are thus three valid solutions of<br />

the <strong>differential</strong> <strong>equation</strong>s<br />

4xy dy<br />

dx = y2 − 1<br />

Problem 10. Determine the particular solution<br />

of dθ<br />

dt = 2e3t−2θ , given that t = 0 when θ = 0.<br />

dθ<br />

dt = 2e3t−2θ = 2(e 3t )(e −2θ ),<br />

by the laws of indices.<br />

Separating the variables gives:<br />

dθ<br />

e −2θ = 2e3t dt,<br />

i.e. e 2θ dθ = 2e 3t dt<br />

Integrating both sides gives:<br />

∫ ∫<br />

e 2θ dθ = 2e 3t dt<br />

Thus the general solution is:<br />

1<br />

2 e2θ = 2 3 e3t + c<br />

When t = 0, θ = 0, thus:<br />

1<br />

2 e0 = 2 3 e0 + c<br />

from which, c = 1 2 − 2 3 =−1 6<br />

Hence the particular solution is:<br />

1<br />

2 e2θ = 2 3 e3t − 1 6<br />

or 3e 2θ = 4e 3t − 1<br />

Problem 11. Find the curve which satisfies the<br />

<strong>equation</strong> xy = (1 + x 2 ) dy and passes through the<br />

dx<br />

point (0, 1).<br />

Separating the variables gives:<br />

x dy<br />

(1 + x 2 dx =<br />

) y

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!