24.05.2018 Views

differential equation

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

458 DIFFERENTIAL EQUATIONS<br />

When x =−1,<br />

−6 =−3A, from which, A = 2<br />

When x = 2,<br />

3 = 3B, from which, B = 1<br />

∫<br />

3x − 3<br />

Hence<br />

(x + 1)(x − 2) dx<br />

∫ [ 2<br />

=<br />

x + 1 + 1 ]<br />

dx<br />

x − 2<br />

(iii) Integrating factor<br />

= 2ln(x + 1) + ln(x − 2)<br />

= ln[(x + 1) 2 (x − 2)]<br />

e∫<br />

P dx<br />

= e ln [(x+1)2 (x−2)] = (x + 1) 2 (x − 2)<br />

(iv) Substituting in <strong>equation</strong> (3) gives:<br />

y(x + 1) 2 (x − 2)<br />

∫<br />

= (x + 1) 2 1<br />

(x − 2)<br />

x − 2 dx<br />

∫<br />

= (x + 1) 2 dx<br />

(v) Hence the general solution is:<br />

y(x + 1) 2 (x − 2) = 1 3 (x + 1)3 + c<br />

(b) When x =−1, y = 5 thus 5(0)(−3) = 0 + c, from<br />

which, c = 0.<br />

Hence y(x + 1) 2 (x − 2) = 1 3<br />

(x + 1)3<br />

(x + 1) 3<br />

i.e. y =<br />

3(x + 1) 2 (x − 2)<br />

and hence the particular solution is<br />

y =<br />

(x + 1)<br />

3(x − 2)<br />

Now try the following exercise.<br />

Exercise 184 Further problems on linear<br />

first order <strong>differential</strong> <strong>equation</strong>s<br />

In problems 1 and 2, solve the <strong>differential</strong><br />

<strong>equation</strong>s<br />

1. cot x dy<br />

dx = 1 − 2y,giveny = 1 when x = π 4 .<br />

[y = 1 2 + cos2 x]<br />

2. t dθ + sec t(t sin t + cos t)θ = sec t, given<br />

dt<br />

t = π when θ = 1.<br />

[θ = 1 ]<br />

t (sin t − π cos t)<br />

3. Given the <strong>equation</strong> x dy<br />

dx = 2<br />

x + 2 − y show<br />

that the particular solution is y = 2 ln(x + 2),<br />

x<br />

given the boundary conditions that x =−1<br />

when y = 0.<br />

4. Show that the solution of the <strong>differential</strong><br />

<strong>equation</strong><br />

dy<br />

dx − 2(x + 1)3 =<br />

4<br />

(x + 1) y<br />

is y = (x + 1) 4 ln(x + 1) 2 , given that x = 0<br />

when y = 0.<br />

5. Show that the solution of the <strong>differential</strong><br />

<strong>equation</strong><br />

dy<br />

+ ky = a sin bx<br />

dx<br />

is given by:<br />

(<br />

y =<br />

given y = 1 when x = 0.<br />

)<br />

a<br />

k 2 + b 2 (k sin bx − b cos bx)<br />

( k 2 + b 2 )<br />

+ ab<br />

+<br />

k 2 + b 2 e −kx ,<br />

6. The <strong>equation</strong> dv =−(av + bt), where a and<br />

dt<br />

b are constants, represents an <strong>equation</strong> of<br />

motion when a particle moves in a resisting<br />

medium. Solve the <strong>equation</strong> for v given that<br />

v = u when t = 0.<br />

[<br />

v = b a 2 − bt (<br />

a + u − b ) ]<br />

a 2 e −at<br />

7. In an alternating current circuit containing<br />

resistance R and inductance L the current i is<br />

given by: Ri + L di<br />

dt = E 0 sin ωt. Giveni = 0<br />

when t = 0, show that the solution of the<br />

<strong>equation</strong> is given by:<br />

(<br />

i =<br />

)<br />

E 0<br />

R 2 + ω 2 L 2 (R sin ωt − ωL cos ωt)<br />

( )<br />

E0 ωL<br />

+<br />

R 2 + ω 2 L 2 e −Rt/L

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!