24.05.2018 Views

differential equation

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

488 DIFFERENTIAL EQUATIONS<br />

5. A <strong>differential</strong> <strong>equation</strong> representing the<br />

motion of a body is d2 y<br />

dt 2 + n2 y = k sin pt,<br />

where k, n and p are constants. Solve the<br />

<strong>equation</strong> (given n ̸= 0 and p 2 ̸= n 2 ) given that<br />

when t = 0, y = dy<br />

dt = 0.<br />

[<br />

y =<br />

k (<br />

n 2 − p 2 sin pt − p ) ]<br />

n sin nt<br />

6. The motion of a vibrating mass is given by<br />

d 2 y<br />

dt 2 + 8dy + 20y = 300 sin 4t. Show that the<br />

dt<br />

general solution of the <strong>differential</strong> <strong>equation</strong> is<br />

given by:<br />

y = e −4t (A cos 2t + B sin 2t)<br />

+ 15 ( sin 4t − 8 cos 4t)<br />

13<br />

7. L d2 q<br />

dt 2 + Rdq dt + 1 C q = V 0 sin ωt represents<br />

the variation of capacitor charge in an<br />

electric circuit. Determine an expression<br />

for q at time t seconds given that R = 40 ,<br />

L = 0.02 H, C = 50 × 10 −6 F, V 0 = 540.8V<br />

and ω = 200 rad/s and given the boundary<br />

conditions that when t = 0, q = 0 and<br />

dq<br />

dt = 4.8<br />

[ q = (10t + 0.01)e<br />

−1000t<br />

]<br />

+ 0.024 sin 200t − 0.010 cos 200t<br />

51.6 Worked problems on <strong>differential</strong><br />

<strong>equation</strong>s of the form<br />

a d2 y<br />

dx 2 + b dy + cy = f (x) where<br />

dx<br />

f (x) is a sum or a product<br />

(D 2 + D − 6)y = 12x − 50 sin x<br />

(ii) The auxiliary <strong>equation</strong> is (m 2 + m − 6) = 0,<br />

from which,<br />

(m − 2)(m + 3) = 0,<br />

i.e. m = 2orm =−3<br />

(iii) Since the roots are real and different, the C.F.,<br />

u = Ae 2x + Be −3x .<br />

(iv) Since the right hand side of the given <strong>differential</strong><br />

<strong>equation</strong> is the sum of a polynomial and a<br />

sine function let the P.I. v = ax + b + c sin x +<br />

d cos x (see Table 51.1(e)).<br />

(v) Substituting v into<br />

(D 2 + D − 6)v = 12x − 50 sin x gives:<br />

(D 2 + D − 6)(ax + b + c sin x + d cos x)<br />

= 12x − 50 sin x<br />

D(ax + b + c sin x + d cos x)<br />

= a + c cos x − d sin x<br />

D 2 (ax + b + c sin x + d cos x)<br />

=−c sin x − d cos x<br />

Hence (D 2 + D − 6)(v)<br />

= (−c sin x − d cos x) + (a + c cos x<br />

−d sin x) − 6(ax + b + c sin x + d cos x)<br />

= 12x − 50 sin x<br />

Equating constant terms gives:<br />

a − 6b = 0 (1)<br />

Equating coefficients of x gives: −6a = 12,<br />

from which, a =−2.<br />

Hence, from (1), b =− 1 3<br />

Equating the coefficients of cos x gives:<br />

−d + c − 6d = 0<br />

(2)<br />

i.e. c − 7d = 0<br />

Problem 9. Solve<br />

d 2 y<br />

dx 2 + dy − 6y = 12x − 50 sin x.<br />

dx<br />

Equating the coefficients of sin x gives:<br />

−c − d − 6c =−50<br />

i.e. −7c − d =−50<br />

(3)<br />

Using the procedure of Section 51.2:<br />

(i) d2 y<br />

dx 2 + dy − 6y = 12x − 50 sin x in D-operator<br />

dx<br />

form is<br />

Solving <strong>equation</strong>s (2) and (3) gives: c = 7 and<br />

d = 1.<br />

Hence the P.I.,<br />

υ =−2x − 1 3<br />

+ 7 sin x + cos x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!