24.05.2018 Views

differential equation

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

484 DIFFERENTIAL EQUATIONS<br />

4. 9 d2 y dy<br />

− 12 + 4y = 3x − 1; when x = 0,<br />

dx2 dx<br />

y = 0 and dy<br />

dx =−4 3<br />

[y =− ( ]<br />

2 +<br />

4 3 x) e 2 3 x + 2 +<br />

4 3 x<br />

5. The charge q in an electric circuit at time t satisfies<br />

the <strong>equation</strong> L d2 q<br />

dt 2 + Rdq dt + 1 C q = E,<br />

where L, R, C and E are constants. Solve the<br />

<strong>equation</strong> given L = 2H, C = 200 × 10 −6 F<br />

and E = 250V, when (a) R = 200 and (b) R<br />

is negligible. Assume that when t = 0, q = 0<br />

and dq<br />

dt = 0.<br />

⎡<br />

(a) q = 1 ( 5<br />

⎢ 20 − 2 t + 1 ) ⎤<br />

e −50t<br />

20<br />

⎣<br />

(b) q = 1<br />

⎥<br />

⎦<br />

20 (1 − cos 50t)<br />

6. In a galvanometer the deflection θ satisfies the<br />

d2 θ<br />

<strong>differential</strong> <strong>equation</strong><br />

dt 2 + 4dθ dt + 4 θ = 8.<br />

Solve the <strong>equation</strong> for θ given that when t = 0,<br />

θ = d θ<br />

dt = 2. [ θ = 2(te−2t + 1)]<br />

(ii) Substituting m for D gives the auxiliary<br />

<strong>equation</strong> m 2 − 2m + 1 = 0. Factorising gives:<br />

(m − 1)(m − 1) = 0, from which, m = 1 twice.<br />

(iii) Since the roots are real and equal the C.F.,<br />

u = (Ax + B)e x .<br />

(iv) Let the particular integral, v = ke 4x (see<br />

Table 51.1(c)).<br />

(v) Substituting v = ke 4x into<br />

(D 2 − 2D + 1)v = 3e 4x gives:<br />

(D 2 − 2D + 1)ke 4x = 3e 4x<br />

i.e. D 2 (ke 4x ) − 2D(ke 4x ) + 1(ke 4x ) = 3e 4x<br />

i.e. 16ke 4x − 8ke 4x + ke 4x = 3e 4x<br />

Hence 9ke 4x = 3e 4x , from which, k = 1 3<br />

Hence the P.I., v = ke 4x = 1 3 e4x .<br />

(vi) The general solution is given by y = u + v, i.e.<br />

y = (Ax + B)e x + 1 3 e4x .<br />

(vii) When x = 0, y =− 2 3 thus<br />

− 2 3 = (0 + B)e0 + 1 3 e0 , from which, B =−1.<br />

dy<br />

dx = (Ax + B)ex + e x (A) + 4 3 e4x .<br />

When x = 0, dy<br />

dx = 41 13<br />

, thus<br />

3 3 = B + A + 4 3<br />

from which, A = 4, since B =−1.<br />

Hence the particular solution is:<br />

y = (4x − 1)e x + 1 3 e4x<br />

51.4 Worked problems on <strong>differential</strong><br />

<strong>equation</strong>s of the form<br />

a d2 y<br />

dx 2 + b dy + cy = f (x) where<br />

dx<br />

f (x) is an exponential function<br />

Problem 4. Solve the <strong>equation</strong><br />

d 2 y<br />

dx 2 − 2 dy<br />

dx + y = 3e4x given the boundary<br />

conditions that when x = 0, y =− 2 dy<br />

3<br />

and<br />

dx = 4 1 3<br />

Using the procedure of Section 51.2:<br />

(i) d2 y<br />

dx 2 − 2 dy<br />

dx + y = 3e4x in D-operator form is<br />

(D 2 − 2D + 1)y = 3e 4x .<br />

Problem 5. Solve the <strong>differential</strong> <strong>equation</strong><br />

2 d2 y<br />

dx 2 − dy<br />

dx − 3y = 5e 2 3 x .<br />

Using the procedure of Section 51.2:<br />

(i) 2 d2 y<br />

dx 2 − dy<br />

dx − 3y = 5e 2 3 x in D-operator form is<br />

(2D 2 − D − 3)y = 5e 2 3 x .<br />

(ii) Substituting m for D gives the auxiliary<br />

<strong>equation</strong> 2m 2 − m − 3 = 0. Factorising gives:<br />

(2m − 3)(m + 1) = 0, from which, m =<br />

2 3 or<br />

m =−1. Since the roots are real and different<br />

then the C.F., u = Ae 2 3 x + Be −x .<br />

(iii) Since e 2 3 x appears in the C.F. and in the<br />

right hand side of the <strong>differential</strong> <strong>equation</strong>, let

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!