24.05.2018 Views

differential equation

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

478 DIFFERENTIAL EQUATIONS<br />

4. 6 d2 y<br />

dx 2 + 5dy − 6y = 0; when x = 0, y = 5 and<br />

dx<br />

dy<br />

[<br />

dx =−1. y = 3e 2 3 x + 2e − 2 3 x]<br />

5. 4 d2 y<br />

dt 2 − 5dy + y = 0; when t = 0, y = 1 and<br />

dt<br />

dy<br />

[<br />

dt =−2. y = 4e 4 1 t − 3e t]<br />

6. (9D 2 + 30D + 25)y = 0, where D ≡ d dx ;<br />

7.<br />

when x = 0, y = 0 and dy<br />

dx = 2. [<br />

y = 2xe − 5 3 x]<br />

d 2 x<br />

dt 2 − 6dx + 9x = 0; when t = 0, x = 2 and<br />

dt<br />

dx<br />

dt = 0. [x = 2(1 − 3t)e3t ]<br />

d 2 y<br />

8.<br />

dx 2 + 6dy + 13y = 0; when x = 0, y = 4 and<br />

dx<br />

dy<br />

dx = 0. [ y = 2e−3x (2 cos 2x + 3 sin 2x)]<br />

9. (4D 2 + 20D + 125)θ = 0, where D ≡ d dt ;<br />

when t = 0, θ = 3 and dθ<br />

dt = 2.5.<br />

[θ = e −2.5t (3 cos 5t + 2 sin 5t)]<br />

50.4 Further worked problems on<br />

practical <strong>differential</strong> <strong>equation</strong>s of<br />

the form a d2 y<br />

dx 2 + bdy dx + cy = 0<br />

Problem 4. The <strong>equation</strong> of motion of a body<br />

oscillating on the end of a spring is<br />

d 2 x<br />

+ 100x = 0,<br />

dt2 where x is the displacement in metres of the body<br />

from its equilibrium position after time t seconds.<br />

Determine x in terms of t given that at<br />

time t = 0, x = 2m and dx<br />

dt = 0.<br />

An <strong>equation</strong> of the form d2 x<br />

dt 2 + m2 x = 0 is a <strong>differential</strong><br />

<strong>equation</strong> representing simple harmonic motion<br />

(S.H.M.). Using the procedure of Section 50.2:<br />

(a) d2 x<br />

+ 100x = 0 in D-operator form is<br />

dt2 (D 2 + 100)x = 0.<br />

(b) The auxiliary <strong>equation</strong> is m 2 + 100 = 0, i.e.<br />

m 2 =−100 and m = √ (−100), i.e. m =±j10.<br />

(c) Since the roots are complex, the general solution<br />

is x = e 0 (A cos 10t + B sin 10t),<br />

i.e. x = (A cos 10t + B sin 10t) metres<br />

(d) When t = 0, x = 2, thus 2 = A<br />

dx<br />

=−10A sin 10t + 10B cos 10t<br />

dt<br />

When t = 0, dx<br />

dt = 0<br />

thus 0 =−10A sin 0 + 10B cos 0, i.e. B = 0<br />

Hence the particular solution is<br />

x = 2 cos 10t metres<br />

Problem 5. Given the <strong>differential</strong> <strong>equation</strong><br />

d 2 V<br />

dt 2 = ω2 V, where ω is a constant, show that<br />

its solution may be expressed as:<br />

V = 7 cosh ωt + 3 sinh ωt<br />

given the boundary conditions that when<br />

t = 0, V = 7 and dV<br />

dt = 3ω.<br />

Using the procedure of Section 50.2:<br />

(a) d2 V<br />

dt 2 = ω2 V, i.e. d2 V<br />

dt 2 − ω2 V = 0 in D-operator<br />

form is (D 2 − ω 2 )v = 0, where D ≡ d dx<br />

(b) The auxiliary <strong>equation</strong> is m 2 − ω 2 = 0, from<br />

which, m 2 = ω 2 and m =±ω.<br />

(c) Since the roots are real and different, the general<br />

solution is<br />

V = Ae ωt + Be −ωt<br />

(d) When t = 0, V = 7 hence 7 = A + B (1)<br />

dV<br />

dt = Aωeωt − Bωe −ωt

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!