24.05.2018 Views

differential equation

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

468 DIFFERENTIAL EQUATIONS<br />

For line 6, x 1 = 2.0<br />

y P1 = y 0 + h(y ′ ) 0<br />

= 5.85212176 + 0.2(2.54787824)<br />

= 6.361697408<br />

y C1 = y 0 + 1 2 h[(y′ ) 0 + (3 + 3x 1 − y P1 )]<br />

= 5.85212176 + 1 2 (0.2)[2.54787824<br />

= 6.370739843<br />

+ (3 + 3(2.0) − 6.361697408)]<br />

Problem 6. Using the integrating factor<br />

method the solution of the <strong>differential</strong> <strong>equation</strong><br />

= 3(1 + x) − y of Problem 5 is<br />

dy<br />

dx<br />

y = 3x + e 1 − x . When x = 1.6, compare the<br />

accuracy, correct to 3 decimal places, of the<br />

Euler and the Euler-Cauchy methods.<br />

When x = 1.6, y = 3x + e 1−x = 3(1.6) + e 1−1.6 =<br />

4.8 + e −0.6 = 5.348811636.<br />

From Table 49.1, page 461, by Euler’s method,<br />

when x = 1.6, y = 5.312<br />

% error in the Euler method<br />

( )<br />

5.348811636 − 5.312<br />

=<br />

× 100%<br />

5.348811636<br />

= 0.688%<br />

From Table 49.11 of Problem 5, by the Euler-Cauchy<br />

method, when x = 1.6, y = 5.351368<br />

% error in the Euler-Cauchy method<br />

( )<br />

5.348811636 − 5.351368<br />

=<br />

× 100%<br />

5.348811636<br />

= −0.048%<br />

The Euler-Cauchy method is seen to be more accurate<br />

than the Euler method when x = 1.6.<br />

Now try the following exercise.<br />

Exercise 186 Further problems on an<br />

improved Euler method<br />

1. Apply the Euler-Cauchy method to solve the<br />

<strong>differential</strong> <strong>equation</strong><br />

dy<br />

dx = 3 − y x<br />

for the range 1.0(0.1)1.5, given the initial<br />

conditions that x = 1 when y = 2.<br />

[see Table 49.12]<br />

Table 49.12<br />

x y y ′<br />

1.0 2 1<br />

1.1 2.10454546 1.08677686<br />

1.2 2.216666672 1.152777773<br />

1.3 2.33461539 1.204142008<br />

1.4 2.457142859 1.2448987958<br />

1.5 2.583333335<br />

2. Solving the <strong>differential</strong> <strong>equation</strong> in Problem<br />

1 by the integrating factor method gives<br />

y = 3 2 x + 1 . Determine the percentage<br />

2x<br />

error, correct to 3 significant figures, when<br />

x = 1.3 using (a) Euler’s method (see<br />

Table 49.4, page 464), and (b) the Euler-<br />

Cauchy method.<br />

[(a) 0.412% (b) 0.000000214%]<br />

3.(a) Apply the Euler-Cauchy method to solve<br />

the <strong>differential</strong> <strong>equation</strong><br />

dy<br />

dx − x = y<br />

for the range x = 0tox = 0.5 in increments<br />

of 0.1, given the initial conditions<br />

that when x = 0, y = 1.<br />

(b) The solution of the <strong>differential</strong> <strong>equation</strong><br />

in part (a) is given by y = 2e x − x − 1.<br />

Determine the percentage error, correct to<br />

3 decimal places, when x = 0.4.<br />

Table 49.13<br />

[(a) see Table 49.13 (b) 0.117%]<br />

x y y ′<br />

0 1 1<br />

0.1 1.11 1.21<br />

0.2 1.24205 1.44205<br />

0.3 1.398465 1.698465<br />

0.4 1.581804 1.981804<br />

0.5 1.794893

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!